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0 Introduction

This paper studies anisotropic pseudo-differential operators as they are necessary for solving
parabolic differential equations. Such a concept for scalar symbols was studied by Piriou
[PIR1], [PIR2] for operators on R x W with the time variable ¢ € R and a space region W
that may be a compact C*°-manifold (with or without boundary). If W is allowed to have
singularities, e.g., conical ones or edges, then it becomes necessary to perform a more specific
pseudo-differential analysis close to the singularities. Our calculus here will refer to the case
of edge singularities.

The local model of W near an edge of dimension ¢ is X2 x R? with the model cone
X2 := (R4 x X)/({0} x X), where the base X is a closed compact C®—manifold of dimension
n. Note that the case n = 0 corresponds to standard boundary or transmission problems.
Together with the ¢-axis we obtain the wedge X2 x R x RY, where R x R? 3 (¢, y) is now to
be regarded as an anisotropic edge.

The analysis of pseudo—differential operators itself will be formulated on X* x R x R? with
the open stretched model cone X := R, x X 3 (r,z). Asit is known from the theory of elliptic
operators on manifolds with edges it is not always adequate to localize the objects on X but to
preserve the global descriptions. Moreover, similarly to boundary value problems, there is an
analogue of the SHAPIRO-LOPATINSKIJ condition for elliptic edge problems, that suggests to
interpret the operators as pseudo—differential ones on the edge with operator—valued symbols.

The values of the symbols belong to the algebra of pseudo-differential operators on the
stretched cone X” as it may be found in Scavize [SCH1)}, [SCH2]. The operator—valued
analogue of the scalar pseudo-differential calculus will be understood here in the FOURIER-
edge—approach that was elaborated in SCHULZE [SCH3] for the elliptic theory.

The parabolicity on X* x R!*? 3 (r,z,1,y) is to some extent as anisotropic ellipticity.
For inverting parabolic operators within a corresponding pseudo-differential algebra it is a
necessary step to introduce and to study the algebra itself. This is just the content of the
present paper. The algebra will include the trace and potential operators as edge conditions
that play an analogous role as boundary conditions in the ellipticity.

The anisotropic ellipticity as another necessary part for etablishing the parabolicity will be
presented in BucHH#oLz, SCHULZE [BUCI1]. In a forthcoming paper, cf. [BUC2], we will pass
to a subalgebra of VOLTERRA operators, analogously to the concept of Piriou [PIR1], who
has treated the case of scalar symbols.

The singularities in our context will make it necessary from the very beginning to allow
symbols and distribution spaces with cone and edge asymptotics. The regularity of solutions
should (and finally will) contain the asymptotics, similarly to those of the edge theory, cf.
[SCH1], [SCH2]. The most classical asymptotics of distributions on X*, here called discrete
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(in contrast to the continuous ones, cf. [SCH1], [SCHZ2]) are of the form

oo My

u(r,z) ~ Z E cie(z)rPiln*r as r—0,

1=0k=0
cf. [KON1]. Here p; € C, j € N, is a sequence with Re p; » —00 as j — oo, and Re p; >
“—'{—1 — 4 for all j with some weight ¥ € R. Moreover, the coefficients ¢;z(z) belong to finite-
dimensional subspaces L; C C*°(X)for0 < k< mj, jeN.

It will be also convenient to talk about finite asymptotic expansions

N mj
Z E c;i(z)r7Piln* ¢ (1)
=0 k=0
with "zll —7+8 < Rep; < 11231 — 4y for j = 1,...,N, where 8 < 0 is given. We set
I'g:= {w € C : Rew =} and then the half open interval © = (8,0] will play the role of a
weight strip on the left of the wesght line Fl;’_l.._.«f in the complex plane of the MELLIN covariable
w € C. For formulating our spaces with asymptotics we will call the sequence of data P =
{(pjymj, L;)}j=1,..N, N = N(P), an asymptotic type associated with the weight data g =
(7,0). The set of all such P (for which m¢P = {pj};=1...~ is contained in the indicated
weight strip) will be denoted by As(g). Moreover, for simplicity we will always assume that all

the involved asymptotic types satisfy the shadow condition, i.e.
(p,m,L) € P = (p—j,m(3), L(s)) € P (2)

holds for all j € N with Re p— j > %1 — v 4 6 for certain m(j) > m and L(j) 2 L. Now we
define £p as the linear span of all functions having the form (1) with the above conditions. Of
course, £p is finite-dimensional.

The pseudo—differential operators shall be formulated in r—direction close to r = 0 in terms

of the MELLIN transformation M = M,_,, we C,
o0
Mu(w) = ] ro=ly(r)dr.
0

The MELLIN transformation is first defined for v € C§°(R4) and then extended in a stan-
dard way to the various distribution spaces. In particular, M extends to an isomorphism
M LY(Ry) —» LT 3) between the corresponding spaces of square integrable functions,
where L? on the weight line {Re w = 1} refers to the image of the LEBESGUE measure on R

under the map R — I‘%, p — Im w. Then the inverse MELLIN transform is given by
(M7 g)(r) = 5 [ 7 g(w)du
g T o 1"& g )

We will also employ the weighted MELLIN transform (Myu)(w) = (M(r77u))(w + v), v € R,

which induces an isomorphism M., : rF7LYR,) - L"(I‘%_,’).
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Let F denote the FoOURIER transformation in R™, F = F__., defined by
(Fv)(€) = fe~=¢v(z)dz. Then H*"(R; x R") for s,¥ € R will denote the closure of
C& (R4 x R™) with respect to the norm

lullary = { [[a+

d -
where we set dp = 3£ and df =

n+1 2 , n 2 3
o~ — 7 +ie| + ) (Mn_;r_l_.,ftt)('r—§+zp,£) dpdE} ,

svw- Further H*7(X") is defined as the subspace of all
u € D'(X) for which x.(¢u) € H*7(Ry x R™) for every chart x : ¥V — R” on X and every
¢ € CP(V).

In this paper a cut—off function will be any w(r) € CP(R4) with w = 1 in a neighbourhood
of r = 0. Let V C X be an arbitrary coordinate neighbourhood and XJV . V-oVa
diffeomorphism to an open set V C §". Define x;; : Ry x V — R!*7 by X (7,2) = & with
|Z| = r and X'g(-’ﬂ) = £/|Z|. Then K*Y(X") for 3,7 € R will denote the space of all u € D'(X")
such that w(r)u € H*7(X") and (x3).((1 — w(r))pu) € H*(R'*™) for every V and arbitrary
¢ € CE(V).

H*7(X") and K*7(X ") are BANACH spaces in a natural way (even HILBERTizable), where
HOO(XA) = KOO(X ) coincide with r=2 L2(X*), where L3(X?) refers to drdz with dz being
associated with a RIEMANNian metric on X.

If E; and E, are BANACH spaces that are contained in a HAUSDORFF vector space we
can define the (non-direct) sum F = E; + E;, consisting of all e = ey + e3 with ¢; € E; and
e € B3, f A = {(e,—€) : e € EyN Ey}, then E = (E; @ F2)/A allows to introduce a
BANACH structure in E. Further if a BANACH space B is a module over an algebra A, then
[a] B for a € A will denote the closure of {ab : b € B} in B. Analogous notations will be
used for FRECHET spaces Ey, E; and B, respectively. In particular, the spaces H*7(X") and
K*7(X") are modules over CP(R, x X) as well as over the algebra of all ¢(r,z) € C®(X")
vanishing near r = 0 and for which 1 — ¢ € CP(R; x X).

Since H*(X") C H} (X") and K*7(X*) C Hf,(X") we can write

P (XM = [WIH(XN) + [1 = W] H*(X7) 3)

if H°(X")is defined as the subspace of all u € Hf, (X*) with (x§).((1 -w(r))du) € H*(R!*™)
for every l7, ¢, and (3) is independent of the concrete cut—off function w.

From the definitions it follows easily H*Y(X*) = r"H*°(X") and K*V(X") =
KY(r)K*O(X ") with any k7(r) € C*(R,.) that is strictly positive and equals 77 for 0 < 7 < ¢
and 1 for ¢j < r < oo with constants ¢p < ¢;. Thus it often suffices to look at the case vy = 0,
where we also write H*(X*) = H*%(X*) and K*(X*) = K*O(XM).

We have K (X ") C K*7(X*) for every s’ > s and 4’ > 4. Let us set

K:a’f(xf\) = m K:a,‘y—G—C(XA)
>0
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for @ = (6,0}, endowed with the corresponding FRECHET topology of the projective limit.
Further for every P € As(v,©) we form

K37 (XY) = K8 (X") + [wlep

with the FRECHET topology of the direct sum (recall that [w]€p is a finite-dimensional subspace
of K®7Y(X")). Alternatively we could set |

K XM =Kg"( XM+ Kp"(XM)
with the topology of the non-direct sum. Finally we define
HET(X7) = WIKE(X ™) + (1 - w]H*(X ")

and

SHX™) = [WKET(X™) +[1 - w]S(X),

also with the FRECHET topology of the non-direct sum, where S(X*) := S(R,C®(X))|g, -
This is independent of the concrete choice of the cut-off function w.

Let us set for a moment A*(R x X) := F_,H*(R x X) with the standard SOBOLEV space
H?’(R x X) and the one-dimensional FOURIER transformation Fx_,. Further let ﬁ’(rr_i.-%;l__,' X
X) be the preimage of H*(R x X) under the map Fg%i_,y — R, w— Im w = p. Then it is
well-known (cf., e.g., SCHULZE [SCH2]) that M, _a H*7(X") = fi"’(l‘%i__,r x X) holds.

If 2 C Cis an open set and E a FRECHET space we will denote by A(Q, E) the space of
all holomorphic E-valued functions in . Let w(r) be a cut—off function and § > 0. Then
réwH?7(X") is a subspace of H*7(X") and M.,_i-_(r‘swu) has for every u € H*7(X") an
extension to an element in A({Re w > 2L — 4 — 6}, H*(X)) for which

M,_2(rPwu)lr, € A*(Tp x X)

for all g > %’—1—7—6, uniformly in 1'-%'-1 —4—-6 < B < cforevery ¢ > "ZL'—')'—&. Now let P
be an element in As(y,8) for © = (8,0]. A function x(w) € C*(C) is called a r¢ P-excision
function if x(w) = 0 for dist(w,r¢cP) < €9, x{w) = 1 for dist(w,rcP) > &, with constants
0<egp<ey <oo.

Let us denote by AR”(X) the space of all f(w) € A({Re w > 2 — y + 8} \ ncP; H(X))
such that

(i) f(w)is meromorphic with poles at p; of multiplicities m; + 1 and LAURENT coefficients
at (w—p;)~*+) in L; for 0 < k < m; and all 7,

(ii) for every mc¢P-excision function x(w) we have y(w)f(w)lr, € A°(Ts x X) for every
8> %—7—}-0 and uniformly in ¢g < 8 < ¢, for every ¢; > ¢g > 2 —~ v + 6.
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A basic observation that will currently be used below is
M.,-g.(wlC},‘"(X")) C Ap"(X) and wM;:g_(.A;,"'(X)) C Kp"(X™M).

In other words the asymptotics can be controled in the MELLIN image in terms of the poles
and of the growth for {Im w| — oo.

Let §#(Tg) for 4 € R be the HORMANDER symbol class on the line T'g 2 R 3 p of order
p for which the usual estimates hold, namenly S#(I'g) is the space of all a(w) € C°(I's) with
| Dia(w)| < ¢j(1 + |pl)#~7 for all p € R with constants ¢; > 0, for all j € N. Then we can form
MELLIN pseudo-differential operators opy,(a) : C(Ry) = C®(Ry), a(w) € S“(I‘%_T), by

opis(a)u(r) = ML {(Ta)(w)Mp_u{r"u(r') }(w)}, (4)

where (T%a)(w) := a(w + §) for any 6§ € R. Pseudo-differential operators of that type were
considered, e.g., in SCHULZE [SCH1], [SCH2]. We will write, in particular, op,(a) = op,s(a).
Analogously we can form MELLIN pseudo-differential operators with symbols of the classes
a(r,r',w) € C°(Ry x Ry, $4(Ty_,)), C=(Ry x Ry, S4(Ty_)), cw(m,su(r%_,)) and so
on.

We will be in fact interested in operator-valued MELLIN symbols with values in ¥#(X),
which is the class of all pseudo-differential operators of order u € R on X. By ¥, (X)) we shall
denote the subspace of classical pseudo-differential operators. There is a well-known extension
of the concept of pseudo—differential operators to the case of parameter dependence. If R* 3 X
is the parameter space we obtain W#(X;R*) and ¥*(X;R*) as the space of corresponding
operator families a(A) that are mod ¥~°°(X;R¥) locally defined by symbols p(z,£,)) in the
S# or §% classes with respect to (£, ), treated as an (n + k)-dimensional covariable. Here
V- X;RF) = S(R¥, ¥~=(X)) is the SCHWARTZ space on R* with values in ¥—°°(X) &
C>®(X x X).

We will denote by ¥#(X;I's) the space of all parameter-dependent operators a(w), for
which a(8 + ip) belongs to ¥#(X;R,). Analogously we have ¥,,(X;Tg). All our spaces are
endowed with canonical FRECHET topologies. If we form op},(a) with a € ¥#(X;Tp) then the
pseudo—differential action on X is automatically carried out through the values of the symbol
a{w). The operator op},(a) : C$(X") — C=(X") then extends by continuity to a continuous
operator

opy(a) : HMHE(XN) = HITHIYE(XN)
for every s € R. These properties as well as the following definition may be found in ScHuL-
ze [SCH1], [SCHZ2].

Let R = {(rj,n;, Lj)}jez be an arbitrary sequence with r; € C, |Re r;| — 00 as j — oo,
n; € N and L; being a finite-dimensional subspace of finite-dimensional operators in ¥=°(X).

We set 7¢R = |J {r;}.
jeZ
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For every triple (p,m,!) with p € C, m € N, | € ¥~°(X) being a finite-dimensional

operator we can form the meromorphic operator function
f(p,m,D)(w) = IM,_u(w(r)r™P~* log™ r)(w + 6).

Here 6 € R is arbitrary with Re (p+6) < , such that the MELLIN transform in the usual form
makes sense, and w(r) is a fixed cut—off function. Note that f(p, m,l)(w) has its pole at p of
multiplicity m + 1.

Then N{(X) for 4 € R is defined as the space of all h(w) € A(C\ rcR; ¥#(X)) with the

following properties

(i) h(w) is meromorphic with poles at r; of multiplicities n; + 1 and LAURENT coefficients
at (w—r;)"*+Y in L; for 0 < k < n; and all j,

(ii) for all reals ¢g < ¢; and arbitrary (r;_,n;.,L;.) € R, m = 1,..., N, running over all
triples in R with ¢ < Re r; < ¢}, there are elements I x € L; ,0 < k < nj , such that

Njp—1

N
Moo ey (W) := B(w) = D7 D STy by i k) (w)

m=1 k=0
belongs to A({co < Re w < ¢;}, V(X)) with b, c,)Ir, € ¥#(X; ') for every 8 € (co, 1)

and uniformly in &y < 3 < &, for every ¢y < & < é; < ¢1.

If h € Ni(X) for some MELLIN asymptotic type R holds we will also write sg(h) C 7¢cR ,
i.e., sg(h) indicates the system of poles of the meromorphic operator function . Replacing ¥*
by ¥/, we obtain by definition MR(X). The spaces Ng(X) and Mg(X) are FRECHET spaces
in a natural way. In particular, Mp™(X) = Nzg®(X) is a nuclear FRECHET space. For
7mcR = @ we denote the corresponding spaces by N5(X) and M§(X), respectively. Below we
also use the decompositions Ng(X) = N5(X) + Ng™(X) and MR{(X) = ME(X) + Mz>(X)
with the non—direct sum of FRECHET spaces. It will also be interesting to consider the spaces
Co(Ry x Ry, NA(X)), C(R, x Ry, MA(X)) > h(r, 7', w)

It is clear that we have C®(R, x E,Nﬁ(k’))hp c C=(R,; x Ry, ¥¥(X;Tp)) for every
B € R for which r¢c RNTs = @. For two cut-off functions w(r),&(r) and h(r,,w) € C°(Ry x
R,, ¥#(X;T3)) the operator

wopl(R)@ : K VHE(XN) o Kmmrti (X 1)

is continuous for every s € R. Moreover, if h(r,r',w) € C*(Ry x Ry, N4(X)) and 7¢ RN g =
@, then for every P € As(y + §,0) there is a Q € As(y + §,©), dependent on P and R, such
that

wopr(h)& : IC:3'7+%(XA) - Ka-“'1+%(XA)

is continuous for every s € K.
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1 The ideal of smoothing edge symbols

1.1 General anisotropic operator—valued symbols

In this section we define anisotropic symbols of pseudo-differential operators with values in the
space of linear continuous operators between BANACH or FRECHET spaces E and E. Let us
first assume that E and E are BANACH spaces. Later we will extend the theory to the case of
FRECHET spaces.

With E and E we associate strongly continuous groups of isomorphisms {k)} er and

{R1}ren, respectively. Note that for every such group there are constants M, ¢ > 0 such that

cA~M  for A<,
cAM for A2 1.

%allecey < { (1)

We describe anisotropy with any fixed 1 <! € N. The isotropic case is contained in the
anisotropic theory with [ = 1.

For (1,n) € R, x R = R'*7 we define the anisotropic norm function
il = (el + ). (2)
Furthermore, we fix an anisotropic smoothed norm function
[ 2l 2= w(7,m) + (1 = (7, m))I7 i, (3)

where we suppose w(t,7) € C§°(R'*+9,[0, 1)), such that there are real numbers 1 < ¢ < ¢’ with

( ) 1 for 0< Irv Till <eg, (4)
w(r,n) =
0 for |77l > .

For abbreviation we set x(7,9) := K[ ), and &(7,7) 1= R{7 g,

Definition 1 Let v € R and U = Uy x U' with open sets Uy C RP, U’ C RP; then the

space of anisotropic operator-valued symbols
$*'(U x R, E,E) (5)
is defined as the set of all a(t,y,7,m) € C®(U x R**9, L(E, E)) such that

IR~ (r, m){ D¢ D yalt, v, mymIs(r, )l o g 3y < el ™" (6)

holds for all a = (ap,a') € NPox NP 3 = (8o,8') € NxN? and ali(t,y) € K with K CC U and
all (r,n) € R1*9 with constants ¢ = ¢(a,B,K) > 0. Here we denote by |B|; for multi-indices
B € N9 the number |8|; = 16 + |5
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The best constants ¢ = c¢(a,3,K) in (6) form a system of semi—norms, which gives a
FRECHET topology on (5). With this definition the space (5) depends on the concrete choice
of the k),%)x. They are always fixed in our applications; for abbreviation we omit them in
the notation. We only discuss the cases U = Uy x U’ with open Uy C R and U’ C RY or
U = (Ug x U") x (Ug x U'), where in the latter case we also denote the symbols as amplitude
functions with variables ¢,y,t', vy, 7, 7.

of course; we also allow the special case E = C or £ = C. Then we set x, = id and
Ky = id for all A € R,. With E = E = C we get the scalar anisotropic symbols and write
shortly §*/(U x R+9;C,C) = §*/(U x R19) (see also [PIR1]).

We denote by S*/(R119; E, E) the closed subspace of anisotropic operator-valued symbols

with constant coefficients, that means they do not depend on (t,y,t,y’).

Example 2 As mentioned in the introduction the spaces £*¥(X") are BANACH spaces for
all s,y € R. Setting (kyu)(r,z) = (Rau)(r,z) = Aq_lu()\r,x) for all u(r,z) € K*7(X") we
may define the symbol spaces S¥!(U x R4, K#7(X ), K2=vr=s(XN)).

For example, the operator valued function a(r,7) = (it + |n|?) ® e, where e de-
notes the embedding K*Y(X*) < K*'(X*) with s > s and ¥ > 4’, belongs to
S2(RM; K2(XA), K77 (XM).

Another essential example of an operator-valued symbol is given by the following

Lemma 3 The operator Mg of multiplication by ¢(r) € CFP(Ry) belongs to
SOURM; 27 (X 1), K*Y(XN)) for arbitrary s, € R.

Moreover, M : ¢ — M, induces for all s € R a continuous map
M : CEP(Ry) — SUR™EL KX, K7 (X)) (7)

Proof: Since My does not depend on the covariables (7,7) € R'*9 we only have to find a
constant cg > 0 tending to zero for ¢ — 0 in Cg‘“(TR;) such that the inequality

I~ (r, mYMyn(T, Ml cpcrvx 2y € €o (8)

holds uniformly in (r,7) € R*9.

Because of k! (7, n)Myk(7,77) = Mé(r[r.q},“) we can prove (8) in the same way as SCHUL-
zE [SCH1] 3.2.1 Proposition 5.

Note that the essential observation for choosing cy4 independent of (7,7) is
|Mo{(r[r, nl7 ) }(ip)l = |lr, n)’| IMod(ip)] = |Mod(ip)|.

The second part of the lemma follows from ¢4 — 0 for ¢ — 0 in (8). a

Now we formulate some assertions that are valid analogously in the isotropic theory and
can be proved by the same techniques as in [SCH1]. Therefore we will omit the proofs here for

abbreviation.
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The definition of the symbol classes and the nuclearity of C*°(U) give the following
Lemma 4 We have for an open set U = Uy x U’ C R'+?
5N U3 x R E,E) = C®(U?, ¥R, E, E)) = C®(U*)®, 5" (R'Y E, E)),
such that every a(t,y,t, ¢, 7, n) € SV (U? x R1+9; E, E) can be written as a convergent sum

[= =]
a(t,y, ', 97,0} = ) ¢;bi(t, y)a;(r,n)d;i(!, y) (9)
o

with a sequence (¢;) € Iy, b;,d; = 0 in C®°(U) and a; — 0 in SR, E, E) for j — oo.

Lemma 5 Let E,E and E be Banaca spaces and {k,}, {#,} and {k)} the associated

group actions. Then we have for arbitrary v, 7 € R
(1) for all v < i there are conlinuous embeddings
S“HU x R™*%: B, E) = §%(U x R'*%; E, E), (10)
(i)
SN U x R E, B)S'(U x R™9; E, E) C $**"(U x R, E,E), (11)

with the point—-wise composition of the operator-valued symbols,

(11i)

SYHU x R4 §H(U x R4, E, E)
SH(U x R149; B, EYSH(U x R1+9)

} C S“tNU x R, E, E), (12)
with the poinl-wise multiplication of the scalar symbols by the operator-valued ones, and
(iv) for all a € NP+? 3 € N'*9 and arbitrary v € R we have

D¢, Df SYHU x R™9 E,E) C ¥ Pli(y x R E,E), |8l = 6o+ |81 (13)
Equation (11) is the composition law for operator-valued symbols.

Remark 6 The space S~°°(U x R'*9; E, E) has a representation as projective limit of the
form

57(U x R™*% E,E) = lim $*!(U x R*% E, E), (14)
velk

with the projective inclusions spectrum of the FRECHET spaces (§*/(U x R!t9; E,E))yem.
This space is independent of the concrete choice of {«)} and {%)} and does not depend on
the anisotropy !.

Furthermore, the inequalities (6) imply

5~°(R'"9; E E) = S(R'™, L(E, E)), (15)
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where we have on the right the SCHWARTZ space of rapidly decreasing functions in R!'*¢ with
values in L(E, E).
Thus Lemma 4 and the stability of the projective tensor product under the projective limit
gives
5~°(U x R"*%;, E,E) = C*°(U, S(R'™, L(E, E))). (16)
Proposition 7 Let a;(t,y,7,7) € §“!(U x R4, E,E), j € N, be any sequence of
anisotropic operator-valued symbols with vj — —o0o for j — o0o. Then there ezists an
a(t,y,7,n) € SYHU x R E E) with v = max{y; : j € N} such that for every M € N
there is an N € N with
a(t,y,7,7) — f:a,-(t,y,r, n) € S*MIU x R, E, E), (17)
j=0

and a(t,y,7,n) is uniquely determined mod S—°(U x R*9; E,E).
We write a ~ 3~ a; and call @ asymptotic sum of (a;)%2,.

Definition 8 A function f € C(R'*7\{0}, L(E, E)) is called anisotropic v-homogeneous

in the operator-valued sense if it satisfies
ST, An) = MR f(r, )K" (18)

for all X € R, and every (r,n) € Rt {0}.

We call the function f € C°(R', L(E, E)) anisotropic v—homogeneous in the operator-
valued sense for large |r,n| if equation (18) holds for all A > 1 and every (r,n) € R!t9
with |1,n|; > ¢ for some constant ¢ > 0. The smallest constant ¢ with this property is called

homogeneity constant of f.

Lemma 9 Every a(r,1) € C®(R!'*9, L(E, E)) which is anisotropic v-homogeneous in the
operator-valued sense for large |7, q|; belongs to S¥'(R'+9; E, E).

Proof: Because of the (t,y)-independence of the function a we only have to check the inequa-
lities

&= (r, m{ DL ya(r, m}x(r, il < C[ﬂﬂ]}’_‘lﬁlz (19)
for every § € N'*7 and (r,n) € R, We get (19) for |r,5|; < ¢ by compactness of this
anisotropic ball. Outside we get by the homogeneity

15 (r,7) D7 ya(r, )s(r, 7))

= &, p)lr,alf PR (r, n)(DE ) (mﬁ) K= (r, mn(r, )|

Bl ps [T
[, nl; (D7, )([r,nlﬁ'[ﬂ'?]’)“

Clr,m)y 40,

IA
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with C = sup{”Dfma(r,n)” 2 mmli =1}
In the above estimate we used that the derivatives of homogeneous functions are homoge-
neous of the corresponding diminished order, again. o
Next we define classical symbols. The scalar versions of these spaces are treated in {PIR1].
We denote by SMH(U x (R!1+9\{0}); E, E) the subspace of all operator-valued functions
Syt y,mm) € C2(U x (]RH"’\{O}),[:(E,E)), that are anisotropic #»~homogeneous in (r,7)

for all (t,y) € U.
1

From |T,n|;'”f7:|:mhf(,,)(t,y,r, MEjrml, = f(y)(t,y,i—r, ]r_‘%ﬁ) we get isomorphisms

T
Tn"ll:

S x RH\(0)); E, B) = C(U x {(r,) € R : |r, ) = 1}, L(E, B)).  (20)

The inverse operator is the anisotropic ¥-homogeneous extension of the given element.
Furthermore, we denote by SM(U x R1%9; E, E) the subspace of all operator-valued func-
tions f(t,y,7,1n) € C°(U x R!*9, £(E, E)) that are v-homogeneous for large |, 7|;. For an

arbitrary excision function x(7,n) we have
x(r, SO U x (R™F\{0}); E, E) ¢ SM(U x R B, E).
From Lemma 9 it follows S (U x R¥9; E, E) C §¥/(U x R4, E| E).

Definition 10 Let v € R and U = Uy x U with open Uy X U € RPotP be given as in

Definition 1. Then the space of classical anisotropic operator-valued symbols of order v
4(U x R, B, E) (21)

is defined as the set of all a(t,y,7,n) € SN U x ]Rl"'q;E,E') such that there is a sequence
(-5 Yy, 7,020 with a(,_j(t,y,7,m) € S=b(U x R!9; E,E‘) for every j, such that for
any ezcision function x(7,7n) we have
o0
a(t,y,m,7) ~ .X%x(f,n)a(p*j)(t,y,f, 7) (22)
j=
in the sense of Proposition 7.

Analogously to the isotropic case we call the function o}(a)(t,y,7,7) := a(,)(t,y,7,7) ani-

sotropic v—homogeneous principal symbol of a.

Remark 11 The anisotropic (v — j)~homogeneous components a,_;(t,¥,T,7) of some

a(t,y,7,m) € S:;’(U x R1*9; E, E) are uniquely determined.

Remark 12 It follows that any function a(t,y,7,7) € SV (U x ]RH“?;E,E) belongs to

S;’,‘l(U x R'*9; E E). Taking the uniquely determined anisotropic v~homogeneous extension



1 THE IDEAL OF SMOOTHING EDGE SYMBOLS 13

a)(t,y,7,7m) € SWHU xR E, E) of a(t,y,T, M{{r =k} With some constant K > 0 which

is larger than the homogeneity constant of a, we have
a(t, ¥ 7, 7?) - X(T3 Q)a(u)(h 7 71) € COO(Uv S(RH-q» E(E! E)))
for every excision function x(7,7) such that a(2,y,7,7) ~ x(7,n)a)t, y, 7, 7).

Next we want to define a FRECHET topology in the space of classical anisotropic operator—

valued symbols. By definition we have a canonical embedding
S“HU x R, E,E) — §“'(U x R'"% E, E) (23)

for every v € R. The relation (20) induces in SOV x (R}*9\{0}); E, E) a FRECHEETtopology.
k
Then Remark 11 gives by a — x(7,7%) 3_ a(,-j) a well-defined sequence of linear mappings
1=0

e 2 SYU X RYYEE) — S YU xRS EVE), ke N (24)
Moreover, we get by a — a(,_;) a sequence of linear mappings
B; : SHU xR™Y EE) — s (U x R E,E), je N (25)

Now we topologize (21) with the weakest local convex topology such that all the mappings
(23), (24) and (25) are continuous.

Let us now deal with the case of FRECHET spaces E and E. We further assume that there
are representations

E = lim Ej and E = lim E,
J—o0 k—o0
with projective inclusion spectra of BANACH spaces £y <« FE; « -.- and Eo — E‘l — ..
such that the associated sets of {ngj)}f‘;o and {Fcf\k)}?:(, satisfy the compatibility conditions

|E;41 = nf\j"'l) and ng)|Ek+l = "&Hl) for all 7,k € N. Without loss of generality we may

(9)
0
also assume, that the corresponding norms ¢; in EF; and g in E; give ordered semi-norm

systems in F and E.

Definition 13 Under the above assumptions we define for v € R and open U = Uy x U’ €
Rro+P the space S¥/(U x R1*9; E, E) of anisotropic symbols of order v with values in L(E, E)
as the set of all a(t,y,1,1) € C°(U x R'*9, L(E, E)) such that for every k € N there is some
i = j(k) € N with a(t,y,7,7) belonging to S*/(U x R*9; E;, Ey).

Remark 14 With this definition the assertions of Lemma 5 are also fulfilled for
FRECHET spaces E and E.

In the same manner we define the corresponding subspaces of classical anisotropic symbols

S:,'I(U x R'+4; E, E) with S;‘I(U x R1*9: E;, E}) for every k € N with some j = j(k) € N.
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Example 15 For P € As(7,0) with ©® = (4,0] and ¥ € R we have a representation as
projective limit
Kp'(X?) = lim K*7~%=%(X") + (w]Ep

j—o0
with g > O such that x¢PN{z € C: 23—y 4+ < Re 2 < 2 —y 40460} = Dand ¢, = €027,
j € N. Analogously we take for Q € As(y — i, ©) a sequence (§; = §,27%)32, where §p > 0 is
chosen such that rcQN{z€ C: 2 —y+ u+0<Rez <2 —y+ pu+ 0+ 6} =0 holds.
Then we have

K:'Q_mr_u(XA) = ].}I_!l K:.—v.-y—u-a—ﬁk(XA) + [“"]80-

k—oo
Further we set (xf\j)u)(r, T) = (Rf\k)u)(r,a:) = ALPu(z\r,z) for all j,k € N which obviously
satisfy the compatibility conditions. Then by definition the symbol space

SUIU x RUGEEY(XY), kg (X ™) (26)

is the set of all a(t, y,7,n) € C(U xR, L(KEY(X ), Kg "7 #(X ")) such that for every k €
N there is some j = j(k) € N such that a(t,y, 7,7) belongs to §*/(U x R1*9; K*7=0=¢i(X") 4
[w]Ep, K2=r7=#=0-0 (X ") + [w]£Q).

Lemma 16 Let E and E be FRECHET spaces, that have representations as projective li-
mils of BANACH spaces and further we assume, that the associated group actions satisfy the
corresponding compatibility conditions.

Then every a(t,1) € C®(R'*4, L(E, E)) := N, Uszo C=(R™9, L(E;, EL)) which is ani-

sotropic v-homogeneous in the operator-valued sense for large |7, 7|; belongs to S“H(R*Y; E, E’)

Proof: As mentioned above we have to find for every & € N a number j = j(k) such that
the function a(,7) belongs to §/(U x R'*9; E;, Ey}). Because of Lemma 9 it remains only to
check a(r,n) € C*(R9, L(E;, Ei)). But from
[= =B » =] .
a(r,n) € [ U C®(R™, L(E;, Ex))
k=0 ;=0

we get for every k some j = j(k) with this property. a

Remark 17 In view of Remark 12 we obtain that a(7,7) under the conditions of Lemma

16 is a classical anisotropic operator-valued symbol.

Lemma 18 The operator My of multiplication by #(r) € Cg(Ry) belongs to
SOH R+ KBY(X 1), KBT(XN)) for arbitrary s,v € R and every asymptotic type P € As(7y,0)
with © = (8,0], —0o < 8 < 0 satisfying the shadow condition, cf. (0,(2)).

Moreover, the mapping

M CERe)3ém Mye () SURMTKE(XY), KEI(XM) (27)
sy€R

18 conlinuous.
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By analogous arguments as in the proof of Lemma 3 we see that the proof does not depend on

the anisotropy {. Therefore we will omit it for abbreviation.

1.2 Operators in anisotropic wedge SOBOLEV spaces

As in Section 1.1 we first fix BANACH spaces E and E and associated strongly continuous
groups x) and &), respectively. Now let S(R!*9, E) = S(R't9)®, E be the SCHWARTZ space

of rapidly decrasing E—valued functions. Then we define the FOURIER transformation
F : SR, E) = S(R'™, E)

by F = F ® idg, where F denotes the standard FOURIER transformation. Setting
S'(R™, E) := L(S(R'19), E)

we define for 7 € L(S(R}}%), E) the Fourier transform FT =T o F € L(S(R119),E). Then
for S € L(S(RLEY), E) we get the inverse FOURIER transform by F~'§ = S o F~!. We then
obviously obtain F~!FT = T. Note that we get F = F for E = C as well as 77! = F-1,
that justifies the use of the same letter for the above defined FOURIER transformation for

vector—valued distributions and the scalar FOURIER transformation.

Definition 1 Let a(t,y,t,y',7,n) € S*/(U? x R'*9; E,E) with an open U = Up x U’ C
R+ be given; U? = U x U. Then we define

Op(a)u(t,y) = ]:(“Tfn)_,(t‘y)f(,,'y,)_,(,_,,){a(t,y,t',y’,r,n)u(t’,y')} (1)
J[ (e rmpat ) df ar

for u(t',y") € C§&(U, E).
Remark 2 Similarly to the scalar theory Op(a) is a continuous operator
Op(a): CP(U,E)— C=(U,E)
for every a(t,y,t,v',7,1) € S¥(U? x R1*%; E, E).

Definition 3 We denote by ¥ (U; E, E) the FRECHET space of all operators Op(a) with
a(t,y,t',y,7,n) € SY(U? x R!*9; E,E).

Furthermore, we write lI':,"(U; E,E’) for the subspace of all Op(a) with classical symbols.

The elements of ¥¥'(U; E,E) are called anisotropic pseudo—differential operators, those in

‘I’:’;I(U; E, E) classical anisotropic pseudo—differential operators of order v.
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Analogously to the isotropic theory we use the notation

v l(U;E,E) = |J v (U;E,E), (2)
veR

¥"°(U;E,E) = () ¥*(U;E,E), (3)
vell

where the space (3) is isomorphic to the space of integral operators with C*-kernel.

Let us now introduce the anisotropic wedge SOBOLEV spaces of E—valued distributions.

Definition 4 For every s € R we get by

1/2
wem lolla = [, [Pl rym)Fu(r, n)ibdran) (4)

a norm in S(R'9, E). The anisotropic wedge SOBOLEV space W*(R'+%, E) of order s is
defined as the completion of S(R!*7, E) with respect to the norm (4).

Note that the anisotropic wedge SOBOLEV spaces are BANACH spaces. As usually we write
H*(R'Y9, E) if we have ) = idg for all A € R,. With E = C we get the scalar version of

anisotropic SOBOLEV spaces, which we denote by H*/(R!+9).

Remark 5 Analogously to the isotropic case (cf. {SCH1], Section 3.1), the operator T =

}-—1

(rum)= (¢ y)n‘l(r, MF (1,y)—(r,n) extends by continuity to an isometry

T : WH(RY™9 Ey— H*Y(R' E). (5)

This gives us the possibility to define W*{(R1*9, V) for subspaces V C E which are not neces-
sary preserved under k) by W»(R'+9, V) := T-1H*{(R*9, V) (cf. Example 15 below).

Lemma 6 For all s € R the space CP(R'9, E) is dense in W (R'9, E).

Proof: By definition we only have to prove, that C°(R!*9, E) is dense with respect to the
norm (4) in S(R!'*9, E). The isotropic case | = 1 was treated, for instance, in [SCH1], such
that we have to show the assertion for I > 1.

Using the inequality [r,n)i < ¢[r,n]i we have |u|l,; < ||u|s1 for all 3 € R and every

u € S(R9, E). Thus the isotropic case implies the anisotropic case. o

Example 7 In our applications we are dealing with the case of K*7(X")-valued distribu-
tions. Like in Section 1.1 we take kyu(r) = ,\Lg‘lu(/\r) as associated group action. Then we
have from Definition 4 the BANACH spaces W*/(R1+9, K*7( X)), Setting s = v = 0 we get
the HILBERT space WO/(R!*9, KOO X)) = WO(R!9, KO(X 7)), which is independent of the

anisotropy {. The corresponding scalar product is given by

(w,9)0 = [(Fulr,n), Fo(r, m)xsdran.
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Of course, the space CE(R*9, C§(X 1)) = CL (R x X*) is dense in W(R1F9 K*7(X 1))
for every s,v € R, such that the form (-,-)p : CE(R™¥7x X)) x CP(R™*? x X*) = C extends
for all 3,7 € R to a non—degenerate sesquilinear form

(., ) . wa.l(Rl+q’K:a.-y(XA)) X W—J,I(R1+q, K—n.—-y(xf\)) = C.
This allows to introduce formal adjoints A* of operators
A 1 WH(RMT KHY(XA)) - WI(RIH C0-v1=0( X AY)
that for all s € R are continuous operators |
A* . W"l(RH'q, Kl.—‘y-l-u(xl\)) - wn—u,l(R1+q’K:s—u,—'y(xl\)).
Lemma 8 There is a canonical embedding W (R1+9, E) — S'(R'+9, E) given by (¢, u) =

[ d(t, y)ult,y) dt dy with ¢(t,y) € W R+, E) and u(t,y) € S (R, E).

Ritq

We omit for abbreviation the proof, which is completely analogous to the isotropic case (cf.
[HIR1]).

Corollary 9 An E-valued tempered distribution u(t,y) belongs to the anisotropic wedge
SoBOLEV space W*(R9, E) iff Fu(r,n) is measurable and ||u||,; < oco.

Definition 10 Let U C R'¥9 be open and K CC U compact. Then we define

w;{,l(U, E) := {ueW* (R E) : suppuC K},
wil (U E) = | Wi U, E),
Kccu

WeNU,E) = {ueS'(R™,E) : wue W (R"™,E) for allw € CP(U)}.

Theorem 11 Let U C R be an open set and a(t,y,t',y',1,1) € S (U? XIR"“;E,E') be
an anisotropic operator-valued symbol of order v € R and Op(a) € ¥*(U; E, E) the associated
pseudo-differential operator. Then

Op(a) : W2 (U, E)— W *'(U, E)

omp loc

is continuous for all s € R.

The proof will be given in terms of a tensor product argument using the two following lemmata,

which can be obtained analogously to the isotropic case, see for instance [SCH1] or [HIR1].

Lemma 12 For every v € S(R!*9) the operator M, : CP(RT,E) 3 ¢ — v €
C(R'9, E) has a unique continuous eztension to M, : W (R E) - W (R!*9 E).
Furthermore, the map M : S(R't9) 3 v —» M, € L(W*(R!19, E)) is continuous for all
seR.
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Lemma 13 Let a(r,7) € SR, E, E) be an anisotropic operator-valued symbol with
constant coefficients of order v € R and Op(a) € ¥*/(R'*9; E, E) the associated pseudo-
differential operator. Then Op(a) : WH(R™9, E) — W*»!{(R1*, E) is continuous for all
s € R and ||0p(a)l| < sup(y.qyem+olrs 7l IR (7, m)a(r, MR, Ml o 5y =+ PEO(@)-

Proof: (of Theorem 11) For every K CC U there exists a function ¢ € C§(U) such
that ¢(¢,y) = 1 in a neighbourhood of K. We want to prove that for every fixed K CC U with
such a ¢ € C§°(U) and arbitrary 1 € C§°(U) the operator

MyOp(a)My : WH(R™, E) - w*{(R'9, E) (6)

is continuous for all a(t,y,t, v, 7,7) € S*H(U? x R™; E E).

Because of §*H(U? x R+, E,E) = C®(U)&,S*(R*9; E, E)®,C*(U) we have the re-
presentation a(t,y,t,y’,7,1m) = L 520 Aib;(t, y)a;(r,n)d;(¥', '), where b; — 0 and d; — 0 in
C®(U), a; — 0 in S*/(R%, E,E) and {};}2, € 1.

Thus we obtain

MyOp(a)Mg = > AjMys,0p(aj)Mga;,

=1
where $b; — 0 and ¢d; — 0 in C§°(U). Therefore, we get by Lemma 12 and Lemma 13

[« o]
IMyOp(a)Myull,—us = || D AjMys;0p(a;)Mga,ulla—vy

=1

D 1211 M s 1| 10p(a; )] 1M ga; Il

i=1

o0
3 Islegs,25a(a;)esd, l|ulla-

1=1

IA

IA

The convergence of {cys; }, {c4d;} and {p((,‘:g(a,-)} implies, in particular, boundedness, which
gives the continuity of (6). a

Like in Section 1.1 we deal with the case of FRECHET spaces E and E, which have repre-
sentations as projective limits of BANACH spaces, where the associated group actions fulfill the
corresponding compatibility conditions.

In this case we also set ¥*(U; E,E) := Op(S¥(U? x R*%; E, E)) for arbitrary open
U C R and define W*I(R!*9, E) = lim W*/(R*9, E;) as well as

k—oo

Wito(U,E) = lim Wi (U, E) and Wi(U, E) = lim Wi(U, Ex).

k- 00 k—o00
Corollary 14 Every A € VW(U; E, E) has a unique extension to a linear continuous ope-
rator A : Wb (U, E) = W," (U, E) for all s € R.

loc
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Example 15 In our applications we also need the spaces

E=K§'(X") = lim K027 (X" 4 [w]€p

k— o0

for any asymptotic type P € As(y,©). Then we have by definition

WHRHLE) = lim WH(RM, K400 (X 1) 4 [w]ep)

k—00

= lim WH(RM, K= 0 (XA) 4 WHRM, [w]Ep),

k—o00

where FW*!/(R1+9, [w]€p) is spanned by distributions of the form
w(rlr, mleix(@)r, nl ¥ r 7P Wn* (r[r, i) Fo(r, n)

with v(t,y) € H*!(R'*9). These are the singular functions (in the FOURIER image) of the
anisotropic discrete edge asymptotics. W*/(R!*9, [w]€p) is to be understood in the sense
T-1H*!(R'9, [w]Ep) with the above isometry (5) restricted to H>/(R'*9,[w]Ep) with the
subspace [w]€p of K*7(X1).

Remark 16 For our applications it will be convenient to use shorter notations for the
anisotropic wedge SOBOLEV spaces with values in KX*Y(X ") or the subspaces with asymptotics

KEY(X?). For that reason we will write
WH(XA X R = WH(RM,K*7(XM))  and
WETH XA xR == WH(RM™, KR (X)),

Moreover, for some open U = Uy x U’ C R!'*9 we may form the comp, loc versions of these

spaces, which are written as

o (XN X U) = WL (U,K*(XN)) and WP (X" x U) := Wik(U,K*(XM)).

comp(t.y) loc(t,y)

Note that we observe W (XA x R1+9) ¢ H2 (XA x RI9) for every s, € R.

1.3 GREEN symbols and operators

In the following we shall introduce an ideal in the anisotropic edge symbol algebra, namely the
GREEN edge symbols. They will play the role of the smoothing elements in the edge symbol
algebra. However they will be not negligible, since the associated pseudo-differential operators
will not be compact.

The elements of the edge symbol algebra are L{K*Y(X*) @ CN-, K7 (X*) @ CVN*)- or
LIKF(XNeCN-, K:E;""(X") @ CNt)-valued symbols. Here s,s',7,7 € R, N_, N, are non-
negative integers and P, ) are asymptotic types. Moreover, we fix once and for all the group
action k(u(r,z)® z) = /\%u(,\r,x) @ z for all u(r,z)® 2z € K* (X))@ CM, M = N_,N,.
From now on for abbreviation we will drop X* in the notation and write, for instance, K*”
instead of K*7(X").



1 THE IDEAL OF SMOOTHING EDGE SYMBOLS 20

Definition 1 Let y,v € R and U = Uy x U’ with open Uy C R? and U’ C R¥'. For given
weight data g = (7,7 — 11,0), © = (8,0], —00 < 8 < 0, we denote by RS(U x R1*9,g) the
space of all

g(t,y,m,m) € n S;,"(U X R1+Q;K::.W,K:oo,1-p),
sch

such that there are asymptotic types P € As(y — p,0) and Q € As(—v,0), with

g(t,y,mym) € () S5 (U x RI*FG LT, 537) (1)
F13 3
and
* X . 8- —_—
g*(ty,mm) € [) Sy (U x R L0m7He o), (2)
sclk
Here -* means the point-wise formal adjoint with respect to the (non-degenerate) sesquilinear

Jorm (+,-) : K*7 x K=*=7 = C. The elemenis of RE’(U x R!*9 g) are so-called anisotropic
GREEN edge symbols.

Sometimes we need the space of modified anisotropic GREEN edge symbols denoted by
Rz'é)(U x R1+9 g) which contains all

g(tv Y, Tyﬂ) c ﬂ S;‘I(U X R1+q;x"7,K:°°-'Y-H)’
scR

such that there are asymptotic types P € As(y — g, 9) and @ € As(—~,0), with

g(t,y,mm) € () SHU x R K27, KF™+) (3)
scR
and
g°(t,y,7,m) € ) SHI(U x RMT Ko vHe K27), (4)
selk

Moreover, we indicate by P,Q the subspaces of anisotropic GREEN edge symbols with fixed
asymptotic types P and Q, such that we have the spaces RZ/(U x R'*9,g)pq and Rgy(U x
R'+s, g)Pq, respectively.

Example 2 Taking ¢(r,z) € Sp™* and d(r,z) € S5 we get from u(r,z) — Gu(r,z) :=
e(r,z)(u,d) a GREEN operator G : K®" — SF™" on X”* with the formal adjoint operator
G* : K®7" — 857 defined by v(r,z) = G*u(r,z) = d(r,z)(v,c).

Now setting g(7,7) = &(7,7)Gx~1(7,n) we obtain in view of the anisotropic 0~homogeneity
for |r,nli > ¢

g(r,m) € RG'(R'+, g)

with g = (y,y — 4, ©). Then for every v € R we have with w(r[r,n];)(T, 5]} g(r, Nwo(r[r, 7)) 2

typical anisotropic GREEN edge symbol for every two cut—off functions w,wp.
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Definition 3 We denote by mgl(U x R1*9 g: N_, N) the space of all

g(t,y,7,n) € m S:I"(U X RH"’; K’ CN—’KC”,‘V—M ® CN.;.)’
sck

such that there are asymptolic types P and Q, with

o(t,y,mn) € [ S5(U xRS K @ CV- 537 @ CV+) (5)
scR
and
o' (ty,7,0) € () 55U xRIG K g €Y, 557 9 CV). (6)
scR

Here -* indicates the point-wise formal adjoint in the sense

(G“s”)xo@ch = (u, 9‘0)50&(:”-

forallu e CP(XM®CN-, v e CP(XN) @ CN+,

The elements g € Eﬁgl(U x R4 g N_, N,) are block-matrices like g = (gi")j,k=1.2’ where
g11 belongs to R%'(U x R'*9,g), and the other elements are families of finite dimensional
operators. g;2 and g2; are symbols of the trace and potential operators, respectively, and gz
is a Ny x N_—matrix of scalar anisotropic classical symbols of order v.

The formal properties of the entries g;2, g2; and gz2 are analogous to those of g;;; therefore
we will mainly discuss the left upper corner of elements in mgl(U x R*9, g N_, Ny).

In the same manner we define the modified classes fﬂré) with left upper corners in RE"G{)(U X
Rt g).

Remark 4 From the definition and the composition law for operator-valued symbols it
follows immediately that the product of two GREEN symbols is a GREEN symbol, again, where
the order of the product is the sum of the orders of the factors.

Of course, also the formal adjoint of an GREEN symbol has the GREEN property.

Remark 5 Multiplication by arbitrary r—powers does not destroy the GREEN property of
symbols, i.e. for all a,b € R we have r*RSHU x R1+4,g)r=0 = RS U x R119, g) as well

as

a 0 -b 0
( ’" —a ) Ry (UxR™, g, N_, Ny) ( T b ) = RGP (UXR™, g; N_, N,).

0 [r7); 0 [r.n)

Lemma 6 Let g;(t,y,7,17) € Qi'c';—j'l(U x R4, g:N_ Ny )pg, j € N, be any se-
quence of anisotropic GREEN edge symbols. Then there ezists a g(t,y,7,1) € mg'(u X
R1+9, g N_,N1)pq, which is uniquely determined mod R;®°(U xR, g; N_, N, )pq, such
that

G(tayara'?) ~ ZGj(t, yaT,’?), (7)

=0
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where ~ means, that for every M € N there is an N € N with
g(t,y,7,m) - Zga(t,y,r n) € RGMI(U x R'*9,g; N_, Ny)pg.
1=0

An analogous result holds for the R ) -classes, where we write ~¢ instead of ~.

Proof: If x(7,n) is some excision function and (d;)32,

[e2)
ly fast, then the sum }_ x (5’;’1) g;(t,y,7,m) converges absolutely in S:,‘I(U x RIF9: K*7 @
Jj=0

tends to oo if 7 — oo sufficient-

CN-, Sy " @CN+) for every s € R. Analogously there is some (d})3%2, tending to oo for j — oo
such that the sum § X (%‘3) (1, y,7,n) converges absolutely in S:jI(U x R1t9: K046 g

CN+, S_" ) CN") for every s € R. Settmg ¢; := max{d;,d}} we have the convergence of

g= ): X( )g,(t y,7,n) as well as g* = Z x( )gJ(t y,T,7), simultaneously, where g* is
the formal adjoint of g and (refgsum) holds The assertion for the R(g)—classes follows in the
same way. o

Let us now define the GREEN operators of the anisotropic edge calculus. For that we first

introduce the smoothing GREEN operators.

Definition 7 Y5°°(U,g) for open U C R'*? and weight data g = (7y,y — p, ©) denotes the
subspace of all G € JQIIL:( :;Z;p(t y)(XA x U), Wﬁ;a y‘)‘(Xf‘ x U)) such that there are asymptotic

types P € As(y — p1,0) and Q € As(—~,0) with

$GY € ) LOVIXN x RO, WRTH( X" x R'*))  and
scR

$G*Y € [ LV (XA x R, WG TY(X A x R'T9))
scl

for all functions ¢,¢ € CS(U).
Here -* denotes the formal adjoint operator with respect to the sesquilinear form defined in

1.2 Example 7.

Definition 8 With the notations of Definition 7 and for N_,N, € N we denote by
Do=(U,g; N_, N3) the subspace of all

il
:o:'np(t'y)(X" x U) W,oc(t v) MXAxU)

Ge ()L ® , &
<R H2 (U, CN-) He2(U,CN+)

such that there are asymptotic types P € As(y — p1,0) and Q € As(—~,0) with

wan;l(x!\ % Rl-l-q) w;'oﬂ"l-‘(xf\ X Rl+q)

6% € L o
selR

, @ and
H"'(RH'?,CN-) H°°(]R1"'9,CN*)
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WX A x R1H9) WYX A x R1F9)
¥8°% € (L @ , &
s€lk H (R, CN+) Ho(R,CN-)

for all ® = diag(¢1,#2) and ¥ = diag(v, ¥») with functions ¢y, @3, 91,2 € C§°(U).
Here -* denotes the formal adjoint operator with respect to
(eu, ‘U)Wo,o(x,\x‘l-l»q)@Ho.l(]Bl-l’v,CN-i') = (u) @‘v)wo,o(xaxm)+q)$H0,l(ml+q,CN—)'

The elements of D=(U,g; N—, N;) are called smoothing GREEN operators of the anisotropic
edge calculus (to be treated below).

Definition 8 Forv € R, open U € R*9 and given weight data g = (7,7 — 2, ©) we define
the space
Y5'(U,8) = Op(Rg' (U x R, g)) + Yg=(U, 8) (8)

and analogously ‘.Z)BI(U, g N_,Ny).

Corollary 10 Every ® € SDEI(U,Q; N_, N,) ezstends for arbitrary s € R to a continuous

operator
Wl XA x R1+9) w;;'"""““l(X" x R1+9)
BV <) — @ ’
He/(R1+9, CN-) He=»i(R1*e CN+)

with ® and ¥ as in Definition 8.

1.4 Smoothing MELLIN symbols with discrete asymptotics

A further ingredient of the edge symbols which occur in the isotropic wedge theory is a finite
sum of so—called smoothing MELLIN symbols. In this section we deal with the anisotropic

equivalent of this symbols.

Definition 1 Let w(r) and wo(r) be arbitrary cui-off functions and choose an h(t,y,w) €
C>(U, Mg®™(X)) with some asymptotic type R for MELLIN symbols. Assume further p, v,y €
R, u>v,j€ Nanda € N'*. Then a smoothing MELLIN edge symbol is an (t,y,7,7)-
dependent operator-valued function of the form

o 612
a(t,y,7,1) = w(rlr, ql)r ™ opy * (A)(t, y)(r'r, ) wo(r[r, 7)) (1
with some § € R satisfying sg(h)(t,y) N I‘l;_l_s =Qandb+j+p-v2>2y26.

6_“
Note that op,s > in (1) acts on the r-dependence of all functions on the right of this
expression. Below we shall see, how the r-powers of the covariables also can be shifted to the

left modulo GREEN symbols.
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Proposition 2 Every smoothing MELLIN symbol a(t,y,7,n) belongs to S“ (U x
R K2(XA), KT=#( X)) for all s € R and all allowed v € R.

Moreover, for every given asymptotic type P € As(y,®) there exists an asymptotic type
Q € As(y — p1,0) such that the smoothing MELLIN symbol a(l,y,7,7) belongs to S¥'(U x
R KB (XA), KQ7™H(X ™)) for all s € R.

Proof: From the cone calculus (c¢f. [SCH1], [SCH3]) it follows immediately that the sym-
bol a(t,y,7,7) is a C®-function in U x R'*9 with values in L{(K*7(X"),K®7—#(X*)) and
LIKET(X"), K3 ™#(X")), respectively, with some asymptotic type @ depending on P and
the MELLIN symbol h.

Next we observe for A > 1 and |7, 9i > ¢’ with the constant ¢/ € R from (1.1,(4))

&3 a(t, y, A'r, An)sau(r, z)
= &7 w(r[NT, Al )r Hopay 2 (R)(t, y)(r' AT, rAn) wo(r[Mr, Anli )k au(r, 2)
= 3 w(r Al )T Hopys f (R)(L y)N(FA) T, AR wo(rr, DA F u(Ar, 2)
= N(r[r, e Hopys | (B)(t,y)(r'r, rn) wol(rlr, mli)u(r, 2)

= Na(t,y, 7, n)u(r,z)

for every u(r,z) € K*(X*), which implies that a(t,y,7,7) is anisotropic (v — j)-homogeneous
in the operator-valued sense for large |7, 7|;.

Thus by 1.1 Lemma 9 and 1.1 Lemma 16 a(t,y,7,7) belongs to S§*~#(U x
RIF9 K27(X 1), K20-#(X 1)) as well as to §*=7H(U x R KRY(XA), KZT™#(X M) for all

s € R. From 1.1 Lemma 5 (i) we then obtain the assertion. a

Example 3 Let L ¢ C®(X X X) be any finite dimensional subspace, representing finite
dimensional smoothing operators, and define for p € C with Re p < % and k£ € N a function
f(r,z,2') by f(r,z,2') = w(r)rPInfre(z,z’) with any cut—off function w(r) and ¢(z,z’) €
L. Then we get by h{w,z,z') = M,L,{f(r,z,2")}(w, z,z’) a MELLIN symbol belonging to
Mg™(X). If f also depends C* of (t,y) then

h(t, y, w’ x’ x’) = Mf—.w{f(t, y’ r’ x? :E’)}(t, y? w, x’ z'I)
will belong to C=(U, Mg™(X)).

Our next aim is it to prove some useful properties of smoothing MELLIN-symbols. The
assertions often hold modulo GREEN operators, such that it is nessecary to characterize the

formal adjoint of a smoothing MELLIN symbol.
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Proposition 4 For every smoothing MELLIN symbol h € C®(U, Mg™(X)) there erists
an adjoint symbol h* € C°(U, Mp™ (X)) with some asymptotic type P for MELLIN symbols,

satisfying the relation
-5 * et e
opp *(R)) =opy *(RY), (2)
where -* denotes the point-wise formal adjoint operator with respect to the (non-degenerate)

sesquilinear form

() @ K*(X*) x K~*=(X") = C.
Proof: The sesquilinear form (-,-) has for u,v € C§°(X") the form

(u,v) = ALmr‘gu(r,z)r'?mdrdz

(r'%u(r, I)1 r"”?'v(r, J:))L’()l”‘)‘

We may construct h* point—wise, such that we fix (¢,y) € U, and for abbreviation we omit
it in the notation.

Now setting A = op};%(h) = " Fopp (T~ Fh)r~7+F we have to find A" such that
(Au,v) = (r~F Au, v~ T0) 2 = (r"Tu, v T A%0) 2 = (u, A")

holds.
We obtain for f = T™"*3h and u,v € C(X ")

(Au,v)

(Fm 37 Sopp ()r " T, vy

= (opM(f)r'“'gu, r'"r"'%v)[l:

= (r“'”'%u, opM(f')r'"r"'%v)La
= (r";'u,r'%r""%r"opM(T"f‘)r_"r""%v)L,
= (7 Fur T Ropy (THET TR )t

= (r~%u, r_”il'op;:_%(T"""g?Lf')v)Ln.

But f*(w) = f*)(1 — T), (cf. [SCH1]), where -(*) means the formal adjoint in z-variables,
such that we have h*(w) = 7" f(*)(1 - @).
An evident modification of the arguments then yields the assertion also in the (¢,y)-

dependent case. a

Proposition 5 Let m(t,y,7,7n) = r“""jopi;?(h)(t,y)(r'r, 1) be given with some MEL-
LIN symbol h(t,y) € C®(U,Mg*), where R is some asymptotic type for MELLIN sym-
bols. Then under the conditions of Definition 1 and for every ¢(r) € C§&(Ry) we ob-
tain that (r[r,n))m(t,y, 7, nywo(r[r,n)) as well as w(r[r,n))m(t,y, v, n)d(r[r,n];) belongs to
RE\(U x R, g) for g = (7,7 - 1, 0).
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For the proof we need the following

Lemma 6 Let m(t,y,7,7n) be given as in Proposition 5 and set for § > 0 mp(t,y,7,7) =
r“'“opi;%(T‘ﬁh)(t,y)(r"r,rq)“, where we assume sg(T2h)(t,y) N Tup_g = 0. Then we
have

S(rlr, ) (m(t, y, 7, )P = Pmp(t,y, 7, m))0(rlr, 7)) € RGPI(U x R, g) (3)

for every ¢,9 € C*(R4) for g = (7,7 — 1, ©).

Proof: By homogeneity ¢(r[r,n])(m(t,y,7,7)r® — rPma(t,y, 7, n))¥(r[r, 7)) is a classical
operator—valued symbol with respect to the subspaces with asymptotics. Moreover, the point-
wise GREEN property is known by the cone calculus (cf. [SCH1], [SCH2]), which yields the
assertion. o

Proof: (of Proposition 5) Choosing a cut-off function &(r) with &¢ = ¢ we ob-
tain ¢{r[r, gl )m(t,y, 7, nwo(r[r,n))) = ¢(r[r, 5] )&(r[r, nl)m(t, v, 7, P)wo(r[r,n]:). The opera-
tor valued function ¢(r[r, n])w(r[r, n)i)m(t, y, 7, n)wo(r[r,n];) is because of its homogeneity in
operator—valued sense for large |r,7|; a classical symbol with respect to the subspaces with
asymptotics, such that it remains to show the point-wise GREEN property of the symbols. For
that reason we omit the fixed variables (¢, y,7,7n) from the notation.

We have to check that there are asymptotic types P € As(y—p,0) and Q € As(—v,0), such

that (qu)(r) = d(rlr, sl)r—+op%s F(h)rhwo(rlr, ilu(r) € S for all u € | K*7 and
s€ll
-3

(g*u)(r) = wo(r[r, n];)rl"hop;j (h*)r=v+tig(r[r, p))u(r) € Sq” for every u € |J Ko7He,
Here h € Mg* and A* is given in the proof of 1.4 Proposition 4. e

But h € Mg implies for the above cut—off function @ that (gu)(r) belongs to [@]K®7=#,
Note that supp @(r[r,n);) C supp @(r) for every (r,1) € R in view of [r,n); > 1, which
makes an (7, 7)-independent choice of [@]K>7~# possible.

From ¢ € C(Ry) it follows, that (gu)(r) has a zero of infinite order at r = 0, that leads
to trivial asymptotics such that we get (gu)(r) € [@IKZ™™* C S§7*.

The same argument gives ¢(r)u(r) € ICB—'H“ for all u € K*=7t#; and as in Proposition 2
we have (g*u)(r) € [wo]’cgo.-‘r C 357 for some asymptotic type Q.

The proof for w(r[r, n)i}m(t, y,7,7)¢(r[r, n)i) follows from the above case by applying Lem-

ma 6 that allows commuting the r—powers through the MELLIN action. a

Corollary 7 Let w,wy and &,&q be arbitrary cut-off functions, then for the function m =

m(t,y,7,n) given as in Proposition 5 we have
w(r(r, nl)ymwe(r[r, n)t) — &(r[r, n})m@o(r[r,nl) € REI(U x R, g) (4)

for g =(v,7—1,0).
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Proof: Let us omit for abbreviation the independent variables in the notation. Then wmwp —
DMy = wmwp — wm@y — (@mwe —wmip) = wm(wo — &) ~ (W —w)may € R;’;‘l by Proposition

5, because of wy — @o,& — w € C§(Ry). ]

Proposition 8 Let ag(t,y,7,1) = w(r[r, r;];)r"’“op';;%h(t,y)(r’r, r)wo(r[r,n)i) with h
and § satisfying the conditions of Definition 1. Then, if §' is another allowed choice for the
given h, it follows

as(t, ¥, 7, 1) — ag(t, ¥, 7,1) € R (U x R, g) (5)
forg =(v,y—p9).

Proof: In view of the homogeneity the a; and ag are classical operator-valued symbols with
respect to the subspaces with asymptotics. Moreover, ag —ass are point—wise GREEN operators,

which is known by the cone calculus. Thus the difference is necessarily of GREEN-type. ]

Lemma 9 Letv,D,u,ji be arbitrary real numbers. Then for every smoothing MELLIN sym-
bol a(t,y,T,n) (that belongs to ﬂ SHHU x R1+9; K07, K==#Y), ¢f. Proposition 2), and every

GREEN symbol g(t,y,7,7) € R"'(U xR™*9, &) withg = (y—p,v-(p+#), 0), © = (4,0}, —00 <
6 < 0, we have (ga)(t,y,7,7) € R"'“' I(U x R'*9, g) for g = (v,7— (1 + i), ©). Moreover, for
= (7+ i1,7,0) we find (ag)(t,y,7,7) € RG (U x R¥9,g) for g = (v + ,7 — s, 0).

Proof: We will only consider ga. For ag the proof is analogous.

In view of the anisotropic ¥—homogeneity in the operator-valued sense for large |7,7|; the
smoothing MELLIN symbol a(i,y,7,7) is a classical operator—valued symbol! of order v. Since
also every GREEN symbol is a classical one, we get that ag has this property, too, because of
the general fact that the composition of classical symbols remains classical.

By definition we have
0 - -
RG (U X R1+q1g)ﬁ‘6 3 g(ta 7 7)) ~ Z: X(Ta n)g(ﬁ-j)(t: YT, 71)
=0
with uniquely determined (¥ — j)-homogeneous operator-valued functions g(;_j(t, y,7,7) such
that x(r, n)g(;,_j)(t,y,r,n) belongs to R';G"(U X R1+v,g),;j 3 with asymptotic types 13,- CP
)

and éj C é For every j € N we then get via point-wise composition the function

x(T,Mg-5et v, 7)) = x(1, Mg-5 (& v, 7y malt, y, 7, m) (6)

which is anisotropic (v + & — j)-homogeneous in the operator-valued sense for large |7, 7|;. Mo-
reover, the cone calculus gives point-wise GREEN property of (6) with (xgi—ja)u € S" uti
and (xg@-5a)*v = (a*(x9(-;)")u € SQ where Q; C Q depends on QJ and the MEL-
LIN symbol a. Note that Q follows in the same way from ( and the asymptotic beha-

viour of a(t,y,7,7). But then for any further excision function x'(r,7) we have xg;_ja =
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X'X9(5-3)8+(1= X' )X9(5-5)a, where X'xg(s-;)a € R5"™ (U xR+, g) g and (1-x')x9(5-j)8
belongs to Rz™(U x R""",g);‘q because of compact (r,n)-support. Finally using 1.3 Lemma
6 we find

o
ag~ Y X'X9(-5)a € RG™(U x R, g)5
§=0

that was to be proved. m}

1.5 The algebra of smoothing MELLIN and GREEN symbols

We now turn to the announced ideal of smoothing MELLIN and GREEN symbols in the aniso-

tropic edge symbol algebra.

Definition 1 Rﬂ,,_G(U x R*,g) for g = (7,7 - 1,0), © = (=k,0], k € N\ {0} and
it — v € N, is the space of all operator families

(m+g9)t,y,7,n) = m(t,y,7,n) + 9(t,y,7,7)

with g € R'c',!l(U x R'%9 g) and m(i,y,7,n) being a finite sum of operator-valued symbols of the

form

wo(rlr, )™ Hopay’ ™ (hja) (&, 9)(r'r, v0) wo(rlr, )
with varying § = 0,...,k — 1 and multi-indices «, where hj, € C*(U, MEJ:’(X)) satisfy the
conditions of 1.4 Definition 1 with respect to 6;,.

Definition 2 RYf, (U x R4, g; N_, Ny) for g = (1,7~ 1,0), © = (=k,0), k € N\ {0}
and u — v € N, is the space of all matrices

(m+g)(t,y,7,m) = ( m(‘,s(l)a‘r, ) g ) +a(t,y,7,m)

with g € 9“'3’([] x R1*9 g- N_ N,) and m(t,y,7,n) being as in Definition 1.

As in the previous section we define the modified smoothing MELLIN and GREEN symbols
indicated by subscripts M + (G).

Corollary 3 Let b;(t,y,7,9) € m‘;,;i'(";.(U x R119.g:N_ N,), 7 € N, be any sequence
of smoothing MELLIN and GREEN symbols, where the asymptotic types P and @ appea-
ring in the GREEN part of the symbol are the same for all j € N. Then there ezists a
b(t,y,7,71) € m;-,‘+G(U x R4, g, N_, Ny), which is uniquely determined mod R;®(U x
R!*9, g: N_,Ny)pq, such that

b(taya T, 7.') ~ z bj(ta »T, ’7)

=0

The same is true if we insert everywhere (G) instead of G and replace ~ by ~g.
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Proof: The assertion follows immediately from the general property that the subspace
R"M_i’G(R x U' x R'*9, g) with fixed asymptotic types P and @ in the GREEN part of the
symbols is a subspace of RS /(R x U’ x R™9,g)pg for j > k— p+ v — 1 (cf. [SCH3]) and

1.3 Lemma 6 after subtracting a finite sum. a

Proposition 4 Let w(r), wo(r) and &(r), @o(r) be arbitrary cut-off functions and
h(t,y, w) € C°°(U, Mg*(X)) with some asymptotic type R for MELLIN symbols and h(t,y,w) €
C(U, MEW(X)) with another asymplotic lype R for MELLIN symbols. Assume further
v,0,7v,7€R, §,7 € N and a,& € N**9, Then with

alt,y, 7, m) = w(rlr, q)r*+Hopy; L (B)(t, y)(r'r, r)wo(rlr, 0})

for § € R with sg(h)(t,y) 0 P%—s =0 and

- —b+3 s
b(t,y,7,n) = &(r[r,nl)r~"op

-
2

(il)(ts y)(rl,‘_’ 1"TJ)C-II"'."O(T'[‘ra 77]1)

for § € R with sg(h)(t, y)nI‘l;,_x_g = @ we have b(t,y,1,7)a(t,y,7,7) € R}'Jfé(l] x R4 g) for
g = (7,7 — i, ®) for every u satisfying '+ j+j+pu—v—0 >y > 8 with some R> 6 > §+4.

Proof: First using 1.4 Lemma 6 we get

TRy ry b uts 6-%
ba(t,y,7,m) = @r~"Hopy T (h)(, y)(r'r, mn) Gowr ™ op,y * (h)(L, y)(r'T, Tn) wo
- -0 T y 3_" v—7 L - §-% & a+t&
= Gr T op T (T TIR)(L, y)bowopyy T (TIHR) (L, y)(r'r, 7)™ owo + 1
with a GREEN edge symbol g,.

Let us set H := opi;%(Tlf"‘h)(t,y) and H := opi;%(T"‘jfl)(t,y). Then we have for some

cut—off function ' satisfying w'@ = &' and w'wy = W’

ba = @riHvH HoowH (', 1) 480w,
= WfriHivE HaowH (71, rn)oF o0 + (@ - w')r“‘-"";'""“&-’. HogwH (rlr, rp)o 8w,
= w'r'f‘+3‘"+jﬁH(r’T, r)tau, — W/ iHi-vti H(1 — Gow)H (r'r, rp)o+aup (1)

+o - w')r_‘-"";_""'jf!u')owﬂ(r’r, ) %we. (2)

From 1.4 Lemma 9 and 1.4 Proposition 5 it follows the GREEN property of (2). Writing the

second item of (1) in the form

wW'rm P4 H( = Gow)H(rlr ) tay, = w'r".’*';"”“ﬁ(l — Gp)(1 — W) H (7', rn)* o
-I—w'r_‘."";_""'j H(1- (:.Jo)wH(TJT, rr))°+6wo

+w'r"7+3‘"+jfld)o(l - W) H(H T, rp)* o,

we immediately find the GREEN property using 1.4 Lemma 9 and 1.4 Proposition 5 once again.
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So it remains to deal with ¢(¢,y,7,7) := w’r“_"";‘"‘"jﬁH(r‘r, rn)°+%w,. But 1.4 Proposi-

tion 8 allows to write

(tymn) = WP ot E(TH-iR) (e, ylopyy F(TER)(E, y)(r'r, rn)e+Houg

= WP opLE (T ik o TIOkR) (2, y)(r'r, 7)™ +owo + 0o

with a GREEN edge symbol g, and &’ > § + & such that sg(T¥~7h o TI8hR)(t,y) N Pops_p = 0.

Because of A(t,y, w) € C*(U, Mg™ (X)) as well as h(t,y, w) € C=(U, Mz*°(X)) the func-
tion (T¥~7h o TIélih)(1,y) belongs to C(U, Mg>(X)) with some asymptotic type for MEL-
LIN symbols R'. a

Theorem 5 Let a(t,y,7,1) € Ryf (U xR, g,) and b(t,y,7,n) € Ry, (U x R1*9, )
Jor g1 = (7,7 — #,0) and g2 = (v — p1,7 ~ (it + 1), ©) be given.

Then we have (ba)(t,y,7,1) € Ryie(U x R'9,g) for g = (v,7 = (1 + @),0) ond
a"(i,y,r,q) € R;,;-}-G(U X RI_H?’S‘) fOT‘ g- = (_7 + i, _'T)O)'

Proof: From a = g, + m, and b = g, + m; it follows

ba = (gs + my)(ga + Ma) = g2 + GeMa + Mega + My, (3)

1.4 Lemma 9 and 1.3 Remark 4 imply that g;g, + gsm, + msg, belongs to R;ﬁ‘é(U x R1te, g).
The last item of (3} is a finite sum of operator-valued functions we dealed with in Proposition
4, such that we also have mym, € RHJ_—'GI(U x R+ g},
The second assertion follows from the fact, that the set of GREEN edge operators and
smoothing MELLIN operators remains preserved under the *—operations. o
The properties stated in Theorem 5 give rise to an algebra of smoothing MELLIN and
GREEN symbols. With smoothing MELLIN and GREEN symbols we also associate pseudo—

differential operators.

Definition 8 Let v,u € R, an open set U C R'*9 and weight data g = (v, — 1, ©) with
O = (—k,0], k € N\ {0} be given, where u ~ v € N. Then we define the space

Yarec(U,8) = Op(Ryy, (U x R, g)) + Y5(U, g). (4)
In an analogous manner we define 2);‘;+G(U,g; N_,Ny).
Corollary 7 Every A € Y;,'{FG(U,g) eztends for arbitrary s € R to a continuous operator
A WL (U, K*) = Wit (U, Kooy

which restricts for every P € As(y,0) to a continuous mapping

A : Wi (UKR) = Wi (U, K37 )
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with some Q € As(y — u,©) that depends on P and A.
Furthermore, every A € Y4 (U, g) induces for all s € R an operator

M

A ow

comp

(U, K*7) = Wi (U, K57 7)
with some asymptotic type Q € As(y — p,09).

Proof: Corollary 7 is a consequence of 1.2 Theorem 11 and of the fact that every smoo-
thing MELLIN and GREEN symbol is an anisotropic operator-valued symbol between the cone

SoBOLEV spaces as well as the subspaces with asymptotics. m]

2 Anisotropic edge pseudo—differential operators

2.1 Interior symbols and MELLIN operator convention

In this section we describe the local interior symbols of the anisotropic edge pseudo-differential
operators and formulate a MELLIN operator convention.

Let us first remind once again of the singular configuration of the wedge. We study operators
on R x W, where R 3 ¢ describes the time axis and W is any compact manifold with edge
Y, which is itself a closed compact C*®—manifold of dimension q. Furthermore, we assume
that for every y € Y there exists an open neighbourhood A C W of y, such that we have a
homeomorphism A — (Ry x X x U'}/({0} x X x U’) with an open set U’ C R? that restricts
to a diffeomorphism A\Y — X% x U’ Here the base X of the model cone is itself a closed
compact n—dimensional C*°-manifold.

If V = x(V) is the image of a chart on X in R” we have local interior symbols on (R4), X
Ve x Ry x Uy of the form r=p(r,z,,y, rp, €, rir,rn) where p(r,z,t,y,p,&,7,4) belongs to
SRy x V x R x U’ x R1*+"+144), Note that the anisotropy of this space only refers to the
time covariable 7. Here §*/(Ry x V x R x U’ x R}¥%*149) denotes the subspace of anisotropic

LT

symbols in Ry x VxR x U’ x RH}T’;""' that are C* in 7 up to r = 0 and for that the constants

in the symbol estimates are uniform in 0 < » < r; for arbitrary r; > 0.
We denote by §/(R, x V x R x U’ x R1*"+149) the space of all § = p(r,z,1,¥,p,£,7,7)
such that there is a p(r,z,t,9,5,£,7,7) € S (R4 x V x R x U’ x RM7+1+0) with

a(ryz,t,y,0,6,7,10) = p(1,2, 4, 4,7, §,7'7, 7).
With the symbols § we associate the (¢, y, 7, 7)-dependent operator families

0Py (r.2) (D)6, 0T, 1) = F ey ray P 201, 0,2, 6 T ) F (ot ) 5,6), (1)

which acts for fixed (¢,y,7,7%) first on CP(R4 x V).
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Fixing any finite atlas {(V},xj)}f’:I of X and a subordinate partition of unity {¢;}¥, as
well as an N-tuple of functions {¥; € Cg°(17,-)}§‘_'__1 with @;9; = ¢; for all j we form to an
arbitrary system {f; € S*/(R; x V; x R x.U! % R1+n+1+q)};"=l,v, = x_.,(v’,), the operator

A
-

family o i
N t

Pt 7m) = 3 65x30P 0 (B (11,7 ), (2)
i=
where x} denotes the operator pull-back under the map x;. For every fixed (t,y,7,7) we
therefore have P(t,y,7,n) € ¥*(R, x X). Analogous considerations make sense (and will be
employed below) also for classical symbols.
We first interpret P(t,y,7,n) as an operator family P(t,y,7,7) : C(X") = C®(X") and
write P(t,y,7,7) € C®(Rx U’, ¥*/(X*;R1*9)) and C(R x U’, ¥4/ (X *; R*+9)), respectively.

Proposition 1 For all P(t,y,7,7) € C®(R x U, ¥*(X*;R!*9)) and arbitrary cut-off
functions w,w, and o,0 the operator family
o(r)ai(t, y,7,moo(r) := a(r)(1 — w(r[r,n]))r ™" P(t,y, 7, n)(1 — wr(7[r, nl))oo(r)  (3)
belongs to S¥H(R x U’ x R™*9; K*7(X 1), K*=»7=¥(X ")) for all 5,7 € R.
Proof: We have by construction o(r)r="P(t,y,7,n)oo(r) = v~ g)QBjX;Op,;,'(r'z)(Uﬁjo’o)lﬁj.
i=

The symbol §;(r,z,t,y,p,€,7,7) := o(r)p;(r,z,t,y,p,£,7,m)00(r) belongs to SV'I(E x V; x
R x U’ x R*"+1+9) and does not depend on r for r > ¢ for some constant ¢ > 0. But then it

follows
4j € 5°(V; x Rx U' x R™140) 4 (CE(Ry )8, 54/(V; x R x U’ x RM7H+9)),

such that §; has a representation
61'(71 z,t, 9,06, Ty 7)) = é?(:l:, Ly, 6T ’7) + Z ’\kaf(r)é]k(xa LY, P 6T "1) (4)
k=1
where {A;x}52, € 1y, tpf tends to zero in CP(R,) and tﬁ-‘ tends to zero in $*{(V; x R x U’ x
R+7+149) for'k — oo. ' . '
MOI'EOVEI’, for Qj(t1 ¥.7 7)) = Op;b,(r,x)(éj) as “'i‘sn _a.s,for Qf(t’y’ T, 77) = opd;,(r,;c}(q.;:)) k=

0,1,..., we have

N
o(r)r~ P(t,y,7,m)oo(r) = 77> ¢ixiQi(t,y, 7, m)¥;
=0

N o
= Z ¢jX; (r—”Q?(t, Y7 7}) + Z AjkMrp; r_qu(t, 7, '))) ",bj
1=0

k=1

N
= Y éix;r QN v, T, )Y

=0

oo N
+3 ) ¢jX;AjkM¢;T_UQ§(t: U T MY (8)

k=1 j=0
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Y

An easy computa:tioq shows that all the r"Qf(t,y, T,7) are anisotropic ¥—homogeneous in
the operator-valued sense (for kyu(r,z) = /.\E#u()\r,z)) such that )Zv: ¢jx;r'”Qf(t,y, T, )5
belongs to $*/(R x U’ x R1*9; K*7, K2=7¥) for all 5,7 € R. =

Furthermore, for every j the sequence of operator families {r‘”Qf(t,y, 7,1)}%2, tends to
zero for k — oo. Using 1.1 Lemma 3 we get that équx;Mv}gbj belongs to S%/(R x U’ x
RI+e; £*¥ K*7) for all 5,7 € R and {l‘lef,‘,;,}z‘_’_.l tend;_to zero for k — oo.

Therefore (5) converges in §*/(R x U’ x R'*9; K27, K*~*7=") and hence it has the property
to be an operator-valued symbol of order v.

Moreover, (1 —w(r[r,7);)) as well as (1 ~w;(r[7,7]i)) are anisotropic 0~-homogeneous in the
operator-valued sense for large |7, 7|, such that the assertion follows from 1.1 Lemma 9 and

the composition rule for operator-valued symbols. a

Definition 2 For any v € R we denote by N(;’I(X;]lef) the space of all functions
h(w,7,7) € A(Cw, ¥/ (X;R*9)) with

h(w, 7, 7)lr, € ¥*/(X;Tp x R1*9) (6)

for all B € R, untformly in cg < f < ¢; for co < ¢|. The anisotropy in (6) only refers to t

such that Im w is formally treated as a further n-variable.

Remark 3 We have in NB"(X;R”") a canonica] FRECHETtopology (cf. analogous-
ly [SCH4]). Furthermore, there are the subspaces MS“(X;]RH"') of classical symbols,
which are analogously defined in terms of classical operator families in ¥%(X;R1*7)) and

‘I':l'l(x; Tz x R119), respectively.

Proposition 4 Let a function f(r,t,y,w,7,1) = h(r,t,y,w,r'T,rn) be given with some
h(r,t,y,w,7,7) € C°(Ry x Ry x U, NS”(X;]RH")). Then ao(t,y,7,n), defined by

ao(t,y, 7 m) 1= w(r[r,nl)ropys ™2 (£)(t, y, 7, nhwo(rlr, 7):) (7)

with arbitrary cut-off functions w,wy € CP(R,), belongs to the symbol space S¥HR x U’ x
R4, Lo X M), K277 (X M) for all s € R.
If h, in particular, does not depend on r we obtain that ag(t,y, 7, n) belongs to the subspace

of classical operator-valued symbols.

Proof: Because of [r,77); > 1 there exist cut—off functions 0,09 such that the relations
a(r)w(r[r,n)) = w(r[r,nl) and oo(r)wo(r[7, )i} = wo(r[7,n}i) are fulfilled for ali {r,7n];. The-
refore we may assume, that the function f(r,t,y,w,r,7n) does not depend on r for r > ¢ with

some constant ¢ > 0, such that f comes from some h with

h(r,t,y,w,7,7) € C°(R x U’, N(';"(X; R'*)) + (CP(RL)®-C®(R x U’, Ns'l(X;RH"')))
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and h has a representation
0
h(r,t,y,w,7,7) = hR°(t,y,w, 7, 7) + Z Akgak(r)hk(t,y, w, ¥, 1) -
k=1 ,
where {Mi}2, € I, ¢* tends to zero in CP(R,) and Ak tend:é to 'z_erb in C°(R x
U', NG (X;R™9) for k — oo. -

On the other hand from the edge degeneracy it follows that r“‘op:{;"/ 25t y,7,7) for
f*(t,y,w,7,n) = k¥(t,y, w, r'r,7n) is v~homogeneous in the operator—valued sense, which im-
plies especially the second part of the proposition. But then it follows the assertion in the same
manner as in Proposition 1. 8]

Let us now state the MELLIN operator convention. It says that one can express the
pseudo-differential action of P(t,y,7,7) along the cone axis variable r € Ry as a family of
MELLIN pseudo-differential operators. We will construct the associated MELLIN symbol,

which may be chosen as an holomorphic function in the MELLIN covariable w € C.

Theorem 5 For every operator family P(t,y,7,n) € C®(R x U’, ¥ X" R*9)) of the
form (2) there ezists a function h(r,t,y,w,7,7) € C(Ry x R, x U, N5'(X; R'*9)) such that
for

f(rt,y,w,7,9) = h(r,t,y, w,7'r, 77) (8)
we have
ophs (Nt y,7,m) — P(t,y,7,n) € CP(R x U', S(RH, ¥~°(X™))) (9)

for all § € R. Conversely for every such f there is an operator family P(t,y,T,n) such that (9)
holds also for all § € R. In particular, for P(t,y,r,7) € C®(R x U, \I"c',‘l(X";IRl"'q)) it follows
h(r,t,y,w,7,7) € C°(Ry x R, x U’,ME'I(X;RI”)) and vice versa.

For proving Theorem 5 we first study a local version of the MELLIN operator convention.

Let us denote by $*{(R, x V xRx U’ xC,, x RFFT1*9) the subspace of all A(r, z,t,y, w,£,7,79) €
&

A(C,, S""(ﬁ;, XxXVxRxU'x ]R"'H“Lq)) such that A(r,z,t,y, B+ip,£,7,7) belongs to §*/(R4 x .

&7

VxRxU'xTgx R?"'T"lnﬂ) for all 8 € R, uniformly in ¢g < 8 < ¢; for arbitrary reals ¢y < ¢;.

The space $“/(R, x VxR x U’ xC,, x R?ltllq"'q) has a natural FRECHET topology.

Lemma 8 The kernel cut-off operator H, defined by Hy = M, ¥(F)MZL.; for a func-
tion Y(7) € CL(R4) with P(7) = 1 in some open neighbourhood of ¥ = 1 induces a continuous
mapping

Hy : YRy xV xRx U’ xTox RM1H9) 5 4R, x V x Rx U’ x C x RMH1+9)

for every v € R, where we have (Hy f)lw=ip, ~ f € S~°(Ry x V x R x U’ x To x R"+1+9), guch
1

that for h = (Hyf)|w=i, the operator family op}, op, .(h — f}t,y,7,7) belongs to C(R x

U U=>(Ry x V;RM9).
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We omit the proof of Lemma 6 ; the anisotropy causes no additional difficulties compared
with the case treated in [SCH1] or [DORI1]. Now we are ready to state the mentioned local

version of the MELLIN operator convention.

Lemma 7 Let j(r,z,t,9,p,6,7,7) = p(r,2,t,9,7p,€,7'T,71)) be given, where the functi-
on p(r,z,t,y,5,&,7,7) belongs to SR, x V x R x U’ x R;z}t;""'). Then there ezists an
h(r,z,t,y,w,&,7,7) € SY(Ry xVxRxU'waxR"+l+q) such that for I-z(r,:c,t,y,w,f, T,1) =

(5]
h(r,z,t,y,w,€,7'r,rn) the relations

0Py (r,2) (B) (1, 2,7, 1) — 0Py, 0Py o(B)(t, 2,7, m) € CP(R x U', U™(Ry x V;RIE))  (10)
and
Opfﬁ.(r,x,t.y)(ﬁ) - opil.roqu,(z,t.y)(’-l) € W—oo(]R'+ xV xR x Ul) (11)
hold for all § € R.
Proof: First we have op,(h) = op{;(h) for every é,6’ € R. This follows by CAuCHY's integral
formula from the holomorphy of h with respect to w and the holomorphy of the MELLIN image
of a function with compact support with respect to r. Thus we may restrict ourselves to the

weight § = 1 such that the associated weight line is Ty = {Re w = 0}.

We will prove for any symbol p(r,z,t,y,5,£,7,7) the existence of an

ho(r,z,t,y,w,f,f,ﬁ) € Sy'l(ﬁ+ xVxRxU' x [g % RH+I+G)

e"""ﬁ

and a symbol

pi(re,,y, 56,7, 7) € MRy x VX Rx U/ x R

pIEIi—!ﬁ

such that for pp := p the relation

OPy(r.z)(Polp=ro)(t, 2,7, 1) = (opif,,op‘b;(ho) + 0Py (r,2)(P1]5=r0)) (L, 2,7, 1) (12)

holds, where ~ means equality mod C*°(R x U’, ¥=*(R4 x V;R119)).
Then doing the same with p; leads to h; and p, satisfying the analogous relation. Therefore
we get inductively for the already constructed pg of order » — k& a symbol hy of order v — k and

a pr4y of order v — (k 4 1) such that
1
Opd;,(r.:)(pk|5=fp)(t1 z,T, 7]) = (Op;{'fopq{;,z(hk) + opf,b,(r,::] (Pk+1 |.5=T.0))(t: z,T, T’) (13)

holds. Summing up we have

k
1
0Py, (r.2)(Pla=ro)(t, 2, 7,m) 2 (0PF1 0Py (D ki) + 0Py (r ) (Prt1ls=rp))(t, 2, 7,m).  (14)
3=0
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In S""(E xVxRxU" xTgx Rz‘;‘lﬁ“) we then form the asymptotic sum

)
.@(rax1t:y:w1fyf:ﬁ) ~ Z:hj(rax-ltavaifyfsﬁ):
j=0
which implies
Opgb,(r,z)(plﬁ‘—'rp)(ty T,T, ’7) = Op‘i{',op.;,,,(b_)(t, z,T, T’) (15)

Like in Lemma 6 we can set h := Hyh and obtain
1
0pas 0Py z(h — B)(t,y,7,m) € C®(R x U', ¥~°(Ry x V;RIEY)

as desired. In h it is allowed to set # = rir and 7} = rn because it acts like an r—dependence of
coefficients, that means it is involved as an action from the left hand side in the operator.
Now (11) follows immediately from (10) such that it remains to show the first step, na-
menly (12). The way does not depend on (z,t,y,&,7,7) such that we omit this variables for
abbreviation.
We have to choose for p(r, 5) € §¥(R, x R) elements ho(r,w) € §*(Ry x Tg) and py(r,5) €
$*~1(Ry x R) such that

L
oy, (Pls=rp) = opjs (o) + 0Py (P1l5=rs) (16)

holds, where.~ now means equality mod ¥~°°(R,). Let us set A(r,ip) = p(r,—p) and look
for p1. For x : R — R, defined by x{s) = r = ¢* we have

0 foo /NP . dr'
[0 @) it
(X-)-l / f ei(s—,')pho(e-a’ ip)x"u(s')ds’dp,

1
opis(ho)u(r)

where x* denote the pull-back of functions with respect to x. For ¢(s,p) = ho(e™%,ip), that

means
9(8, P)ls==m(r) = P(r, —p), (17)
which implies
opi;(ho) = X+0Py,+(4), (18)
where y. denotes the operator push—forward with respect to x. Thus there exists a symbol b
such that
0py»(8) = x20py . (4), (19)

where we get b mod symbols of order —oo by

[= o]

B, P)lmxt) ~ 2 73(0E) (5, X ()0)B(5, )

k=0

with ¢i(s,p) = DEe2(530)|:_and A(s,5,p) = (x(8) — x(5) — X'(8)(8 — s))p.
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From the definition of x we get x'(s) = —r. Therefore b(r,p) is detemined by
q($, =7p)|s=— 1n(r) modulo symbols of lower order. Furthermore, ¢x(3, p)ls=—1n(r) has the form
¢x(r,rp) where ¢p(r,p) € Cw(m x R) is a polynomial with respect to p of order < k/2.
It follows b(r,p) = b(r,rp) with b(r,p) of order v which is C® in r up to r = 0. Note that
b(r, p) — q(s, —p)ls=1n(r) belongs to 5»~1(R4 x R). Using (17) we obtain

b(r, p) — p(r,p) € S* (R4 x R). (20)
The formulas (18), (19) and (20) give with $ = p|,=,, and b = b|5=,,

oply ,(ho) = 0y, (7) + 0by,s (5 - B). (21)

This implies (16) for p; = b — 5. In the same manner one can treat the general case of
(z,t,y,&, 7, 7)—dependent symbols; the obvious details will be dropped. o

Proof: (of Theorem 5) By assumption P(t,y,7,7n) has the form (2). Now we use Lemma
7 for every p; and set with the resulting h;(r, z,t,y,w,£,7,7) € SRy x V; x RxU' x C,, x
RMELFT)

(8]

N
h(r, t,y,w, 7, ﬁ) = Z qu()p,ﬁ':(hj)(r, t,y,w,f, ﬁ)d’j:
i=1

which belongs to C®(R; x R x U’;NS"(X;RI“"?)). Then with f(r,t,y,w,7,) =
h(r,t,y, w,r'r,rn) we obtain (9). .

If we suppose in addition that all p; in (2) are classical symbols we get even an
h(r,t,y,w,7,7) € C®(R,; x Ry x U;,AIS‘I(X;RH")) such that for f(r,t,y,w,7,9) =
k(r,t,y,w,r'r,rn) we have (9) for all § € R. If on the other hand such a function f is gi-
ven, then we find an operator family P(¢,y, ,7), which turns out to be classical, such that (9)
is satisfied for all § € R. a

2.2 Pseudo—differential operators with exit behaviour

The anisotropic operator-valued edge symbols of the following section will contain operators
on the infinite cone X* 3 (r,z) for r — oo where the specific properties for large 7 play a role.
r — 0o will be regarded as an exit of the underlying manifold to infinity. So we will talk about
operators with corresponding exit behaviour. This was studied, in particular, by CORDES
[COR1] and ScuroHE [SCR1]. Here we will develop a variant with additional covariables in
the anisotropic set—up.

The main point is to introduce the symbols and operators in local coordinates (r,z,t,y)
with the covariables (p,&,7,7). In order to simplify notations we shall first neglect (¢,y). The
final symbol and operator families will depend as C'*—functions on (¢,y) and this can easily
accepted afterwards. The variable z will run over an open set V C R™, r over R;. We shall

first allow r € R and then cut—off the objects for r > ¢ with some ¢ > 0.



2 ANISOTROPIC EDGE PSEUDO-DIFFERENTIAL OPERATORS 38

The exit behaviour of a symbol ¢(r,z,p,€,7,7) for |r| = oo is defined by the symbol

estimates
|DEDEDE Dy cq(r,2, .6, 7] < clp, € mymly I (1 4 ) (1)

for all r € R, (p,&,7,9) € R4+ ¢ K cC V and all k,q,B,7, with constants ¢ =
c(k,d,ﬂ,‘y, K) > 0. Here we denote by [p,£, 7, 7] the smoothed norm function associated with
the anisotropic norm |p, &, 7, 7)i := (|72+](p, €, q)l"')ilf. The anisotropic order » € R is arbitrary
as well as the order § € R in r. For our purposes it suffices to restrict the consideration to
§=0.

Let us denote the class of all symbols p satisfying the estimates (1) for § = 0 by $*/(R x
V x R1+n+1+49)  endowed with the FRECHET topology, defined by the best constants in (1) as
semi—norms.

Let us now define the space ¥*/(R x X; R!*9), of parameter dependent pseudo-differential
operators on R X X of order v, depending anisotropically on (r,7) € R'*9 and satisfying the

exit condition for |r| — oo.

Definition 1 The space ¥*(R x X;R!19), consists of all

N
QY =3 6i{XjoPy,(r.e)(6) (T M }¥; + C (7, 1) (2)

=1
for arbitrary g;(r,z,p,£,7,1) € SH(RXV; x RUt"+1+9), for j=1,..., N, (cf. analogously 2.1
formula (2)) and for an arbitrary family of smoothing operators C(1,n) on R x X with kernels
in S(RIY. C°(X x X,S5(R x R))).

Ut

Note that if C(r,7n) has a kernel ¢(7,7,2,2',7,7') € S(RLE, C~(X x X,S5(R x R))) then
the operator acts as (C(r,n)u)(r,z) = [x fpe(r,n 2,2/, r, v )u(r, 2')dr'dz’.

The space ¥*/(R x X;R'*9), has a natural FRECHET topology. The same is true of
P XA, R1+9), obtained from ¥*/(R x X; R!*9), by restriction to r > 0. Then it makes sense
to talk about C°(R, x U}, ¥*!(X";R1t9),) for an open set U’ C R9.

The following results are easy consequences of CORDES [COR1], ScHrROHE [SCR1] (cf. also
the material in EGorov, ScauLze [EGO1]), that will tacitly be used below.

Proposition 2 Let arbitrary cut-off functions o(r),0,(r) and an operator family Q(r,7n) €
vl (XA RY19), be given. Then for every (1,1) € Rt the operator

(1-0)Q(r,m)(1 = ay) = K™(XN) = K47 (X1
is continuous for all s € R and all weights v,y € R.

Proposition 3 Let arbitrary cut-off functions o(r),0,(r) be given. Then for any ope-
rator family Q(t,y,7,n) € C®(R x U/, ¥ (X*;R'*9),) the operator-valued function (1 —
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a)Q(t,y,7,7)(1 — 1) belongs to S*(R x U’ x R, K*7, K*=»"") for every s € R and all
weights v,7' € R.

Remark 4 Because of the finite support of a ¢(r) € C(R4) we have that My regarded
as a constant function of (7,7) belongs to WO/(X/; R!+9),.

Proposition 5 Every Q(t,y,7,n) € C®(R; x U;,‘I"’"(X";RH?),) induces for fized
(t,y,7,70) € R x U’ x R1*9 with some cut-off functions o(r),0,(r) € CP(Ry) a continuous

operator
(1= a(r QU y, 7, (1 — 01(r)) = S(X") = S(X™).
Here we set as before S(X*) = S(R,C°(X))lu, -

Theorem 8 A(r,n) € ¥*/(X*;R9), and B(r,n) € V2 XN R™M),, v, € R, implies
(A(1 = a(r))B)(1,n) € U7X A RH9), for every cut-off function a(r). Moreover, we have
A*(r,n) € WM (XA;RH9),, where A*(7,7) denotes the point-wise formal adjoint of A(T,7).

2.3 The edge symbol algebra

In this section we describe the properties of the anisotropic edge pseudo—differential operators
on symbolic level. We will introduce an algebra of matrices of anisotropic operator-valued
symbols, which also contain trace and potential conditions as in BOUTET DE MONVEL’s algebra
of boundary value problems for elliptic operators.

The algebra of smoothing MELLIN and GREEN symbols as well as the algebra of non-
classical GREEN symbols form ideals in the mentioned edge symbol algebra. Furthermore, we

will get an analogue of the symbolic calculus from ScuuLze [SCH2].

Definition 1 Let u,v € R, u — v € N, and weight data g = (v,v — 1,0) with v € R and
© = (-k,0], k € N\ {0}, be given. Moreover, let U’ C R? be an open set. Then we denote by
RY (R x U’ x R'*9,g) the set of all operator families

a(t,y,m,m) = o(riao(t,y,7,n) + ar(t,9,7,1)}00(7)
+(1 = o(r))acs(t, 3,7, 7)(1 - o1(r))
+(m + g)(t,y,7,7)
with
ao(t, 4,7, m) = w(r[r, mh)r~opry L (F)(t, v, 7, mhwo(rlr, 7))
for f(r,t,y,w,T,n) = h(r,t,y,w,r'r,rn) where h(r,t,y,w,7,7) belongs to C*(R, x R x

U’, N§H(X;R™9)) and

a(t,y,mm) = (1 - w(r[f? n]l))P(tv ¥.7 ’7)(1 - wl(r[r, 7?]1))
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for P(t,y,7,n) € C(R x U’, ¥ (X R119),).

Moreover, we demand that ax(t,y,7,n) € C®(R x U, ¥ (X"R1M),) as well as
(m+9)t,y,7,n) € R;f+G(R x U' x R'*9, g), and we suppose that w,wo,w; and o,00,0; are
cut-off functions satisfying wwy = w and wwy = w) as well as 009 = 0 and ooy = 0.

Furthermore, we assume that f and P are related one to another via MELLIN operator
convention (cf. 2.1 Theorem 5).

The elements of R¥(R x U’ x R'*9 g) are called anisotropic edge symbols.

We get by definition the space RZI‘I(R x U’ x R119,g) of classical anisotropic edge symbols
if we demand the condition P(t,y,T,7) € C®(R x U’, \Il:j’(X‘“;R“'q)e) where we set C*°(R x
U, Y (XA RIH9),) i= Co(R x U, W5 (XA RH9) N C2(R x U', #4(X A R1+9),) which has
the consequence that h(r,t,y,w,,7) € C(Ry x R x U’,M;‘t(X;]RHq)) holds.

Remark 2 Using the notation of 2.2 we get for the anisotropic edge symbols
R(Rx U x R gy c C(R x U/, ¥/ (X" R'9),) (1)
and for the smoothing elements
RMRx U x R, g)n Co(R x U, ¥~2(X"R'79),) = Ry, c(Rx U' x R, g). (2)

In view of Remark 2 the elements in R*/(R x U’ x R'*9, g) are uniquely determined by the

systems of symbols
r=Vpi(r,z,t,y,p,8, ) forz € Vy and 0 < r < e (cf. (2.1,(2))

and
g;(r,z,t,y,p,6,7,n) for z € V; and € < r < 0o (cf. (2.1,(2))
with0<e<é, j=1,...,N.
Recall that the mapping which assigns to the tuple {r=¥p;};=1...~U{g;}j=1...~ an element
of R“'(R x U’ x R'*9, g) was obtained by operator conventions. They contain

(i) some finite covering {\7,}, a subordinate partition of unity {¢;} on X and an associated

system of functions {t;} with +; € Cg°(17}), @;; = ¢; for all 3;
(i) the global definition of operators along X;

(iii) the MELLIN convention for the {p;} near r = 0 and construction of the concrete operator-

valued symbols near r = 0 by using, in particular, the cut—off functions w,wp,ws;

(iv) adding the operator family associated with the symbols {g;} with exit behaviour by using,

in particular, o, 09, 01.
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Without loss of generality

(a) we may assume the symbols p; and f; are compatible over the subsets corresponding to
17,- N 17& in the sense of the push—forward rule with respect to the coordinate diffeomor-

phisms on symbolic level;

(b) it suffices to start the discussion with the symbols

o(r)r_”jij(r,z,t, Y, pafs T!ﬂ) + (1 - O'(T))qj'(‘l",l',t, y,P,f, T, ’7)7 (3) '
ji=1,...,N.

From now on for convenience we will write (3) = ¢;(r,z,t,¥,p,€,7,9). Then, in the above
points (i)—(iv), we may argue in terms of g; both near r = 0 and r = o0.

This gives us altogether operator conventions

op ! {Qj}.f=l.....N = 0(’-‘1%7',7)) (4)
which map the symbol tuples to the operator-valued symbols in R*/(R x U’ x R'*9, g).

Definition 3 Let u,v € R, p — v € N, and weight data g = (7,7 — p,0) with v € R and
© = (=k,0], k € N\ {0}, be given. Moreover, let U’ C R? be an open set.
Then we denote by R(R x U’ x R'¥9 g: N_, N.) the set of all matrices

a(t,y,7,m) O
( ; ) 0)+(m+9)(t,y,r,n)

at, y,7,n) = (
with a(t,y,7,9) = o(r){ao(t,¥,7,1) + a1(t, 3, 7, M}oo(r) + (1 = 0(r))ac(t, 4,7, M)(1 = a1(r))
with ap,01,08, and 0,00,0, being given as in Definition | and a smoothing MELLIN and
GREEN symbol (m + g)(t,y,7,n) € 9‘{;,"+G(]R x U' x R1*9,g: N_ N,). Analogously we define
m‘;;’(R x U’ x R1*9,g: N_ N, ) by demanding a(t,y,7,7) € R:,'I(R x U' x R1*9 g).

As before, we investigate at first the left upper corners of the matrices in R*/(R x U’ x
Rt9,g: N_, N.) which belongs to R“/(Rx U’ xR!'*4, g). This part corresponds to the pseudo—
differential equation while the other items represent the additional trace and potential condi-

tions of the problem.

Remark 4 Definition 3 can immediately be generalized to symbols a(t,y,t',y’,7,7) with
(t,y,t,y") € (Rx U') x (R x U"). This variant will be tacitly used below in the edge operator
algebra generated by Op(a), a € R“/(R x U’ x R'*9,g: N_, N, ), modulo the smoothing
operators in P (R x U', g, N_, Ny).
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Proposition 5 Let y,v € R, p — v € N, and fir weight data g = (v,7 — u,0) with
vy € R and © = (—k,0], k € N\ {0}. Moreover, let U' C RY be an open set. Then we have
m"-’(R xU'xR"“,g:N_ N, C Nser S”"(R x U x R1+9; K37 @ CN- Ko—vr-k g CN+) and
Jor every asymptotic type P € As(7,©) there is some Q € As(y — u,0) such that R (R x
U'x R, g: Ny Ny) C Neer SR x U/ x RS KR @ CN',}C'Q_""'—“ & CN+),

Proof: Because of 2.1 Proposition 1, 2.1 Proposition 4, 2.2 Proposition 3 and the definition of
smoothing MELLIN and GREEN symbols all the ingredients of an edge symbol are anisotropic
operator-valued symbols between the cone SOBOLEV spaces as well as the subspaces with

asymptotics which yields the assertion. m]

Lemma 6 For every anisotropic edge symbol a(t,y,7,17) € R (R x U’ x R't9,g), an
arbitrary cut-off function w and some ¢(r) € CP(R4) with w(r)d(r) = 0 the functi-
ons w(r(r,nli)a(t, y, 7, n)(r[r,nlt) and &(r[r,n])a(t,y, 7, n)w(r[r,n]:) belong to R'(’;'.’(IR x U’ x
Rt g).

Proof: The point-wise GREEN property follows from the cone calculus (cf. [SCH1]). Fur-
thermore, using Proposition 3, from the standard homogeneity argument and the composi-
tion law for operator-valued symbols we get immediately that w(r[r,n])a(?,y, 7, 7)¢(r[r, 1))
and ¢(r[r,n))al(t,y, r,nk(r(r,7n);) are operator-valued symbols with respect to the subspaces
with asymptotics such that it remains to prove that the treated functions are classical sym-
bols. We can prove this by TAYLOR expansion arguments with respect to r. The method
is the same for all items and we are going to show it only for the MELLIN part of the
edge symbol. Then we have to look at ¢(r[r,n])ao(t,y, 7, n)w(r[r,n)) with ao(t,y,7,7) =
G.:(r[r,n];)r“’op‘;;%(f)(t,y,r,n)oo(r[r,q]l), where f(r,t,y,w,7,1) = h(r,t,y,w,rir,ry) with
some h(r,1,y,w,7,7) € C°(Ry x R x U’, NS"(X;RH“’)) (cf. Section 2.1).

In 2.1 Proposition 4 we stated that ag(t,y,7,7) is anisotropic v—homogeneous in the
operator-valued sense for large |7, | if h(r,t,y,w,¥,#) does not depend on r.

For given N € N we get by TAYLOR’s formula

N-1

h(r ty,w, 7,7) = 3 thi(t,y,w,7,7) + N hny(r,t, y, w, 7, 7).
j=0

Then setting a{’(t,y,7,7) = &(7[r, ﬂ]:)f'”"N"'jOPL—%(fj)(t,y, T, n)o(r[r,pl) forj=0,...,N
with f;(t,y,w,7,n) = h_,-(t,y,w,r’r,rn) for j = 0,...,N — 1 and fn(r,t,y,w,7,n) =

hiwy(r,t,y,w, 7', 70), we have

N1
ao(t,y,m,m) = (E af)’)(t,y,r,ﬂ)+af;~)(t,y,f,n))

=0

N-1 )
= (rlr o)V (z [r, ol Vet y, 7 0) + [r,n]r”aé”’(t,y,r,n)) :

1=0
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But here for j = 0,..., N —1 we observe that [r, n],'Nagj)(t, y,7,7) is anisotropic (=N +v—~N+
J = v—j)-homogeneous in the operator-valued sense for large {T,7|; and [r, n],‘NagN)(t, Y, T, M)
is an anisotropic operator—valued symbol of order v — N.

Finally multiplication by (r[r,5];)¥ which is anisotropic 0~homogeneous in the operator—
valued sense for large |7, n|; preserves the desired structure because of the compact support of

¢ such that the proof is complete. a

Proposition 7 Let &,&0,0, be cut-off functions satisfying the conditions @ = & and
@@ = &y. Furthermore, we assume a(t,y,7,1) = ao(t,y,7,1) + a1(t,y,7,7), where ag and a;

are defined as in Definition 1. Then for a(t,y,7,7m) = ao(t,y, 7, n) + d1(t, y, 7, n) with

olt, 4, 7,1) = &(r[r, n))r ™ opay £ (£)(t 9, 7 m}Do(rlT, 7))

and
al(t, T, 17) = (1 - ‘D(T[T: Tl]l))P(t1 T, ’7)(1 - LT"l(r["-’ ﬂ]l))

we have o(r){a(t,y,7,n) — a(t,y,7,1)}oo(r) € R‘C":’(]R x U' x R, g) where 0,09 are cut-off

functions as in Definition 1.

Proof: We omit for abbreviation the variables (t,y,7,7) and r, but keep in mind that cut-
off functions are denoted by w if the argument r is multiplied by [r,%]; and by o if not.
Furthermore, we set F := r~“op,, 2(f). Then we have a = wFuwp + (1 — w)P(1 — w;) and
@ =wF&p 4+ (1 - @)P(1 — &). Now we choose cut—off functions w’,wj,w] satisfying

Vwy =W, Wl =w), We=u, Jo=u (5)
Then we have

o{a—a}oy = o{w'(a-awy+wi(a-a)l-uwp)
+(1 - w')(a = @i + (1 - w)(a - @)(1 - wi)}oo,

where the second and the third item have the GREEN property by Lemma 6. For the first item

we get

ow'(a — &)wyoo ow' {wFwy — @ F&p + (1 —w)P(1 —wy) — (1 —@)P(1 — &) Ywhoo

ow' F(wo — &o)whoo,

cf. (5), which has also the GREEN property by Lemma 6, because of w'(wo — & )wg = 0.
It remains to deal with ¢(1 —w')(a — @)(1 — w])op. Using the MELLIN operator convention
we get for all ¢, € CP(Ry) that ¢Fyp = ¢(P + g)¥ with some g € RS(R x U’ x R!*9,g).
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Then we have

o(l —uw')a-a)l- u; Yoo
= o(l - w){wFwp+ (1 = w)P(l —wy) = @Fd ~ (1 = &)P(1 — &)1 - wy)ag
= o(l —w){wPwp+ (1 -w)P(1 —wy) -

—&Pp ~ (1 - @)P(1 — &) + wgwo — Sgdp} (1 — w))ap.

The supposed conditions on the cut—off functions yield w(1l —wp) = @(1 — &) = (1 —why =
(1 — &)@, = 0 such that from Lemma 6 it follows that the symbol

bi=(1-w){wP(1 - wo) + (1 —w)Pwy —GP(1 - &) — (1 - @) Piy }(1 - wi)
belongs to R'(’;"(]R x U' x R1*9, g). But then

(1l - w')(a—a)(1 - w))og

a{(1-w')a—-a)(1-w])+b-b}ag
= o1 =-w){(P-P)-wP(l —wy) - (1 —w)Puw +
+&P(1 = @) + (1 — @)Pdy + wgwo — wgio }(1 — wi)os

also belongs to R‘('-,‘.I(R x U' x R'*7 g). (]

Remark 8 Without loss of generality we may assume in Definition 1 that the operator
family P(t,y,1,n) coincides with aw(t,y,7,1). Under this condition we obtain analogously
to Proposition 7 that the concrete choice of the cut—off functions o, 09,0, with o009 = ¢ and

ooy = oy only affects a(t,y,7,7) in Definition 1 mod Ré’(]R x U x R¥9;: g).

Proposition 8 Leta;(t,y,7,7) € RV RxU'xR'™*,g; N_, N,), j € N, be any sequence
of symbols, where we assume that the asymptotic lypes P and Q) of the involved GREEN symbols
are independent of j € N,

Then there ezists an a(t,y,7,7) € R (R x U' x R1*9,g; N_, N;), which is uniquely deter-
mined modulo R('G"')"(R X U'x R, gi N_, Ny)pg, such that

oo
a(ts YT, 7?) ~(G) Z aj(t) T, 7])7
j=0

«

where “ ~(g)” means, that for every M € N there 1s an N € N with a(t,y,7,7n) -

N
z:o a;(t, 9, 7,m) € RiG (R x U x R, g; N_, Ny )pg.
J:

Y,

An analogous result holds for classical symbols a; with a resulting a(t,y,7,7) € ERCI'!(R X
U’ x ]Rl+q, £ N_, N+)

Proof: For the sake of simplicity we will only prove the local version of the propositicn and

drop all arguments with respect to localization and globalization on the manifold X. Moreover,
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we will only deal with the left upper corners of the matrices, the case of the whole matrix is
then an obvious generalization. Furthermore, we will keep in mind that the varius cut—off
functions w in the argument are multiplied by [r,); whereas cut—off functions o only depend
on r. We will often drop the variables (¢,y,7,7) and r in the arguments, Moreover, note that
vi=v-—j. ,

Then we have a; = a(ur""iop};%(f,-)wo-i-(l —w)P;j(1-wy))oo+(1-0)Q;(1~01)+m;+g;.
Note that in view of Proposition 7 and Remark 8 it is possible to pass to j-independent cut—off
functions.

For proving Proposition 9 we will construct a sequence of symbols f°(r tLy,7,n) =
h(r,t,y,r'r,rn) with R%(r,t,y,7,7) € CoR, xR x U ”" (V; RH'")) and a sequence of
symbols with exit behaviour @ € C(R x U’, ¥* (R, x V;R”‘q),) such that

wr V’OPM 7(f.r fo)wo € RM+(G)(R x U’ x Rl+qsg)P.O (6)
and

(1- 0)( - QN - 01) € Ry (R x U' x R1*7,g)pg (M
and for which f := r-’ f° as well as Q := Z QD are absolutely convergent sums in the

J—O =0
corresponding symbol spaces.

Then setting b; = o(wr=*opy,  (f; ~ fwo + (1= w)(P; = P2)(1—wi))ao+ (1 - 0)(Q; —
Qo)(l — 01) + m; + g;, where Pf’ is associated with fJo via the MELLIN operator convention,
we obtain b; € R;f,'_l_(G)(R x U’ x R, g)pg. Thus using 1.5 Corollary 3 we get a b €
R"'+(G)(RXU’><]R1+9 8)pq with b ~(g) 3"b; and bis unique mod R F(RxU'xRM9, g)pQ

But now a = o{wr™ “opM 3(f)wo+(l-—w)P(l-wl))UO+(l -0)Q(1-0y)+bwith P := Z PP
has the asserted properties.

Finally it remains to construct the sequences Q? and f? Locally for some chart V — V
on X the operator family Q; is defined by Q; = opy (,5){9i(7,2,t,¥,p,§,7,7)} with some
g € SR xV xR x U’ x R1+7+144), But then for

p€T1,m

) gi{r,z,t,9,p,6,7,7),
7]

Q(r,z,t,y,06,70) = X (

where x(p,&,7,m) is some excision function, we get the desired operator family Q? =
op,;,'(r':){q;-’(r,z,t,y,p,f,r,n)} satisfying condition (7). If further c; tends to oo sufficiently
fast we obtain an absolutely convergent sum ¢ = Q?

For constructing ff we first restrict the symbol h;(r,t,y, w,7,7) that is associated with f;
to the weight line I‘L;-_l__r Now we get by 2.1 Lemma 6 (analogously applied to I‘.._j_x__7 istead
of I'y) with the kernel cut-off operator Hy from

0 - P71 Lo -
h3(r,t,v,ip, 7, 7)) = x( ’cj’ )hjqu_l_ﬂ(r,t,y,w,f,n)
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with some excision function x(p,,7) the symbol A0 = Hyh9. Then f9(r,t,y,w,7,7) =
ﬁ?(r,t,y,w,r’r, rn) fulfills the condition (6). The sumng0 7 f9 now is absolutely convergent
if the constants ¢; tend to oo sufficiently fast for j — oo. a

Theorem 10 Froma(t,y,7,1) € R¥(RxU'xR'"9, g,; N, N,) and b(t,y, 1,7) € R/ (Rx
U' x R'*9,g5; N_, N) for weight data g, = (y — i,7 — (& + p),0) end gz = (7,7 - i, 0),
respectively, it follows (ab)(t,y,7,n) € R*P*I(R x U’ x R!*9,g; N_, N, ) for the weight data
g= (77— (p+5),0)

Moreover, a(t,y,7,7) € RV (R x U’ x R, g; N_,N,) for g = (7,7 — u,0) implies
for the point-wise taken formal adjoint a*(t,y,7,17) € R*(R x U’ x R1*9,g*; Ny ,N_) for
g' = (=7 + u,-7,9). Analogous relations hold for the symbol classes with subscript cl.

For proving Theorem 10 we need the following lemma.

Lemma 11 Let the symbols g(t,y,7,7) € Ré’l(R x U' x R1*9, g,) and (m + g)(t,y,7,7) €
R'-'M'l_l_G(R x U' x R*9, g) for weight data g, = (v, — j,©) be given.

Then for every a(t,y,7,7) € RV (R x U’ xR, g9) for g = (y—ji, 7~ (i +1),0) we have
ag € R (RxU' xR, g) and a(m+g) € R;}fé(RxU’xR”‘",g) forg = (7,7—=(jt+n), 9).
An analogous result holds if we compose a symbol a from the right hand side to an GREEN or

smoothing MELLIN and GREEN symbol.

Proof: In view of Definition 1 we have a = o(ag — 81)0p + (1 — 0)as(1 — 01) + M + § with
m4+§e R;'}+G(R x U’ x R, g5) and the non-smoothing MELLIN, the FOURIER pseudo-
differential and the exit parts ap, a; and a., respectively. Then we have to look at the
compositions

ag = 0(ao + 61)00g + (1 - 0)ace(l — 01)g + (M + §)g (8)
and

a(m+ g) = o(ag + a))ogm + (1 — 0)ax(l — o1)m + (7h + §)m + ag. (9)

Using the composition rule for operator-valued symbols we obtain that ag belongs to
N S¥H4(R x U’ x RM™9; K27, Ko-(6+5)) So it remains to prove that (8) is a classical
gfr]?nbol with point—wise GREEN property. In virtue of 1.4 Lemma 9 and the definition of
GREEN edge symbols we get (7 + §)g € R5T7/(R x U’ x R4, g).

Moreover, for fixed (¢,y,7,7) € R x U’ x R*? it follows

- _ s s
Koo 28 K:?)on p a6y K:oeon (u+i) oo Sg {u+i)

and

Ko H(u+i) 919 A v— s g’ Sa'r

for every s € R, which implies the point—wise GREEN property of ga00g.
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The point—-wise GREEN property of gaggog is a consequence of the cone calculus, cf. [SCH1]
or [SCH3].

For the exit part we observe from 2.2 Proposition 5 and 2.2 Proposition 2 for fixed (¢,y,T,7%)
and arbitrary s € R the following mapping properties —

Ko (1"_“,)9 S‘;-# Soo, S;-(#'i'ﬂ) 1-94 Sg—(#+ﬁ)

and
K.,—“H-(n-}-ﬁ) “30(_1;“1) Ko—v=rts 1‘_"} K:JB—U--‘r+l-l L Sa‘v

such that (8) has point-wise GREEN property.

The proof of the fact that the composition of an edge and a GREEN symbol is classical
in the operator-valued sense is essentially the same as in Lemma 6 using that the appearing
r—powers will be compensated by the GREEN symbol. In virtue of 1.5 Theorem 5 and the first
part of this proof we obtain (2 + §)m + ag € R;L‘_’CI;(R x U’ x R4 g).

By definition m(t,y,7,7n) is a finite sum of operator-valued symbols of the form wHwo,

where H = r“-"*'jop‘;;%(h)(t,y)(r'r, r1)®. But with ¢y = (1 - ©)P(1 — &) we have
oajoom = o(1 = @)P(1 — @ )oqwwe = o(1 — &) PwjoopHuwg

where ¢ = (1 — &)w € C§P(Ry) and w) satisfies wip = ¢. Now pHuwg is GREEN by 1.4
Proposition 5 such that ga;oom has the GREEN property by the first part of this proof.

The composition of a smoothing MELLIN symbol and the exit part of an edge symbol
is GREEN. This is an easy consequence of the freedom to choose the cut—off functions 0,0
modulo GREEN remainders.

Finally the MELLIN pseudo—differential calculus, as it may be found in EGOROV, SCHULZE
[EGO1], ensures that cagogm also belongs to R;ﬁé(R x U' x R*9, g) which completes the

proof. O

Remark 12 In order to treat the composition of the operator-valued symbols a =
(@ij); j=1.2 @and b = (bjx), ,_, , given as in Theorem 10 we have to look at compositions a;;b;k,
where in case of (4, 7) # (1,1) or (j,k) # (1,1) always one of the elements has the GREEN pro-
perty. Thus all compositions, except of a;,b;;, can be treated by the scheme of proving Lemma
11.

Proof: (of Theorem 10) For proving the anisotropic version of this theorem we need no
new idea compared with the isotropic one which is elaborated in [EGO1]. Therefore we will
only sketch the proof. Using Remark 12 we have only to deal with the left upper corners of
the block matrices a and b denoted here for convenience by a and b, respectively. In view of

Remark 2 it suffices to know for the operator convention (4)

ab = op({g;l2G;}) mod R4FZL(R x U' x R1¥4;g). (10)
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Here we associate {g;} with a and {§;} with b, respectively, in the sense of the above operator
convention op, cf. (4), and by {, . we denote the LEIBNIZ product with respect to the variables
7 and z.

But (10) follows immediately from (2) in Remark 2 and from the fact that the (¢,y,7,7)
wise LEIBNIZ compositions are compatible with the composition rules from the cone theory.
The property that the (t,y,r,n)-dependent CﬂfG(X A g)-remainders which constitute the
remainders in (10) are classical follows by TAYLOR expansion arguments with respect to r,

similarly as above. m]

2.4 Edge pseudo—differential operators

In this section we establish the local anisotropic pseudo—diflerential algebra of edge problens.
As mentioned before the local model of the anisotropic edge is R x W := R x U’ x X”*. Then
we are looking for a suitable subalgebra of

) ¥R x U K% @ CN-, Ko7 77# g CM+).

sclk

Definition 1 Let u,v € R, y — v € N, and weight data g = (v,y — §,0) with v €

R and © = (—k,0], k € N\ {0}, be given. Then we define the space Y*/(R x W,g) :=
Op(R(R x U’ x R1*9,g)) + Y52(R x W,g) and analogously P*(R x W,g; N_, Ny) :=
Op(R“/(R x U’ x R"*9,g; N_, N,)) + D57 (R x W, g; N_, N); moreover, the subspaces of
classical operators Y2'(...) and D%/(...) in terms of RY/(...) and R%!(...), respectively.

Concerning the nature of the smoothing GREEN operators compare 1.3 Definition 7 and De-
finition 8. Remember that in view of 2.3 Proposition 5 the space R¥/(Rx U’/ x R'*9,g; N_, N,)
is a subset of /(R x U’ x R't9; K% ¢ CN-,K*~»7-# @ CN+) for every s € R. Here
Op(a) for a € R¥(R x U’ x R'*9,g; N_, N,) has the form Op(a) = (Op(a;k)); k=1 , With
the entries Op(a;;) € ¥#/(R x U’;K*7,K?2=4774), Op(ay3) € ¥*(R x U';CN-, KCo-vr—#),
Op(ag) € ¥ (R x U’; K*7,CN+) and Op(ay,) € ¥ (R x U'; CN-,CN+).

The operators A € D/ (R x W, g; N_, N,) will also be written as block matrices A =
(Aik)j,k=1,2‘ Occasionally we set Lu.c.2 := A;; (left upper corner). Aj; has the interpretation

as a potential and Ag; as a trace operator, respectively, associated with the anisotropic edge
RxU'

Theorem 2 Let & = diag(¢i,¢2) and ¥ = diag(yn,y2) with abitrary functions
S1, b2, V1, Y2 € CL(RM™9) be given. Then every A € P*(R x R? x X*, g; N_, N;) indu-
ces for all s € R continuous operators

WHrH(R x R x X*) we—v =R x RY x X 1)
AV . @ — &7
II:,I(Rl+q’ CN‘) Ha—v,l(Rl-i—q, CN"' )
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Furthermore, for every P € As(y,0) there is some Q € As(y — p, Q) depending on P and 2,

such that U induces for all s € R continuous operators

WET(R x R? x X*) W5 HI(R x RY x X1)
oAV (&) — D
H"l(RH'q, CN_) H"’V"(Rl"'q, CN+)'

Proof: The proof is an easy consequence of 2.3 Proposition 5 and 1.2 Theorem 11 and 1.2

Corollary 14 for the subspaces with asymptotics. a

Lemma 3 Let b(t,y,t',y',7,n) be in R ((R x U') x (R x U') x R\, g: N_ N,) (cf.
2.8 Remark §). Then there ezists a b(t,y,7,7) € R*(R x U’ x R'*9,g; N_, N,) such that
Op(b) — Op(b) belongs to P~*(R x U’,g; N_, N;). For b we have the asymplotic ezpansion

1 o {a]
h(tv wnT, ’7) ~(G) Z E t‘,y'a‘r,nb(t! y!tlv y’,?', TI)!(:',,,'):(:,y)-
aENl"’Q N

The proof of Lemma 3 is completely analogous to the isotropic edge pseudo—differential

calculus.

Corollary 4 Let 8(t',y',7,1) be in R(R x U’ x R'¥9,g; N_,N,) (cf. 2.8 Remark §).
Then there erists a E(t,y,‘r,n) € R(R x U’ x R'"9,g; N_, N.) such that Op(b) — Op(B)
belongs to P~*(R x U',g; N_, Ny ). For b we have the asymplotic expansion

2 1 o o
b(t,y,‘r, Tf) ~(G) Z ;"' t'.y’(_a)r,nb(tlr y’:’T’ n)l(t',y')'—'(t,y)'
aeNl+e

Remark 5 Note that b is the dual symbol of b, which means that
(FOp(b))u)(r,m) = F(bu)(r,7) mod P~(R x U', g5 N_, Ny) (1)
is fulfilled for all u(t,y) € WEEL(R x W) @ H2!, (R1+9,CN-),

Theorem 8 Let for v,i,p,ji € R and weight data g, = (v~ j1,7 - (i + 1£),0) and g, =
(v,7—0,0) withy € R and © = (~k,0], k € N\ {0} the operators A € P (Rx W, g1; N, N,)
and B € P*(R x W,g2; N_, N) be given. Then we have APV € P+ (R x W, g; N_, Ny)
with g = (v,7 — (& + 1),0) for every & = diag(¢y, ¢d2) with abitrary functions ¢1,¢3 €
C&(RM*9).

Moreover, A € D (R x W, g: N_,N;) with g = (v,7 — 1, 0) implies A* € D*'(R x
W, g* Ny, N_) with g* = (=7 + p,—7,0). Analogous relations hold within the corresponding
spaces of classical symbols.

Proof: From 2.3 Lemma 11 it follows immediately that A®28 = Op(a)®O0p(b) + & holds with
some & € P-(R x W, g; N_, N,).
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But in view of (1) we can write

(FlaFoF'FOp(b))u = F-'aFeF 1 F(bu)
F-'aF(@bu) = Op(c)u

(Op(a)@Op(b))u

with ¢(t,y,2,¢,7,n) = a(t,y,7, n)di(t',y’)l.)(t’, v, 7,n). Applying Lemma 3 for ¢ we get AdB =
Op(c) + ® with

1
£(t, YT, 7]) ~(G) E ? D?’,y'a:nc(ti Y, t” y’v T, ")I(t'.y'):(!,y)‘
OEN1+1 *

Finally using the shadow condition of the involved asymptotic types of the GREEN parts of
the operators we can apply 2.3 Proposition 9 to obtain that ¢(t,y, 7, ) belongs to R*+%/(R x
R?x R'+9 g: N_, N,). The second part of the theorem is an easy consequence of 2.3 Theorem
10. For classical operators it suffices to note that the asymptotic procedures preserve the

property of being classical. a

Remark 7 The mapping properties between the anisotropic wedge SOBOLEV spaces in
Theorem 2 were formulated on R x R? X X” in avoid indicating the comp— and loc-subscripts
with respect to y € U’. Of course, if we drop the cut-off factors ,¥ in Theorem 2 we can

obtain corresponding operators between the comp- and loc-wedge SOBOLEV spaces over Rx W.

Remark 8 The present calculus of anisotropic wedge pseudo-differential operators was
here formulated in the framework of the discrete asymptotics; it is also possible in the version of
continuous asymptotics, with vector-valued functionals in the complex w-plane. Such a theory

is necessary for understanding the effects with variable branching asymptotics, ¢f. [SCH1],
[SCH3]. Details will be published elsewhere.

Remark 9 The scheme of our anisotropic wedge theories can also be extended to more
general model cones of “hedgehog type”, ¢f [SCH5]. The corresponding parabolicity to be
developed in a future paper then covers the problem of heat conduction in singular bodies

which have components of different dimensions.
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