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ON THE SPECIAL LAGRANGIAN GEOMETRY ON

HERM1TIAN MANIFOLDS

Dao Trong Thi

§ 1. Introduction

The special Lagrangian geometry on the complex space (n was constructed and

studied in depth by R. Harvey and H.B. Lawson in the foundational paper [HL!]. The

submanifolds in this geometry are usua! Lagrangian submanifolds of "constant phaselI. 1t

turns out that such submanifolds are associated to so - called special Lagrangian

calibratioßs and thererore absolutely volume minimizing. This deep relationship of

Lagrangian geometry to the theory of minimal surfaces leads to a large new dass of

volume minimizing submanifolds in (n.

1t is natural to define and study such a geometry on Hermitian manifolds. The

present paper is devoted to this problem.

One of the important points of the problem is to intraduce a natural nation of ~

Lagrangian calihration on an arbitrary Hermitian manifold. For the case (n the special

Lagrangian calihrations can be defined explicitly by means of the standard coordinates

to be Re(eiepdZ1 A dZ2 A ... A dzn) J 0 5 <p < 211" J as in [HL1]. In section 2 ~

Lagrangian form on an 2n-dimensional Hermitian manifold M ia presented as the real

part Re(W) of auy complex differential n-form w that has unit comass and

characterizes the tangent Lagrangian n-planes at each point. Closed Lagrangian [arms

will be called Langrangian calibrations.

The research was done when the author was staying at Max-Planck-Institut in Bann.
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Thc main tool of thc paper is thc Lagrangian caUbration eguation, derived in

Section 3. Suppose M is a Hermitian manifold with the compiex strueture J and thc

metric tensor g and let (zl'z2' ... ,zn) be Ioeal compiex coordinates. Reeall that for

M = (u the eoordinate fonns Re(ei<Pdz1 " dZ2 " ... "dzn) are elosed and of eomass

aue simultaneousIy. Howcver, in the general .case even the Ioeal pieture is rather

eomplicated. NameIy, the comass of ei<pdZ l " dZ2 " ... AdZn . depends on g and

gen~rally changes from point to point. More preciscly, in Iocal coordinates auy

G-ill
Lagrangjan form can be expressed as w = Re(e dZ l " dz2 " ... Adzn) ) where

G = Inv'det(g) and H ia areal valued function. The main idea for overcoming the

difficulty above can be described as folIows: in order for w to be a calibration, i.e.

dw = 0 , the change of the comass of dZ l AdZ2 " ... "dzn that ia equal to eG must

be annihilated by a change of the phase H in the corresponding imaginary direction. It

turns out that this idea cau be realizcd globally and allows to establish a necessary and

sufficient condition for a Lagrangian form w to be a calibration.

THEOREM I (Theorems 3.3 and 3.5). The differential 1-form dG-JdH, given

locally as above. is correctly defined on thc whole manifold M. A Lagrangian form w

on M ia a Lagrangian calibration if and only if the I-form dG-JdH, corresponding to

w , yanishes on M.

The existence of Lagrangian calibrations and finding them are studied in Section 5.

It turns out that the question can be explained completely.

THEOREM 11 (Theorem 5.2). A simply connected Hermitian manifold M is

~alibrated (Le. has a Lagrangiau caU bration) if aud ouly if dJdG = 0 , where

differential 2-forrn dJdG is correctly defined on the whole M.



-3-

f) G
In the loeal coordinates the eondition dJdG = 0 has a simple. form: = 0

Oz. a z.
1 J

for auy i,j = 1,2, ... ,n . For a Kahler manifold M this means simply that M has the

trivial Rieci tensor. In [HL1] R. Harvey and H.B. Lawson noted that the special

Lagrangian geometry is naturally defined on any Rieci-flat Kahler manifold (the

existenee of such manifolds is established by S.T. Yau [Y]). Theorem 11 justifies this

comment. Moreover, in fact, the special Lagrangian geometry ean be constructed only on

such manifolds.

The property of being a Lagrangian calibration seems to be so strang that every

such one ia determined completely by ita behaviour at an arbitrary fixed point. This

important observation leads to a complete classification of Lagrangian calibrations.

THEOREM 111 (Theorem 5.8). Suppose M is a L-ealibrated Hermitian manifold.

Then the set of alt the Lagrangian calibrations Oll M ia {Re(eicp W), 0 ~ cp < 21r} ,

where Re(W) is a Lagrangian calibration.

In particular, for the case (n Theorem BI shows that the special Lagrangian

ealibrations Re(eiCPdz1 A dZ2 A ... Adzn) cover, in fact, all the Lagrangian calibrations

on (n.

Section 6 is devoted to investigating special Lagrangian submanifolds of

L-calibrated manifolds. An n-dimensional oriented submanifold N in M ia called..!

special Lagrangian submanifold if w(T N) = 1 at eaeh point z E. N for a Lagrangianz

calibration w on M. By virtue of Theorem 111 for a special Lagrangian submanifold N

the eorresponding Lagrangian calibration w is determined uniquely. This remarkable

fact allows a localization of the property of being special Lagrangian. Namely we prove

the following resul1.
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THEOREM IV (Theorem 6.1). A submanifold N in M is special Lagrangian if

and only if eaeh point of N has a special Lagrangian neighborhood.

By using Theorem IV and the criterion for' the loeal minimality of Lagrangian

submanifolds discovered by Le Hong Van and A. Formenko [LF] and R. Bryant [B]

we can establish the equivalence between the properties of being stationary and special

Lagrangian for Lagrangian sllbnlanifolds.

THEOREM V (Theorem 6.3). Suppose M is a L-calibrated manifold. Then every

"su.P
connected stationary LagrangiaIl\manifold is special Lagrangian.

For the case M = (n this result was proved in [IILl ].

Sections 4, 7, 8 prcsent some luethods and cOllsirllction8 for finding special

Lagrangian submanifolds. In Section 4 we introduee special Lagrangian sections as the

first step in integrating the special Lagrangian equation. A section p: M --+ Lag(M)

of the Lagrangian bundle is said to be special Lagrangian if w(p(z)) '= 1 everywhere for

a Lagrangian calihration w. Clcarly, any intcgral 8U blnanifold of a special Lagrangian,
seetion is special Lagrangian. For each Lagrangian section p there exists an unique

Lagrangian form wp such that

characteristic form of p .

w (p) = 1 everywhere. This form is called the
p

THEOREM ,.VI (Theorem 4.3). A Lagrangian section p: M --+ Lag(M) is

special Lagrangian if alld only if dG - JdH = U ,where dG - JdH is the I-form

associated to the characteristic form wp of p .

Ey virtue of Theorem IV we can investigate special Lagrangian submanifolds in

each coordinate neighborhood separately. This rneans that we deal with a complex space
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( n = {(zl,z2' ... ,zn)} equipped with a generally non-standard Hermitian metric

g = (~j) . In Section 7 criteria for a submanifold .X to be special Lagrangian are

established for the cases when X ia given implicitly as zeros of n sIDooth real valued

functions or when X is deseribed explicitly by parametrie equations. Each of these cases

are accompanied by ealeulating illustrations and conerete examples. In Section 8 we

consider the ease when (n ean be expressed as a unitary surn of Bubspaees and

construct special Lagrangian submanifolds of (n as the sums of special Lagrangian

submanifolds of each terms. In partieular, if G is a linear function of the real

coordinates (Cl"" , (Cn I yl' ... ,Yn then any curve1inear cylinder parallel a special

Lagrangian curve in Span{grad G, J grad G} and through a special Lagrangian

submanHold of (n-l = {K = K(O) I G = G{O)} is special Lagrangian, where K is a

function determined by the formula dK = JdG . Note that (: n-l can be equipped with

coordinates such that the corresponding Inetric tensor g' is of standard type, that is

v'det{g') = const . Example 8.3 generalizes the construction of special Lagrangian normal

bundles in [HLI] . suppose T *[R n is the tangent bundle of !Rn ~·ith a metric g sueh

that G = lnv'det(g) ia linear function. Let X be a cylinder parallel grad G such that

all the invariants of odd order of the second fundalllcntal form at each normal vector to

X vanish. Then the normal bundle N(X) of X is special Lagrangian.

Finally, we point out that the special Lagrangian geometry can be extended to

n-currents of locally finite mass on M l including, in particular, submanifolds with

singularities. All thc main results above remain true. For details" of the method of

calibrations one can refer to [HL1] I [D1] and [DF]. The basic facts and results of the

current theory can be found in [F] and [FF].
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§ 2. Lagrangian submanifolds and Lagrangian forms.

Let M be a 2n-dimensional Hermitian manjfold with the eomplex strueture J

and the metrie tensor g. The fundamental 2-form 12 and the Hermitian eomplex

valued produet h on Mare given by setting

(2.1)

(2.2)

12(X,Y) = g(X,JY)

h(X,Y) = g(X,Y) + ig(X,JY)

for any veetor fields X and Y on M. Ir the form 12 is c1osed, then the manjfold M

is ealled a Kähler manifold. Clearly, the form 12 is never degenerate (Le. 12 n never

vanishes). Therefore, the manifold M equipped with the c10sed 2-form n is a

sympleetie manifold.

An oriented real tangent n-pl'lne ~ C TzM is said to be Lagrangian if the

restrietion of n to ~ vanishes, that is

(2.3)

for any U t e. Obviously, e is maximally isotropie with respeet to 12 on TzM, and

the last is eqnivalent to the following eondition.

(2.4) J ~ .L ~ 'lnd J ~ EIl ~ = TM.z

We denote by L'lg(M) the bundle of oriented Lagrangian planes on M. Eaeh oriented

n-plane of TzM ean be identified naturally with an unit n-veetor in An(TzM). In this
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way the bundle r n(M) of oriented tangent n-planes is embedded into the unit sphere of

the Grassmann bundle "n(M).

PROPQSITION 2.1. Let { be a Lagrangian plane in TzM. Then any

orthonormal basis of { forms a unitary basis oe TM. Conyersely. if a orthonorrnalz

basis of a n-~ {( T M is also a··~· unitary basis of T M then e is a Lagrangianz z

plane.

PROOF. Suppose that e is a Lagrangian plane of TzM and {el'e2, ... ,en} is

an orthonormal basis of e.By definition J ej J.. ei for any i,j (1 $ i,j :Sn) . Hence

h(e.,e.) = g(e.,e.) + ig(e.,Je.) = g(e.,e.) = 6..
1 J 1 J 1 J 1 J IJ

for auy i,j (1 :S i,j :Sn) , that is {e1,e2, ... ,en} is a unitary basis of TzM.

Conversely, let e be an n-plane of T M and suppose that an orthonormal basisz

{el'e2, ... ,en} of e is also a(~unitary basis of TzM . For any i,j (1 5 i,j ~n) we have

g(Je.,e.) = h(Je.,e.) - ig(Je.,Je.) = ih(e.,e.) - ig(e.,e.) = 0 .
IJ IJ 1 J IJ IJ

Hence, J u .L e for any u E. e. Consequently, e ia a Lagrangian plane.

An n-dimensional oriented submanifold N in a Hermitian manifold M is called a

Lagrangian submanifold if its tangent space at each point is Lagrangian, that is the

restriction of the fornl n to N vanishes.

The Hermitian metric on M induces a Hermitian structure on cotangent spaces
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DEFINITION 2.2 Areal exterior n-form W Q!! T M is called a Lagrangianz
* * *exterior form if there exists an unitary basis {el'e2, ... ,eu} of TzM such that

* * *w = Re{el Ae2 A... Aen} .

Wc definc the COITli\SS oe a cOlnplcx exterior k-forrn w to be. the number

1Iw1I = sup 1w(e) 1,
5

where e runs through all unit simple k-vectors on TM.z

PROPOSITION 2.3. For any cornplex basis *TMz
Lagrangian exterior form w on T M admit the _.' representationz

(2.5)

* * * 1where ;\ is a cornplex number such that 1;\ 1= I 1fl 1\ f2 A ... A Cn 11- . Conversely,

any n-form oe the fonn (2.5) is Lagrangian.

1* * *
PROOF. Let w = Re(~...el Ae2 A ... 1\ en) be a Lagrangian form, where

** * * ** *{el'e2J ... ,en } is a uni tary basis of T zM . Suppose that {f1,f2,.·· ,fn} is a complex

* ** * ** *basis of T zM and {el'e2, ... ,en} = A {fl'f2, ... ,fn} , that is

We have
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where

Hence

with ,,\ = det A , satisfying the candition 1..\ I = 11 r~ A r; A ... " f: 11-1 . ConverselYI

* * * * * *suppase that w = Re("\fl " f2 A... "fn) for a complex basis {fl'f2, ... ,rn} of TzM

* * * 1
and a complex number A such that 1..\ I = 11 fl Af2 " ... ACn 11- . Consider a

* * * *unitary basis {e1,e2, ... ,en} of TzM and let A be the camplex linear transformation

* ** * ** *of TzM , mapping {el'e2, ... ,en} into {fl ,f2, ... ,fn} . We have

* * * * * *fl " ~ A... Afn = det A el " e2 A... " en . Therefore,

* * * * * *w= Re(..\f1 Af2 " ... " Cn) = Re(..\ det A el Ae2 " ... " en) . Moreover,

* * * * * *
1 = 11 Af1 " f2 " ... " fn 1I = 11;\ det A el " e2 " ... " en 11 =

* * *= 1,,\ det All Iel Ae2 " ... Aen 1I = 1;\ det AI· Consequently, ,,\ det A = e
1rp

for

al real number cp Consider the new unitary basis

;"-*N* N* -irp* * * N* N* N*
{e pe 2' ... ,e n} = {e el'e2, .. · ,en) . ClearlYJ W = Re( e I A e 2 " ... A e n) , that

is w is a Lagrangian form. The proof is complete.

PROPOSITION 2.4. Suppase {el'e2 ... ,en} is a real basis of a Lagrangian plane

* * *~ C TzM and that {el'e2, ... ,en} is the dual basis to {el'e2, ... ,en} , that is

*ei (ej) = Dij for any i,j(l 5 i,j $ n) . Then
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PROOF. Thc statement of Proposition 2.4 is obvious for the case when

{el'c2, ... ,en} is orthonormal. We eOllsider the general ease. Let {fl ,f2, ... ,Cn}1 be ~an

orthonormal basis of e. By Proposition 2.1 {fl'f2, ... Jn} ~s also a unitary basis of

* * * *TzM . Denote by {fl'~' ... ,fn} the unitary basis of TzM dual to {fl'f2, ... ,fn} .

Suppose, that thc real linear transformation Asends thc basis {el'c2, ... ,en} inta thc'

basis {fl'f2, ... ,fn} I, Le. {fl'f2, ... ,fn} = A{el'e2, ... Jen} . Then

** * t ** * ,{c1,e2, ... ,en} = A {fl'f2, ... ,fn} .1herefore,

(2.6)

(2.7)

* * *Since Re( Cl " f2 " ... " fIl)( f1 " f2 " ... " fll ) = 1 bccause of the above remark and

(2.6), (2.7) wc havc

(2.8)

From (2.8) it follows that

completing the proof.

Propositions 2.3 and 2.4 yield thc following result.
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COROLLARY 2.5. Let w = Re wbe a Lagrangian form on TzM. Then

(2.9) Iw (01 < 1(1

for any n-plane ( in TzM. Moreover, the equality holds if and only j{ ( is a

Lagrangian plane. In particular, Ilwll = 1 and 11 wll = 11 Re wll = 1 .

** * * * * *Fix a unitary basis {el'e2, ... ,en} of T zM . Then 11e1 A e2 A ... Aen 11 = 1 .

According to Proposition 2.3 any Lagrangian exterior form in TzM can be expressed in

. * * *the form Re(elepe1 A e2 A ... Aen) . Further, suppose ( is a given Lagrangian plane of

* * *TzM . By force of Proposition 2.1 one can choose a unitary basis {el'e2, ... ,en} oI

* * * *TzM so that the dual basis {el'e2, ... ,en} to {el'e2, ... ,en} is an orthonormal basis

. * * *oI ( . Clearly, Re(e1epe1 Ae2 A ... AenHO = cos ep . In particular, it implies that there

exists an unique Lagrangian exterior form w on TzM satisfying the condition :

w (() = 1 . Thus we have proved the following

COROLLARY 2.6. There exists precisely a SI - farnily of Lagrangian exterior

forms on each tangent space TM. Moreover, for a given Lagrangian plane ( therez

exists an unigue one that has the largest value 1 at ( .

DEFINITION 2.7. A differential n-form w on M is called a Lagrangian form j{

the restriction of w to the tangent space TM, at each point, is Lagrangian.z

Given complex local coordinates z = (zl'z2' ... ,zn) on M. Set

G = Inydet(g) = Inydet(g..) ,where g = E g..dz.dz. is the Hermitian metric on M.
IJ IJ I J
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PROPOSITION 2.8. Suppose w be a Lagrangian fGrIll: on M. Then in Ioeal

coordinates w cau be expressed in the form

(2.10)

where H is areal valued function on M. ConverselYJ any n-form given by the formula

(2.10) is Lagrangian.

*Proof. The complex linear forms dZl'dz2, ... ,dzn form a complex basis of TzM

* * * *at each point z. Choose a unitary basis {el'e2, ... jen} of, TzM and let

{dzl'dz2, ... ,dzn} = A{e~,e;, ... ,e~} . Then (gi) = (A-1)t(X-1) . Consequently,

.ydet(g) = Idet A-11 = Idet A 1-1 . On the other hand,

* * *I Idz1 A dZ2 A ... dZn I I = I Idet A e1 A c2 A ... A en I I =
* * *= 1det AI 11 e1 " e2 ~ ... Aen 11 = 1det AI· Now, using Proposition 2.3 proves both

statements of the proposition.

§ 3. The Lagrangian calibration eguation

DEFINITION 3.1. A Lagrangian form w on a Hermitian manifold M is called a

Lagrangian calibration if dw = 0 .

DEFINITION 3.2. An n-dimensional oriented submanifold N in M is called a

special Lagrangian submanifold if N is a cp - submanifold for a Lagrangian calibration

cp on M, that ia <p (TzN) = 1 at cach point z E. N .
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By force of Corollary 2.5 TzN mnst be Lagrangian for ev:ery z €. N . Therefore,

N is, particularly, a Lagrangian submanifold.

From Definitions 3.1 and 3.2 it follows irnrnediately that any special Lagrangian

submanifold is volume-minimizing (see,.for example, [HL1] or [D I ]).

Consider a Lagrangian form w on M. Let given eomplex loeal coordinates

z = (zI,z2' ... ,zn) on M. Hy virtue of Proposition 2.8 w ean be represented in the

form

(3.1) ( G--iH " " " )w = Re e dZI 1\ dZ2 1\ ••• 1\ dZn .

The real valued functions G and H are defined on thc domain of thc IDeal coordinates

z = (zI,z2' ... ,zn) . They depend on the local coordinates.

THEOREM 3.3. The differential I-form dG - JdH ,where G and H are given

locally by the form ula. (3.1), is correctly den ned on thc whole manifold M, that ia it is

independent of the choke or the local coordinates.

PROOF. We show that dG - JdH , although defined by means of the coordinates,
I I I

does not depend on them in fact. Suppose (zl,z2' ... ,zn) ia another complex local
I

cwr nato 0 M and Je A = [;] oe the Jacooia mau x L t det A = eCf.+iß

(0 J ß are real valued functions). Then we have

Suppose that in the new coordinates w has the form
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~ = Re(eGI-iH' dz~ A dZ2A ... A dz~) .

From (3.1), (3.2) and (3.3) it follows that

G-iHd ." d " " d G' -iH I d'A d'A "cl Ie zl zn ... z2 = e zl z2 1\ ••• zn =

G/-iH ' a+iß' .-", (G' +a)-i(H/-ß)= e e dz1 " dZ2 A... Adz~ = e dz1 AdZ2 " ... " dZn .

Hence

(3.4) G = G' + 0 and H = H ' - ß.

Since the function det A is holortlorphic the function a + iß is holomorphic. By using

the Cauchy-lliemanIl condition we obtain.

(3.5) g~ =gßy., ga=: -%-f (i = 1,2, ... ,n) ,
1 1 'Yi Xi

where zi = '1 + iYj . Obviously, (3.5) is equivalent to the following equality

(3.6) Jda = d ß.

Taking (3.4) and (3.6) into account we have

dG - JdH = d(G ' + 0) -Jd(H ' -ß) = dG ' + da - JdH ' + Jdß =

= (dG ' -Jdl1 / ) -J(Jdu -dß) = dG ' -Jdll ' ,
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~mpleting the proof.

COROLLARY 3.4. The differential 2-farms dJdG and dJdH, where G and H

are defined lacally by (3.1)., are correctly defined on the whole manifold M.

PROOF. Hy using (3.4) and (3.6) we have

dJdG = dJ(dG' + da) = dJdG' + d(Jdo) = dJdG' + d(dß) = dJdG'

dJdH = dJd(H' - ß) = dJ(dH' - dß) = dJdH' - dJdß = dJdH' - dJ(Jda) =

= dJdH' + d(da) = dJdH' .

Thus the proof is calnplete.

THEOREM 3.5. A Lagrangian fann w on M is a Lagrangian calibration if and

only if the I-form dG - JdH , associated to tU by the formula (3.1), yanishes on M .

Fix an arbitrary point p E. M . Since the form dG - JdH ia independent or

coordinates we can choose Iocal complex coordinates z = (zl'z2' ... ,zn) on M so that

*{dzl'dz2, ... ,dzn} is a unitary basis or T zM . To prove Theorem 3.5 we need the

following lemmas.

- G-iH A A ALEMMA 3.6. Set tU = e dz1 1\ dZ2 1\ ••• 1\ dZn . Let Re tU and Im w denate

the real and imaginary parts oe w respectively. Then the eguality

(3.7) dH AIm w= - JdH ARe W
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holds at the point p.

PROOF. Let z· = x· + iy. , i = 1,2, ... ,n . Then the real linear forms
1 1 I

*dx1,dYl'dx2,dY2' ... ,dxn,dYn constitute an orthomormal basis of TzM . Thc complex

structure operator J acts on this basis as follows

(3.8) Jdx. = dy. , Jy. = - dx. , i = 1,2, ... ,n .
1 I I 1

+ {} - {}Put e k = -- ,ek = - (k = 1,2, ... ,n) . Hy a straight forward calculation
OXk p °Yk p

of the values of thc forms dx." Re w, dy. A Re w, dx." Im wand dy. A Im w
1 1 1 1

Co Cl cn(i = 1,2, ... ,n) at the basic real (n + 1) - vectors e= e. "e. " ... Ae. , cl·:::::I:,
10 11 In

i = 0,1, ... ,n , we obtain

(3.9)

(-1 )i . f t -" + A cl" ,,€ i -1" C i +1A A C n) ~ = e. e. 1\ cl ... e . 1 e'+ 1 ... C
1 ) 1- 1 n

and thc number of minuses amomg cl" . ,C i-I' ci+l'" "Cn
is equal t 0 l(mod 4)

A -() ( )i+1 J' f -. A + A EI A A Ci-I A C i +1" A Cndxi 1\ Re we= -1 e= e i' 1\ e i 1\ e1 1\. • • 1\ e i -1 e i+1 . . . 1\ en

and the number of minuses among cl'" ,ci-l,ci+l'" .,En
is equal t 0 3(mod 4)

o for others .
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(3.10)

dYj ARe w({)=

(3.11)

+ cl c. 1 C • +1 C
(_1)1 . f { - I.. I.. I.. I.. I - I.. 1 I.. I.. n

1 = e· 1\ e. 1\ e l 1\ • •• 1\ e . 11\ e. +1 1\ ••• I\e
1 1 1- 1 n

and the numher of minuses amomg Clt .. tCi-l,ci+l"",cn
i s equalt 0 0')( mo d 4)

i+1 . - + cl ci-1 ci+l cn(-1) If e = ci 1\ e i 1\ el 1\ . .. A e i - l Ae i + 1 A... A en
and the nUluber of Iuinuses aInong cl'" ,ci-l,ci+l'" "cn
is equal to2,(mod 4)

o for ot her s .

i . + - € 1 C i -1 C i +1 C n
(-1) If e = ci A ci A e l A... Ae i-lA e j + l A ... Ae n

and the numher of minuses amomg EI'" ,ci-l,ci+1, .. oIEn

i s cqu alt 0 0 :(IIlOd 4)

I.. ~J) ( )i+l I'f + A -" clA "ci-lA ci+1 A A En
dxi 1\ Im '11\e= -1 {= eie i e1 ... e i -1 1\ e i+1 1\ ••. 1\ en

and t h e n u mher 0 f mi nu ses amo n g C1,. . , E i -1 ' € i + 1,. . 0 ,C tl

is equal t 0 4-'i(mod 4)

o forothers.
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(3.12)

+ cl c. 1 C • +1 E
{_1)1 ire = e~ /\ e. /\ e 1 /\ ... /\ e ~ -1/\ e· +1 1 A ... I\e n

1 1 1- 1 n
and the number of minuses amomg. cl'" ,ci-l,ci+I'" "cn
i s ·equalt 0 1(roo d 4)

A -;:,f) ( )i+1 l' f - A + A t:1A A Ei -1 A € i +1A A Cndy. ImUl\e = -1 e = e. 1\ e. e I ,,··· e. 1 ne'+ l " .. . I\e1 1 1 1- 1 n
and the nUlnber oe minuses aInong E1i," ,Ei-1,Ei+1, ... ,En

is equal t 0 3(mod 4)

o for other 8 .

Comparing (3.9), (3.10), (3.11) and (3.12) we can conclude that

(3.13)

(3.14)

dx. " Im W = - dy. " Re w1 1

dYi A Im w= dxi A Re w.

n

Assume that dU = L(oi dxi + ßjdYi) . Taking (3.8), (3.13) and (3.14) into account we

i=l

have

n n

dH " Im w= '\ (a.dx. " Im w + ß·dy. /\ Im w) = '\ (- a.dy. /\ Re w+ {3;dx. A Re W'L 1 I 1 I L I I 1 1 UlJ

i=l i=1
n n

'\ (- a.Jdx. A Re w - ß·Jdy. " Re W1=-(J '\ (o.dx. + ß·dy.))A Re w = - JdH " RL I 1 1 1 UlJ L 1 1 1 1

i=l i=I

e w.

Thus, the lemIna is proved.



-10 -

LEfvlM A 3.7. Let the notations )Je ilS i 11 Lelllllla 3.G. "'hen t hc cquali ly

(3.15)

holds at the point p.

ProoC. Really J

d(lle w) == (d G - J d11) A He w

- [ G-ilI A A ] ( G-i Il) A A A Adw= d e dZ l A dZ2 1\ .•. 1\ dZ n == cl e 1\ dz1 1\ dZ2 1\ ••• 1\ dZn ==

= d(G - i11) " (cG-i 11 dZ I 1\ dz2 A ... 1\ dzn) = cl (G - iH) " w .

lIence

(3.16) d(Re W) = Re(d w) = He( d( G - ilI) " w) = Re((dG - idH) AW) =

= dG 1\ Re w+ dU A Im w.

.~ From (3.7) and (3.16) it follows that

d(Re W) = dG " Re w- Jcl TI " Re w = (dG - Jcl11) A Re w \

campleting the praoL

PROOF OF THEOfiEIvl 3.5. Assulne that dG - JdII = 0 . Then by virtue oE

Lelnma 3.7

d(ltc w) = (dG - JdIJ) " Re w= u )



-20-

that ia w == Re w is a Lagrangian calibration. Converscly, if w == Re w is a Lagrangian

calibration J then d(Re W) == 0 . Consequently, by Lemma 3.7

(3.17) (clG - J dll) A Re w == 0 .

For any nontrivial vector e E. T M one can choose in the orthogonal supplement to e
. p

a unitary basis {el ,e2l ... ,en } of TpM so that cl == - Je. Then from (3.17) it follows

that

o= (dG - JdH)A Re w(e Ae1 Ae2 A ... Aeil) = (dG - Jdll)(e)Re w(e1 Ae2 A ... A en) .

By using Corollary 2.5 we have IRe W(e1 A e2 1\ ... A en) I == I because el'e2, ... ,en

form an orthonormal basis of a Lagrangian plane. Hence (dG - JdH)(e) = 0

Consequently dG - JdlI == 0 . l'hus the theorern is completely proved.

THEORErvl 3.5 establishes that a Lagrangian form w is a ca1ibration if and only

if

(3.18) dG -JdlI == 0

on M. In what follows for notational convenience we will use the form

JdG + dU = J(dG - JdlI)

dG - JdH = 0 is equivalent to

together with dG - JdlI . Clearly, the equality

(3.19) JdH + dH = 0
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We call (3.18) OI (3.19) the Lagrangian calibration eguation.

§ 4. Special Lagrangian sections

A Lagrangian section on a Hermitian manifold M is defined to be any section

p : M ---+ Lag(M) of the Lagrangian bundle on M.

DEFINITION 4.1. A Lagrangian section p on M is said to be special

Lagrangian if there exists a Lagrangian calibration €V on M such that w(p(z)) =1 for

every Z E M .

Obviously, any integral subrnanifold of a special Lagrangian section (Le. such a

submanifold that has p(z) as the tangent space at each its point z) is special

Lagrangian.

EXAMPLE. Suppose F is an orientcd n-dimensional foliation of M such tha;t

tangent planes to the leaves are Lagrangian. Then the mapping p: M --+ Lag{M) ,
\"'tangent

sending each point z to the\pIane to the leaf ~at z, gives a Lagrangian section. Note

that a connected integral submanifold without boundary of this section is just a closed

leaf of the foliation.

Let p: M ---+ Lag{M) be a Lagrangian section on M. Given Ioeal complex

coordinates z :·'(zl'z2' ... ,zn) on M . Set

(4.1) w = dZ
l

A dZ
2

A ... A dz I W _ W
n p W (p)
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THEOREM 4.1. The differential n-form "'p J given locally by the forrnula (4.1),

is correctly defined Oll t~le whole manifold M. Moreover, the real part Re(wp) of wp

is a Lagrangian form.

PROOF. First we show that, in fact, the form wp ia independent of the choice of

thc complex coordinates. Really, suppose (zi ,z2' ... ,z~) is" another local complex
I

[
8 z.]

coordinates on M and denote by A = d the Jacobian matrix. Let
J

w'I

= dzi "dz~ " ... " dz~, cup -
CL.' (p)

I-cu(4.2)

Then we have

I

(4.3) w = dzi AdZ2A ... Adz~ = det A dZ1 A dZ2 A... Adzn = det A w.

In particular,

(4.4) WI (p) = det A W(p) .

Hy substituting (4.3) and (4.4) into (4.1) and (4.2) we obtain

I W'
wp - i = W

W (p) p

I det A w W
= =--= w

det A w(p) CL.' (p) p

This proves the first statcInent of the thearcIn. lt rernains to prove that ReCw
p

) is a

Lagrangian form. Set ~ = eG w= eGdz1 Adz2"" ... AdZn . Hy Proposition 2.8 Re ~ is

Lagrangian. Then I~ (p) I = 1 by force of Corollary 2.5, because p ia a Lagrangian
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plane. Hence, I tU (p) I = Ie-G '~~ (p) I = e-G IZ, (p) I = e-G ,i.e. w(p) = e-G+iH

for some real valued function H. Applyillg Proposition 2.8 again we see that the form

Re tUp , where

- w G-iH A A A
tU = -- = e dZ11\ dZ2 1\ ... 1\ dz I

P W (p) n

is Lagrangian. The proof is complete.

Given thc Lagrangian section p: M ---i Lag(M) on M. Hy virtue of Corollary

2.6 there exists an unique Lagrangian form W on M such that w(p) = 1 everywhere.

This form is called thc characteristic form of thc section p and denoted by wp '

THEOREM 4.2. The Lagrangian form Re wp , coostructed in Theorem 4.1 is

nothing but the characteristic form w of the Lagrangian section p.p

PROOF. Since Re wp ia Lagrallgiall by Theorem 4.1 it remains to show that

Re wp (p) = 1 at each point. Really, because Wp is independent of the choice of the

coordinates we ean choose local eoruplex coordinates z = (zl,z2' ... ,zn) such that

*{dzl'dz2, ... ,dzn} is a unitary basis of T zM dual to an· orthonormal basis

{el'e2, ... ,en} of p(z) . (Note that {el'e2, ... Jen} is also a unitary basis of TzM ) .

Then W(p) = dZl A dz2 ,A ... A dzn(p) = 1 . Hence, Re wp(p) = wp(p) = 1 by

Proposition 2.4. This proves thc theorem.

THEOHE11 4.3. A Lagrangian section p: M ---J Lag(M) is special Lagrangian if

aod 0111y if

dG - JdI-I = 0
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~ dG - JdH is the I-form associated to the characteristic form cup of the

section p.

PROOF. Suppose that dG - JdlI = 0 . Ey Theorem 3.5 wp ia a Lagrangian

calibratioll. That means that p is a special Lagrangian sectioll. Couversely J if p is a

special Lagrangian section, then there exists a Lagrangian calibration w on M such

that w(p) = 1 everywhere. Eut this property provides w to be the characteristic form

of the section p. Thus, w= w . Applying Theorem 3.5 again we have dG - JdlI = 0 )p

completing the proof.

§ 5. The existente and c1assification of Lagrangian calibrations

DEFINITION 5.1. A Hennitian tnanifold M is caHed a L-ealibrated manifold if

there exists a Lagrangian calibration on M.

THEOREM 5.2. A simply connected Herrnitian manifold M is L-ealibrated if

and ooly if d(JdG) = 0 .

Let given Iocal complex coordinates z = (zl'z2' ... ,zn) . Assume that the I-form

JdG is closed. Then - JdG = dH ,where H is a function determined uniquely up to a

canstant. We consider tbc family of tbc follawing Lagrangian forms

(5.1) ( G-ill A A A )W II = He e dZ1 dZ2 ... 1\ dZn J
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where G = Iny'det(g) and H is any real valued function satisfying the condition:

dH = -JdG.

REMARK. Hy Proposition 2.8 and Theorelu 3.5 wH are closed Lagrangian forms

on the domain of the Ioeal coordinates z = (zl'z2' ... ,zn) ., Le. W H are Ioeal

Lagrangian calibrations.

LEMMA 5.3. The family {w H} given by (5.1) is independent of the choice of

the Iocal eomplex coordinates.

PROOF. Suppose z' = (z l,z2' ... ,z~) are another Ioeal complex coordinates and

Jet A = [::~ ij oe tne JaG Oi:u ma rie A = e +i. n macio a aad ß

are re1ated by the equality (3.6): Jda = dß . Consider the family of Lagrangian forms

(5.2) , G' 'n'
wH,=lle(e -I· dziAdz2A, .. Adz~),

where G' = Iny'det(g' ) and H' is any real valued funetion such that,
dH' = - JdG' . Representing wH' ,in the coordinates z = (zl'z2' ... ,zn) we have

, (G'-iR' a+iß
wH' = Re(e e dZ1 AdZ2 A... Adzn) =,
= Re(e(G' +o)-i(II -ß)dz

1
AdZ

2
A... Adz

n
) .

Aceording to Proposition 2.8

(5.3) G'+a=G.

Taking (3.6) and (5.3) ioto account we have
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d(H' -ß) = dH' -dß= JdG' -Jda = -Jd(G' + a) = -JdG.

,
Hence, {wH' } ( {wH} . Sinee the loeal coordinates z = (zl'z2' ... ,zn) and
, " ,

z = (z 1 ,z2' ... ,zn) are cquivalcnt in our above argulnent the eonverse implication
I I

{wH} ( {wH'} is true as weil. Consequently, {wH} == {wH'} . This proves the

lemma.

LEMMA 5.4. Each fonn of the family { wH} is determined completely by its

value at a fixed point z = p .

PROOF. Fix a point z"= p . Suppose

( G-ill A A A )wH = Re e dz} dZ2 ...ndzn

are two forms of the family {wH}' By virtue of Corollary 2.6 wH = wH' if and only if

H == H' . However, H == H' if and only if lI(p) = 11' (p) because Hand H' differ

by only a constant. This proves the statement of the lemma.

Let ,: [0,1J ----i M be a path, joining fixed points p = ,(0) and q =,(1).

Given a Lagrangian exteriar farIn Wo on TpM. Assulue that {Ul'U2, ... ,Uk} is a

chain of neighborhood in M such that,
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(iii)
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k
V = U V.) ,[O,lJ :~,'

. 1 1 -1=

There exist complex coordinates on Ui for each i = 1,2, ... ,k .

Clearly, there always exist such ehains of neighborhoods on M for every path ,. Now,

by force of Lemma 5.3 and Lemma 5.4 there exists an unique set of loeal Lagrangian

ealibrations { VJ1,VJ2' ... ,VJk} such that VJi is defined on Vi(i = 1,2, ... ,k) I

VJl (p) = Wo and VJi == 'Pj on Vi nV j (1 5 i ,j 5 k) . Then we ean get a IDeal calibration

k
cp defined on V = U V. by setting cp = 'P. on VI. (i = 1,2, ... ,k) . Put

. 1 1 1
1=

wI = r.p( q) (= <Pk(q)).

LEMMA 5.5. The Lagrangian exteriar farIn wI on TqM eonstrueted as above

does not depend on the choice of thc chain {Vl'U2, .. · ,Uk} .

PROOF. Suppose {UiIU:i'''. ,U~} is another chain of neighborhoods satisfying

the conditions (i), (ii) and (iii). Denote the corresponding Ioeal calibrations on

Vl'V~!!, ... ,V~ and V' by <Pl,'P2' ... ,'P~I and I{J' respectively. Set wt = cp(,(t)) ,

wi = 'P'(i(t)) . First we note that wt and wi depend on t continuously. Let

K = {t €. [0,1] : wt = "'i} . Obviously, 0 €. K I Le. K:f: ifJ . The faet that "'t and "'i
are continuaus implies that K is closcd. On the alher hand, assume that t 0 E. K I Le.

"'t = wi . Suppose that ,(to) e. Ui nU
J
'.. There exists a neighborhood (to- E ,

o 0

to+ c) in [0,1] such that "((to- c I to+ E) Clf. n U'.. By Lemma 5.4 <po == 'P'. on
1 J 1 J

Vi nUj . Consequently, "'t = cp(,(t)) == cp'("((t)) = wi on (to- E, to+ e) . Hence,
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(ta - e, to+ e) C K , Le. K is open. Thus, K = [0,1] ,therefore wt = wi for any

t e. [0,1] . In particular, w1 = wi .The proof is complete.

Let npq(M) denote the space of paths joining points p and q on M. npq(M)

can be equipped with the topology of uniform convergence. In this topology each

homotopy dass of paths is a connected component of npq(M) . In particular, if M is

simply connected, then !1pq(M) is connected.

By force of Lemma 5.5 we can canstruct correct1y a map:

*1/1: npq(M) --+ "n(TqM) , corresponding each path 1 to th'e Lagrangian exterior form

wI constructed as abovc.

*LE~1MA 5.6. Thc map 7/J: n (M) ----J" (T M) is locally constant.pq n q

PROQF. Hcally, assume that wI is constructed by using a chain of

neighborhoods {U1,U2,,,, ,Uk} satisfying thc conditions (i), (ii), and (iii). Then every

k ,
path " in npq(M) near , enough is containcd in V = i~l Vi . Consequently, wI
can be constructed by using the chain {Ul'U2, ... ,Uk} as weIl. Hence,

wI' = cp(q) = wI ' where cp is the loeal cali bration on U . This completcs thc proor.

From Lemma 5.6 it follows immecliately

*COROLLARY 5.7. Thc map 1/1: npq(M) --+ "n(TqM) is canstant on each

homotopy dass of paths. In partic1l1ar, iC M is simply cannected. then 1/1 is cansta.nt.

"

PROOF OF TB EORI~M 5.2. Assulne that dJdG =·0 . Then we may apply

Lemmas 5.3 - 5.6 and Corollary 5.7. Since M is simply connected Corollary 5.7 means

that, in fact, the Lagrangian exterior fonn wI = 1/i.,1) does not depend on 1. So, fixing
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a point p E. M and a Lagrangian exterior form Wo on T pM we can construct a map

*w:M --+ "n(T M) , sending each point q E. M to n-form wI for a path 1 joining p

and q. In particular, w{p) = Wo . Clearly, the differential n-form w constructed in

this way ia Lagrangian and the l-fonn associated to w satisfies the condition

JdG + dH = 0 locally. Consequently, the equality JdG + dH = 0 holde everywhere.

Therefore, w is a Lagrangian calibration and M is a L--ealibrated manifold.

Conversely, suppose that M is L-calibrated and w is a Lagrangian calibration on

M . Then for w the equality JdG + dH = 0 holds. Hence

dJdG = d{JdG + dH) = 0 . Thus, the proof is complete.

THEOREM 5.8. Suppose that 11 is a ~alibrated Hermitian manifold. Then

each Lagrangian calibration on M is detcrmincd completcly by its value at a point. If

Re{W) is a Lagrangian calibration. thcn thc set of all Lagrangian calibrations on M is

{Re(eirp W) , 0 ~ rp < 21r} . In other words. there exists precisely a Sl-famiJ y of

Lagrangian calibrations on M.

PROOF. In fact, the statement of Theorem 5.8 can be obtained by Iooking more

carefully at the proof of Theorem 5.2 (and of Lemmas 5.3 - 5.6). However, here we will

present a direct prooe. Since Re{W) is a Lagrangian form, it follows from Proposition 2.8

that every Lagrangian form on M is of the form Re(eitp w) ,where rp is areal valued

function on M. In Ioeal complex coordinates z = (zl'z2' ... ,zn) we have

( itp -;:) ( G-i (H-<p)d A d " Ad )Re e wJ = Re e z1 1\ z2 ." '\ zn .
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Since Re(W) and Re(eicp W) are both Lagrangian ca1ibrations J by Theorem 3.5 we

have: JdG + dH = 0 = JdG + d(H - cp) . Hence dcp = 0 ; that means that cp is

Iocally constant. Consequently, cp is eonstant on M.

REMARK. Theorem 5.2 states that the neeessary and sufficient condition for a

Hermitian manifold M to be L-ealibrated is dJdG = 0 ,where G = In.ydet(g) . Given

Ioeal eomplex coordinates Z = (zl'z2' ... ,zn) on M. We have

dG = \' [!!..Si- dz + !!..Si- dZ ]
L 0 Z Q 01: Q
Q a a

J dG = \' i [!!..Si- dz ..... !!..Si- dz ]
L 0 Z a O-Z a
a Q a

a 2 G
dJ dG = 2i \' dz AdZß .

L Oz 0 Z a
u,ß u ß

. Henee, the eondition dJdG = 0 is equivalent to

(5.4)
o 2 G----= 0 for any G,ß = 1,2, ... ,n .

. aza 0 zß

If M ia a Kähler manifold, then the Ried tensor on M ia given a8 follows:

2
Ka 73 = 2· 0 G (ef. [H]). Thus we havc proved the following Corollary

oza a zß

COROLLARY 5.9. A Kähler Inanifold 11 is L-{:alibrated ie aod oolf if it is Ried

,nato
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§ 6. Special Lagrangian submanifolds on L--ealibrated manifQlds

Let M be a connected 2n-dimensional Hermitian manifold, N an n-dimensional

oriented submanifold in M.

THEOREM 6.1. A submanifold N in M is special Lagrangian ie and onlf ie each

point of N has a special Lagrangian neighborhood.

PROOF. Of course, if N is a special Lagrangian submanifold then each its

neighborhood is special Lagrangian. Thus, it will suffice to prove the converse statement.

Assurne that each point p €. N has a specia.l Lagrangian neighborhood U (N and letp

r.p denote the corresPQnding IDeal Lagrangian calibration. By definition r.p (T M) = 1 .p p p

From Theorem 5.8 and Corollary 2.6 it follows that t.p roust be the restriction of ap

(globally defined) Lagrangian calibration wp . Moreover, for any points p,q E. N ) if

U nU f l/J then w (T N) = 1 = w (T N) for all z E. U nU . Consequently,p q p z q z p q

Wp = Wq . This means that alilocal Lagrangian calibrations rt'p are restrictions of the

-same Lagrangian calibration w on M. Thus, N is special Lagrangian (with respect to

w) and the proof is complete.

REMARK. Theorem 6.1 establishes the equivalence between the properties of

being special Lagrangian and locally special Lagrangian. Below we will prove that these

properties are equivalent to the property of the IDeal minirnality.

Let given IDeal complex coordinates z = (zl'z2' ... ,zn) on M. Set

W = e
G

dz l A dZ2 A...Adzn(G = lnyoeqg)) .Denote by 7f the projeetion of the
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Lagrangian bundle Lag(M). We can consider the functions fand 0 on Lag(M) by

setting fW = G 0 1rW and 0(0 = -i In w(O for any (E Lag(M) . As is known (cf.

[LF] , [B]) the differential I-form Jdf + dO ,where J is the operator of the complex

structure, is independent of the choice of the local coordinates; so that it is defined

correctly on the whole bundle Lag(M).

Suppose N is a Lagrangian submanifold in M, p: N --l Lag(M) is the map,

sending each point zEN to the tangent space to N at z.

PROPOSITION 6.2. ([LF], [B]). A Lagrangian submanifold N in M !.§

. *(stationary) minimal if and only if the induced form p (Jdf + dO) vanishes on N .

THEOREM 6.3. Suppose M is a l,-{:alibrated manifold. Then every connected

(stationary) minimal Lagrangian slIbmanirold is special Lagrangian. In particlllar,

minimal Lagrangian submanifolds seem to be volume minimizing.

REMARK. For the case M = {n this result was proved by R. Harvey and H.B.

Lawson [HLI ].

PROOF. Assurne that N is a stationary Lagrangian submanifold. According to

*Proposition 6.2 p (Jdf + dO) = 0 Consider local complex coordinates

z = (zl'z2' ... ,zn) on M and set w= eGdzI AdZ2 A... Adzn . Let j denote the

* * *embedding of N into M. We have: p (Jdf) = j (JdG) , P (dO) = -id In w(p) . Fix a

point Zo E N and choose the Lagrangian calibration cp on M such that

cp(p(zo)) = 1 . In the local coordinates cp has the form

( G-iH A A A ) ( -iH-;:;)cp = Re e dZ I 1\ dzz 1\ ... 1\ dZn = Re e wl .
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Set a =- i In w(p) . We have eia =w(p) or e-ia w(p) = 1 . H~nce, <P(p(z)) = 1 if

and only if H = Q = - i In w(p) . Now, since rp(p(zO)) = 1 we have

H(zO) = - i In w(p(zO)) or ~(zO) + i In w(p(zO)) = 0 . On the other hand,

* * * *d [H 0 j + i In W(p)] = j dH + d(i In w(p)) = j (dH + JdG) - (j (JdG) + p (dO)) =

* ~.= j (JdG + dH)-p(Jdf + dO) = 0 by using Theorem 3.5 and Proposition 6.2. That

means that H(z) + i In w(p(z)) is Iocally constant on N. Since N is connected and

H(zO) + i In W(p(zO)) = 0 we have H + i In w(p) = 0 or; H = - i In W(p) on N. By

virtue of the above remark rp(p(z)) = 1 on N. Hence, N is a <p - submanifold, and

consequently, a special Lagrangian submanifold,

REMARK. In [LF] it was provcd that dJdG = 0 if and only if Jdf + dO is

integrable. Combining that with the statement of Theorem 5.2 one ca.n conclude that a

necessary and sufficient condition for a sirnply connectcd lIcnnitian manifold M to bc

L-calibrated is the integrability of the form Jdf + dO . The integrability of

Jdf + dO' ~ means that it determines a foliatioll of codimension 1 of Lag(M) . From

the proof of Theorem 5.2 it is easy to see that the image of each Ieaf of tms foliation

nnder the projection 1f is the whole M. Now, using Theorems 4.3, 6.3 and Proposition

6.2 we can obtain· . the following result

COROLLARY 6.4. Suppose M is a simply connected L-calibrated Hermitian

manifold

(i) A connected Lagrangian subInaIlifold N in M ia soecial Lagrangian if

and only if p(N) is contained in a leaf oe the foliation determined by the form

Jdf + dO ,where p: N --+ Lag(M) is the rnap, sending every point z to the tangent

plane to N at z.
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(ii) A Lagrangian seetion p: M --+ Lag(M) is special Lagrangian if and only

U p(M) is contained in a leaf of the foliation deterrnined by the form Jdf + dO .

§ 7. Special Lagrangian condition in coordinates

THEOREM 6.1 shows that the study of the property of being special Lagrangian is

reduced to that of the property of being locally special LagrangianJ so we ean use a fix

system of IDeal complex coordinates. In other words, we will deal with a complex space

M = (n = {(zl,z2' ... ,zn)} equipped with a generally non-standard Hermitian metric

g = E gijdzjdzj . In trus case the condition for ((n jg) to be L-calibrated ia the

following

(7.1)
2

o G = 0 for any i,j = 1,2, ... ,n,
oz.O Z.

1 J

where as always G = lnvdet(g) . The equalities (7.1) mean that G is the real part of a

holomorphic function G + iK . Consider the real coordinates ( tZ'l' ... , tZ'n'Yl' ... ,Yn) ,

where Zj = xi + iYi (i = 1, ... ,n) .

Then the Cauchy-Riemann condition is written as follows

(7.2)

We have

aa G =~ , iJa G =~ , i = 1,2, ... ,n .x· uy. y. ux·
t t 1 1
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n

dG = 1: [#dx. + Rdy.]xi 1 Yi 1
i=l

I i=1

n

JdG = l [#dy. +Rdx.]
Xi 1 Yi 1

i=l

n

= \ [{} f( dy. + lJ k;dx.] = d1t< -
L 7fT 1 a X. 1

I 1

Thus, the equality JdG + dH = 0 just means, that - H and K dilfer by only a

constant. Ey the way we note, that JdK = - dG . Hence dJdK = 0 I that is

(7.3) a2K--- = 0 for any i,j = 1,2, ... ,n .
{} z· a z.

1 J

First we eonsider the ease when an n-dimensional submanifold X is described
\

for any vector

Besides that,

real coordinates

j Suppose that

implicity as the set X = {z E. 12 : f1(z) = f2(z) = ... = fn(z) = o} ,where fl ,f2, ... ,In

are srnooth real valued fUfietioHs on an open sei n of M such that dfp df2, ... ,df are
\'"Je.pe.-('\c\~",t n

linearly\ at each point of X . Then normal n-plane N X to X at point z is spannedz

(over IR) by grad f1(z) , grad f2(z), ... ,grad fn(z) . Obviously, the tangent n-plane

TzM is Lagrangian if and only if the normal n-plane NzX is Lagrangian. In tbis ease

TzX = J(NzX) .
1 ' • 11

Let gi j = gi j + 19ij (1 :s i ,j :s n) Then in

( tZ"l' ... , ern,Yl' ... ,Yn) the metric on M cau be ex.pressed as
I I 1

g = E g ..(dx. 0 dx. + dy. 0 dy.) + g.. (dx. 0 dy. - dy. 0 dx.)
IJ 1 J 1 J IJ I J 1 J

1 1 11 11

g .. = g .. and g. . = - g.. for auy i
IJ Jl lJ Jl

grad f= (u p ... ,un ,vl' ... ,vn). By definition g(grad fJe) = df({)

e= (al' ... ·,0 ,ß1, ... ,ß ) E. T M (= (n) , that is, n n z
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n

(7.4)
1 11 OC OC

\ g ..(U·Q. + v·ß·) + g .. (U·ß· - v.(t.) = \ ""!r::"" Q. +~ ß· .L 1 J 1 J 1 J 1 J 1 J 1 J Lux. 1 u y. 1

i,j =1 i=l

From (7.4) it Collows that

(7.5)

Hence

n n

(7.6) 2 fL =~ + i~ = \ g.. e· = \ g.. e·
a- u x· u y. l lJ 1 L J \. 1

Zj J J i=l i=l

where ej = Uj + iVj , j = 1,2, ... ,n . Thus, applying (7.6) for fl'f2, ... ,fn we see that

2 aCl
the matrix (gij) lnaps vcctors grad f1 , grad f2, ... ,grad fn to vectofs ai

2 8 f
2

2 (J f
n--, ... , respcctively.

öi Oz

THEOREM 7.1. Suppose X is a Lagrangian submanifold. described implicitly as

above. Then X is special Lagrangian if and only if.

where Arg(z) denotes the argutnent of the complex nUlllber z.
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PROOF. Since X is Lagrangian TzX = J(NzX) by .the force of the above

remark, Le. TzX is spanned by i grad f1 ' i grad f2, ... ,i grad fn . In the other hand

Of af Of
(2n) _1 " _2 A... A~ = e2G grad f l Agrad f2 " ... Agrad fn .

Oi Oi O"Z

Hence

(7.7)
. n Of l Of2 afn

TzX = (1) Ä ---:.- A-A ... A -_- )
8z IJz az

where A is areal number. Letting

{) a aeO=~ A:r=- A ... A:r=-, p(z) = T X ,
U zl U z2 U zn Z

we have

[
a f. ]

p = A(i)n det ---:3- {O'
8 z·

J

Consequently I
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Theorem 6.3 and Proposi tion 6.2 state that X is special Lagrangian if and only iC

Q + K = const on X. COlllbining that with (7.8) completes the proof.

{

..elf} 8f2 Öfn }
We note that if the Inctric tensor (gjJ') ia real thcn -- , -- , ... -- is

0"7. {}z IJz
another real basis of the normal n-plane T X . We havez

2J [ a~k] = [_ 8 f k + i a fk J ••• J _ a f k + i a f k ]

az I) YI axl Ö Yn axn

[

öfk aCh] _ Ln , [öfk . ,ach
g - J- -- g.. ---' - IJ .'.8z Dz .. 1 Dx. lJy.

l,J = 1 J

Ey that we obtain the followiug CritCriOIl for a suulnanifold to be Lagrangian.

PROPOSITION 7.2. Assulne that the Inetric tensor (g..) Qll (n is real and let
lJ

X is given implicitly as in Theorem 7.1. Then X is Lagrangian if and only if

(7.9) ~ g.. [ af k ' ",_: Ö f h _ af k . .: .. 8 fh] ==
~ IJ ~.. 1 Ox. Oy. Oy. Ox.

1,J = I J 1 J

=' 2i ~ g.. [ 0 Ck . .;/f lJ fh _ a f k ~. a fh ] = 0
l lJ '..... - -.. 1 öz.· az. IJz. f)z.

l,J = 1 J 1 J

for any k I h = 1,2, ... ,ll .
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Note that if grad K never vanishes on an open set n then in Theorem 7.1 K + c

(c = const ) may be chosen as one oI the functions Il'f2,. .. ,fn . In this case

K = - const on X and from Theorem 7.1 it immediately follows

COROLLARY 7.3. Let X be given as in Theorem 7.1; rnoreoyer f l = ,K ~ Then

X i§ special Lagrangian iI onlr if

Arg [det [ : ~~ ]] = const on X.

EXAMPLE 7.4. Now we present a dass of special Lagrangian submanifolds

delivered by Corollary 7.3. For any real number 0 E. [O,21l-) we consider the real valued

function

t(O,z) = 2(x cos 0 + y sin 0) ,

where z = x + iy . A straightforward calculation shows that

(7.10) at(O,z) = e-iO
(fZ , at(OIZ) = eiO .

Bi

Suppose h(tl't2, ... ,tu) is an arbitrary real function of variables t 1,t2, ... ,tu and let

(7.11)

I t is clear that
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(7.12)
aha h -i°i
-=-e
az. a t.

1 1

ahah iOi
-=-e
Bi. at.

1 1

In particular, if h = Al t 1 + A2t2 + ... + Antn (Ai are real numbers) then h satisfies

the condition (7.3), Le. h is thc imaginary part of a holomorpltic function.

Now in Corollary 7.3 we choose

where h.
1

are of the form (7.11) with hj (l 5 i ~ n) and O. .(1' < ij< n)
IJ -~-

chosen

arbitrarily so that h1 is linear and thc assuluption oe Theorem 7.1 ia satisfied. Letting

Oh.
h

ij
= __I (1 5 i,j ~ n) we have

at.
J

i01l i0 12 iOln
h llc h 12e h lne

[ 8 ~i ]
i02l i022

i02n
= .h

2l
e h22e h2ne

{} z.
J ... . . . .. .. . . . " ..

iOnl iOn2 iO
hnle hn2c h e nn

nn

[
ah. ]

Arg --:!- is constant, for exaInplc, in cach oe thc following cases:
az.J '
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(1)

(2)

(3)

(4)

DU = 02i = ... = 0ni' i = 1,2, ... ,n

hoo = c..h., where c·· €. IR, h. are real valucd functiolls (1 ~ i,j ~ n) .
lJ lJ J lJ J

h..-c..h. ,where c.. e. IR, h. are real valued functions (1 ~ i,j ~ n) .
lJ lJ 1 IJ 1

Assume that the metric tensor (goo) is real.
1J

Substituting (7.12) into (7.9) we obtain

(7.13) n [ ]
. 1: 0hk aha hk . ah

(21) g.. _---.9. ~ =
lJ . '

.. 1 Oz.Oi. Oi. Oz.
1,J = 1 J 1 J

L
n [ i(0qj-{}ki) i(Oki-Dqj)]= 2i g..hkih . (e -e

IJ Q.J
i,j = 1

The surn in (7.13) vanishes, for example, in each of the following cases:

(a) (Jij = () for any i,j = 1,2, ... ,n

(b) 0u = 02i = = 0ni far any i = 1,2, ... ,n and hkihqj = hkjhqi for any

i,j,k,q = 1,2, ,n .

(c) 0'1 = 0'2 = ... = O. far any i = 1,2, ... ,n
1 I In

(hk! ,hk2, ... ,hkn) , k = 1,2, ... ,n , are orthogonal

and vectors
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(e)
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8.. = 0 for any i = 1,2, ... ,0 aod hk · = 0 for any k f j
11 J

01' = O2, = ... = 0 . for any i = 1,2, ... ,n and g.. = 0 for any i f j .
1 1 nl IJ

According to Proposition 7.2 each oe the conditioos (a) - (e) guarantees that the

submanifold X = {h i = h2 = ... = hn = O} is Lagrangian. On the other hand, clearly,

each of (a) - (b) implies one oe the conditions (1) - (4). Thus, by applying now Theorem

7.1 we ean conelude that the above eonstruetion provided by one of (a) - (e) gives a

special Lagrangian submanifold.

2
EXAMPLE 7.5. Consider ( = {(zl'z2)} with K = Oj "2 - YlY2 . Let in

Corollary 7.3 choose Cl = K, f2 = zlzl - z2z2 . A straightforward calculation shows

that the submanifold X = {z E. I[ 2 : fl (z) = f2(z) = O} is Lagrangian ·provided g!l =

~2 I gl2 = g2:1; = 0 . On the other hand

aCl aCl
-- --

det
öZl OZ2

= det
{} f

2
of2-- --

öZI OZ2

Consequently, Arg [det [ : ~~]] = 0 on X. Hence, X is special Lagrangian.

J

Now we eonsider the ease when submanifolds are given by parametrie equations.

Suppose, an n~mensional submanifold X in M is described as the set



valued functions on an open set

[
af. ]

t = (tl't2, ... ,tn) . ranklR 8/

J
Vectors

n of IRn with the standard coordinates

is assumed to be equal to n everywhere on n.

a f( t) = [8 I1(t) , 8 I2(t) , ... , a In(t)] , i = 1,2, ... ,n ,
Ot. Ot. Ot. Ot.

1 1 1 1

form a real basis of the tangent plane to X at each point z = (f1(t),f2{t), ... ,fn{t)) .

THEOREM 7.6. Let X be a Lagrangian submanifold described parametriccally as

above. Then X ia special Lagrangian if and only if

(7.14)

ProoC. Since {!LL, ... ,!LL] is a real basis of T X ,
8 t

1
at

n
Z

Br Br Brp(z) = T X = ..\ - A- A ... A- ,
z at

1
at

2
atn

where ..\ is a real number. Therefore

[
0 f. ]

P = A det _1 eO'
at.

J

where
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Consequently,letting W= eGdz
1

A dZ
2

A ... A dZn we have

(7.15) _ _ [ G [ °fi ]]Q =-i In w(p) = Arg(w(p)) = Arg ,\ e det at
j

Using Theorem 6.3, Proposition 6.2 and (7.15) completes the proof.

{
Of Of Of}

Since °t
1

'a t
2

' ... 'a t
n

Lagrangian if and only if

is a basis of T X , the submanHold X isz

(7.16) .!.L1..J [Bf ]at. 0 t.
1 J

for any i,j = 1,2, ... ,n and at any point t €. n . Let

1 11 1 11

f = f + if , fk = fk + ifk (k = 1,2, ... In) .

Then
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Asau.ming the metric tensor (g..) to be real the condition (7.16) ia equivalent to the
IJ

following equalities

(7.17)

for any k,q = 1,2, ... ,n .

EXAMPLE 7.7. It is easy to make sure that the condition (7.14) in Theorem 7.6

holds if fl'f2, ... ,fn satisfy the following equation

.1
.)0

(7.18) det [a f j
] = cp(f(t),t)e-il«f(t)+ic ,

at.
J

where cp(f(t),t) is%eal function of t and c is areal constant. In particular, if

fi = fi(ti), K = h1(zl) + h2(z2) + ... + hn(zn) ,

'P = 'P1(fl(tl),tl)'P2(f2(t2),t2) ... 'Pn(fn(tn),tn) then (7.18) decomposed to n equations,

separate for each variable zk:

(7.19)

All the equations (7.19) are of the same form

(7.20) ~ = a(A,O)e-ih(A(O))+ic .
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Letting "\(0) = p(O) + iq(O.) we can rewrite (7.20) in the form

(7.21)
{

p: = a(p,q,O) cos (h(p,q) - c) .

q= ~ a(p,q,O) sin{h(p,q) - c) •

Consider, for example, some special cases :

1) a == 1, h(p,q) =ap + ßq ,where a and ß are real numbers that are not

trivial simultaneously. ,Note that h(p,q) = 0 if p/q = - ß/o. . Choose

c = arc tg(- a/ß) . A straightforward calculation shows that

(7.22)

are solutions of (7.21).

- 0: 0p=----

vo: 2 +;;

2) Suppose h(p,q) is linear as above. Without lost of generality one can

assume that h(p,q) = q . Choose a = - [sin(h(p,q) - cJ -1 = - [sin(q - cl] -1 . Then

(7.21) is of the form

(7.23)

The solutions of (7.23) are

{

p' :::: _ ctg(q - c) .

q' = 1

(7.24) p =- Jctg(9 + b - c)d9 + d, q = (I + b

where b J d are arbitrary real constants.
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REMARK. Assume that ~j = 0 for any i =1= j . Then (7.17) ia aatisfied for

functions f. = f. (t.) (i = 1,2, ... ,n) . Thus, in this case solutions of (7.19) give special
I 1 I

Lagrangian submanifolds

EXAMPLE 7.8. Suppose M = (2 with

K(zl'z2) = x1sin a + Y1 cos a + x2 sin b + Y2 cos b (a,b e. IR) . Let X be given p) the

parametrie equations

(7.25)

K(z) = r(cos 01 sin a + sin 01 cos a + cos 02 sin b + sin 02 cos b) =

= r(sin(Ol + a) + sin(02 + b» =

. 01 + 02 + a + b 01 + a - 02 - b
= 2r SIn 2 cos 2 = 0 .

Now we calculate the tangent plane to X.

{} f [iO! i02J af
7JI = e,e '7J[f; =

1
[ i01 i02Jire , - ire

af1 a f 2
. i(01+02)

det 7ft or = 2ue .
af1 oF2

07Jl 7f7Jl
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ThereIore f satisfies (7.14). A straightforward calculation shows that (7.17) holds if

g11 = g22(g12 and ß21 are not neccssarily trivial). Thus in this case the construction

above gives a special Lagrangian cooe.

§ 8. Soecial Lagrangian submanifolds of unitary sums

In this section we present constructions giving special Lagrangian submanifolds in

the form of unitary sums. We recall that as above G = In~ and K denotes the

function related to G by the equality dK = JdG . Suppose that grad K never

vanishes on an open set n c( 0 . Ey definition, for every vector e we have

g(J grad K,e) = g(grad K - Je) = dK(- Je) = JdG(- Je) = dG(- e) .

That means, that J grad K = - grad G . Assu~e that (n can be represented as a

direct SUfi (n = p mQ of cornplex linear subspaces P and Q with metric gl and

g/' respectively. Moreover, the metric g is expressed through g' and g' I as

follows. For auy vectors u,v E. Tp+qG: n g(u,v) = g'(u l ,v') + g' '(u' I ,v' I) , where

u = u l + Ull , V = v' + v' I , u l
, v' E. T P, U' I,V

II
E. T Q . By a complex

P I I q I

linear transformation we can get new complex coordinates zl ,z2' ... ,zn on (n such
I I I I ,

that zl,z2'''' ,zk are coordinates on P and zk+l'''' ,zn are coordinates on Q.
, , I

Letting (g'..) , (g ..) (g .. ) denote the corrcsponding luctriC tensors on (n, P and
IJ 1J 1 J

Q respectively we have



N I I N NI N I I

G= lnJdet(g..)+G and K=K +K , where IJ
N I I

= In Jdet(g : '.)
N N N I I N,

G and dK = JdG dK = JdG
1 J
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N N
g.. = g .. = 0 if i ~ k, j > k

IJ Jl

N I"JI

g..(p + q) = g ..(p) if i ~ k, j 5 k I P E. P, q E QIJ IJ

I"J NI I

giip + q) = g i j (q) if i ~ k J j ~ k J pEP I q E. Q .

N NI

Hence G = G

GI = lnJdet(g: .)
1J

N I NIl

dK = JdG . Suppose X = X I mX I I ,where X I I X I I are Bubmanifolds of P

and Q respectively. Obviously, in order for X to be Lagrangian (in (n) it is

necessary and sufficient that X I and X I I are Lagrangian in P and Q respectively.

Set

N

- G" ,
w= e dz1 A dZ 2 A ... A dzn

N,
I G " I

W = e dZ l A dZ 2 A ... A dZ k

N, ,
_tl G
w = e

I I I

dZk+1 AdZ k+2 A... AdZn

o(p+q) = - i In w(Tp+qX) (p E. P,q E. Q)

a'(p)=-ilnw'(T X')p

all(p)=-ilnw"(T XII).
q
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N NI NIl

Since the suro q P mQ is orthogonal and G = G + G , it is easy to see that

w = wI AwI I , w(T + X) = WI (T X I )WI I (T X I) • 11ence
p q p q

N NI NIl NI NI NIl
o(p + q) = 0 (p) + er (q). Because K ) 0 are functiolls on P and K 01

I

N NI NI .

are functions on Q,K + Q= const if and only if K + 0 = const and

N I I I I

K + 0 = const . Now, applying Theorem 6.3 and Proposition 6.2 we can conclude

that X is special Lagrangian if and only if X I and X I I are special Lagrangian.
I I I

Finally we note that since the coordinate systems (zl,z2' ... ,zn) and (zl,z2 J ••• ,zn)

differ by only a linear transformation, K =K + COllSt. Thus we have proved the

following

N NI

PROPOSITION 8.1. Suppose l[ n = P mQ is a unitary surn and K, K, K

N "
K are described as above. Then

N N NI NIl

(a) K = K + eonst , K = K + K

(b) The Burn X= X' mxll of submanifolds X' ( P and X" C~Q i.L.~.

special Lagrangian if and ouly if X' and X" are special Lagrangian in P and Q

resoectively.

EXAMPLE 8.2. Assunle that the metric g on 0:: n is given so that K is a linear

function of xl ,yl' ... ,xn'yn . Then grad K and J grad K = - grad H are fixed

vectors. Set P = {z E. 4: n : K = K(O) I G = G(O)} , Q = Span{grad K,grad G} . It is

easy to veriry that P is a complex linear subspace and (: n = P ~ Q is a unitary sumo
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I I I

Choosing complex coordinates (zl,z2"" ,zn) as in Proposition 8.1 we have K = const
NI NI

on P because K = const on P. Consequently, K = const and G = CODSt . Thus,

P ia a complex space with ametrie gl like the standard metric (that is

det(g/) = const) and special Lagrangian submanifolds in P may be found by methods

N I I

of [HL1]. Further, the function K is linear on Q and special Lagrangian lines on

Q are determined aB in ExampIe 7.7. In particular, choosing X I I / / grad G (see(7.22))

we obtain that thc cylinder parallel grad G through any special Lagrangian

submanifold of P ia special Lagrangian in (n. Similarly, thc lines determined by

(7.24) give special Lagrangian , ~.:..~lcurvelinear cylinders t!:,~ :'~in (: n .

EXAMPLE 8.3. Consider the real space IR n with a (non-standard) metric g

chosen so that G = ln.ydet(g) is a linear function. Ey using the metric gone cau

*identify the tangent bundle TIR n with the cotangent bundle T IR n which is equipped

with the natural complex (and syluplectic) structure of l[ n = IR n ED ilR n (thc metrie g

is expended naturally to the metrie of l[ n) . Assume that I[ n with thc metrie g is

L--ealibrated. Then tbe function K related to G by the equality' dK = JdG ia also

linear and depends only on the second term in the SUD1 (n = IR n milR n . In this case

the space P = {z E ( n : K = K(O) , G = G(O)} is nothing but the tangent 8ubbundle

T[R n-1 of the spaee [R n-l = {x E [R n : G = G(O)} . Suppose Xl. is a submanifold in

IR n-l and X = X I ED {grad G} is the cylinder parallel grad G through X I • Let

N(X ') and N(X) denote the normal bundles of X I in TIR n-l and X in TIR n

respectively. Note that N(X) is the cylinder parallel grad G through N(X ') . Uy

virtue of Example 8.2 N(X) is special Lagrangian if and only if N(X I) ia special

Lagrangian (in TIR n-1) . [HL
1
] proved that N(X I) is special Lagrangian if all the

invariants of odd order of the second fundamental form at each normal veetor to X I

vanish, i.e. the set of eigenvalues of the second fundamental form is invariant under
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multiplication by - 1 . On the other hand, one can prove that the last condition is

equivalent to the same one with replacing X I by X. Thus, the normal bundle N(X)

of any cylinder X parallel grad G such that all the invariants of odd order of the

second fundamental form at each normal vector to X vanish is special Lagrangian.
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