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Abstract

This paper reveals the fundamental relation between Jacobi structures and the
classical Spencer operator coming from the theory of PDEs [20, 13]; in partic-
ular, we provide a direct and much simpler/geometric approach to the integra-
bility of Jacobi structures. It uses recent results on the integrability of Spencer
operators and multliplicative forms on Lie groupoids with non-trivial coefficients
[5, 19].

Résumé

Cet article révèle la relation fondamentale entre structures de Jacobi et l’opé-
rateur de Spencer classique de la théorie des equations différentielles [20, 13];
en particulier, nous fournissons une approche beaucoup plus simple et directe
à l’intégrabilité des structures de Jacobi, qui tire parti des résultats récents sur
l’intégrabilité des opérateurs de Spencer et formes multiplicatives à coefficients
non-triviaux sur des groupöıdes de Lie [5, 19].

Keywords: Jacobi structure, Lie groupoid, contact geometry, Spencer
cohomology.
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1. Introduction

In this paper we provide a new approach to the integrability of the Jacobi
structures of Lichnerowicz [15] and the local Lie algebras of Kirillov [12]; it is
based on our remark that Jacobi structures are intimately related to the classical
Spencer operator coming from the geometric theory of PDEs [20, 13], combined
with our recent result on the integrability of Spencer operators and multiplica-
tive forms with coefficients [5, 19]. This approach is not only new, but also
much more direct/geometric and remarkably simpler than the known ones (see
the long formulas from [6]). In this introduction we describe the main key-words
and literature that come with Jacobi structures, indicating along the way the
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content of this paper.

Lichnerowicz’s Jacobi structures: Jacobi structures were discovered by
Lichnerowicz who, after his work on Poisson and symplectic structures, was
looking for a similar theory in which the symplectic structures were replaced by
their odd-dimensional analogue, i.e. contact structures. He introduced them in
[15] and then studied them intensively [16, 10, 9], etc. In Lichnerowicz’s ter-
minology, a Jacobi structure is a pair (Λ, E) consisting of a bivector Λ and a
vector field R on M , satisfying certain first order differential equations:

[Λ, R] = 0, [Λ,Λ] = 2R ∧ Λ (1)

(see also below). Lichnerowicz also studied a locally conformal version of the
theory, in which the pairs (Λ, R) are defined only locally and, on the over-
laps, they are related by certain (conformal) transformations [15]; in particular,
Lichnerowicz’s locally conformal Jacobi structures come with an underlying line
bundle arising from the transition functions on the overlaps. This aspect was
further clarified by Marle [18] who uses the term Jacobi bundles for the resulting
line bundles.

Kirillov’s local Lie algebras: Interesting enough, and very much relevant
to the present paper, Lichnerowicz’s Jacobi structures turned out to be “essen-
tially the same” as the local Lie algebras structures (on line bundles) that were
considered by Kirillov already a few years earlier [12]. More precisely, Kirillov
studied Lie algebra structures

{·, ·} : Γ(L)× Γ(L)→ Γ(L)

on the space Γ(L) of sections of a line bundle L over a manifold M , which are
local in the sense that, for u, v ∈ Γ(L) supported in some open U ⊂ M , {u, v}
is supported in U as well. Only later Lichnerowicz remarked [16] that

• the previous equations (1) are equivalent to the condition that the bracket
{·, ·} defined on the space C∞(M) of smooth functions on M by:

{f, g} = 〈df ∧ dg,Λ〉+ fLR(g)− gLR(f) (2)

satisfies the Jacobi identity (where 〈·, ·〉 denotes the pairing between forms
and multi-vectors, and LR denotes the Lie derivative along R).

• Kirillov’s work actually shows that any Lie algebra structure on C∞(M)
which is local must be of this type.

In other words, Lichnerowicz’s Jacobi structures (Λ, R) are the same thing as
Kirillov’s local Lie algebras with trivial underlying line bundle. Moreover, this
extends to the case of arbitrary line bundles, with the conclusion that Lich-
nerowicz’s locally conformal Jacobi structures are the same thing as Kirillov’s
local Lie algebras.
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The line bundle: We will adopt the following terminology: pairs (Λ, R) as
above will be called here Jacobi pairs or a Jacobi structure on the trivial line
bundle, while the term Jacobi structure will be reserved for the resulting locally
conformal theory or, equivalently, for local Lie algebra structures on an arbitrary
line bundle. Hence Jacobi pairs correspond to Jacobi structures with trivial un-
derlying line bundle. Note that this corresponds to the similar terminology from
Contact Geometry, where one talks about contact forms and contact structures
on a manifold M : the later are encoded in contact hyperplanes H ⊂ TM and
come together with the normal line bundle L = TM/H; contact forms corre-
spond to the case when L is the trivial line bundle. Of course, this is more than
an analogy since, as it is already clear from the original work of Lichnerowicz,
we know that

• contact forms are in 1-1 correspondence with non-degenerte Jacobi pairs
(Λ, R) (where non-degeneracy means TM = Λ](T ∗M) ⊕ R · R, Λ] is Λ
interpreted as a linear map T ∗M → TM)

• similarly (and more generally), contact structures are in 1-1 correspon-
dence with non-degenerate Jacobi structures.

Since in the contact case one very often makes the (rather mild) assumption
that the line bundle is trivial, we would like to emphasize here that one of the
points of this paper is that, for general Jacobi structures, it is important to
allow and work with general line bundles. There are at least three reasons:

• the resulting arguments are much more geometric and less computational
(in particular, we invite the reader to compare this paper with [6]).

• the line bundle carries an extra structure (that of a representation) and,
even when the line bundle is trivial as a vector bundle, the extra-structure
is almost never trivial (see the comments of Examples 5 and 6).

• there are interesting contact structures with non-trivial normal line bun-
dle, for instance the manifold of contact elements on an affine space (for
which the name contact structure is due) [1].

Poissonization: Similar to the “symplectization of a contact manifold”[3], and
generalizing it, one can talk about the Poissonization of Jacobi pairs [15, 9],
obtaining a 1-1 correspondence between Jacobi pairs (Λ, E) on M and homoge-
neous Poisson structures on M ×R. This gives rise to the so-called “Poissoniza-
tion trick” for proving results about Jacobi pairs, by moving to the Poisson
world. However, we would like to point out that this is very unsatisfying. On
one hand, the resulting arguments are mainly algebraic, lacking in geometric
insight. On the other hand, since one works explicitly with Jacobi pairs, the
resulting arguments are not only algebraic but also very computational (because
of the reasons mentioned above). One of the points we are trying to make in this
paper is that, by paying enough attention to the line bundle and its structure
(the relationship with the Spencer operator), the arguments become much more
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direct, geometrical, and conceptual (in particular, free of unnecessary compu-
tations).

Integrability: We now return to our historical comments on Jacobi structures.
Following

• Lichnerowicz’s philosophy that the interaction between Jacobi structures
and contact structures is analogous to the one between Poisson and sym-
plectic structures,

• the fact that the global objects underlying (or better: integrating) Poisson
structures are the symplectic groupoids (i.e. Lie groupoids endowed with
a symplectic form “compatible” with the groupoid multiplication)

it was expected that there were a notion of “contact groupoid” that integrates
Jacobi structures. This problem was first solved in the case when the under-
lying bundle was trivial [11, 14]. The outcome seemed, at least at first sight,
very un-natural and certainly unaesthetic (see [11]). The reason is the same as
above: while this case is apparently (!!!) simpler, the structure involved is not
visible, as the line bundle, although trivial as a vector bundle, is not trivial as
a representation, giving rise to a certain mysterious cocycle.

The general case was considered by Dazord in [7] and it turned out to be
much more elegant (geometric and less computational). It is interesting to point
out that Dazord’s motivation for looking at the integrability of Jacobi structures
was very much related to Kirillov’s point of view: they provide an intermediate
step in the process of integrating the local Lie algebra to a Lie group; indeed,
with the contact groupoid at hand, there is a natural notion of Legendrian bi-
sections of the groupoid and they form the desired Lie group.

Jacobi structures and contact groupoids: We now have a closer look at
the process of integrating a Jacobi structure (L, {·, ·}) on a manifold M to a
contact groupoid (Σ,H) (where Σ denotes the Lie groupoid and H the contact
hyperplane). The resulting story is completely similar to that from Poisson
Geometry:

• for any contact groupoid (Σ,H) over M there is an induced Jacobi struc-
ture (L, {·, ·}) on M . Moreover, the infinitesimal counterpart of Σ, i.e.
its Lie algebroid, depends only on the Jacobi structure: it is the first jet
bundle J1L of L with the Lie algebroid bracket expressed in terms of the
bracket {·, ·} of L.

• conversely, starting with a Jacobi structure (L, {·, ·}), one can talk about
the associated Lie algebroid J1L [8]. Hence, to build (Σ,H), one first has
to assume that the algebroid J1L is integrable.

• the integrability problem for the given Jacobi structure becomes: if J1L is
integrable by a Lie groupoid Σ, is there a contact structureH on Σ, making
(Σ,H) into a contact groupoid for which the induced Jacobi structure on
the base is the original one?

4



The proofs of such results are spread over the literature. The most difficult
part (the question above) was treated in [6]. However, most of the arguments
(in particular the entire [6]) are based on the “Poissonization trick”; they are
based on long computations and lack geometric insight. This paper provides
the direct approach.

Spencer operators: We now move to the second part of our title. The classical
Spencer operator associated to a vector bundle E over a manifold M [20] is the
operator

D : Γ(J1E)→ Ω1(M,E)

which controls the sections of J1E which are holonomic, i.e. of type j1(s)
for some s ∈ Γ(E): they are those sections that are zeroes of D. The Spencer
operator that is relevant to this paper is simply the one associated to E = L -the
line bundle underlying a Jacobi structure. Of course, it is not just the operator
D that is important, but also the structure that it comes (and interacts) with-
structure that reflects the fact that we deal with a Jacobi structure and not just
with a line bundle.

This brings us to the notion of Spencer operators. These make sense as soon
as we fix an algebroid A and a representation E of A; they are operators

D : Γ(A)→ Ω1(M,E)

with the same properties as the classical Spencer operator and are compatible
with the Lie brackets involved. If the Lie algebroid A comes from a Lie groupoid
Σ, such Spencer operators are the infinitesimal counterpart of 1-forms on Σ
with coefficients in E, which are compatible with the multiplication (they are
multiplicative); one of the main results of [5, 19] proves an integrability theorem
in this context.

In summary, the main steps for the integration of a Jacobi structure (L, {·, ·})
are: consider the Lie algebroid J1L, note that the classical Spencer operator D
is compatible with the brackets, consider the multiplicative one form integrating
D (on the groupoid Σ integrating J1L) and take its kernel.

The content of this paper: In Section 2 we review some of the basic notions
on contact structures, including the (probably not so well-known) associated
Jacobi bracket. Section 3 is devoted to Jacobi structures and the associated Lie
algebroids. Section 4 indicates the relevance of Spencer operators in the theory
of Jacobi structures and discusses its global counterpart (multiplicative forms
and distributions). Section 5 recalls and discusses contact groupoids. Section
6 uses Spencer operators to show that the base of a contact groupoid carries
an induced Jacobi structure (Theorem 1). Finally, Section 7 takes the reverse
problem of integrating a Jacobi structure to a contact groupoid (Theorem 2).

2. Contact manifolds and their brackets

This section recalls some basic notions on contact manifolds.
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A contact structure (or hyperplane) on a manifold M is a hyperplane
distributionH ⊂ TM which is maximally non-integrable, i.e. it has the property
that the curvature

cH : H×H → L (3)

is non-degenerate. Here, L is the quotient line bundle

L := TM/H

and cH is given at the level of sections by cH(X,Y ) = [X,Y ] mod H.

Definition 1. A Reeb vector field of the contact manifold (M,H) is any vector
field R on M such that

[R,Γ(H)] ⊂ Γ(H).

We denote by XReeb(M,H) the set of Reeb vector fields.

The notion of Reeb vector field also appears in the literature under the name
of contact vector field (e.g. [2]).

Lemma 2.1. XReeb(M,H) is a Lie subalgebra of the Lie algebra X(M) of all
vector fields on M and

X(M) = XReeb(M,H)⊕ Γ(H).

Proof. The first statement follows from the Jacobi identity for the standard
Lie bracket of vector fields. For the second part, if X(M) = XReeb(M,H)+Γ(H),
then non-degeneracy of cH implies that the sum is direct. Let now X ∈ X(M)
be arbitrary. Consider the map

[X,−] : H → L, W 7→ [X,W ] mod H

(a priori, the above formula is defined only on sections, but it is easily seen to be
C∞(M)-linear). Non-degeneracy of cH implies that there exists V ∈ H such that
this map coincides with cH(V,−). This implies that R := X−V ∈ XReeb(M,H)
hence X ∈ XReeb(M,H) + Γ(H).

It is also useful to use the dual point of view on contact structures, i.e. to
view H as the kernel of a 1-form with coefficients in L; this can be realized
tautologically, by reinterpreting the canonical projection from TM to L as a
1-form

θ ∈ Ω1(M,L).

Note that the curvature cH can be written as cH(X,Y ) = θ([X,Y ]). We say
that θ is of contact type. The case in which L is the trivial line bundle gives
rise to the standard notion of contact forms [3]. The previous lemma gives
immediately:

Corollary 2.2. θ restricts to a vector space isomorphism

θ|XReeb(M,H) : XReeb(M,H)
∼→ Γ(L). (4)
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This allows us to transfer the Lie algebra structure of XReeb(M,H) to a Lie
algebra structure on Γ(L), denoted by {·, ·}.

Definition 2. The bracket {·, ·} on Γ(L) is called the Reeb bracket associated
to the contact manifold (M,H).

Next we rewrite Lemma 2.1 in a more convenient form:

Lemma 2.3. The map

X(M) ∼= Γ(L)⊕ Γ(Hom(H, L)), X 7→ (θ(X), θ([·, X])),

is an isomorphism of vector spaces; the induced C∞(M)-module structure on
the right hand side is given by

f · (u, φ) = (fu, φ+ df ⊗ u).

Proof. Lemma 2.1 combined with the isomorphism (4) and the one between
H and Hom(H, L) induced by cH (V 7→ cH(·, V ) = θ([·, V ])) yields the claimed
isomorphism of vector spaces. As for the induced C∞(M)-module structure, if
(u, φ) = (θ(X), θ([·, X])), then

(θ(fX), θ([·, fX])) = (fθ(X), fθ([·, X])− df(·)θ(X)) = (fu, fφ+ df ⊗ u),

thus completing the proof.

Remark 1. For any vector bundle E over M , the bundle of first jets of sections
of E, denoted by J1E, fits into a short exact sequence of vector bundles over
M :

0→ Hom(TM,E)
i→ J1E

pr→ E → 0,

where pr is the canonical projection and i is determined by

i(df ⊗ u) = fj1(u)− j1(fu).

Passing to sections, the resulting sequence has a canonical splitting (u 7→ j1(u));
hence one obtains a decomposition

Γ(J1E) ∼= Γ(Hom(TM,E))⊕ Γ(E), (5)

which is henceforth referred to as the Spencer decomposition. Note that the
induced C∞(M)-module structure on the right hand side is given by precisely
the same formula as in Lemma 2.3. The striking similarity between the two is
clarified in the statement of Theorem 1 of section 6.

The notions introduced thus far allow to construct further important geo-
metric objects associated to contact structures. Firstly, surjectivity of (4) means
that for any section u ∈ Γ(L), there exists a unique vector field Ru ∈ X(M)
with the property that

θ(Ru) = u and θ([Ru, X]) = 0 for all X ∈ Γ(H).
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For u ∈ Γ(L), Ru is called the Reeb vector field associated to u. The
characterizing property for the Reeb bracket {·, ·} is

[Ru, Rv] = R{u,v} for all u, v ∈ Γ(L).

Applying θ, one obtains the explicit formula

{u, v} = θ([Ru, Rv])

relating the Reeb bracket with the 1-form θ and the Reeb vector fields. Lemma
2.3 implies that, for f ∈ C∞(M), u ∈ Γ(L),

Rfu = fRu + b(df ⊗ u),

where b : Hom(H, L) → H is the isomorphism induced by cH (cH(V,−) ∈
Hom(H, L) 7→ V ∈ H). Note that the inverse of the isomorphism defined in
Lemma 2.3 sends (u, φ) to Ru − b(φ).

Example 1. When L is the trivial bundle the Reeb vector field associated to
the constant function 1 is the standard Reeb vector field R associated to the
contact form θ [3]; it is uniquely determined by

θ(R) = 1, iR(dθ) = 0.

The other Reeb vector fields correspond to arbitrary f ∈ C∞(M):

Rf = fR+ b(df).

Note that, in this case, b : H∗ → H is the isomorphism induced by dθ. The
Reeb bracket becomes a bracket on C∞(M). To write down the formula more
explicitly, one uses b to reinterpret dθ|H as an element in Λ2H ⊂ Λ2TM , i.e. as
a bivector Λ ∈ X2(M). The bracket becomes:

{f, g} = Λ(df, dg) +R(f)g − fR(g). (6)

3. Jacobi structures and the associated Lie algebroids

In this section we recall the notion of Jacobi structure, we discuss the as-
sociated Lie algebroid and then we conclude with the natural representation of
the Lie algebroid on the line bundle (to be exploited in the later sections).

As mentioned in the introduction, there are various ways to look at Jacobi
structures. We follow here Kirillov [12] (who uses the term local Lie algebra)
and Marle [18] (who uses the term Jacobi bundle). For the equivalence with
Lichnerowicz’s locally conformal Jacobi structures [15] we refer to [10, 9].

Definition 3. A Jacobi structure on a manifold M is a pair (L, {·, ·}) con-
sisting of a line bundle L→M and a Lie bracket {·, ·} on the space of sections
Γ(L), with the property that it is local in the sense that

supp({u, v}) ⊂ supp(u) ∩ supp(v) ∀ u, v ∈ Γ(L).
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Example 2. When L is the trivial bundle Kirillov proved in [12] that the Jacobi
bracket is determined by a pair (Λ, E) consisting of a bivector Λ ∈ X2(M) and
a vector field R ∈ X(M), satisfying

[Λ,Λ] = 2R ∧ Λ, [Λ, R] = 0.

Any such pair induces the bracket given by (6) on Γ(L) = C∞(M) (and con-
versely). Such a pair (Λ, R) will be called a Jacobi pair; they correspond to
the Jacobi structures of Lichnerowicz [15].

Example 3. The previous section shows that any contact structure has an
underlying Jacobi structure. Actually, as in the case of symplectic and Poisson
structures, contact structures can be seen as “non-degenerate Jacobi structures”.

Next, we introduce the Lie algebroid associated to a Jacobi structure which
was first defined in [8].

Proposition 3.1. For any Jacobi structure (L, {·, ·}):

1. There is a unique vector bundle morphism ρ : J1L → TM such that, for
all u, v ∈ Γ(L), f ∈ C∞(M),

{u, fv} = f{u, v}+ Lρ(j1u)(f)v.

2. There is a unique Lie algebroid structure on J1L with anchor ρ and whose
Lie bracket [·, ·] on Γ(J1L) satisfies

[j1u, j1v] = j1{u, v}, ∀u, v ∈ Γ(L) (7)

Recall that part 2 means that [·, ·] makes Γ(J1L) into a Lie algebra and that
it satisfies the Leibniz identity

[α, fβ] = f [α, β] + Lρ(α)(f)β, α, β ∈ Γ(J1L), f ∈ C∞(M).

Proof. For part 1, the conditions in the statement can be rewritten using the
Spencer decomposition (5) for Γ(J1L). Giving a bundle map ρ : J1L→ TM is
equivalent to giving a pair of maps

ρ1 : Γ(L)→ X(M), ρ2 : Hom(TM,L)→ TM,

where ρ2 is a vector bundle map, ρ1 is linear and they are related by

ρ1(fu) = fρ1(u)− ρ2(df ⊗ u). (8)

Note that ρ1 = ρ ◦ j1; hence the condition in the statement yields the following
for ρ1:

{u, fv} = f{u, v}+ Lρ1(u)(f)v. (9)

Equations (8) and (9) can be used to define uniquely ρ1 and ρ2 (hence also ρ)
as follows. The idea is to use a result of Kirillov [12] which says that {·, ·} must

9



be a differential operator of order at most one in each argument. Recall that a
differential operator of order at most one P : Γ(E) → Γ(F ), between sections
of vector bundles, has a symbol

σP ∈ Γ(TM ⊗Hom(E,F ))

uniquely determined by the property:

P (fu) = fP (u) + σP (df)(u), ∀u ∈ Γ(E), f ∈ C∞(M).

When E = F = L is a line bundle, Hom(L,L) is trivial and therefore σP ∈
X(M). The defining equations (9) and (8) can be interpreted as saying that
ρ1(u) is the symbol of the operator {u, ·} and that ρ2 is minus the symbol of
ρ1. Hence their existence follows from Kirillov’s result; uniqueness is clear.

For part 2, first observe that the condition on [·, ·], the Leibniz identity and
the fact that Γ(J1L) is generated as a C∞(M)-module by elements of type j1(u),
imply the uniqueness of the bracket, and also indicate the actual formula for it.
To see that the resulting bracket is well-defined, one can for instance write [·, ·]
explicitly using the Spencer decomposition (5); alternatively, formula (7) above
can be taken as the definition of the bracket. Either way, [·, ·] clearly satisfies
the Leibniz identity. To prove the Jacobi identity, first note that ρ induces a Lie
algebra map at the level of sections. Indeed, the expression ρ([α, β])−[ρ(α), ρ(β)]
is easily seen to be C∞(M)-linear on α, β ∈ Γ(J1L); hence it may be assumed
that α = j1u, β = j1v with u, v ∈ Γ(L) case in which the expression becomes

ρ1(u, v)− [ρ1(u), ρ1(v)].

Recall that ρ1(u) was the symbol of Pu := {u, ·}. Also, the Jacobi identity for
{·, ·} means that P{u,v} is the commutator [Pu, Pv]; hence, passing to symbols,
the previous expression vanishes. In conclusion, ρ is a Lie algebra morphism.
Using this and the Leibniz identity, a simple computation shows that the Jacobi-
ator of [·, ·] is C∞(M)-linear in all arguments. Hence, again, it suffices to check
the Jacobi identity on elements of type j1(u), which follows from the Jacobi
identity for {·, ·}.

Example 4. Continuing example 2, i.e. when L is the trivial line bundle and we
deal with a Jacobi pair (Λ, R), the Lie algebroid J1L is isomorphic to T ∗M⊕R;
working out the Lie bracket one finds the long formulas of [11].

Next, we show that L has a natural structure of representation of the Lie
algebroid J1L, i.e. it comes with a bilinear map

∇ : Γ(J1L)× Γ(L)→ Γ(L), (α, u) 7→ ∇α(u),

satisfying the usual connection-type identities (see e.g. [4]) + the flatness con-
dition

∇[u,v] = ∇u∇v −∇v∇u.
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One thinks of ∇ as “infinitesimal action of J1L on L”.
The next lemma is proven by arguments similar to (but simpler than) those

of proof of Proposition 3.1, part 2.

Lemma 3.2. There is a unique action ∇ of J1L on L satisfying

∇j1(u)(v) = {u, v}, ∀u, v ∈ Γ(L).

Example 5. When L is trivial (example 4) the action is still non-trivial: it
actually encodes R! Indeed, ∇j1f (1) = −R(f).

4. Jacobi structures and the associated Spencer operator

In this section we recall the definition of Spencer operators and indicate their
fundamental role in the study of Jacobi structures (Proposition 4.1). Then we
move to their global counterpart: multiplicative forms and distributions on
groupoids [5, 19].

The classical Spencer operator associated to a vector bundle L [20],

D : Γ(J1L)→ Ω1(M,L), (X,α) 7→ DX(α) = D(α)(X), (10)

is the canonical projection on the first factor of the Spencer decomposition (5).

Definition 4. Let A be a Lie algebroid over M , let E be a representation of A
with associated operator denoted by ∇, and let l : A→ E be a surjective vector
bundle map. A Spencer operator (on the Lie algebroid A) relative to l
is a bilinear operator

D : X(M)× Γ(A)→ Γ(E), (X,α) 7→ DX(α)

which is C∞(M)-linear in X, satisfies the Leibniz identity relative to l:

DX(fα) = fDX(α) + LX(f)l(α),

and the following two compatibility conditions:

Dρ(α)(α
′) = ∇α′(l(α)) + l([α, α′]) (11)

DX [α, α′] = ∇α(DXα
′)−D[ρ(α),X]α

′ −∇α′(DXα) +D[ρ(α′),X]α, (12)

for all α, α′ ∈ Γ(A), X ∈ X(M).

It is easy to see that given a Jacobi structure (L, {·, ·}) on M , the classical
Spencer operator (10) becomes a Spencer operator on the Lie algebroid J1L
associated to (L, {·, ·}). Actually this gives a full characterization of Jacobi
structures:

Proposition 4.1. Given a line bundle L over a manifold M , there is a canon-
ical, bijective correspondence between:
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1. Jacobi structures with underlying line bundle L,

2. Lie algebroid structures on J1L with the property that the classical Spencer
operator is a Spencer operator on J1L relative to the canonical projection
pr : J1L→ L.

Proof. We still have to show how the Lie algebroid structure on J1L induces
the Jacobi bracket {·, ·} on Γ(L). We simply define

{u, v} := pr([j1u, j1v]).

Clearly this is antisymmetric and local in u and v. Since D vanishes precisely
on holonomic sections of J1L (i.e. of type j1u), equation (12) implies that all
the expressions of type [j1u, j1v] must be holonomic, hence

[j1u, j1v] = j1(pr([j1u, j1v])) = j1{u, v}.

The Jacobi identity for {·, ·} follows from that of [·, ·]. Moreover, comparing the
formulas, we see that the two constructions are inverse to each other.

Next we look at the global counterpart of Spencer operators (to be applied
in Section 7 to obtain the contact groupoids integrating Jacobi structures). We
briefly recall some terminology on Lie groupoids [4, 17]. We fix a Lie groupoid
Σ over M ; recall that Σ denotes the manifold of arrows and M the manifold
of objects, s, t : Σ → M denote the source and the target map, respectively,
and m(g, h) = gh the multiplication. The right translation rg induced by an
arrow g : x → y is a diffeomorphism from s−1(y) to s−1(x); by differentiation,
it induces:

rg : T saΣ→ T sagΣ, (13)

where T sΣ = Ker(ds) stands for the bundle of vectors tangent to the s-fibers.
Recall that the Lie algebroid A = A(Σ) associated to Σ is, as a vector bundle
over M , the restriction of T sΣ to M , where M sits inside Σ as units. Using
right translations, any α ∈ Γ(A) induces a right invariant vector field (tangent
to the s-fibers), αr ∈ Xinv(Σ):

αr(g) = rg(αt(g))). (14)

This induces an isomorphism (and then the Lie bracket on Γ(A)):

Γ(A)
∼→ Xinv(Σ), α 7→ αr.

To discuss multiplicative structures, we use the Lie groupoid TΣ over TM
whose structure maps are just the differentials of the structure maps of Σ.

Definition 5. A (constant rank, smooth) distribution H ⊂ TΣ is called mul-
tiplicative if H is a Lie subgroupoid of TΣ with the same base TM .
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For a multiplicative distribution H one defines its s-vertical part:

Hs := H ∩ T sΣ,

Note that, since H is multiplicative, 0g ∈ H and rg(Xa) = (dm)a,g(Xa, 0g) for
all Xa ∈ T saΣ, it follows that Hs is invariant under the right translations (13):

rg(Hsa) = Hsag. (15)

Also, since ds : H → TM is surjective, for every X ∈ TΣ one finds V ∈ H such
that ds(X) = ds(V ), therefore H is transversal to the s-fibers:

TΣ = T sΣ +H. (16)

Similar statements arise using left translations acting on the spaces T tΣ and
Ht.

One also has a dual point of view on multiplicative distributions, obtained
by using forms, when (as in the case of contact structures) one reinterprets the
projection modulo H as a 1-form. However, in this setting, the quotient line
bundle L̃ := TΣ/H is determined by its restriction to M :

L := L̃|M . (17)

Indeed, (16) shows that L̃ = T sΣ/Hs and then (15) implies that the right
translations induce isomorphisms rg : L̃a → L̃ag whenever ag is defined, in

particular, rg : Lt(g) → L̃g. In fact:

Lemma 4.2. L is a representation of Σ and the right translations induce an
isomorphism of vector bundles over Σ

r : t∗L
∼→ L̃, t∗u 7→ ur.

Proof. For any arrow g : x→ y, right translations induce a map rg : Ly
∼→ L̃g;

similarly, one has that left translations induce an isomorphism lg : Lx
∼→ L̃g.

Combining the two, one obtains that g induces an isomorphism Lx → Ly, v 7→
g · v, which satisfy the usual identity for an action and vary smoothly w.r.t g
and v.

Henceforth, the canonical projection modulo H is interpreted as a 1-form

θ ∈ Ω1(Σ, t∗L). (18)

For forms with values in a representation, one can talk about their multiplica-
tivity:

Definition 6. Let Σ be a Lie groupoid and E a representation of Σ. An E-
valued multiplicaitve one form is any form η ∈ Ω1(Σ; t∗E) satisfying

(m∗η)(g,h) = pr∗1η + g · (pr∗2η), (19)

for all (g, h) in the domain Σ2 of the multiplication m, where pr1, pr2 : Σ2 → Σ
denote the canonical projections. We say that η is regular if it is surjective.
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It is clear that the kernel of any regular multiplicative form is a a multiplica-
tive distribution. Conversely, a rather straightforward computation shows that
the form (18) associated to a multiplicative distribution is multiplicative.

Returning to the infitesimal picture, the key remark is that any multiplicative
form on a groupoid induces a Spencer operator (see Definition 4) on the Lie
algebroid of the groupoid:

Proposition 4.3. Let Σ be a Lie groupoid over M with Lie algebroid A. Then
any multiplicative distribution H ⊂ TΣ induces:

• the vector bundle L which is the restriction to M of T sΣ/Hs;

• the vector bundle morphism

l : A→ L, l(α) = α mod Hs;

• a Spencer operator D on the Lie algebroid A relative to l:

DX(α) = [X̃, αr]|M mod Hs. (20)

Here, for X ∈ X(M), X̃ ∈ Γ(H) is any extension of X to Σ (where

M
u
↪→ Σ as units) with the property that dgs(X̃g) = Xs(g), and αr is given

by (14) .

This follows by a lengthy but straightforward computation [19, 5]. Its con-
verse, an integrability theorem (for Spencer operators), is less straightforward
and is one of the main results of [19, 5]:

Theorem 4.4. For Σ s-simply connected one has a 1-1 correspondence between

• multiplicative distributions H on Σ;

• Spencer operators on the Lie algebroid A relative to some map l : A� E.

The correspondence is given by (20).

The relevant Spencer operator of a Jacobi structure (L, {·, ·}) on M is the
classical Spencer operator associated to the line bundle L. Theorem 2 of section
3 states that the multiplicative distribution H ⊂ TΣ integrating the classical
Spencer operator makes the pair (Σ,H) into a contact groupoid in the sense of
the next section.

5. Contact groupoids

In this section we recall the notion of contact groupoid [7, 8], the dual point
of view (using multiplicative forms) and we discuss the first consequences of the
compatibility of the contact structure with the groupoid structure.
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Definition 7. A contact groupoid over M is a pair (Σ,H) consisting of a
Lie groupoid Σ over M and contact structure H on Σ, with the property that
H is multiplicative in the sense of definition 5.

Using the previous section, since H is multiplicative:

• the line bundle TΣ/H is determined by its restriction L to M . Moreover
L is a representation of Σ;

• contact groupoids can also be described as groupoids Σ endowed with a one
dimensional representation L and a multiplicative one form θ ∈ Ω1(Σ, t∗L)
which is of contact type.

Example 6. When L is trivial as a line bundle, the action of Σ on L may
still be non-trivial and it will be encoded in a 1-cocycle r on Σ. Hence, in
this case, the structure of contact groupoid is encoded in a contact form θ and
a 1-cocycle r; working out the multiplicativity conditions, we find the (rather
puzzling) equation that is taken as an axiom in [11].

Recall that the contact orthogonal Fcx ⊂ Hx of a subspace Fx ⊂ Hx is the
orthogonal w.r.t. the non-degenerate pairing (3) induced by H. A submanifold
N ⊂M is Legendrian if TN ⊂ H|N and (TxN)c = TxN , for all x ∈ N.

Proposition 5.1. In a contact groupoid (Σ,H) over M :

1. The unit map u : M ↪→ Σ is a Legendrian embedding.

2. Hs = (Ht)c.

Denote by Xinv
Reeb(Σ,H) ⊂ X(Σ) the subpace defined by

Xinv
Reeb(Σ,H) := XReeb(Σ,H) ∩ Xinv(Σ).

Multiplicativity of θ, Corollary 2.2 and Lemma 4.2 imply the following result.

Corollary 5.2. The isomorphism θ : XReeb(Σ,H)
∼→ Γ(t∗L) of Corollary 2.2

is invariant under right translation (13), i.e. θ(r(v)) = θ(v). In particular, θ
restricts to a vector space isomorphism

θ|Xinv
Reeb(Σ,H) : Xinv

Reeb(Σ,H)
∼→ Γ(L),

with inverse u 7→ Rur .

To prove Proposition 5.1, we need the following:

Lemma 5.3. Let θ ∈ Ω1(Σ, t∗E) be a multiplicative form with values in some
representation E of Σ. Then, for any X ∈ Γ(ker θ) and any αr ∈ Xinv(Σ),

θg([α
r, X]) = θt(g)([α

r, X̃]), (21)

where X̃ ∈ Γ(ker θ) is any other vector field with the property that dt(X̃) =
dt(X).
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Proof. For any integer k and any section α of the Lie algebroid of Σ, consider

Lα : Ωk(Σ, t∗E)→ Σk(G, s∗E),

(Lαθ)g :=
d

dε

∣∣
ε=0

(ϕεαr (g))−1 · (ϕεαr )∗θ|ϕεαr (g)

where ϕεαr : Σ → Σ is the flow of αr. In general (cf. e.g. Lemma 3.8 of [5] or
[19]),

[iX , Lα](θ)g = g−1 · θg([X,αr ]).

θg([X,α
r]) = g · Lα(θ)g(X).

Hence, to prove (21), it suffices to show that the last expression does not
depend on g and X, but only on t(g) and dt(X). For that, we remark that:

g · Lα(θ)g(X) =
d

dε

∣∣
ε=0

(ϕεα(t(g)))−1 · θ(dϕεα(dt(X))),

where ϕα : M → Σ is the restriction of ϕαr to M . Indeed,

g · (Lαθ)(X) = g · d
dε

∣∣
ε=0

(ϕεαr (g))−1 · (ϕεαr )∗θ|ϕεαr (g)(X)

= g · d
dε

∣∣
ε=0

(ϕεα(t(g)) · g)−1 · (θ(dm(dϕεα(dt(X)), X))

= g · d
dε

∣∣
ε=0

g−1 · (ϕεα(t(g)))−1 · (θ(dm(dϕεα(dt(X)), X))

=
d

dε

∣∣
ε=0

(ϕεα(t(g)))−1 · (θ(dϕεα(dt(X)))− ϕεα(t(g)) · θ(X))

=
d

dε

∣∣
ε=0

(ϕεα(t(g)))−1 · θ(dϕεα(dt(X))),

where it is used that the flow of a right invariant vector field αr is given by
ϕεαr (g) = ϕεα(t(g)) · g and therefore for a fixed ε, dϕεαr = dm(dϕεα ◦ dt, id).

Proof (of Proposition 5.1). For item 1, to show that TM ⊂ TM c let
X,Y ∈ X(M), and choose any t-projectable extensions X̃, Ỹ ∈ Γ(H) of X,Y
respectively with the property X̃|M = X, Ỹ |M = Y. This can be done because
for multiplicative distributions H the restriction of dt : TΣ → TM to H is
surjective. With this

cH(X,Y )(1x) = [X̃, Ỹ ](1x) mod H = [X,Y ](x) mod H = 0,

where the last equality holds since [X,Y ] ∈ TM ⊂ H. For the other inclusion
split Hx, x ∈M , as the direct sum TxM ⊕Hsx and prove that αx ∈ TxM c only
if αx ∈ TxM . If not, without loss of generality αx ∈ Hs, and Lemma 5.3 shows
that

cH(αx, Xx) = cH(αx, dt(X)) = 0, ∀X ∈ H,
which only happens if αx = 0 as cH is non-degenerate. This last equation shows
that TM c = TM . A similar computation shows that Ht ⊂ (Hs)c. For the other
inclusion note that as TM is Legendrian then 2rkTM = rkH on the one hand,
and on the other rkH = rkTM + rkHs = rkTM + rkHt. A simple dimension
count shows that Ht = (Hs)c.
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6. From contact groupoids to Jacobi manifolds

In this section we explain the relevance of Spencer operators to the study of
Jacobi structures (relevance that was already indicated in Proposition 4.1). For
clarity, recall that for a contact groupoid (Σ,H) we have:

• the (normal) line bundle L̃ of the contact structure, L̃ = TΣ/H;

• the restriction L of L̃ to M , which is a representation of Σ;

• the vector bundle isomorphism r : t∗L → L̃, t∗(u) 7→ ur induced by right
translations (13) on Σ (Lemma 4.2);

• the isomorphism θ : Xinv
Reeb(Σ,H) → Γ(L), whose inverse associates to u

the Reeb vector field Rur of the coresponding ur ∈ Γ(L̃) (Corollary 5.2);

• the Lie algebroid A of Σ and the Spencer operator D : Γ(A)→ Ω1(M,L)
associated to H (Proposition 4.3).

Theorem 1. Let (Σ,H) be a contact groupoid over M . Then:

1. there exists a unique Jacobi structure (L, {·, ·}) over M with the property
that the target map t : Σ → M is a Jacobi map with bundle component
r : t∗L ' L̃,

2. the Lie algebroid A of Σ is isomorphic to the Lie algebroid associated to
(M,L, {·, ·}), via the Lie algebroid isomorphism

Φ : J1L→ A, Φ(j1u) = Rur |M ,

3. after the identification of A with J1L, the Spencer operator D associated
to H becomes the classical Spencer operator (10).

In the previous statement, a map φ : (N, L̄)→ (M,L) between Jacobi mani-
folds is said to be Jacobi with bundle component F : φ∗L→ L̄, if F is a vector
bundle isomorphism and φ : Γ(L)→ Γ(L̄), u 7→ F ◦ φ∗u is a Lie algebra map.

Point 3 combined with the fact that Jacobi structures are encoded in Lie alge-
broid structures on J1L for which the classical Spencer operator is a Spencer op-
erator (Proposition 4.1) reveal the appearance of the Jacobi structure (L, {·, ·}).

Proof. We first show that A is isomorphic to J1L. Recall from Lemma 2.1 that
X(Σ) can be written as the direct sum XReeb(Σ,H) ⊕ Γ(H). When restricting
this identification to right invariant vector fields, we obtain that Xinv(Σ) =
Xinv

Reeb(Σ,H) ⊕ Γinv(H),Γinv(H) := Γ(H) ∩ Xinv(Σ). With this, we claim that
the right translations induce an identification

Γ(A) ' Γ(L)⊕ Γ(Hs|M ) ' Γ(L)⊕ Ω1(M,L). (22)

The first identification uses Corollary 5.2 and the fact that right translation
gives the identification Γinv(H) ' Γ(Hs|M ). For the second identification, we
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use the identification dt : (H/Ht)|M ' TM (since H is multiplicative hence
t-transversal) and note that the non-degenerate curvature map (3) induces an
isomorphism

Hs|M → Hom(TM,L), V 7→ cH(V, ·). (23)

That (23) is an isomorphism is a consequence of (Hs)c = Ht (Proposition 5.1).
The decomposition (22) can be shown to hold directly as follows. That the sum
is direct is clear. Let α ∈ Γ(A) arbitrary, and consider the Spencer operator D
associated to H (as in Proposition 4.3). Non-degeneracy of (23) implies that
there exists V ∈ Γ(Hs|M ) such that the map D(α) : TM → L coincides with
cH(V,−) : TM → L. As a consequence, Rr := αr − V r ∈ Xinv

Reeb(Σ,H): indeed,
by Lemma 5.3, for any X ∈ Γ(H),

θg([R
r, X]) = θt(g)([R

r, X̃]) = cH(V, dt(X))−Ddt(X)(α) = 0

where X̃ ∈ Γ(H) is any s-projectable vector extending u∗(dt(X)). This implies
that αr ∈ Xinv

Reeb(Σ,H) + Γinv(H) hence α ∈ Γ(L) + Γ(Hs|M ). Note that this
also shows that α ∈ Γ(A) belongs to Γ(L) if and only if D(α) = 0. Arguments
similar to those in the proof of Lemma 2.3 show that the C∞(M)-structure
of Γ(A) is the one given by the Spencer decomposition (5) of Γ(J1L), which
implies that A is isomorphic to J1L as vector bundles. Hence, A induces a Lie
algebroid structure on J1L.

As for the proof of item 3, note that Hs|M is identified via the map (23) with
the linear subspace T ∗M⊗L ⊂ J1L and therefore, the quotient map θ|A : A→ L
is identified with the projection map pr : J1L → L. On the other hand, and
having in mind the identification (22), for (u, ω) ∈ Γ(L)⊕ Ω1(M,L) ' Γ(J1L),
and D the Spencer operator associated to H, one obtains that

DX(u, ω) = θ([X̃, Rur + c−1
H (ω)r]|M )

= θ([X̃, c−1
H (ω)r]|M ) = cH(X, c−1

H (ω)) = ω(X),

where the second equality uses the fact that [XReeb(Σ,H),H] ⊂ H. This shows
that D coincides with the classical Spencer operator (10). With this and Propo-
sition 4.1, we get the desired Jacobi bracket:

{u, v} := pr([j1u, j1v]) = θ([Rur , Rvr ]|M ), u, v ∈ Γ(L)

where, in the second equality, Rur ≡ u ∈ Γ(L) ⊂ Γ(A) corresponds to j1u ∈
Γ(J1L) in the Spencer decomposition (5). This concludes the proof of item 2.

To conclude the proof of item 1, note that the map Γ(L)→ Γ(L̃), r : u 7→ ur

is a Lie algebra map. This is clear as

{ur, vr}Σ = [Rur , Rvr ] mod H = {u, v}r.

Uniqueness follows from injectivity of the map r : u 7→ ur, because this implies
that there exists a unique bracket on Γ(L) making r a Lie algebra morphism.
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Remark 2. For the Spencer operator D associated to the contact distribution
H, denote by Γ(A,D) ⊂ Γ(A) the space of sections α with the property that
D(α) = 0. The previous proof shows that a section α belongs to Γ(A,D) iff
αr belongs to Xinv

Reeb(Σ,H). Moreover, Γ(A,D) is a Lie subalgebra of Γ(A), the
map θ : Γ(A,D) → Γ(L) from Corollary 5.2 is a Lie algebra isomorphism, and
Γ(A) can be written as the direct sum

Γ(A) ' Γ(A,D)⊕ Γ(Hs|M ).

7. From Jacobi manifolds to contact groupoids

Finally, we discuss the integrability of Jacobi manifolds. Again, the main
result was known in the case of trivial line bundles [6] but, even then, the
approach was very computational and indirect (via Poissonization). We urge
the reader to compare this section with [6]. And here is the main result:

Theorem 2. Let (M,L, {·, ·}) be a Jacobi manifold. If the associated Lie alge-
broid J1L is integrable, then the source 1-connected groupoid Σ integrating J1L
has a unique multiplicative distribution H ⊂ TΣ with the properties that

1. (Σ,H) is a contact groupoid,

2. the Jacobi structure induced by (Σ,H) on M (cf. Theorem 1) coincides
with the original Jacobi structure.

Combining Theorems 1 and 2, one concludes that Jacobi structures on a
manifold M whose associated Lie algebroid J1L is integrable are in 1-1 corre-
spondence with contact groupoids with source 1-connected fibers.

Proof (of Theorem 2). Let Σ be the s-simply connected Lie groupoid inte-
grating J1L. Using Theorem 4.4, for proving that the Lie groupoid integrating
J1L is contact, it suffices to show that the multiplicative distribution H ⊂ TΣ,
whose corresponding Spencer operator D is the classical Spencer operator (10),
is contact. That H is of codimension 1 is clear as it is transversal to the s-fibers
(equation (16)) and L = TΣs/Hs|M is one dimensional. To prove that H is
maximally non-integrable, note that as the map l : J1L → L from Proposition
4.3 is the projection map, then

Hs|M = ker(pr : J1L→ L) = Hom(TM,L).

With this, if αr ∈ Γinv(H), by Lemma 5.3

[αr, X]g mod H = [αr, X]t(g) mod H = Ddt(X)(α)(t(g)),

for X ∈ Γ(H) any s-projectable vector field extending u∗(dt(X)), and g ∈
Σ. Because D is just the projection of Γ(J1L) to Ω1(M,L) on the Spencer
decomposition (5), and ds, dt : H → TM are fiber-wise surjective (equation
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(16)), then for g ∈ Σ on which αr(g) 6= 0 (hence 0 6= α : Tt(g)M → Lt(g)), one
can always find X so that

[αr, X]g mod H = Ddt(X)(α)(t(g)) = α(dt(Xg)) 6= 0.

This proves that (Σ,H) is a contact groupoid.

To show the second part of the theorem, denote by {{·, ·}} the Jacobi bracket
induced by the contact groupoid (Σ,H). By the proof of Theorem 1, one has
that

{{u, v}} = pr([j1u, j1v])

for any u, v ∈ Γ(L). On the other hand, formula (11) for the representation
∇ in terms of the Spencer operator D says that ∇j1u(v) = pr([j1u, j1v]), and
Lemma 3.2 writes it as ∇j1u(v) = {u, v}. Therefore {·, ·} = {{·, ·}}.

To conclude the proof of the Theorem, it remains to show the uniqueness of
H. But this is immediate by item 3 1 and Theorem 4.4, as the Spencer operator
associated to such an H must be the classical Spencer operator.
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