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§ 1. Introduction

The special Lagrangian geometry on the complex space € I was constructed and
studied in depth by R. Harvey and H.B. Lawson in the foundational paper [HLIJ. The
submanifolds in this geometry are usual Lagrangian submanifolds of "constant phase". It
turns out that such submanifolds are associated to so —called special Lagrangian
calibrations and therefore absolutely volume minimizing. This deep relationship of
Lagrangian geometry to the theory of minimal surfaces leads to a large new class of
volume minimizing submanifolds in ¢ ™.

It is natural to define and study such a geometry on Hermitian manifolds. The
present paper is devoted to this problem.

One of the important points of the problem is to introduce a natural notion of a
Lagrangian calibration on an arbitrary Hermitian manifold. For the case € T the special
Lagrangian calibrations can be defined explicitly by means of the standard coordinates
to be Re(ei(pdzll'\dz2 A..Adz)), 0<p<2r, asin [HL;]. In section 2 a
Lagrangian form on an 2n—dimensional Hermitian manifold M is presenfed as the real
part Re(w) of any complex differential n—form « that has unit comass and
characterizes the tangent Lagrangian n—planes at each point. Closed Lagrangian forms

will be called Langrangian calibrations.

The research was done when the author was staying at Max—Planck—Institut in Bonn.
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The main tool of the paper is the Lagrangian calibration equation, derived in

Section 3. Suppose M is a Hermitian manifold with the complex structure J and the
metric tensor g and let (zl,zz, ,zn) be local complex coordinates. Recall that for
M=C" the coordinate forms Re(ei(“’dz1 Adz, A ... Adz ) are closed and of comass
one simultaneously. However, in the general case even the local picture is rather
complicated. Namely, the comass of ei('odz1 A d22 A A dzIl "depends on g and
generally changes from point to point. More preciscly, in local coordinates any
Lagrangian form can be expressed as w= Re(eG_inz1 Adz, A...Adz ), where
G =Inydet(g) and H is a real valued function. The main idea for overcoming the
difficulty above can be described as follows: in order for « to be a calibration, i.e.

G

dw = 0, the change of the comass of dz1 A dz2 A A dz =~ that is equal to e~ must
be annihilated by a change of the phase H in the corresponding imaginary direction. It
turns out that this idea can be realized globally and allows to establish a necessary and

sufficient condition for a Lagrangian form w to be a calibration.

THEOREM I (Theorems 3.3 and 3.5). The differential 1-form dG-JdH , given

locally as above, is correctly defined on the whole manifold M . A Lagrangian form w«

on M is a Lagrangian calibration if and only if the 1-form dG-JdH , corresponding to

w , yanisheson M.

The existence of Lagrangian calibrations and finding them are studied in Section 5.

It turns out that the question can be explained completely.

THEOREM II (Theorem 5.2). A simply connected Hermitian manifold M is

L—calibrated (i.e. has a Lagrangian calibration) if and only if dJdG =0 , where

differential 2—form dJdG is correctly defined on the whole M .
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In the local coordinates the condition dJdG =0 has a simple form: =0

for any i,j=1,2, ... ,n . For a Kahler manifold M this means simply that M has the
trivial Ricci temsor. In [HL,] R. Harvey and H.B. Lawson noted that the special
Lagrangian geometry is naturally defined on any Ricci—flat Kahler manifold (the
existence of such manifolds is established by S.T. Yau [Y]).Theorem II justifies this
comment. Moreover, in fact, the special Lagrangian geometry can be constructed only on
such manifolds.

The property of being a Lagrangian calibration seems to be so strong that every
such one is determined completely by its behaviour at an arbitrary fixed point. This

important observation leads to a complete classification of Lagrangian calibrations.

THEOREM III (Theorem 5.8). Suppose M is a L—calibrated Hermitian manifold.
Then the set of all the Lagrangian calibrations on M is {Re(ei‘pi), 0<yp< 2},
where Re(w) is a Lagrangian calibration.

In particular, for the case €™ Theorem III shows that the special Lagrangian
calibrations Re(ei""dz1 Adzy A A dz ) cover, in fact, all the Lagrangian calibrations
on C".

Section 6 is devoted to investigating special Lagrangian submanifolds of
L—calibrated manifolds. An n—dimensional oriented submanifold N in M is called a2
special Lagrangian submanifold if u(TzN) =1 at each point ze N for a Lagrangian
calibration «w on M . By virtue of Theorem III for a special Lagrangian submanifold N
the corresponding Lagrangian calibration & is determined uniquely. This remarkable
fact allows a localization of the property of being special Lagrangian. Namely we prove

the following result.
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THEQOREM IV (Theorem 6.1). A submanifold N in M is special Lagrangian if
and only if each point of N has a special Lagrangian neighborhood.

By using Theorem IV and the criterion for the local minimality of Lagrangian
submanifolds discovered by Le Hong Van and A. Formenko [LF] and R. Bryant [B]
we can establish the equivalence between the properties of being stationary and special

Lagrangian for Lagrangian submanifolds.

THEOREM V (Theorem 6.3). Suppose M is a L—calibrated manifold. Then every

SW,
connected stationary Lagrangia}r\manifold is special Lagrangian.

For the case M = € " this result was proved in {HL,].

Sections 4, 7, 8 present some methods and constructions for finding special
Lagrangian submanifolds. In Section 4 we introduce special Lagrangian sections as the
first step in integrating the special Lagrangian equation. A section p: M — Lag(M)
of the Lagrangian bundle is said to be special Lagrangian if w(p(z)).‘= 1 everywhere for
a Lagrangian ca.librz'ition w . Clearly, any integral submanifold of a special Lagrangian
section is special Lagrangian. For each Lagrangian section p there exists an unique
Lagrangian form Wy such that wp(p) =1 everywhere. This form is called the

characteristic form of p .

THEOREM . VI (Theorem 4.3). A Lagrangian section p:M — Lag(M) is

special Lagrangian if and ouly if dG —JdH =0, where dG —JdH is the 1-form

associated to the characteristic form “’p of p.

By virtue of Theorem IV we can investigate special Lagrangian submanifolds in

each coordinate neighborhood separately. This means that we deal with a complex space
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cl= {(z},29, - 2;)} equipped with a generally non—standard Hermitian metric
g = (gij) . In Section 7 criteria for a submanifold X to be special Lagrangian are
established for the cases when X is given implicitly as zeros of n smooth real valued
functions or when X is described explicitly by parametric equations. Each of these cases
are accompanied by calculating illustrations and concrete examples. In Section 8 we
consider the case when €™ can be expressed as a unitary sum of subspaces and
construct special Lagrangiaﬂn submanifolds of €™ as the sums of special Lagrangian
submanifolds of each terms. In particular, if G is a linear function of the real
coordinates @y @y Yo o¥q then any curvelinear cylinder parallel a special
Lagrangian curve in Span{grad G, J grad G} and through a special Lagrangian
submanifold of ¢ 27! = {K = K(0), G = G{0)}is special Lagrangian, where K isa
function determined by the formula dK = JdG . Note that C n-1 can be equipped with
coordinates such that the corresponding metric tensor g’ is of standard type, that is
ydet{g’) = const . Example 8.3 generalizes the construction of special Lagrangian normal
bundles in [HL1]° Suppose T4«R ™ is the tangent bundle of R with a metric g such
that G = Inydet(g) is linear function. Let X be a cylinder parallel grad G such that
all the invariants of odd order of the second fundamental form at each normal vector to
X vanish. Then the normal bundle N(X) of X is special Lagrangian.

Finally, we point out that the special Lagrangian geometry can be extended to
n—currents of locally finite mass on M , including, in particular, submanifolds with
singularities. All the main results above remain true. For details of the method of
calibrations one can refer to [HL,], [D;] and [DF]. The basic facts and results of the

current theory can be found in [F] and [FF].
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§ 2. Lagrangian submanifolds and Lagrangian forms.

Let M be a 2n—dimensional Hermitian manifold with the complex structure J
and the metric tensor g . The fundamental 2—form (! and the Hermitian complex

valued product h on M are given by setting

(2.1) A(X,Y) = g(X,JY)

(2.2) h(X,Y) = g(X,Y) + ig(X,JY)

for any vector fields X and Y on M . If the form € is closed, then the manifold M
is called a Kihler manifold. Clearly, the form § is never degenerate (i.e. £ T never
vanishes). Therefore, the manifold M equipped with the closed 2—form @ is a

symplectic manifold.

An oriented real tangent n—plane ¢ C TzM is said to be Lagrangian if the
restriction of @ to € vanishes, that is

(2.3) Jul¢

for any u e ¢ . Obviously, £ is maximally isotropic with respect to  on TzM , and

the last is equivalent to the following condition.
(2.4) J¢L§ and JEOL=T M.

We denote by Lag(M) the bundle of oriented Lagrangian planes on M . Each oriented

n—plane of T M can be identified naturally with an unit n—vector in A_(T_M) . In this



S
way the bundle T' (M) of oriented tangent n—planes is embedded into the unit sphere of

the Grassmann bundle A_(M) .

PROPOSITION 2.1. Let ¢ be a Lagrangian plane in TzM . Then any
orthonormal basis of ¢ forms a unitary basis of T,M . Conversely, if a orthonormal

basis of a n—plane £ C TZM is also a'- unitary basis of TzM then ¢ is a Lagrangian

plane.

PROOF. Suppose that ¢ is a Lagrangian plane of T M and {el,ez, ,en} is

an orthonormal basis of ¢ . By definition J ¢ 1 e, forany i} (1 £1i,j <n) . Hence

h(ei:ej) = g(ei:ej) + ig(ei:-]ej) = g(ei,ej) = 6ij
for any 1i,j (1 <1i,j<n), thatis {el,e2, ,en} is a unitary basis of M.
Conversely, let ¢ be an n—plane of TzM and suppose that an orthonormal basis

€,,6q, ... ,&_} of ¢ isalso a'!“'unjta.ry basis of T _M . For any i,j (1 €1i,j <n} we have
12 n : z

g(Jei,ej) = h(Jei,ej) - ig(Jei,Jej) = ih(ei,ej) —ig(ei,ej) =0.
Hence, JuL ¢ forany ue ¢.Consequently, ¢ is a Lagrangian plane.

An n—dimensional oriented submanifold N in a Hermitian manifold M is called a
Lagrangian submanifold if its tangent space at each point is Lagrangian, that is the
restriction of the form 2 to N vanishes.

The Hermitian metric on M induces a Hermitian structure on cotangent spaces

*
TzM .
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DEFINITION 2.2 A real exterior n—form « gon TzM is called a Lagrangian

* ¥ *
exterior form if there exists an unitary basis {el,ez, ,en} of T M such that
¥k *
w=Ref{e, Ae,A.. e }.

We define the comass of a complex exterior k—form « to be the number

| fwl | =sup|w(@)] ,
§

where ¢ runs through all unit ‘- simple k—vectors on T,M.

* ¥ * *
PROPOSITION 2.3. For any complex basis {f;fy, ....f} of T M a

Lagrangian exterior form w on .M admit the . representation

* * *
(2.5) W= Re()\f]L A f A A fn)
) £ % * 1
where A is a complex number such that |A| = | |f1 A f2 A A fn| | . Conversely,

any n—form of the form (2.5) is Lagrangian.

* * *
PROOF. Let w=Re(.e;Ae,A..Ae) be a Lagrangian form, where

* % * * * * *
{el,e2, ,en} is a unitary basis of T,M . Suppose that {fl'fz’ ,fn} is a complex

) * * % * * k * )
basis of T M and {e,e5, ... e } = A {f})fy, ... £ },thatis

We have

* * * * ok *
elAe2A...Aen=detAf1Af2A...Afn,



where
e hey Ao he
|det A| = ”1 2 - “||—||fAfA AL
|11, ATy A AT ]
Hence
* * * *  x *
w= Re(e; Ae, A . Ne ) =Re(Af; Ay A ... Af)
. o - * ¥ * -1
with A =det A, satisfying the condition |A| = | |[f; AL, A .. Af || . Conversely,

* *
suppose that w = Re(Af; Afy A .. AL ) fora complex basis { 1 2, ,f;} of T M
and a complex number A such that [A] = | |i'1 Af2 A A fn| |_1 . Consider a
* % * *

unitary basis {el,ez, ,en} of T M and let A be the complex linear transformation

*
vl - ,fn} . We have
* X * *
£ A i AA fl,,f =det A e A e2 AL A en*. Therefore,

* *

w=TRe(M; Afy A..Af )=Re(AdetAe

* * ¥
of TzM , mapping {el,eg,.. € } into {f

* *
L Neg Ao Ae ). Moreover,

* * * * * *
1= ||,\f1Af2A...Afn| | = ||,\detAe1Ae2A...Aen|| =
* * * .
= |Adet A| ||e;AeyA..Ae || =|Adet A| . Consequently, Adet A=¢€¥ for
a: real number (p . Consider  the new  unitary  basis
~ ¥ ~ * ~ ¥
{e 1€ 9 - } {e 1, 2, e ) Clearly, w= Re( A e 2 ~Ae Il) , that

is w is a Lagrangian form. The proof is complete.

PROPOSITION 2.4. Suppose {ej,eq...,€,} isa real basis of a Lagrangian plane

* Xk *
¢CT,M and that {eq ey - ,en} is _the_dual basis to {el,ez, e} E that is

*
ei(ej) = 6ij for any i,j(1 <1,j<n). Then
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x ¥ *
Re(e, Aeg Ao Ae )(egAey A Ae )=1

PROQF. The statement of Proposition 2.4 is obvious for the case when
,fn}]be?an
1o - f } is also a unitary basis of

{31’92' e € } is orthonormal. We consider the general case. Let {f1 Aoy -

orthonormal basis of £ . By Proposmon 2.1 {f,,f
T_M . Denote by {f1,£2, f .} the unitary basis of T M dual to {f,,f

basis {fl, 2, wof e {f1 2, ,fn} = A{el,e2, .. ey} - Then
{81'62' ey } At{fl, o - ,fn} . Therefore,

(2.6) LAGA AL =(det A)e; Aey A e
(2.7) e Aegh..he = (det AY) £, Ay A .. AT
*  * *
= (det A)f, Ay Ao AT

172
Suppose, that the real linear transformation A sends the basis {el,e2, ,en} into the-

£}

* *
Since Re(f; Afy A ... A f:;)(f1 AfyA..Af)=1 because of the above remark and

(2.6), (2.7) we have

(2.8) det A = (det AYRe(f; Ay A ALYE Ay A AT =

*  * * x % *
= (eqAexh ... Ae )(det A e AesA .. Ae ) =(det AJe;AejA ... Ae (e1A enA

From (2.8) it follows that

% *
e;heg A he (e, AesAAe)=1

completing the proof.

Propositions 2.3 and 2.4 yield the {ollowing result.

- hep)
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COROLLARY 2.5. Let w= Re w be a Lagrangian form on TzM . Then
(2.9) | lw (&) < (€]

for any n—plane ¢ in TzM . Moreover, the equality holds if and only if { is a

Lagrangian plane. In particular, | |w|| =1 and ||w|| = ||Rew|| =1.
. . . * % * * * * *
Fix a unitary basis {el,e2, ,en} of T M. Then ||e; A e, AA e || =1.

According to Proposition 2.3 any Lagrangian exterior form in T_M can be expressed in
sk * *
the form Re(e””e1 A e, A A en) . Further, suppose ¢ is a given Lagrangian plane of
L I ] *
TZM . By force of Proposition 2.1 one can choose a unitary basis {el,e2, ,en} of
* * X *
T,M so that the dual basis {e;,ey, ... ¢ } to {ej,e,, ... ¢} i8 an orthonormal basis
: * * *
of ¢ . Clearly, Re(e"Pe1 Aey A ... Ae }({) = cos ¢ . In particular, it implies that there

exists an unique Lagrangian exterior form w« on T M satisfying the condition :

w(€) = 1. Thus we have proved the following

COROLLARY 2.6. There exists precisely a S1 —family of Lagrangian extierior

forms on each tangent space TzM . Moreover, for a given Lagrangian plane ¢ there

exists an unique one that has the largest value 1 at £ .

DEFINITION 2.7. A differential n—form w on M is called a Lagrangian form if

the restriction of w fo the tangent space TzM , at each point, is Lagrangian.

Given complex local coordinates z = (z .2,) on M. Set

1% -
G = Iny/det(g) = ln-,/det(gij) , where g =X gijdzidij is the Hermitian metricon M .
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PROPOSITION 2.8. Suppose « be a Lagrangian form on M . Then in local

coordinates @ can be expressed in the form

(2.10) w=Re(E Mz ANdzy A ... dz)

where H is a real valued function on M . Conversely, any n—form given by the formula

(2.10) is Lagrangian,

*
Proof. The complex linear forms dzl,dzz, ,dzn form a complex basis of TzM

* X * *
at each point z. Choose a unitary basis {el,ez, ,en} of T,M and let

* * _ _
{dzl,dzz, ..,dz } = A{e;.ey .. e} . Then (gij) =(A 1)t(?f 1) . Consequently,
JAet(g) = |det A1 | = |det A|™L. On the other hand,
x % x
| |dz; Adzy A .. dz || = ||(*ietAe1A02A he || =
x x
= |det A] | |e1 A e, A A en| | = |det A| . Now, using Proposition 2.3 proves both

statements of the proposition.

§ 3. The Lagrangian calibration equation

DEFINITION 3.1. A Lagrangian form « on a Hermitian manifold M is called a

Lagrangian calibrationif dw=0.

DEFINITION 3.2. An n—dimensional oriented submanifold N in M is called a

special Lagrangian submanifold if N is a ¢ —submanifold for a Lagrangian calibration

¢ on M, thatis ¢ (T N)=1 atcach point ze N.
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By force of Corollary 2.5 TzN must be Lagrangian for every z € N . Therefore,
N is, particularly, a Lagrangian submanifold.

From Definitions 3.1 and 3.2 it follows immediately that any special Lagrangian
submanifold is volume—minimizing (see, for example, [HL,] or [D,]).

Consider a Lagrangian form w on M . Let given complex local coordinates
7= (zl,zz, ,zn) on M . By virtue of Proposition 2.8 « can be represented in the

form
(3.1) v =Re(e® Mz AdzyA..hdz).

The real valued functions G and H are defined on the domain of the local coordinates

z= (zl,zz, ,zn) . They depend on the local coordinates.

THEQOREM 3.3. The differential 1-form dG —JdH , where G and H are given

locally by the formula (3.1), is correctly defined on the whole manifold M , that is it is

independent of the choice of the local coordinates.

PROOF. We show that dG — JdH , although defined by means of the coordinates,

/ / 4
does not depend on them in fact. Suppose (zl,zz, ,zn) is another complex local
/

dz. .
coordinates on M and let A= [—571—} be the Jacobian matrix. Let det A = ea'Hﬁ

]
(a, B are real valued functions). Then we have

(32) daj Adzj A...Ads! = det Adzy AdagA..Adz =e* Pz Ndzy .. Az

Suppose that in the new coordinates « has the form



—14 -

(3.3) o=Re(e® T dz! Adz A ... Adel).
From (3.1), (3.2) and (3.3) it follows that
eG_inzl'A dz  A..Adzy= eG’—iH,dzi A dzé A A dzI’1 =
= eG"iH'ea“ﬁ&},l Adzy A .. Ads = (G +O)HM Blay pgz A haz
Hence
(3.4) G=G'+a and H=1’-3.

Since the function det A is holomorphic the function «a + i8 is holomorphic. By using

the Cauchy—Riemann condition we obtain.

_9B 9o _ 0B .

(4
, = — 2, ...,0),
% 9y 0% 9%

(3.5) g
where z; = & + iy, . Obviously, (3.5) is equivalent to the following equality
(3.6) Jda=dp.

Taking (3.4) and (3.6) into account we have

dG —JdH = d(G’ + a)—-Jd(H’' —B) =dG’ + da—JdH’ + JdB =
= (dG’ - Jdll") = J(Jda —df) = dG’ - Jdll’ ,
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completing the proof.

COROLLARY 3.4. The differential 2—forms dJdG and dJdH, where G and H

are defined locally by (3.1)., are correctly defined on the whole manifold M .

PROOQF. By using (3.4) and (3.6) we have
dJdG = dJ(dG’ + da) = dJdG’ + d(Jda) = dJdG’ + d(df) = dIdG’

dJdH = dJd(H’ - §) = dJ(dH’ — dB) = dJdH’ ~dJdB = dJdH’ — dI(Jda) =
= dJdH’ + d(da) = dJdH’ .

Thus the proof is complete.

THEOREM 3.5. A Lagrangian form « on M is a Lagrangian calibration if and
only if the 1-form dG — JdH , associated to0 w by the formula (3.1), vanisheson M.

Fix an arbitrary point pe M . Since the form dG —JdH is independent of

coordinates we can choose local complex coordinates z = (zl,zz, ,zn) on M so that
*

{dzl,dzz, ,dzn} is a unitary basis of T _M . To prove Theorem 3.5 we need the

following lemmas.

LEMMA 3.6. Set w= eG—inz1 A dz, A...A dz . Let Re w and Im w denote

the real and imaginary parts of w respectively. Then the equality

(3.7) dHAImG=—-JdHARe s
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holds at the point p .

PROOF. Let z =x, + iy;, i=12,..,0. Then the real linear forms
*
dxl,dyl,dxz,dyg, -..»dx ,dy = constitute an orthomormal basis of T,M . The complex

structure operator J acts on this basis as follows

(3-8) dei = dyi » in = - dxi y i = 1,2, cus

Put e+ = ——-Q-

ax k

, € = i ik = 1,2, ... ,n) . By a straight forward calculation

4
p . Yy D
of the values of the forms dx, ARew, dy; A Re w, dx; Alm w and dy, Almw

. EO 51 EII
(i=12, ..,n) at the basic real (n+1)—vectors {=¢; Ae; A Ae™, g=4%,
1 n

0
i=0,1,...,n, we obtain
(3.9)
[ . € €. €. E
1. . + 1 i-1 i+1 n
(-1) if € =e; Ae; Ae;” A...Ae iah e Aohe
and the number of minuses amomg Eyr- - 2 E 1 Ejpp

is equal to 1(mod 4)

. E E. £ . £
dx, ARe w(€)={(-'*! if &= e Ael Ae A e Tthe JTIN he,

i+1
and the number of minuses among ¢,..
is equal to 3(mod 4)

0 for others.

Ei i Eig

Ep

€
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(3.10)

[ . € €. E. €
i - + 1 i-1 i+1 n
and the number of minuses amomg Eyre 1 €4 _1r€ip 1 oy

is equal too)(mod 4)
— i+l . - + 4 1 fi-1, ®i+1 €n
dy; A Re w(§)=1(-1) if §= ¢ Aey Ae A ..A e 1 Aei+1 A he
and the number of minugses among Eqs-

: ca €€ o
is equal to 2(mod 4)

0 for others.

(3.11)
[ . € €. E. €
i, + — 1 1-1 i+1
((1)' if € =e] Aey Aep Ahe (TjAe TN e "
and the numb(laﬂr of minuses amomg g 2 Ej_12€i4q0 oy
is equal to O'(mod 4)
— i+1 . o+ — A fi-1, fi+1 n
dxiAImw(l;‘)—J(~1) if ¢ = e, Aei I\e1 A LA ey Aei+1 I\...I\en

and the number of minuses among €qr- -

) ,6i_1,€i+1,...’6n
is equal to 2i(mod 4)

0 for others.
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(3.12)
[ . £ £ . £. 3
. — 1 -1 1
(-1)' if g =¢e] Ael A ey A.he ITh e LT e P
and the number of minuses AMOME. £1,. . € _11€; 15y
is equal to 1(mod 4)
— i+1 | - €1 €i1, %i+1 ¢
dy, ANIm G(&)={(-1)"* it ¢ = e Ael Aef A AelTthe TN Ae "

nd the number f min mon P . .
and the number o uses among €; ,51_1,£1+1, €y

is equal to 3(mod 4)

0 for' others .

Comparing (3.9), (3.10), (3.11) and (3.12) we can conclude that

(3.13) dx; AIm w=—dy, ARe w
(3.14) dy; A Im W= dx; A Re w.
n
Assume that dH = Z (o; dx; + Bdy;) . Taking (3.8), (3.13) and (3.14) into account we
i=1
have

e I

el

dH A Im (aydx; Alm v + Ady; A Im w) =
1 i=1
n

(- oyddx, A Re w—BJdy; A Re @)=—(J ) (oydx; + Bdy;))A Re w=—JdH AR
1 i=1

(- a;dy; A Re w + Bdx; A Re W)

i b~ =

i

I
I ™12

i

ew.

Thus, the lemma is proved.
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LEMMA 3.7. Let ihie notations be as in Lemma 3.6. Then the equality

(3.15) d(Re @) = (4G —JdIl) ARe @

holds at the point p.

Proof. Really,

G-l

— i—1H
do=d[eMaz Ndag Ao Nz ] = d(e“ M) Nz Adag A Adz =

= d(G —i) A az Aday A Az ) = a(G—il) A B
Ience

(3.16) d(Re w) = Re(d w) = Re(d(G —ill) A @) = Re((dG —idH) A w) =
=dGARew+dllAImuw.

.. From (3.7) and (3.16) it follows that
d(Re @) =dG ARe 5—JAH A Re 5= (dG —JdH) ARe @,

completing the proof.

PROOQF OF THEQREM 3.5. Assume that dG—JdIl =0 . Then by virtue of

Lemma 3.7

d(Re v) = (dG —Jdl)ARew=0,
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that is « = Re w is a Lagrangian calibration. Conversely, if w = Re w is a Lagrangian

calibration, then d(Re w) = 0 . Consequently, by Lemma 3.7
(3.17) (dG = JdH)ARecw=0.
For any nontrivial vector e e TpM one can choose in the orthogonal supplement to e

a unitary basis {el,ez, ,en} of TpM so that e; = —Je . Then from (3.17) it follows
that

0=(dG—JdH)ARew(eAe, Ae,A..Ae )= (dG —JdH)(e)Re w(e, Ae, A...Ae ).
1772 n 17 72 n

By using Corollary 2.5 we have |Re U(e1 A €q A A en)| =1 because €1:8g, - 1€
form an orthonormal basis of a Lagrangian plane. Hence (dG —JdH)(e)=0 .

Consequently dG —JdH = 0 . Thus the theorem is completely proved.

THEOREM 3.5 establishes that a Lagrangian form w is a calibration if and only

if
(3.18) dG —JdH =0
on M . In what follows for notational convenience we will use the form

JdG + dH = J(dG - Jd1) together with  dG -JdH . Clearly, the equality
dG —JdH = 0 is equivalent to

(3.19) JAH + dH = 0



- 21 —

We call (3.18) or (3.19) the Lagrangian calibration equation.

§ 4. Special Lagrangian sections

A Lagrangian section on a Hermitian manifold M 1is defined to be any section

p: M — Lag(M) of the Lagrangian bundleon M.

DEFINITION 4.1. A Lagrangian section p on M is said to be special

Lagrangian if there exists a Lagrangian calibration @ on M such that w(p(z)) =1 for
every ze€ M.

Obviously, any integral submanifold of a special Lagrangian section (i.e. such a
submanifold that has p(z) as the tangent space at each its point 2z ) is special

Lagrangian.

EXAMPLE. Suppose F is an oriented n—dimensional foliation of M such thagt
tangent planes to the leaves are Lagrangian. Then the mapping p: M — Lag(M) ,
tangent
sending each point z to thelplane to the leaf "at z , gives a Lagrangian section. Note
that a connected integral submanifold without boundary of this section is just a closed
leaf of the foliation.

Let p:M —— Lag(M) be a Lagrangian section on M . Given local complex

coordinates z‘=':(z 2,) on M. Set

PEgy -

(4.1) w=dz; Adz
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THEOREM 4.1. The differential n—form Bp , given locally by the formula (4.1),
is correctly defined on the whole manifold M . Moreover, the real part Re(Ep) of 'a';p
is a Lagrangian form. |

PROOF. First we show that, in fact, the form Ep is independent of the choice of

the complex coordinates. Really, suppose (zi,zé, ,zl’1 ) is_another local complex

7
. Jz.
coordinates on M and denote by A = [—a—l] the Jacobian matrix. Let
]
42 o =di/ Ndsb Ao Ade! | 5 =2
(4.2) w =dzy Adzy A ... dzn,wp =E(p)

Then we have

— ’ —
(4.3) w =dzi Adzé A ... /\dzl'l=detAdz1 Adzg A ... Adz =detAw.
In particular,
(4.4) w’(p) = det A w(p) .

By substituting (4.3) and (4.4) into (4.1) and (4.2) we obtain

“&,:#U_,:E,:detA;:B:E
PoG(p) P detA G(p) w(p) P

This proves the first statement of the theorcin. It remains to prove that Re(Ep) is a

G

Lagrangian form. Set w=e” &= eGdz1 A dzy A ... A dz_ . By Proposition 2.8 Re w is

Lagrangian. Then IZJ (p)| =1 by force of Corollary 2.5, because p is a Lagrangian
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plane. Hence, |w(p)| = Ie_G w(p)| = e C 1@ (p)| = ¢ G ,ie w(p)= g GHil
for some real valued function H . Applying Proposition 2.8 again we see that the form

Re Ep , where

w G—H
=e dzll\dzzf\.../\dzn,

LTS

is Lagrangian. The proof is complete.
Given the Lagrangian section p: M —— Lag(M) on M . By virtue of Corollary

2.6 there exists an unique Lagrangian form » on M such that w(p) =1 everywhere.

This form is called the characteristic form of the section p and denoted by wp .

THEOREM 4.2. The Lagrangian form Re Ep , constructed in Theorem 4.1 is

nothing but the characteristic form wp of the Lagrangian section p.

PROOQF. Since Re Up is Lagrangian by Theorem 4.1 it remains to show that
Re ?Dp (p) =1 at each point. Really, because Ep is independent of the choice of the
coordinates we can choose local complex coordinates z = (zl,zz, ,zn) such that
{dzl,dz2, ,dzn} is a unitary basis of T:M -dual to an orthonormal basis
{eyseq, . se ) of p(z) . (Note that {e,e,, ... e} is also a unitary basisof T M ).
Then  w(p) =dz; Adz, A..Adz (p) =1 . Hence, Re Ep(p) = Ep(p) =1 by

Proposition 2.4. This proves the theorem.

THEOREM 4.3. A Lagrangian section p: M -—— Lag(M) is special Lagrangian if

and only if

dG -JdII =0
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where dG —JdH is_the 1—form associated to the characteristic form ”p of the

section p.

| PROOF. Suppose that dG —JdIl =0 . By Theorem 3.5 @, is a Lagrangian
calibration. That means that p is a special Lagrangian section. Conversely, if p is a
special Lagrangian section, then there exists a Lagrangian calibration @ on M such
that w(p) =1 everywhere. But this property provides « to be the characteristic form
of the section p . Thus, w= wp - Applying Theorem 3.5 again we have dG —JdH =0,

completing the proof.

§ 5. The existence and classification of Lagrangian calibrations

DEFINITION 5.1. A Hermitian manifold M is called a L—calibrated manifold if

there exists a Lagrangian calibration on M .

THEOREM 5.2. A simply connected Hermitian manifold M is L—calibrated if

and only if d(JdG)=0.

Let given local complex coordinates z = (zl,zz, ,zn) . Assume that the 1-form
JdG is closed. Then —JdG = dH , where H is a function determined uniquely up to a

constant. We consider the family of the following Lagrangian forms

—iH
(5.1) vy = Re(€® Mz, Adoh . A dz),
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where G =Inydei{g) and H is any real valued function satisfying the condition:
dH = -JdG. '

REMARK. By Proposition 2.8 and Theorem 3.5 wy are closed Lagrangian forms
on the domain of the local coordinates z = (zl,z2, ,zn) , ie. wpg are local

Lagrangian calibrations.

LEMMA 5.3. The family {w g} given by (5.1) is independent of the choice of

the local complex coordinates.

PROOF. Suppose z’ = (zi,zé, e yZ ;1 ) are another local complex coordinates and

dz’. .

let A= ['Hz_l] be the Jacobian matrix, det A = ea+lﬁ . The functions a and g
J

are related by the equality (3.6): Jda = df . Consider the family of Lagrangian forms

/

4 _OIII A
(5.2) vy =Re(e® Mzl Ndzg A hde),

where G’ =Inydet{g”) and H’ is any real valued function such that
/
dH’ = —JdG’ . Representing wy s » in the coordinates z = (2,29, ... ,z ) we have

/

’ axyr/ .
wyr = Re(el®H ,ea'Hﬁdzl Ndzy A ... N dz ) =
= Re(el G+ Bgy Aazyh .. hdz).

According to Proposition 2.8
(5.3) G ' +a=G.

Taking (3.6) and (5.3) into account we have
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d(H’ —B) = dH’ —dB = JAG’ - Jda = —Jd(G’ + a) = — JdG .

/

H,ence, ’ {’wa},C {wgl . Since the local coordinates z = (2,2, ... 2z ) and

z = (zl,zz, ,zn) are equivalent in our above argument the converse implication
4 I4

{wg} C{wg,} is true as well. Consequently, {wy}={wy/} . This proves the

lemma.

LEMMA 5.4. Each form of the family {wy} is determined completely by its

value at a fixed point z=1p.

PROOF. Fix a point z = p . Suppose
—iH
vy = Re(e¥Hdz, A day ANz )
: /
wygs = Re(e® M dz A day A..Adz)

are two forms of the family {wg} . By virtue of Corollary 2.6 wy = wy+ if and only if
H=H’. However, H=H’ if and only if H(p) = H’(p) because H and H’ differ

by only a constant. This proves the statement of the lemma.

Let v:[0,]] — M be a path, joining fixed points p=(0) and q = 7(1).

Given a Lagrangian exterior form w, on 'l‘pM . Assume that {U,,U,, ... ,U;} isa

0
chain of neighborhood in M such that,
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k
(i) U=‘U1Ui37[0,1];’;'
1=

(ii) peU;, qe U, UintqE¢q:)j=iﬂ=1(15i<jgk)
(iii) There exist complex coordinates on U, foreach i=1,2, ....k.

Clearly, there always exist such chains of neighborhoods on M for every path <. Now,
by force of Lemma 5.3 and Lemma 5.4 there exists an unique set of local La.grangia.n
calibrations {‘pl"p2' ,(,ak} such that @, s defined on Ui(i =12, ..,k) ,
p,(p) = wy and @ =¢p; on Ui N U.i (1 <i,j <k). Then we can get a local calibration

@ defined on U=

=t

U, by setting 9=¢ on U (i=12, ..,k . Put

1=1

w] = p(a) (= ¢, (q))-

LEMMA 5.5. The Lagrangian exterior form wi’ on ’l‘qM constructed as above

does not depend on the choice of the chain {U;,U,, ... .Uy} .

PROOF. Suppose {Ui,Ué, ,Ué} is another chain of neighborhoods satisfying
the conditions (i), (ii) and (iii). Denote the corresponding local calibrations on

U3,Us, ..., U} and U’ by ©]9g - ¥y and @ respectively. Set w, = e{7(t)) ,

w; = ¢@’(o(t)) . First we note that «, and w; depend on t continuously. Let

K={te [0,1] : v, = w;} . Obviously, 0e K ,ie. K#¢.Thefactthat v, and w;

are continuous implies that K is closed. On the other hand, assume that t 0 € K,ie
w, =w . Suppose that 7(ty) e U;N U . There exists a meighborhood (t)—¢ ,
o % o)

tg+e) in [0,1] such that (ty—~e, tpte)CEN U"i . By Lemma 5.4 @, = lp"i on

U, N U:i - Consequently, w, = (1(t)) = ¢'(7(t)) =w} on (t;—¢, t;+e¢) . Hence,
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(to —€, tg+ ) CK,ie. K isopen. Thus, K= [0,1] , therefore w, = w} for any
t € [0,1] . In particular, w, = wj . The proof is complete.

Let qu(M) denote the space of paths joining points p and q on M. qu(M)
can be equipped with the topology of uniform convergence. In this topology each
homotopy class of paths is a connected component of qu(M) . In particular, if M is
simply connected, then qu(M) is connected.

By force of Lemma 5.5 we can construct correctly a map:

E qu(M) — A n(T;M) , corresponding each path 7 to the Lagrangian exterior form
Y

Wy constructed as above.

*
LEMMA 5.6. The map % qu(M) — An(TqM) is locally constant.

PROOF. Really, assume that ] is constructed by using a chain of
1 y 4

neighborhoods {U;,U,, ... ,U, } satisfying the conditions (i), (ii), and (iii). Then every
k ¢

path 9’ in qu(M) near 7 enough is contained in U= U U, . Consequently, w'17
i=1

can be constructed by wusing the chain {UI’U2’ 'Uk} as well. Hence,

wT = p(q) = w'lY, where ¢ is the local calibration on U . This completes the proof.
From Lemma 5.6 it follows immediately

COROLLARY 5.7. The map ¥: qu(M)_.An(T;M) is_constant_on_each

homotopy class of paths. In particular, if M is simply connected, then 14 is constant.

PROOF OF THEOREM 5.2. Assume that dJdG =0 . Then we may apply

Lemmas 5.3 — 5.6 and Corollary 5.7. Since M 1is simply connected Corollary 5.7 means

that, in fact, the Lagrangian exterior form u'17 = 9{77) does not depend on - . So, fixing
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a point pe M and a Lagrangian exterior form w, on TpM we can construct a map
w:M— An(T*M) , sending each point q e M to n—form wflr for a path 7 joining p
and q . In particular, w(p) = wy - Clearly, the differential n—form w cbnstructed in
this way is Lagrangian and the l-form associated to w satisfies the condition
JdG + dH = 0 locally. Consequently, the equality JdG + dH =0 holds everywhere.

Therefore, w is a Lagrangian calibration and M is a L—calibrated manifold.
Conversely, suppose that M is L—calibrated and w« is a Lagrangian calibration on
M . Then for w the equality JdG 4 dH = 0 holds. Hence

dJdG = d(JdG + dH) = 0 . Thus, the proof is complete.

THEOREM 5.8. Suppose that M is a L—calibrated Hermitian manifold. Then

each Lagrangian calibration on M is determined completely by its value at a point. If

Re(w) is a Lagrangian calibration, then the set of all Lagrangian calibrations on M is
{Re(e' W) , 0< p< 21} . In other words, there exists precisely a Sl—family of

Lagrangian calibrations on M .

PROOF. In fact, the statement of Theorem 5.8 can be obtained by looking more
carefully at the proof of Theorem 5.2 (and of Lemmas 5.3 — 5.6). However, here we will
present a direct proof. Since Re(w) is a Lagrangian form, it follows from Proposition 2.8
that every Lagrangian form on M is of the form Re(ei(p w) , where ¢ is a real valued

function on M . In local complex coordinates z = (zl,z2, ,zn) we have
Re(2) = Re(e® Mz, A dz, A...Adz )

Re(ei(p w) = Re(eG_i(H_‘o)dz1 A dz,, /\...I\dzn) :
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Since Re(w) and Re(eitp'&) are both Lagrangian calibrations, by Theorem 3.5 we
have: JdG + dH =0=JdG + d(H—¢) . Hence dy =0 ; that means that ¢ is

locally constant. Consequently, ¢ is constant on M.

REMARK. Theorem 5.2 states that the necessary and sufficient condition for a
Hermitian manifold M to be L—calibrated is dJdG = 0, where G = Iny/det(g) . Given

local complex coordinates z = (zl,zz, ,zn) on M. We have

_v (96 IG_
dG—Z[ dz, + 98 dza]
dz dz
(4 a

1o
Bza a a

JdG:Ei[aG dz 96 dEa]
Q

2
didc =2y 24— 4
a,[)‘aza J Zﬂ

al\dEﬁ,

" Hence, the condition dJdG = 0 is equivalent to

22aG

— =0 forany a,6=12,..,n.
3za a zﬂ

(5.4)

If M is a Kihler manifold, then the Ricci tensor on M is given as follows:

2
K, B= 2 - a—G_—- (cf. [H]). Thus we have proved the following Corollary
dz_ 0 z
a” B

COROLLARY 5.9. A Kihler manifold M is L—calibrated if and only if it is Ricci

e
b=



—31 —

§ 6. Special Lagrangian submanifolds on L—calibrated manifolds

Let M be a connected 2n—dimensional Hermitian manifold, N an n—dimensional

oriented submanifoldin M.

THEOREM 6.1. A submanifold N in M is special Lagrangian if and only if each

point of N has a special Lagrangian neighborhood.

PROQF. Of course, if N is a special Lagrangian submanifold then each its
neighborhood is special Lagrangian. Thus, it will suffice to prove the converse statement.
Assume that each point p € N has a special Lagrangian neighborhood Up CN and let
2 denote the corresponding local Lagrangian calibration. By definition <,op(TpM) =1.
From Theorem 5.8 and Corollary 2.6 it follows that ¢y must be the restriction of a
(globally defined) Lagrangian calibration wp . Moreover, for any points p,q e N, if
Up n Uq ¢ then wp('l‘zN) =1= wq(’l‘zN) for all ze Up n Uq . Consequently,
Wy = g - This means that all local Lagrangian calibrations P, are restrictions of the

‘same Lagrangian calibration w on M. Thus, N is special Lagrangian (with respect to

w) and the proof is complete.

REMAREK. Theorem 6.1 establishes the equivalence between the properties of
being special Lagrangian and locally special Lagrangian. Below we will prove that these

properties are equivalent to the property of the local minimality.

Let given local complex coordinates z=(z1,22, ,zn) oo M . Set

5=eGdz11‘\dz2 A..Adz (G =Inydet{g)) .Denote by = the projection of the
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Lagrangian bundle Lag(M) . We can consider the functions f and 8 on Lag(M) by
setting f(¢) = G o n(¢) and O(¢) = —iln w(é) for any € e Lag(M) . As is known (cf.
[LF], [B]) the differential 1-form Jdf + df , where J is the operator of the complex
structure, 18 independent of the choice of the local coordinates; so that it is defined
correctly on the whole bundle Lag(M) .

Suppose N is a Lagrangian submanifold in M, p: N —— Lag(M) is the map,

sending each point z € N to the tangent spaceto N at z.

PROPOSITION 6.2. ([LF], [B]). A_Lagrangian submanifold N in M is

. *
(stationary) minimal if and only if the induced form p (Jdf + df) vanisheson N.

THEOREM 6.3. Suppose M is a L—calibrated manifold. Then every connected

(stationary) minimal Lagrangian_submanifold is_special Lagrangian. In particular,

minimal Lagrangian submanifolds seem to be volume minimizing.

REMARK. For the case M = €™ this result was proved by R . Harvey and H.B.
Lawson [HL,].

PROOF. Assume that N is a stationary Lagrangian submanifold. According to
*
Proposition 6.2 p (JAf+df) =0 . Consider local complex coordinates
z= (21,22, ,zn) on M, ) and set w= eGdi&1 A dz, A...I\dzn . Let j denote the
* * * -
embedding of N into M. We have: p (Jdf) =j (JdG), p (df) =—idIn w(p) . Fixa
point zOeN and choose the Lagrangian calibration ¢ on M such that

©(p(zy)) = 1. In the local coordinates ¢ has the form

¢ = Re(e"Hdz, Adzy A ... Adz ) = Re(e ' 17) .
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Set a =—iln w(p) . We have e = w(p) or ¢ia w(p) = 1. Hence, o(p(z)) =1 if
and only if H=a =—iln u(p) . Now, since ¢(p(zy)) =1 we have

H(z;) = —iln w(p(zy)) or H(zy) +iln w(p(z;)) = 0. On the other hand,
d[Hoj+iln@p)] = dH + d(i In 3(p)) = (dH + JAG) — (j (J4G) + p (40)) =
=j*(JdG + dH)-ﬁ(de-}- df) =0 by using Thcorem 3.5 and Proposition 6.2. That
means that H(z) + iln w(p(z)) is locally constant on N . Since N is connected and
H(z) +iln w(p(zy)) =0 wehave H+ilnw(p)=0 o H=—ilnw(p) on N.By
virtue of the above remark ¢{(p(z)) =1 on N . Hence, N is a ¢ — submanifold, and

consequently, a special Lagrangian submanifold,

REMARK. In [LF] it was proved that dJdG =0 if and only if Jdf+ df is
integrable. Combining that with the statement of Theorem 5.2 one can conclude that a
necessary and sufficient condition for a simply connected Hermitian manifold M to be
L-calibrated is the integrability of the form Jdf 4+ df . The integrability of
Jdf + do- *lmeans that it determines a foliation of codimension 1 of Lag(M) . From
the proof of Theorem 5.2 it is easy to see that the image of each leaf of this foliation
under the projection w is the whole M . Now, using Thecorems 4.3, 6.3 and Proposition
6.2 we can obtain. " the following result

COROLLARY 6.4. Suppose M is a simply connected L—calibrated Hermitian

manifold

(i) A connected Lagrangian submanifold N in M is special Lagrangian if

and only if p(N) is_contained in a leaf of the foliation determired by the form

Jdf + d0 , where p: N — Lag(M) is the map, sending every point z to the tangent
plane to N at z.
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(ii) A Lagrangian section p: M — Lag(M) is special Lagrangian if and only
if p(M) is contained in a leaf of the foliation determined by the form Jdf + d@ .

§ 7. Special Lagrangian condition in coordinates

THEOREM 6.1 shows that the study of the property of being special Lagrangian is
reduced to that of the property of being locally special Lagrangian, so we can use a fix
system of local complex coordinates. In other words, we will deal with a complex space
M=(C"= {(z{,z9, -.- 2,)} equipped with a generally non—standard Hermitian metric
g=1=% gijdzidij . In this case the condition for (C%g) to be L—calibrated is the

following

2
(7.1) —9°G _ 9 forany i,j=12 .. 1,
dz.8 z.
1 J
where as always G = Iny/dei{g) . The equalities (7.1) mean that G is the real part of a
holomorphic function G + iK . Consider the real coordinates (ml, &Y e ,yn) ,
where z, =x, +iy; (i=1,...,n).

Then the Cauchy~Riemann cordition is written as follows

(7.2) 3C.; gK d G J K

We have
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n
_ Xe G
dG = ) [ﬂdeiJfa‘}‘i‘in]

i=1
S S (oK K: -
o=} (S 0] - 5 [ 2] -
=1 : ci=1 o i

Thus, the equality JdG + dH =0 just means, that —H and K differ by only a
constant. By the way we note, that JAK = ~dG . Hence dJdK = 0, that is

2
(7.3) 9K __ 0 for any i,j=1,2..,a.
ﬁzi(? zj

First we consider the case when an n—dimensional submanifold X 1is described
A Y

implicity as the set X = {ze Q:{(z) =1y(z) = .. =1 (z) =0} , where ff,, .. f

n
are smooth real valued functions on an open set  of M such that dfl,dl'z, ,dfn are

\in&e?enden‘t
linearlylat each point of X . Then normal n—plane N X to X at point z is spanned

(over R) by gradf,(z) , grad {,(z), ... grad f (z) . Obviously, the tangent n—plane
.M is Lagrangian if and only if the normal n—plane NZX is Lagrangian. In this case
TX= J(NZX) .

7

Let Bi;=8ij + igi"; (1<i,j<n) . Then in real coordinates
(a‘l, B Y ,yn) the metricon M can be expressed as
4 f7
=X g..(dx. ® dx. + dy. ®dy. . .(dx. ® dy. —dy. ® dx. . Besides that,
8ij=8jj and Bij =~ Bjj for any i, j . Suppose that

grad f = (ul, wee Ve, -,V ) - By definition g(grad £,{) = df(¢) for any vector

&= (ay, ay,fy, B € TM (= C"), that is
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n n
df a1
(7.4) ) lJ(u +vﬁ)+g (uiﬂj—viaj)=ga;ai+?7iﬂi'
i,j=1 i=1 !
From (7.4) it follows that
n 4 n s
of _ af _
(7.5) F5= ) B Ty =) BijYi-
=1 I =1
Hence
n n
W08 _9f  .0f v -
(7.6) 25 6xJ+ Ty, 2 gijei“'.E &t
J i=1 1=

where £j =, +iv., j=1,2,.. n. Thus, applying (7.6) for fl’fz’ ,fn we see that

J
- 20f 1
the matrix (g;.) maps vectors gradf, , gradf,, ... ,gradf_ to vectors ,
1) 1 2 n 7
24f1 201
_2: e -n respectively.
dz dz

THEOREM 7.1. Suppose X is a Lagrangian submanifold, described implicitly as

above. Then X is special Lagrangian if and only if.

a1
Arg|det + K = const. on X,

97
g

where Arg(z) denotes the argument of the complex number z .
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PROOF. Since X is Lagrangian T X =J(N X) by the force of the above

remark, i.e. sz is spanned by igrad f, , i grad f2, i grad f]:1 . In the other hand

df af

(29) 1o 2p p_n_2G gradf, Agradfy A ... Agradf
dz dz dz
Hence
af, af df
(7.7) T X=()"A—2A—2A..A 2,
z dz Qdz dz .

where A is a real number. Letting

— G
w=e dzll\dz21\...l\dzn

) ij d —

we have
af.
p = A" det[—_’] & -
dz.
J
Consequently,
_ _ G, [ i
(7.8) a=—1iln u(p) = Arg(w(p)) = Arg|Ae~ (i) det 3z,
Z.
J
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Theorem 6.3 and Proposition 6.2 state that X is special Lagrangian if and only if

a + K = const on X . Combining that with (7.8) completes the proof.
af, daf, d fn} ‘
, is

We note that if the mectric tensor (g..) is real then ,
" dz 0z 0z

another real basis of the normal n—plane TZX . We have

af df af df af
o K| Ky k ki k
dz dx, dy, dx, dy,
af af a1 df af
| X | = | kK kK
dz Byl (‘}xl Byn 6xn
n
. d 1 Jﬁfh _ E g of, _afh_afk o1y
— VT | = ij - -
dz dz i =1 dx; Byj dy, ﬁxj

By that we obtain the following criterion for a submanifold to be Lagrangian.

PROPQSITION 7.2. Assume that the metric tensor (gij) on €" isreal and let

X 1is given implicitly as in Theorem 7.1. Then X is Lagrangian if and only if

n .
(19) z ) afk.fafh_afkjfafh _
- Yl ax. dy. dy. dx.
i) =1 i ] i J
1 of, ,of, oL . 9
=2 Z 6ij i — ——— - =0
i =1 Bzi sz Bzi 0zj

forany k,h=12,... n.
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Note that if grad K never vanishes on an open set € then in Theorem 7.1 K + ¢

(c=const) may be chosen as ome of the functions f),fp, ...,f . In this case
K = —const on X and from Theorem 7.1 it immediately follows

COROLLARY 7.3. Let X be given as in Theorem 7.1; moreover f; =K. Then
X is special Lagrangian if only if

a1,
Arg|det| — | | = const on X.

3zj

EXAMPLE 7.4. Now we present a class of special Lagrangian submanifolds
delivered by Corollary 7.3. For any real number 0 ¢ [0,27) we consider the real valued
function

£(0,z2) =2(xcos 0 +y sind),

where z = x + iy . A straightforward calculation shows that

d £(0,z) -l 9 &(0,z) i0
7.10 =e =e .
(7:10) 2 oz

Suppose h(tl,tz, ,tn) is an arbitrary real function of variables tysboy ooty and let

(7.11) Bz, 29, - 2) = h(8(0},2),8(00.29), - (0, 2.)

It is clear that



(7.12) gh _oh i 9h _Jdh i

In particular, if h = Aty + A2t2 FoF At (Ai are real numbers) then h satisfies

the condition (7.3), i.e. h is the imaginary part of a holomorphic function.

Now in Corollary 7.3 we choose

f.=h.=h

; i i(i(ﬂil,zl) , 2(0i2,22), ,R.(Uin,zn)) , i=1,2,..,n,

where h, are of the form (7.11) with h(1<i<n) and Oij(l‘g ijg n) chosen

arbitrarily so that hl is linear and the assumption of Theorem 7.1 is satisfied. Letting

Bhi
h]J=?a'—t-.(1 Sl,]_<_n) we have
J
[ i0 i0 i 1
11 12 1n
hlle hme . hlne
ﬂ = |[.h ela21 h ela22 h ela211
87, - 121 22 v 2n
id i0 i
nl n2 nn
_hnle h oe h e )

z



(1) 0 =0,=..=0_,i=12 .,
(2) 01ij=0p==0,;,i=12 ..

(3) hi.i = Cijhj , where cjj € R, hj are real valued functions (1 <i,j<n).

(4) hij:cijhi ,where ¢;;€ R, by are real valued functions (1<i,j<n).

Assume that the metric tensor (gij) is real.

Substituting (7.12) into (7.9) we obtain

n
dh, dh dh dh
. k™7 q k . q| _
(7.13) (21). .): gij[ - ]
L,j =1

Bziazj 5zi dz

=2 ) Bihyhy
ij =1

[(ei(ﬂqj—ﬂki)_ei(ij—Oqj)] |

The sum in (7.13) vanishes, for example, in each of the following cases:

(a) 6..=0 forany i,j=1,2,...,n

1)
(b) Op=0p=..= 0, forany i=12..,n and hkihqj = hkthi for any
Ljpkga=1,2,..,n.
() 0y=0,=..=0, for any i=12..,n and vectors

(hkl’hk2’ 'hkn) , k=1,2, ... ,n, are orthogonal
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(d) ;=0 forany i=12,..,n and hkj=0 for any k # j

() 0;=0p=..=0, forany i=12,..,0 and 8 = 0 forany i#j.

According to Proposition 7.2 each of the conditions (a)—(e) guarantees that the
submanifold X = {h; =h,=..=h =0} is Lagrangian. On the other hand, clearly,
each of (a) — (b) implies one of the conditions (1) — (4). Thus, by applying now Theorem
7.1 we can conclude that the above construction provided by one of (2) — (e) gives a

special Lagrangian submanifold.

EXAMPLE 7.5. Consider €°%={(z,2)} with K= g —yy, - Let in
Corollary 7.3 choose f; =K, f,= zl'z'l —z2§2 . A straightforward calculation shows
that the submanifold X = {z e C 2, f,(z) = f5(z) = 0} is Lagrangian provided g;; =
Byo: 812 = Boy = 0 . On the other hand

LY
9z, 0z Z, I

det Lo" 2 e | 20 oo ay) = 512
Lle 0z24

dz.

af.
Consequently, Arg [det [ —l” =0 on X . Hence, X isspecial Lagrangian.
J

Now we consider the case when submanifolds are given by parametric equations.
Suppose, an n~dimensional submanifold X in M is described as the set

X = {(f;(t)E(t), .. [, (t)) e M|t e @} , where ffy, ...,f ~ are smooth complex
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valued functions on an open set € of R" with the standard coordinates
a1,

t = (tl,tz, ot ) ra.nkIR [ 1] is assumed to be equal to n everywhere on .
at

Vectors

,1=12, .. ,n,

3 f(t) _ [‘9 HORCENO R AX()

form a real basis of the tangent plane to X at each point z = (f;(t),f5(t), ... [ (t)) .

THEOREM 7.6. Let X bea Lagrangian submanifold described parametriccally as
above. Then X is special Lagrangian if and only if

af.
(7.14) Arg [det[-—-——lH + K = const on X.
at,
J
Proof. Since —QL, ,—‘2—-1-‘- is a real basis of T, X,
aty at
n
p(z) =T X =A --—-l\ AL —-f—,
c?t Bt at,

where A is a real number. Therefore

J 1
p = Adet 50,
6
J

where
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_.9 g g

Consequently, letting w = eGdz1 A dz, AL A dz we have

G af.
(7.15) a = —1iln w(p) = Arg(w(p)) = Arg [A e det [ -5—5-” .
' J

Using Theorem 6.3, Proposition 6.2 and (7.15) completes the proof.

af af Jf
Since 0t1 ’6t2 o ,‘“n is a basis of sz , the submanifold X is
Lagrangian if and only if

of |, L [af

J

(116 el
1

for any i,j=1,2, ... ,n and at any point t e . Let
/ 7 4 77
f= f + if y fk = fk + i[k (k = 1,2, . ,Il) .

Then

/ et ot et ot
of _ ot ot =[ S S n]
at, ot ot TS TR TN

z / st ot éf” af
J[ﬂ]=éaf +iaf=[- Lopi—L D 4 “].

100y
3tq ﬁtq th th 3tq 8tq 3tq
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Assuming the metric tensor (gij) to be real the condition (7.16) is equivalent to the
following equalities

n / 17/ r/ /
(7.17) z 8j %% '.’?‘.I‘a fj S '6‘ n . i’ fj =0

for any k,cq =12 ..,n.

EXAMPLE 7.7. It is easy to make sure that the condition (7.14) in Theorem 7.6

holds if f,f,, ... ,f ~satisfy the following equation

¥
"

(7.15) det[a—fi] = (1(1),1)e KI(t)+ie
ot

where (f(t),t) is/real function of t and ¢ is a real constant. In particular, if
f=1(), K=h(z)) + hylz5) + ... + h (z ),

0 = ¢y (f;(t)),4))og(fo(to)ts) . @ (T (t )t} then (7.18) decomposed to n equations,
separate for each variable 7). :

df, (t,) —ih, (f, (¢, ))+ic
(7.19) -gf_= o (1), )e A

All the equations (7.19) are of the same form

(7.20) 4 4(a,0)e O Hie
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Letting A(0) = p(0) + iq(f) we can rewrite (7.20) in the form

(7.21) {p’ = a(p,a,0) cos(h(p,a) —¢) -

7
q==2a(p,q,0) sin(h(p,q) —¢) .

Consider, for example, some special cases :
1) a=1, hip,q) =ap+ Bq, where a and J are real numbers that are not
trivial simultaneously. Note that h(p,q) =0 if p/q = — B/ . Choose

¢ = arc tg(— a/f) . A straightforward calculation shows that

(7.22) - al

R L e
Vai+5 \/a§+5

are solutions of (7.21).
2) Suppose h(p,q) is linear as above. Without lost of generality one can

assume that h(p,q) = q . Choose a = — [sin(h(p,q) —c] . [sin(q — ¢)] ~1  Then
(7.21) is of the form

(7.23)

The solutions of (7.23) are
(7.24) p=—~Jctg(9+b—c)d9+d,q=0+b

where b, d are arbitrary real constants.
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REMARK. Assume that &= 0 for any i#j. Then (7.17) is satisfied for
functions f, =f(t;) (i =1,2, ... ,n) . Thus, in this case solutions of (7.19) give special

Lagrangian submanifolds

EXAMPLE 7.8. Suppose M = C? with
K(zl’z2) =x,8ina+y, cosa+x,8inb+y,cosb (a,b e R) . Let X be given py the

parametric equations

i0 if,
) %y = 2(r,02‘f)=re , 0, +0,=—(a+D).

(7.25) z; = f;(r,0;) =1e
For z = (z,,2,) € X we have
K(z) = r(cos 0, sin a + sin 0, cos a + cos 0, sin b + sin 0, cos b) =

= r(sin(d; + a) + sin(f, + b)) =

0, +0, +a+b 0. +a-0,—b
= 2r 8in 1 22 cos 1 5 2 =0.

Now we calculate the tangeﬁt plane to X.

0, i
a1 [e 1, 2]’ 5t

if i0
T [ire 1, —ire 2]

Il

1

'ﬁfl 3f2” (0.40.)
T i(0,+
det gt f = 2ire 1772 .
Bfl 3F2
g, 97,
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Therefore f satisfies (7.14). A straightforward calculation shows that (7.17) holds if
811 = Boo(B19 and g, are not necessarily trivial). Thus in this case the construction

above gives a special Lagrangian cone.

§ 8. Special Lagrangian submanifolds of unitary sums

In this section we present constructions giving special Lagrangian submanifolds in
the form of unitary sums. We recall that as above G = Iny/det{g] and K denotes the
function related to G by the equality dK =JdG . Suppose that grad K never

vanishes on an openset Q CC". By definition, for every vector ¢ we have
g(J grad K £) = g(grad K — J¢) = dK(~ J¢) = JdG(~ J€) = dG(-¢) .

That means, that Jgrad K = —grad G . Assume that € % can be represented as a
direct sum € " = P ® Q of complex linear subspaces P and Q with metric g’ and
/7

g’’ respectively. Moreover, the metric g is expressed through g’ and g’’ as

follows. For any vectors u,v e TIJ ¢ gluv)=g’(u' v )+g (u'’v'’), where

+q
u=u’ +u'’, v=v +v', 0, v eTpP, U’’,V'/ ¢ T Q. By a complex
4 7/ 4
linear transformation we can get new complex coordinates Z)2gy )2, ON C® such
/ / 4 4 4

that Z1)Zg, v 1By AIE coordinates on P and By pr e 0By BI€ coordinates on Q .
~l N, / .
Letting (Eij) , (gij) (g; j) denote the corresponding metric tengors on €%, P and

Q respectively we have



Hence
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EiJ.:'gji:o if i<k, j>k

~ N’ N . .
gij(p+a)=8;(p) if i<k, j<k,peP, qeQ

n ~,, . . .
gij(P+Q)=gij(Q) fi2k, j2k, peP, qe Q.

~ ~ N,y ~ Ny Nyy ~ ~
G=G +G and K=K +K , where G= m¢det(gij) ,
Ny Nyt ~ ~ ~ Ny Ny
G =m1/det(Eij) , G =1anet(gij) and dK=JdG , dK =JdG
Ny
=JdG . Suppose X=X'®X’’ , where X’ , X’/ are submanifolds of P

Ny
dK

and Q respectively. Obviously, in order for X to be Lagrangian (in € ") it is

necessary and sufficient that X’ and X’/ are Lagrangianin P and Q respectively.

Set

7/

_ E / ’
w=e dzllr\dzzi\.../\dzn

N~y

- G / / 4
W e dz1 A dz2 AA dzk

Ny

=eG dz

7

/ /

k41 M2y o

A..

’

A dz11

a(p+q) =—iln T,y X) (PePaeQ)

Ny

a’(p)=-iln U’(Tpx’)

3”(p)=—iln5"(TqX”).
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Ny Ny

Since the sum q P ®Q is orthogonal and G=G + G , it is easy to see that

w=w AW, YT , X)= U’(TpX’)E’ ’(qu’) . Hence

p+q
~ ~ ~ ~ 4 ~ ~ ’ ~
alp+q)=a’(p) +a’’(q) . Because K , a’ are functionson P and K , a’’
~ ~ Ny 7 ‘ .
are functions on Q,K + a = const if and only if K + a = const and
Ny anf
K +a =const. Now, applying Theorem 6.3 and Proposition 6.2 we can conclude

that X is special Lagrangian if and only if X’ and X’/ are special Lagrangian.
grang grang

/! 14
- Finally we note that since the coordinate systems (zl’z2’ ,zn) and (zl,z2, ,zn)

differ by only a linear transformation, K = K + const. Thus we have proved the

following

~ ~

PROPOSITION 8.1. Suppose €™ =P ®Q isaunitary sumand K, K, K ,

~yy
K are described as above. Then

~ ~ Ny

(a) K=K+const, K=K +K

(b) Thesum X =X’®X’’ of submanifolds X' CP and X'/ CRQ is .

special Lagrangian if and only if X’ and X’/ are special Lagrangianin P and Q

respectively.

EXAMPLE 8.2. Assume that the metric g on €™ is given so that K is a linear
function of XY XYy - Then grad K and Jgrad K=-grad H are fixed
vectors. Set P={ze C": K =K(0), G=G(0)}, Q= Span{grad K,grad G} . It is

easy to verify that P is a complex linear subspace and € " = P ® Q is a unitary sum.
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r 7 / ~
Choosing complex coordinates (zl,z2, ,zn) as in Proposition 8.1 we have K = const

~y Ny

on P because K = const on P . Consequently, K = const and G = const . Thus,
P is a complex space with a metric g’ like the standard metric (that is

det(g’) = const) and special Lagrangian submanifolds in P may be found by methods

~sy .
of [HL,]. Further, the function K  islinear on Q and special Lagrangian lines on

Q are determined as in Example 7.7. In particular, choosing X'’ //grad G (see(7.22))
we obtain that the cylinder parallel grad G  through any special Lagrangian
submanifold of P is special Lagrangian in €™ . Similarly, the lines determined by

(7.24) give special Lagrangian « *_!'curvelinear cylinders”:, *in ¢ ™.

EXAMPLE 8.3. Consider the real space R™ with a (non—standard) metric g
chosen so that G = 1an€@ is a linear function. By using the metric g one can
identify the tangent bundle TR ™ with the cotangent bundle T*[R ™ which is equipped
with the natural complex (and symplectic) structure of € " = R™® @ iR ™ (the metric g
is expended naturally to the metric of C€™) . Assume that € with the metric g is
L—calibrated. Then the function K related to G by the equalii;};- dK =JdG is also
linear and depends only on the second term in the sum € B=RP®iR"™ . In this case
the space P = {ze € ": K =K(0), G = G(0)} is nothing but the tangent subbundle
TR 2L of the space R -l _ {xeR"™:G=G(0)}.Suppose X’ is a submanifold in
R™! and X=X'® {grad G} is the cylinder parallel grad G through X’ . Let
N(X’) and N(X) denote the normal bundles of X’ in TR 2=l and X in TR™
respectively. Note that N(X) is the cylinder parallel grad G through N(X’) . By
virtue of Example 8.2 N(X) is special Lagrangian if and only if N(X’) is special
Lagrangian (in TR Il"1) . [HL;] proved that N(X’) is special Lagrangian if all the
invariants of odd order of the second fundamental form at each normal vector to X’

vanish, i.e. the set of eigenvalues of the second fundamental form is invariant under
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multiplication by —1 . On the other hand, one can prove that the last condition is
equivalent to the same one with replacing X’ by X . Thus, the normal bundle N(X)
of any cylinder X parallel grad G such that all the invariants of odd order of the

second fundamental form at each normal vector to X vanish is special Lagrangian.
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