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Preface 

Homotopical algebra is playing an increasingly importRnt role 

in topology and algebra. A first fundamental application of 
homotopical algebra was given by QUILLEN in the development 

of rational homotopy theory. There exists no textbook on 

homotopical algebra at any level except the extremely condensed 

and specific lecture notes of QUILLEN (1967). 

The first part of this book is designed to be a mixture between 

a report and a far reaching elaboration of homotopical algebra. 

The second part contains examples and applications towards 

algebraic homotopy. We describe new results concerning 'towers 

of categories' which approximate (A) the homotopy category of 
spaces. These results also ;mply various basic theorems in the 
literature; in particular our results on CW-complexes continue 
the combinatorial homotopy of J.B.C. WHITEHEAD. Also most of the 
material of the second part is not contained in any textbook 
on algebraic topology and homotopy theory. 

The reader might be a beginning student or a new comer since in 

the first part homotopical algebra is developed in the presence 

of a few axioms. Here the author has aimed to provide the 

reader with sufficient details of all proofs. Many examples and 

applications in topology and algebra are discussed which 

illustrate the abstract theory. This way the reader can learn 

a great deal of ordinary homotopy theory. The axiomatic approach 
as well offers a new way of organizing a course in homotopy 
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theory which avoids numerous redundant proofs. 

The bulk of the book develops methods towards the solution 

of the homotopy classification problem. The author was tempted 
to deduce the theory as far as possible from the axioms. There­
after concrete data like polyhedra, differential algebras or 
other kinds of objects are pluged in. This yields numerous 
applications of the abstract theory and it saves a lot of work 
in the various fields of application. 

As prerequisites the reader should ~now elementary parts of 
topology and the language of categories. The book can be used 
also by readers who have only little knowledge of topology and 
homotopy theory, for example when they want to apply the methods 
of homotopical algebra in an algebraic context. Yet some 
knowledge of homotopy theory is helpful since ordinary homotopy 
theory of topological spaces serves as a leading thread. 

There are chapters I,ll, ••• and the chapters are subdivided 

into several sections like § 0, § 1, § la, § 1b, § 2 •••• 
Definitions, propositions, remarks etc. are consecutively 
numbered in each section, each number preceded by the section 

number, for example (1.5) or (la.5). A reference like (II. 5.6) 

pOints to (5.6) in chapter II, while (5.6) points to (5.6) in 
the chapter at hand. References to the bibliography are given 
by the author's name, e.g. J.B.C. WHITEHEAD (1950)'. 

Some of the ideas of this book were presented to the conference 
-Rational homotopy theory and homotopy theory" in Bonn (1981) 
and to the conference "Homotopie algebrique et algebre locale" 
in Luminy (1982). Also at the invitation of the university of 

Lille I lectured on this book in 1982. Moreover I presented 
some results of this book to the "Arbeitstagung Topology" (1984) 
of the 'Sonderforschungsbereich 170, Geometrie und Analysis' 

in OOttingen. 
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Problems of algebraic homotopy 

In his lecture at the international congress of mathematicians 
(1950) J.H.C. WHITEHEAD outlined the idea of algebraic homotopy 
as follows: 

"In homotopy theory, spaces are classified in terms of homo­
topy classes of maps, rather than individual maps of one . 
space in another. Thus, using the word category in the 
sense of S. ElLENBERG and Saunders MAC LANE, a homotopy 
category of spaces is one in which the objects are topolo­
gical spaces and the "mappings· are not individual maps 
but homotopy.classes of ordinary maps. The equivalences are 
the classes with two-sided inverses, and two spaces are of 
the same homotopy type if and only 1f they are related by 
such an equivalence. The ultimate object of algebraic 
homotopx is to construct a purely algebraic theory, which is 
equivalent to homotopy theory in the same sort of way that 
"analrtic" is equivalent to "pure" projective geometry." 

This object of algebraic homotopy in particular includes the 
following basic homotopy classification problems: 

(1) Classify homotopy types of polyhedra X,Y ••• by algebraic 
data! 
Compute the set of homotopy classes of maps, [X,y] , in 
terms of the classifying data for X and Y! Moreover, 
compute the group of homotopy equivalences, Aut (X) ! 

There is no restriction on the algebraic theory, which might solve 
these problems, except the restriction of "effective' calculability". 
Indeed, algebraic homotopy is asking for a theory which, a priori, 
is not known and which is not uniquely determined by the problem. 
Moreover, it is not clear whether at all there is a suitable 
purely algebraic theory for the problem better than the simplicial 
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approach of KAN. For example, in spite of enormous efforts in the 
last four decades, it is still not possible to compute the 
homotopy grOUPS of spheres 

(2) 

which turned out to have a very rich structure. This 

example shows that the difficulties for a solution of the homotopy 
classification problems increase rapidly when,for the spaces in­
volved,the 

(3) range = (dimension) - (degree of connectedness) 

is growing. On the other hand by a classical result of SERRE the 

rational homotopy groups of spheres 

(4) 'lTm (Sn) e m = 1 : : : : ;:-~ , n even 
o otherwise 

are indeed simple objects. These remarks indicate two suitable 
restrictions for the homotopy classification problem: Consider 

the problem in a small range (3) or consider the problem for 
rational spaces_ 

WHITEHEAD (1949) examined exam9les of the homotopy classification 
of polyhedra in a small range. In particular, he classified 
3-dimensional homotopy types and simply connected 4-dimensional 
homotopy types, (we give new proofs of these results in this 
book). The following related problems ever since remained un­
solved though they are just the first steps beyond VlHITEHEAD's 
results: 

(5) Compute all homotopy classes of maps between simply con­
nected 4-dimensional polyhedra in terms of WHITEHEAD's 
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classifying datal Compute the group of homotopy 
equivalences of such polyhedra 1 Classify the homotopy 
types of all simply connected 5-dimensional polyhedral 
Classify the homotopy types of all 4-dimensional poly­
hedra with nontrivial fundamental group 11' • 

These are low dimensional cases of the general homotopy 
classification problems (1). we illustrate various technical 
results of homotopical algebra by applying them to WHITEHEAD's 
problems (5) above; this actually pin points the basic steps for 
the solution of these problems. 

On the other hand QUILLEN (1969) studied the rationalization of 
the homotopy category of si!Ply connected polyhedra obtained by 
inverting all maps f which induce isomorphisms 11' n (f) ., I), n Ii: 2 , 
on rational homotopy groups. He showed that this rationalization 
is a category equivalent to the pure~y algebraic homotopy category 
of differential LIE algebras over •• In addition SULLIVAN (1977) 
obtained the 'dual' result using the DE RBAH algebra. These 
results form the so far best general algebraic approximations of 
the homotopy theory of simply connected polyhedra. There is also 
a slight generalization for nilpotent spaces and for tame spaces 

respectively. 

A disatvantage of rational homotopy theory is the fact that the 
theory does not apply to polyhedra with arbitrary fundamental 
groups. We therefore introduce the twisted rationalization of 
the homotopy c.ategory of all polyhedra by inverting all maps f 
which induce isomorphisms 11'1 (f) and 1I'n (f) 81, n Ii: 2 • This 
leads to the following fundamental problem of algebraic homotopy: 

(6) Construct a purely algebraic category equivalent to the 
twisted rationalization of the homotopy category of all 
polyhedra! 
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The solution of this problem should imply QUILLEN'S result for 

the subcategory of simply connected polyhedra and should be com­
patible with the result of WHITEHEAD on the classification of 

three dimensional polyhedra. 

More generally algebraic homotopy sets us the task: 

(7) Construct algebraic model categories M of subcategories 

T of the homotopy category and measure the difference 

between M and T 1 

The theory of towers of categories and of twisted chain complexes 

in this book is a tool for the problems in(6} and (7). 

Model categories often are obtained by functors which carry poly­
hedra to algebraic objects like 

(8) chain complexes, 

(9) differential algebras, 

given by the integral chain complex of a loop space,or 

(10) differential LIE algebras and DE RHAM algebras respectively. 

Moreover KAN introduced 

(11) si!!lPlicial sets and simplicial free grouEs 

which actually form categories equivalent to the homotopy 

category of polyhedra. 

The categories,.def1redby the objects in (8) ••• (11) respectively, 

are as well homotopy categories in which the "mappings" are not 
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individual maps but homotopy classes of maps. There are 
actually many more algebraic homotopy categories some of them 
not related to spaces at all. In each of them one has homotopy 
classification problems as in (1). It turned out that there is 
a striking similarity of properties of such homotopy categories. 
This fact and the large number of homotopy categories and of 
model categories (7) make it necessary to develop a theory 
based on axioms which are in force in most of the homotopy 
categories. 

We show that even part of the homotopy classification problem 
is of an abstract nature which does not depend on the under­
lying homotopy category. This part 1s longing for the elaboration 
of homotopical algebra. The abstract theory of part 1 originates 
from the authors interest in the concrete problems (5), (6) and 
(7) above. He describe numerous examples and applications of the 
abstract theory refering to these problems. Further applications 
will appear elsewhere. 

There are indeed many more examples and applications of the 
abstract theory of this book in topology and algebra. The reader 

I 

will understand that we cannot discuss such applications in all 
the many different cofibration categories and fibration categories 
described in chapter I. We only picked out some applications 
relevant for the problems of algebraic homotopy. 
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Introduction of part 1: 

In this part homotopy theory is developed abstractly in the 

presence of only four axioms which define a cofibration 
category. Many applications of the abstract theory and numerous 

examples in topology and algebra are described. The axioms have 

been chosen according to the following two criteria: 

(12) The axioms should be sufficiently strong to permit the 
basic constructions of homotopy theory. 

(13) The axioms should be as weak (and as simple) as possible, 

so that the constructions of homotopy theory are 
available in as many contexts as possible. 

There is indeed a wide variety of contexts where the techniques 
of homotopy theory are useful. Therefore the unification due to 
the abstract development of the theory posesses major advantages: 

One proof replaces many, in addition an interplay takes place 

among the various applications. This is very fruitful for many 
topological and algebraic contexts. We derive from the axioms 

a sophisticated theory which in topology can be compared with the 

combinatorial homotopy theory in the sense of J.H.C. WHITEHEAD. 

This leads further than the results on abstract homotopy theory 

previously obtained in the literature. Our development of the 
abstract theory is mainly directed to the homotopy classification 

problems (1). 

The idea ofaxiomatizing homotopy is used implicitly by ECKMANN­

HILTON in studying the phenomena of duality in homotopy theory. 

HILTON (1965), (p. 168), actually draws up a programme by 

mentioning: 
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-Finally we remark that one would try to define the notions 
of cone, suspension, loop space, etc. for the category C 
and thus e1ace the duality on a strict logical basis. It 
would seem therefore that we should consider an abstract 
system formalizing the category of spaces, its homotopy 
category and the homotopy functors connecting them.-

To carry out this programme is part of homotopical algebra. A 
specific approach is due to QUILLEN (1967) who introduced the 
notion of a closed model category which is defined by axioms on 
cofibrations, fibrations and weak equivalences .. This notion is 
self dual, that is, the dual category is once more a closed 

• 
model category where the roles of fibrations and cofibrations are 
interchanged. The homotopy theory of topological spaces, however, 
does not satisfy such a strict duality. For this reason and for 
the sake of more generality and more simplicity we introduce the 
notion of a cofibration category which extracts fr~m a closed 
model category the essential features of cofibrations and weak 
equivalen~es. The axioms of a fibration category are obtained 
by formally dualizing the axioms of a cofibration category. 

We now discuss briefly the contents of the chapters in part 1. 

For a further discussion see chapter introductions. 

Chapter I: The foundational part of homotopical algebra tries 
to find the abstract notion of a homotopy theory in sufficient 
generality to cover the different homotopy theories encountered. 
For this reason we compare the various systems of axioms on a 
homotopy theory which appeared in the literature. It turns out 
that the axioms of a cofibration category form a good compromise 
with respect ~o the criteria (12, and (13) above. Moreover we 
describe a long list of examples of cofibration categories. 

In topology cofibrations (and dually fibrations) are introduced 
by use of the cylinder ! lit X where I is the unit interval. 
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We define an I-category by certain obvious axioms on an abstract 

cylinder functor in the sense of KAN and we show that an I-cate­
gory is a cofibration category. In particular, the category of 
topological spaces is easily seen to be an I-category. Therefore 
cofibrations in topology satisfy our axioms of a cofibration 
category and by strict duality fibrations in topology satisfy 
the axioms of a fibration category. These results show that the 
abstract theory actually implies a lot of ordinary homotopy 

theory, in particular many results discussed by DIECK-KAMPS-PUPPE 

(1970) ·oor JAMES n 985) : For example a theorem of DOLD is available 

in any cofibration category and thus in any I-category and thus 
in topology. 

Cofibrant objects and fibrant objects are defined by the structure 
of a cofibration category. The role of such objects is illustrated 

by examples: The singular set of a space and a resolution of an 
algebra correspond to cofibrant objects. Localizations, completions, 
and QUILLEN's (+)-constructions respectively are fibrant objects. 

Chapter II. The technical part of homotopical algebra deduces 
from the axioms results relevant in homotopy theory. This is 

rewarding since it avoids redundant proofs in the many fields 
where the axioms are valid. In particular, it avoids all 'dual' 

proofs in a fibration category. We emphasize that the abstract 
theory of part 1 is worked out for applications on concrete 

problems like the problems of WHITEHEAD in (5). We intend, how­

ever, to deduce the theory as far as possible from the axioms. 
Thereafter we apply the results in a concrete situation. Our 
intention leads to a far reaching and sophisticated homotopy 
theory which is available in any cofibration category: 

We introduce homotopy groups, the action of the fundamental group, 
homotopy groups of pairs, and the exact sequence for such pairs. 
We study (general) mapping cones and the (general) cofiber 
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sequence with respect to based objects in a cofibration category. 
This indeed is a useful generalization of the usual treatment of 
the cofiber sequence in the sense of D. PUPPE. For example the 
ElLENBERG-MAC LANE fibrations, which classify cohomology with 
local coefficients, are based objects in a fibration category 
and the fibrations in a POSTNIKOV - decomposition of a nonsimple 

space are dual to a general mapping cone. Therefore the general 
fiber sequence (dual to the general cofiber sequence) can be 

applied here while the usual fiber sequence does not work. 

Though we do not construct function spaces we consider groups 
which correspond to the homotopy groups of function spaces. The 
exact sequence for such groups shows that results of BARCUS-BARRATT 
and JAMES-THOMAS are strictly dual and that these results hold 

in any cofibration category. Here the difference construction, 
the partial suspension and the functional suspension in a co­
fibration category are of importance. These technical constructions 
are crucial in the proofs of the following chapters. 

We also discuss products in a cofibration category and we use 
them to define WHITEHEAD-products and the HOPF-construction. 
It turns out that the cofibration category of spaces and the 

fibration category of spaces have very different properties 

with respect to products and sums respectively. This phenomenon 
contradicts a global assumption of duality in topology. 

Finally we describe some examples on the classification of maps 

in topology which we deduce from the abstract theory. For example 
we describe the set of homotopy classes of maps [M,U] where M 
is a simply connected 4-dimensional manifold. Dually we obtain 
the classical result of PONTRJAGIN on the set [X,S2] where X 

is- a 3-dimensionalpolyhedron. Also the result of DOLO-WHITNEY 
on sphere bundles over a 4-dimensional polyhedron is an 
illustrating example. 
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Chapter III: Our study of the homotopy classification problem 
leads to certain new concepts having to do with general categories 
and functors. In particular ,we introduce linear extensions of 
categories which generalize the classically considered extensions 
of groups. Numerous examples of such linear extensions are des­
cribed in this and in the following chapters. It is an old result 
that extensions of a group are classified by a second cohomology 

group. In a similar way we classify the linear extensions of a 

small category. Here we use new cohomology groups of a small 
categor~ which generalize those of HOCHSCHILD-MITCHELL which in 
turn generalize the singular cohomology of the classifying space 
of the category. We introduce a cup product for our cohomology 
groups. Moreover, we show that the HOPF-construction yields a 
canonical element in the first cohomology of the category of free 
abelian groups; we call this element the HOPF-class. It seems 

that such cohomology classes are crucial ingredients of algebraic 
homotopy. 

Chapter IV: We consider maps between mapping cones in a cofi­
bration category. In particular erincipal maps and 
tWisted maps between mapping cones yield subcategories PRIN and 

TWIST of the homotopy category. These categories are shown to be 

linear 'extensions of model categories Prin/~ and Twist/~ 

respectively. In many applications in topology it is possible to 

compute the model categories Prin and Twist and also the 
homotopy relation ~ on these categories. It is much harder to 
compute the categories PRIN and TWIST since there is the 
extension problem. We also have categories of tracks PRIN and 
TWIST from which we derive FRIN and TWIST respectively as 
quotient categories. As ~n example we consider. the extension 

problem for the category of tracks of mappings between one point 

unions of 2-dimensional spheres. It turns out that the cup product 

of the HOFF-class and of the cohomology class, deduced from the 
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lower central series of free groups, describes this extension 
problem. 

Various examples and applications of the abstract results in 
topology are described in the second part of this chapter. In 
particular, twisted maps are applied to WHITEHEAD'S problem (5). 
This indeed is a good test for the feasebility of the abstract 
the cry in concrete cases. As an example we compute the group of 
homotopy equivalences of a simply ccnnected 4-dimensicnal mani­
fcld and of the connected sum (S 1 x S3) fI '(S2 x S2) which is not 

simply connected. 

Moreover two crucial results are proved, the general suspension 
theorem and the general loop theorem. These yield criteria for 
twisted maps in topology and thus they allow a new approach to 
the following problems: 

(14) Describe conditions on the maps f and 9 which imply 
that the mapping cones Cf and Cg are homotopy 
equivalent! Compute [cf,eg ] and Aut (Cf ) in terms 
of the homotopy classes of f and g 1 

(15 ) Describe conditions on the maps f and 9 which imply 

that the homotopy theoretic fibers Pf and Pg are 
homotopy equivalent! Compute [PftPgl and Aut (P

f
) in 

terms of the homotopy classes of f and 9 . 

Our results on these problems are valid in a much better range 
than the known results in the literature. We also study (14) and 
(15) in the category of spaces under D and in the category of 
spaces over D respectively. 



- 23 -

Chapter V: The category of filtered objects in a cofibration 

category is again a cofibration category_ For a filtered object 

X the homotopy groups of the function space UX are embedded 

in a short exact (lim1)-sequence in the sense of MILNOR. The 

main part of this chapter is concerned with complexes which are 
filtered objects obtained by a succession of attaching cones. 
In topology CW-compleces (and dually POSTNIKOV-decompositions) 

are examples of such complexes. A spectral sequence converging 
to the homotopy groups of the function space UX is constructed. 

The E2-term is given by twisted cohomologx groups of the complex X. 

This cohomology is defined in terms of a functor which carries 

complexes to twisted chain complexes. In topology the twisted 
chain complex of a CW-complex is given by the cellular chain 
complex of the universal covering. Therefore the twisted cohomology 

in topology yields the cohomology with local coefficients. On the 
other hand in the category of differential algebras the twisted 

cohomology corresponds to the HOCHSCHILD cohomology. 

Complexes, twisted chain complexes, and twisted cohomology groups 

are defined in any cofibration category. These are features 

of homotopical algebra related to classical homological algebra. 
At this point we compare our concept with the one of QUILLEN (1967) 

who states: 

"Homotopical algebra or non-linear homological algebra is 

the generalization of homological algebra to arbitrary 

categories which results by considering a simplicial object 

as being a generalization of a chain complex." 

We alter this concept by considering a complex instead of a 
simplicial object as being the generalization of a chain complex. 
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Chaeter VI: Nonlinearity of homotopy theory is caused by the 
trouble that homotopy groups do not satisfy the excision axiom. 
The theorem of BLAKERS-MASSEY, however, shows that excision is 
satisfied in a small range, see ·(3). This actually implies a 

certain amount of linearity which in topology leads to stable 
homotopy theory. USing linearity conditions, corresponding to the 

BLAKERS-MASSEY theorem, we define a (very) good class of complexes 

in a cofibrationeategory. In topology CW-complexes and dually 
POSTNIKOV-decompositions form exampl~s of such classes of 
complexes. Moreover the r-step structure of CW-complexes (and 
dually of POSTNIKOV-decomposition~yields such a class for each 
r , r~ 1. 

Our main result is the tower of categories, denoted by TWIST., 

which approximates the homotopy category of maps between complexes 

in a (very) good class. 

A tower of categories essentially is a succession of linear 
extensions of categories. As an illustration we describe a 
tower of groues (n ~ 2) 

1 in A2 

1 
(16 ) G -> ... ->G -> Gn -> ... -> G3 -> G2 = K 

n+1 >- to 1 
Sn H2 

which is characterized by the following properties: 

a) G = lim Gn is the inverse limit of groups 
<-

b) The sequence 

is exact for all n. 



(c) An and Hn 
denoted by 

are 

- 2S -

G -bimodules with the action ,n 

(d) i is equivariant, that is 

(e) 0 is a derivation, that is 

Towersof categories are the canonical extension of such towers 
of groups in the language of categories. 

In the tower TWIST*, constructed in this chapter, the top-category 
G corresponds to the homotopy category of finite complexes and 
the bottom category K corresponds to the homotopy category of 
twisted chain complexes. Therefore each group G(X} = Aut(X) of 
homotopy equivalences of a complex X has the structure of a 
tower of groups as in (16) where K(X) is the group of homotopy 
equivalences of the twisted chain complex. The tower TWIST* 

describes precisely the connection between the category of 

complexes and the category of twisted chain complexes. 

There are many important applications of the tower TWIST*, For 
example, the tower implies a WHITEHEAD-theorem available in any 

cofibration category, In addition, as we will see in part 2, the 
tower has essential features of WHITEHEAD's combinatorial 
homotopy theory of polyhedra. 
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Introduction of part 2: 

This part contains applications of the abstract theory in part 1, 

in particular the tower of categories TWIST. is studied in 
concrete examples. We consider two topological examples derived 
from 

(17) the POSTNIKOV decompositions of fibrations over D, 

and from 

(18) the CW-decompositions of cofibrations under D. 

Here D is a fixed space. The tower of categories of POSTNIKOV 
decomositions (17) is a (dual) example in a fibration category. 
It will be very helpful for the reader to study first these 
applications which illustrate and motivate the abstract (and 
technical) theory on complexes and towers of categories in chapter 

V and chapter VI. These applications yield many new results on 
the homotopy classification problems (1) for polyhedra. 

Cha~ter VII: The tower of categories for POSTNIKOV decompositions 
approximates the homotopy category of topological fibrations 

and of fiber preserving maps over a fixed base space D, (the 
result is also of intere"st when D:;. is a paint.) 
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There are some important consequences. For example the group 
of fiber preserving homotopy equivalences of a fibration has 
the structure of a tower of groups as in (16). One can derive 
easely results of DROR-ZABRODSKY on the nilpotency of certain 
subgroups from this fact. 

Moreover, the tower yields an obstruction theory for the 

realizability of homomorphisms between the homotopy groups 
of fibers by a fiber preserving map. This imp~oves the method 
of AOAMS (1956). The obstructions are useful since by the 
WHITEHEAD theorem they are connected with the classification 
of homotopy types. 

The spectral sequence for homotopy groups of fUnction spaces 
in a cofibration category, applied to CW-complexes (or dually 
applied to POSTNIKdV-decompositions), yields the spectral 
sequences of FEDERER and ATIYAH-HIRZEBRUCH. We also prove 
a result of G.W. WHITEHEAD on the nilpotency of the groups 

[4X,Y] and we prove results of SULLIVAN and SCHEERER on the 

nilpotency of function spaces. We actually show that these 
are special cases of results which hold in any cofibration 
category. 

This chapter continues the work of J.H.C. 
WHITEHEAD on the combinatorial homotopy theory of CW-complexes. 
In fact the essence of combinatorial homotopy can be described 
by the tower of categories for CW-decompositions. Most of the 
results of WHITEHEAD's paper "Combinatorial homotopy II" 
are immediate and very special consequences. We also deduce 
easely the final theorem in WHITEHEAD's paper "Simple homotopy 

types· which constructs small CW-decompositions by small models 

of the chain complex of the universal covering. We give new 
and conceptually easy proofs of these results. Actually we 
prove generalizations to the relative case under a space D. 
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This as well yields finiteness obstructions for relative 
CW-complexes under D which for D = * coincide with those 
of WALL (1966). 

The ECKMANN-HILTON homology decomposition of a cofibration and 
also a result of MILNOR on the minimal number of cells in a 
CW-decomposition are easy examples of small CW-decompositions. 
To this end we pOint out that actually most of the small models 
in homotopy theory (for example minimal models) can be derived 
from towers of categories along the same lines as our construc­
tion of small CM-decompositions. We describe this procedure 
for differential algebraselsewhere •. Also an old result 
of KAN (1959) on a relation between CW-complexes and free 
simplicial groups can be obtained ~y this method. 

The tower of categories for CW-decompositions approximates the 
homotopy category of spaces under D •. The bottom category 0: this tower 
is the homotopy category of chain complexes of the universal 
c~verings. In low dimensions the tower is very efficient for 
the homotopy classification problem (1). For example one de-
duces that'homotopy types of 3-dimensional CW-complexes X 
under Dare 1-1 corresponded to purely algebraic homotopy 
types of 3-dimensional crossed chain 
n1 (D) (provided n2 (o) = 0 ). For 

of WHITEHEAD. We study in detail the 

complexes under the group 

D = * this is a result 
low dimensional part of 

the tower and we describe the connections with the algebraic 
homotopy category of crossed chain complexes which are essen­
tially WHITEHEAD's homotopy systems and which are special cros­
sed complexes as studied by BROWN-BIGGINS. 

The tower for CW-decompositions shows that the group of homotopy 
equivalences (in the category of spaces under 0) has the structure 
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of a tower of groups as in (16). Moreove~one obtains an 
obstruction theory for the realizability of chain maps and of 
homomorphisms between homology groups. This, in particular, is 
relevant for the classification of 4-dimensional homotopy types; 
compare WHITEHEAD's problems described in (5) above. 

The twisted localization of the homotopy category of spaces 
with basepoint as well is approximated by a tower of categories 
which has all the structure of the tower for CW-decompositions 

discussed above. For example this yields finiteness obstructions 
for the twisted localizations. Moreover this is relevant for 
the computation of the twisted rationalization in problem (6). 
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