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AUTOMORPHISMS OF NONDEGENERATE CR QUADRICS AND
SIEGEL DOMAINS. EXPLICIT DESCRIPTION

VLADIMIR V. EZOV AND GERD SCHMALZ

ABSTRACT. In this paper we give the complete explicit description of the holomor-
phic automorphisms of any nondegenerate CR-quadric Q of arbitrary CR-dimension
and codimension. In particular, the obtained formula describes the automorphisms
of Siegel domains of second kind with Levi-nondegenerate Shilov-boundary.

We introduce a family of k-dimensional chains (k = codim @), the analogues of
one-dimensional Chern-Moser chains for hyperquadrics.

We alse analyse some different types of rigid quadrics and give a simple proof
of Beloshapka’s theorem on the description of the infinitesimal automorphisms of
nondegenerate quadrics.

1. INTRODUCTION

Let z = (2%,...,2"), w = (w',...,w") be coordinates in C***, k > 1, and

(z,2)!

be a Ct-valued Hermitian form on C".

Consider the cone C = convex hull{{z,z) : z € C*}. Suppose C is an acute cone,
i.e., C does not contain any entire line. This property takes place if and only if the
form (z,z) is positive definite, i.e., in appropriate coordinates all the forms (z,2)*
are positive definite.

Let V O C be an open acute cone in R*. The domain

Qv ={(z,w) € C**  Imw — (z,2) € V}

is called Siegel domain of the second kind, associated with the cone V. (For
simplicity we shall call them Siegel domains.)

Siegel domains were introduced by Pyatetskii-Shapiro [12] for the study of automor-
phic forms in several variables, homogeneous and symmetric domains. In particular,
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Pyatetskii-Shapiro constructed an example of a Siegel domain which is homogeneous
but not symmetric. In general, a Siegel domain v is not necessarily homogeneous.
Kaup, Matsushima and Ochiai [8] proved that the infinitesimal automorphisms of
Siegel domains are quadratic vector fields and that the automorphisms of § extend
to birational maps of C*+*.
Henkin and Tumanov (7] established a natural correspondence between Aut Q¢
and the group of CR automorphisms of its Shilov boundary, the quadric

Q = {(z,w) e C"** : Imw = (z,2)}.

Under the assumption that the forms (z,z)*, s = 1, ..., k, are linearly independent
they proved that any ¢ € Aut )¢ extends to a biholomorphic automorphism of @ and,
conversely, any locally defined CR automorphism of ) extends to an automorphism
of the entire domain Q2 and, in particular to a global automorphism of Q.

Considering the group Aut Q of an arbitrary Hermitian quadric @, Beloshapka [2]
found a necessary and sufficient condition for (z, z) (not necessarily positive definite)
so that Aut Q) is a finite dimensional Lie group:

i.) The forms (-,-)*, » = 1,...,k are linearly independent. Geometrically this
condition means that C' has nonempty interior.

i1.) The form (z,z) does not have an annihilator, i.e., the condition (a, z) = 0 for
all z € C" implies that ¢ = 0.

Quadrics ¢ which satisfy these conditions are called nondegenerate.

The nondegenerate quadrics which represent Shilov boundaries of Siegel domains
should just satisfy condition i.) because no positive definite form (z, z) has an anni-
hilator.

For nondegenerate quadrics Tumanov [14] proved that their automorphisms are
rational and extend to birational automorphisms of C**.

In this paper we obtain an explicit formula for the automorphisms of arbitrary
nondegenerate quadrics, in particular, for the automorphisms of Siegel domains of
second kind with nondegenerate Shilov boundary.

The authors express their gratitude to I. Lieb for useful remarks and inspiration.

2. INFINITESIMAL AUTOMORPHISMS OF CR QUADRICS

The quadric @ : Imw = (z,z) is a homogeneous manifold. The group H of
Heisenberg translations (z,w) — (z + p,w + q + 2i{z, p}), (p,q) € Q acts transitively
on ). Thus, Aut @} splits into the semidirect product

Alth = H Allt[) Q,

where Autg @ = {¢ € Aut @ : #(0) = 0} is the isotropy group of the origin. Auty @
also splits:

Auty Q = L x Autgiq @,
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where Autpia@ = {¢ € AuteQ : d¢(0)|T§Q = id}, and L is the group of lin-
ear transformations (z,w) — (Cz,pw) (C € GL(n,C),p € GL(k,R)) such that
(Cz,Cz) = p(z, 2).

Hence,

(1) Ath =Hwx L Autn‘id Q

Beloshapka [1], [3] showed that any ¢ € Autgiq @ lies in a 1-parametric subgroup
and explicitly described the Lie algebra g of Aut (). Below, we suggest_a simple proof
of this result which is based on elementary properties of the Fourier transformation.

The splitting (1) implies that g can be represented as sum

g=9-DgoD g4,

where g_, go, g+ are the Lie algebras of H, L, Autg 4, respectively.

Let ®; = (Fi(z,w),G:(z,w))} be a 1-parametric subgroup of Aut (), where F; and
G, are the z and w components of ®,.

The correspondent element y of g can be represented by a holomorphic vector field

_Zn:fJ_Q_+igl_é_’_
XZ &g T 59 e

where
. dF? . dGE
p==t L P=
dt|,_,’ dt |,_,
The condition x € g is equivalent to the identity
(2) Re X(Imw - (21 Z))IImw:(z.z} =0.

Thus, to describe g one has to solve (2).

Theorem 1. (Beloshapka) The algebra g_ consists of the vector fields
o=+ Y+ e ) )5
o 97 o L owd’

with p € C*, q € R*.
The algebra gy consists of the vector fields

Yo = Zn:(Xz)j a. + zk:(sw)j—a—.

‘ = 0z~ ow?’
where X € gl{n,C), s € al(k,R) satisfy the condition 2Re(Xz,z) = s(z, z).
The algebra g, consists of the vector fields
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n

k
X4+ = j.Z;(aw-f-A(z ,2) + B(w, 2) +ng (2i(z, a®) + r(w,w)y 823

where a : C¥ — C" is a linear operator, A is a C* -valued symmetric bilinear form
on C* @ C*, r is an RF-valued symmetric bilinear form on R¥, and B is « C*-valued
bilinear form on C* @ C* satisfying

(3) (A(z,2),2) = 2i(z,a(z,2)),
(4) Re(B(u,z), z) r(u, (z, z)),
Im(B({(z,z2),2),2) = 0,
for all z € C* and u € R*.

Proof. Let xy = f 2 + g2 be a solution of (2 Jandlet f = 3°72, fiand g = 12, gi with
filtz, t2w) = ¢ f(z w), resp., gi(tz,t*w) = t'g;(z, w) the decomposition into weighted
homogeneous components. It is easy to verify that then all weighted components
f,—g—; + g,-.,.l% are also solutions of (2). Thus, we may restrict ourselves to look for
polynomial solutions only.

Collecting in (2) the components of degree p with respect to z and of degree ¢ with
respect to z and performing elementary transformations one obtains

(5) gp = 0Oforp22,
(6) f, = Oforp23,
(7) Imgo = 0,

(8) o = 2z, fo),
€ 2Re(f1,z) = ReAgo,
(10) (f2,2) = 2(z,A[o),
(11) Im(Afi,z) = 0,

(12) (27 Azfo) = 0,

(13) ReA’q, = 0,

where A = Y5 _ (2, 2)*3% (cp. [2]).

To solve this system of partial differential equations Beloshapka used Palamodov’s
theorem on exponential representation of the solutions of systems of PDE with con-
stant coefficients ([9]). Here, we suggest a selfcontained reasoning.

From (13) immediately follows that Re g, and, therefore, go as well, are polyno-
mials whose degree with respect to u does not exceed 2. From (9) and (11) one
obtains
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(14) (A*fi,2) = 0.

We show that this implies that f; is linear with respect to u. Since we are looking
for polynomial solutions we may suppose that f; is a polynomial in u and linear in
z. The Fourier transform with respect to u of (14) equals

(15) 5 <ia:.z”,z>((z,z>,c*)’o’“6=o,

ml=0 \v=1

where ¢ is the dual variable to u, d is the delta-functional, (-,-) is the standard

scalar product in R*, m = (m,,...,m;) are multiindices with |m| = m, + -+ 4+ my,
D™ = W%1 and a!, are constant C*-vectors.

Without loss of generality we may assume that M is the biggest number such
that there exists some a¥, # 0 with |[m| = M. Then M equals to the degree of f;
with respect to u. Among all nonvanishing o, with |m| = M we choose these with
maximal m;, among the latter these with maximal m, and so on. This way we come
to some uniquely determined nonvanishing matrix-valued coefficient a; = (k).
Assume M > 2. Apply the functional from the right hand side of (15) on the
following R¥-valued test function: If the maximal number r < k with 7, # 0 is not
smaller than 2 then set

‘[!) = ’[poé;ﬁl e E:ﬁr—Q'
Otherwise, if m, = 1, let s be the maximal number with m, # 0 and s < r. Then
set

= ol .. LT
The vector ¥ will be determined later.
Because of the choice of 1 we obtain

(16 (S anen.c) ecrym) =0,

resp.,

a7) (S5 16 .0 evcr ) =

(We substituted the antiholomorphic z-variables by (.)
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Now, choose zg € C* such that {(atidemzo) = Y= @424 # 0. Then, according to
i.), there exists a (o such that (a%zo,(o) # 0. By continuity the latter inequality
remains true for z,({ in sufficiently small neighbourhoods of 2o, (o. According to ii.)
there exist zy,(;, from these neighbourhoods such that (z,¢)" and (z,()* do not
vanish. Hence, for suitable v, the left hand side of (16) (resp., (17)) does not vanish.
Contradiction. It follows that the assumption M > 2 was false. Consequently, f; is
linear with respect to u.

In exactly the same way one deduces from (12) that f, depends linearly from .
Taking into account (8) this implies that g, is also linear with respect to w.

We obtain

f = f0+fl+f2:
g = go+ g,
with
fo = p+aw,
fl = XZ—{—B(‘LU,Z),
f'Z = A(Z,Z),
go = q+sw+r(w,w),

G = Qt(z,p) + 2{(2,(111—)),‘
where p, q, X, s,a, A, r, B satisfy the indicated conditions. O

Remark. It is an easy consequence of the equations (3) resp. (4) and the nonde-
generacy of @ that the tensor A resp. r are uniquely determined by «, resp. B. By
the same arguments as in the proof above it follows that a is uniquely determined by
A and B is uniquely determined by r. In order to prove this, we have to show that
the homogeneous equations

(z,a(z,2)} = (2,Aau) =0
and
(B({z,2),2),2) = (AB(u,z2),z) =0

have trivial solution only. Considering the Fourier transforms of these equations
one obtains that a, resp. B must vanish.

For any a and r as above there exists a unique automorphism ¢ = (f, g) € Autga @
with
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of

Jw
d%q

(Ow)?

0

Re = 2r.

0

Inserting ¢ into the equation of {) and taking into account that the image of @ is
(@ itself one obtains the following second order derivatives of ¢ which we will need
below:

(18) f = z4aw+ A(z,2) + B(w, 2) + K(w,w) + o(|z]> + |[w]?)
g = w+2i(z,ad) + r(w,w) +i{aw, a®) + o(|z|* + |w|?),

where A is the tensor which is determined by (3) and B and K will be determined
later.

The automorphism ¢ coincides with ¢, where ®, is the l-parametric subgroup
corresponding to x4.

If A is the space of all tensors @ and R the space of all tensors » as above then
Q= {r+i(a-,a):a€ Ar € R} form a (not necessarily nondegenerate) quadric in
A % (R ® C) and the Heisenberg group of Q is isomorphic to Autgiq Q. Thus, we

have

Theorem 2. (see [6]) For any nondegenerate quadric Q AutyieQ is isomorphic to
the Heisenberg group of some CR quadric and therefore has a canonical CR structure.

It is still an open question whether the dimension of ) can be estimated by 2n + k.
For strictly pseudoconvex quadrics, i.e., the Shilov boundaries of Siegel domains this
sharp estimate was proved by Kaup, Matsushima and Ochiai (8] (see also [13]).

3. RESULTS

Let Q be a nondegenerate quadric and ¢ = (f, g) € Autgiq Q be the automorphism
which corresponds to the parameters (a, ). Furthermore, let f = Y72, fi, 9 = Siso i
be the expansion into homogeneous polynomials then we prove

Theorem 3. The polynomials fi, g1 are determined by the recursive relations

(19) (I =1) fi\ _ %’z;‘ aé:‘ A(z,2) + B(w, 2) + A(aw, z) — 1a(z, a®)
( g} % %")"—;‘- 2i(z, a®) + r(w, w) + i{aw, aw) ’

for 1 > 1 and the initial conditions fo =0,90 =0, f; = z + aw, g, = w.
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Consider the real k-plane I'y = {z = 0,Imw = 0} which is contained in Q. The

orbit of 'y under the action of Auty  composes a biholomorphically invariant family

of real k-manifolds on @ passing through the origin. These k-manifolds are called
chains as the analogous objects on hypersurfaces. The following theorem generalizes

the fact that the chains on hyperquadrics are the intersections of the hyperquadric
with complex lines passing through the origin and being transversal to the complex

tangent space.

Theorem 4. Any chain ' C Q is the intersection of ) with the complez k-plane
{z = aw}, witha € A.

The main result of this paper is the following explicit description of the automor-
phisms from Autg;q Q.

Theorem 5. Let (z*,w*) = ¢(z,w) be from Autg;q Q, then

() = (- (B B)) " (e riorogmn).

where ‘B,, Qp, P,, Qg are the following polynomial matrices:

P»

P,

2A(2,') + B(w, ) + Alaw, ) — 1a(-, a®) — 24(A(z,"),2) +
+A(A(z,2),") + A(B(w, 2), ) — A(B(w,-), 2) —iB({-, aw), z) +
+1B({z,aw), -} — B(w, A(z,)) + A(A(z, aw), ) — A(A(z,"), aw) —
—A(A(, aw), z) — 2a{z, a(r.uD, ),

i(-, ad) + 2(z, a(am, ) — ;-(B(w, ), aw) + %(-,ar(ﬁ),ﬁ))) -
—ir((-,aw}),w) + (aw, a{aw,-)),

2a +2B(:, z) — 2A(a-, z) — 21a(z,a") — 2B(w, ') — 2ia{aw, a”) —
—4iB((z,a%), z) + 2A(A(z,a'), z) — A(A(z,2),a') — B(w, B(:,2)) +
+B(-, B{w, z)) — 2B(r(:,w), z) + B(w, A(a-, z)) + iB({a:, aw), z) +
+1B(:, a{z,aw}) — iB(w, a(z,a%)) + B(:, A(aw, 2)) — 2iB{{z,a*), aw) —
—1B({aw, a%), z) + 4ia{z, B(w, 7)) - 2ia{z,ar(w,7)) — A(B(w, 2),a-) +
+A(B(w, a'),z) — A(B(-, 2), aw) — A(B(+, aw), z) + ia{B(w, z), ¢*) —
—ta(B(, z),aw) + 1a(z, A(ew, ¢7)) + A(A(aw, a*), z) — A(A(aw, z),a') +
+A(A(a-, 2), aw) + 1a(A(z, aw), a”) — ia{A(z,a), a®) + a{aw, a(a7, 2}) —

—a{a-, a{aw, z}),
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2, = 2{z,a") + 2r(-,w) — i{a-, aw) + i{aw,a*) — 2i(z, B(w, a%)) —
-2(z,a{aw, a")) — 2r(r(w, "), w) + r(r(w, w), ) + (B{w,a-),ew) —
—i{ar(w, ), aw) + ir({a-, aw}),w) — ir({aw, a*), w) + 1r({aw, aw), ) —
?
_§(
In P, and Q, the dot stands instead of a complez n-dimensional vector argument
and in Py and Q, instead of a compler k-dimensional vector arqument.

a, ar(i, @) + -;(ar(w,w),ar) — i{aw, ar(®,7)) - (aw, a{aid, a-)).

4. RECURSIVE FORMULAS FOR THE AUTOMORPHISMS

For shortness of the notations we introduce the following abbreviations: in the
given fixed coordinates we will denote the vector field x = Y1_, C“af, +Ek_ D~ 33,¢
by x = (C, D) as well. If f is an n-vector and F is an n X m matrix with columns
E, then by (f, E') we denote the k x m-matrix with columns (f, E,).

We consider the canonical action of Autgq Q on the Lie algebra g: Let x € g and

= (f,9) € Autgia @, then
ci"(x)(z w) = (d$) (x(f, 9))-

Hence, if x = (C, D) = C’af, +TE Dka—,%r, then ¢*(C, D) = (P, Q) and
P(zow)\ _ (% 25\ (Clf9)
(20) (Q(z,w)) B (gf 5z D(f,9)

is also from g.

Since the polynomials P and @Q are of second degree they are uniquely determined
by the values of their derivatives up to second order in the origin. Restricting (20)
and its derivatives to the origin and taking into account that

(& &),-0 )
52 L o 0 id

one can obtain the values of (P, Q) and its derivatives in 0 for given x = (C, D) if
one knows the derivatives of ¢ in 0 up to third order.

For any quadric  go contains a vector field x. = (z,2w). This infinitesimal
automorphism corresponds to the 1-parametric subgroup

w = efw.
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Let now ® € Autgq Q be the automorphism corresponding to (a, 7). Then one can

compute ¢*(x.) = (Pe., Q.) using (18):

P, = z—-aw— A(z,2) - 2B(w, 2)
Q.

Moreover, one obtains

2w — 2i(z, aw) — 2r(w, w).

(21) B(w,z) = B(w,z)+ Alaw, z) + i(z, aw®)
1 1
3 3
where B is the tensor from (4) which is determined by r.
For (C, D) = (z,2w) the identity (20) takes the form

(22) (f) _ (%f %{;) (z —aw — A(z,2) — 2B(w, z))
2g 2 2w — 2i(z,aw) — 2r{w, w)
Before studying this system, we will consider the action of ¢ on the vector field x; =
(1z,0). This infinitesimal automorphism corresponds to the l-parametric subgroup

Kw,w) = ZB(w,aw)+ %ar(w, w) + zA(aw, aw) + %a(aw, aw),

z* = ez

-

w = w.

One obtains ¢*(&;) = (£, Q) with

P, = iz+iaw—1A(z,2) - 21A(aw, z) - 2a(z, aw)
Qi = 2(z,a®)+ 2{aw, aw).
It follows

of 3L 4+ aw— A(z,z) — 2A{aw, 2 2ia{z, aw
(23) (‘6):(%;. %.2.:) ("*‘ A( ' ) ‘)A( ) )+‘) (7 ))

5= —2i(z, aw) — 2i{aw, aw)

Combining (22) and (23) leads to

ol 2L — Alz,z) - Blw,z) - Alaw ta{z, aw
(24) @z(g 31)( Az,2) = B(w, 2) — A(ew, 2) + ia(z, >)_

5 5w w = 2i(z,aw) — r(w, w) — 1{aw, ad)

Let fi, g1 be the homogeneous components of f and ¢ with respect to z and w.
Then
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ofi Ofi
Ez-l-@_ww = ff;
dgi o
5 T T e

Isolating in (24) the component of degree [, one obtains a recursive formula which
determines f;, g; for { > 1:

(—1) (Q) _ (agz_l ‘3%) (A(z,z) + B(w, z) + A(aw, z) — z'a(z,atb)) ’

2 é%’il 2i(z, aw) + r(w, w) + i(aw, aw)

with initial conditions fo =0, go = 0, fi = z + aw, g, = w. Thus, we have proved
Theorem 3.

5. GEOMETRIC DESCRIPTION OF K-DIMENSIONAL CHAINS

The description of the chains formulated in Theorem 4 is a direct consequence of
the formula (19):
The image of [y under ¢ = (f,g) is {f(0,u),g(0,u) : v € R*}. From (19) follows

(I=-1)fi(0,u) = a—fj:#l(r(u, u) + i{au, au))
fo(u) = 0, fi(u) =au
(I - Dgi(0,u) = Qg’—:(;r(uﬁj-)-(r(u,u) + t{au, au))

go(u) = 0, gi(u) =u.

For any solution g(0,v) = Y2, ¢1(0, u), evidently, f(0,u) = «g(0, u) is the uniquely
determined solution for f(0,). This finishes the proof.

Any automorphism ¢ € Autg;q @ with parameters (a,7) can be uniquely decom-
posed into ¢, o ¢, corresponding to (a,7) = (a,0)0(0,7). Then ¢, maps the standard
chain Ty onto the chain {z = aw} N Q, ¢, leaves the standard chain invariant, but
changes the parameter.

6. EXPLICIT FORMULA FOR THE AUTOMORPHISMS

We consider now the action of ¢ on the infinitesimal Heisenberg automorphisms:

Xp = (P! 21(211))) with Pe c
Xe = (0,q) with g€ R*.
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Let (P, Qp) and (P, Q,) the images of x, and x, under ¢*. If p resp. ¢ runs over
the standard basis in C" resp. R¥, one can collect the resulting equations (20) into a

matrix equation:
%{ %{; oid o) (m, 1,
2 2 2i(f,id) id) — \¥, ¥, )’

which is equivalent to

ol 8NT' (1, T, id 0
(25) (%ﬂ %‘s’f) (qf \Il)(——?i(f,id) id)'

Before determining the matrix blocks II,, ¥, II;, ¥, we simplify (25) and obtain
an expression for the Jacobian matrix of ¢ which does not depend on f. Inserting
this expression into (22) one gets an explicit formula for ¢.

Let ¢ar € Autgiqa @ be the automorphism corresponding to (a,r). Furthermore,
set ®.(z,w) = (cz,|c|*w) with ¢ € C. Then &' 0 @y, 0 . € Autpia@ is the
automorphism corresponding to (&a, |c|*r). Hence, if we substitute z,w,a,r, z*, w*
by cz,|c|*w, £, wE ce’ lc|*w*® in ¢,, we obtain again ¢,,.. This can be formulated
as follows: If we associate z,w,a,r with the weights (1,0),(1,1),(0,—1),(-1,-1),
respectively, then f is homogeneous with weight (1,0) and g is homogeneous with
weight (1,1). It follows

weight (g—f) = (0,0)
weight (%f) = (0,-1)
weight (gg) = (0,1)
weight (g—i) = (0,0).

Set

_ %f %;E -l__: Hyr Him)y
ga e Hir Hun)”

9z Ow

where Hy 1, Hy 11, Hyp gy Hip o1 ave blocks of dimensions (n, n), (n, k), (k,n) and (k, k).
Then we have
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Lemma 1.
wetght(Hr;) = (0,0)
weight(Hy ) = (0,-1)
weight(Hy 1) = (0,1)
weight(Hi ) = (0,0).
Proof. Set
of af
J= (_3 gg) ,
8: Bw
Then
Hi; = (—1)‘(i'j)(—l§%,

where jj,‘ is the (n + k — 1) x (n 4+ k ~ 1)-matrix which is obtained by omitting the
j-th line and the i-th column in J and
. _J0, if |i—3] even
(5,4) = {1, if i—j] odd
It is easy to see that weight(detJ) = (0,0), since detJ is a sum of products
containing as many factors from ﬂ as from Qﬂ. By the same reason, weight(det J;;) =
(0,0) for 2,5 < n and 7,7 > n.
In the products of det JJ, with 1 < n,7 > n there wnll be one factor from 5;5
more than factors from 55- Hence, det J,, has the weight (0, —1). Analogously, for
1 < n,j 2 n weight(det J;;) equals (0,1). O

Now we are going to compute the weights of Il,, II,, ¥, V,: Let (P,,Q,) be
the image of (p,2:(z,p}). If p was associated with the weight (1,0), then P, would
have the weight (1,0) and @, would have the weight (1,1). Passing to II, resp. ¥,
we substitute p by constants of weight (0,0). Consequently, the components which
depend holomorphically on p get the weight (0,0), resp. (0,1), at the same time
those components which depend antiholomorphically on p get the weight (1,—1)
resp. (1,0).

Analogously one obtains weight(Il;) = (0,—1) and weight(¥,) = (0,0). Finally,
the weight of (f,id) is (1,0).

From (25) follows H;; = IT, — 2iI1,(f,id). Since weight(Il,(f,id)) = (1, -1) and
wetght(Hy ) = (0,0) then Hyr = (I1,)(0,0), where (I1,)(0,0) is the (0, 0)-component of
IL,.

In the same manner from Hy; ;= U, — 21W,(f,id) follows H;; ;1 = (V)01

Thus, the desired expression for the Jacobian matrix is
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(3 #) - ((os )"
5‘3 5& (‘I’P)(O.O) \pq !

where (II,)(0,0), (¥p)(0.1) can be obtained from (F7,, Q) by omitting the antiholo-
morphic terms with respect to p and by substituting p in the holomorphic terms by
a free argument. To get (II,,¥,) one inserts in (P,,Q,) g by a free holomorphic
complex argument.

Now we go to compute (F,,Q,) and (P,,Q,). Therefore we need the derivatives
of ¢ in 0 up to third order. They can be easily obtained by means of the recursive

formula.
The recursive formula gives at once a simpler expression for f5:

f2 = A(z,2)+ B(w,z) + A(aw, 2) + 1a(z,aw) +
+ar(w, w) + 1a{aw, aw).
Comparing with (21) leads to the following identities:
(26) B(w,az) = ar(w,w)
(27) Alaw,aw) = 2ia(ew,aw).
Identity (27) is evidently equivalent to
Alaw, aw) = 1a{aw, a®) + 1a{aw, aw).

Set now fa = fiz: + fezw + frww + fuww, where the indices show the distribution of
z and w variables. By means of (19) one obtaines

fzzz = A(A(zaz)!z)
forw = A(B(w,z),z)+%B(w,A(z,z))+iB((2,a’JJ),Z)+

+A(A(aw, z),z) + %A(A(z, z), aw) + 1a{A(z, z), ad)
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1 1 1
frww = §B(W,B(w,2))+§B(r(w,1u),z)+§B(w,A(aw,z))~—

—-%B(w, a{z,aw)) + %A(B(w,z), aw) + 2tar({z, aw), w) +

+2a(Bw,2), ) + Lolz, ar(@, D)) + %B((aw,aﬁ)),z) +

1
+-A(ar(w,w),2) + §A(A(aw, z), aw) + %a(A(aw, z), aw) +
1 1

+%A(a(aw, aw),z) — §a(z, a{aw, aw)) — ia(aw, w(aw, z)).

[nel B S ]

We do not need the expression for fuu.w.

For g3 = gzz: + Gezw + Goww + Guwuw ONE gets

gz = 0

Gzzw 2i1(A(z, 2), aw), z)

Geww = 1{B(w,2),ad) + 2ir((z, aw), w) + i(z, ar(@, w)) +
+2i(A{aw, z), a®)

Juww = r(r(w,w),w)+ir{{ew,aw),w) + %(aw, ar(w, w)) +

+%(ar(m, w), aw) + %(A(aw, aw), a1},

As in the case of (P.,Q.) we can now determine the vector fields (P, @,) as well
as (Fy,Q,). Let P, = PP+ PP+ PL+ P+ P, and Q, = Q0+ QL+ QF, + QF, + Q%
be the expansion into homogeneous components with respect to z and w. Then
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(28) F§ = p
Pzp = —2A(z,p)—2ia(z,p)
P} = —B(w,p)— A(aw,p) +ia(p,aw) — 2ia{aw, p)

PL = 24(A(z,p),2) — A(A(z, 2), p) + 2iA(z, a(z, p)) + 2a(z, a(p, 7)) —
—21B((z,p), 2)

P, = A(B(w,p),z) - A(B(w,z),p) +:B({p, aw), z) — 1B({z,a®), p) +
+B(w, A(z,p)) — A(A(z, aw), p) + A(A(z,p), aw)+
+A(A(p, aw), 2) + 2a(z,a{aw, p)) — 21 B((aw, p), z) +
+2iA(alaw, p), 2) + 2i(z, A(aw, p)} — 2a{a(z, p), a®)

P =0
I = 2(zp)
Q> = -2i(p,aw) + 2i(aw,p)
Pe = —4(z,alaw,p)) — 2i(z, B(w,p)) — 2i(z, A(aw, p)) + 2(z, a(p, cw))

Qe = B(w,p),aw) —i(p, ar(id, w)) + 2ir((p, atb), w)—
—2({aw, a{aw, p)) + 2i{ar(w,w), p) — dir({aw, p),w) —
—2(a(aw, aw), p) — 2{a{aw, p), aw) + 2{aw, a(p, aw))

The terms which depend holomorphically on p and, therefore, contribute to the
formula of the Jacobian are underlined.

The computation of (P, Q,) leads to

Py = =-aq
P! = -B(q,z)+ A(aq,z)+ 1a(z,aq)
P! = B(w,aq) + ie{law, aq)

PL = 2iB((z,0q),2) = A(A(z,a0),7) + 3 A(A(z,2), )
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Tw

P! = %‘B(wv B(q,z)) - %B(Q-: B(w, z)) + B(r(q,w),z) — %B(IU?A(aq’Z)) -

_éB((aq, a), z) -;-;-B(q,a(z,aﬁ))) + éB(w,a(z, aq)) =

—%B(q, A(aw, 2)) + iB({z,aq), aw) + %B((aw,aq), z)—

—2ia(z, B(w, aq)) + 1a{z,ar(w, q)) + %A(B(w, z),aq) —
S A(B(w,a0),2) + 3 A(B(g, 2),aw) + 5 A(B(g, au), 2) -

—%a(B(w, z), aq) + %a(B(q, z), ai) — %a(z, A(atd, aq)) —
—%A(A(aw,aq), 2) + -;—A(A(aw, 2), ag)— %A(A(aq, 2), aw) —
~La(A(z,ww),00) + Sa(A(z, aq), ) ~ Za{aw, afag, 2)) +
+%a(aq, a(aw, z)),

6 = q

g = —2i(2,ﬂq)
QI = -2r(q,w)+ 1{aq,aw) — i{aw,aq)
. 2i(z, B(w, aq)) + 2(z,a{aw, aq))

1w = 2r(r(w,q),w) —r(r(w,w),q) — i(B(w, aq), aw) + i(ar(:w,q), aw) —

ww

—1r({aq, a®),w) + ir({aw, aq), w) — ir({aw, aw), q) + %(aq, ar(w,w)) —
—%(ar(w, w), aq) + t{aw, ar(w, q)) + (aw, a{aw, ag)).

Hence, all ingredients of the automorphism formula

)- (i %) (4)

29 = '

( ) (g %(\Dp)(ﬂ,ﬂ) lI’q %Qr
are completely described.

7. THE HEISENBERG SPHERE IN C*

In this section we want to demonstrate the obtained formula in the simple case of
the sphere in C*. Let Q@ = {(z,w) € C* : Imw = |z|*}. Then any ¢ € Auty;q @ can
be described by Poincaré’s formula (see [11])
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z + aw
30 =
(30) f 1 — 2iaz — (r +ifa|)w
g = w

1 — 21z — (r + t)a|D)w’

where a € C and r € R.
We will now obtain ¢ by means of the procedure developped above.
We have

(Mp)oy = 1-4diaz — rw—ilaj’w — 4a*2% + 2iarzw — 2aazw
1
é‘(lpp)(o‘g) = —taw — 2a’zw — alaw?
2(I1,)) = —2a+6ilal®z — 2rz + 2arw + 2ia’aw + 4iarz? 4 4aa®z? +

+2rfzw + 2]al*zw
(¥,) = 1-2iaz - 2rw + 2aa*z2w + Zarzw + r*w? + |a|*w?

P. = z—aw-— 2%az® - 2rzw

-Q. = w-—idzw—rw.

( (I15)(0.0) 2Hq) _ (1 — 2iaz —2a ~-2rz + 2i|a|2z) N
1 - 3

7 (¥p)oo) Yo —1aw 1 —rw + t}a|*w

with N =1 — 21az — (v + i|a|*)w, and

P.\ _[1—-2az —2a—2rz+2ia|*z\ [z 4 aw
3Q.) T\ —taw 1 — rw + ifa|*w w '
cancelling the corresponding matrices in the formula (29) we obtain the unique
automorphism (30) with parameters (a,r).

8. POINCARE AUTOMORPHISMS

As it was shown in [6] the automorphisms from ¢ € Autyiq @ with parameters
(a,r, A, B} can be described by a much simpler "matrix fractional linear” formula
which is similar to the Poincaré formula (30} if there exist a C*-valued bilinear form
A:C*@C" = C and a C*-valued hermitian form 7 : C* @ C* — C* such that

2i(z, (€, (),
F{w, (€, ())

(31) (A(2,0),€)
(32) (B(w,(),€)
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is satisfied for all z,(,£ € C*, w € C*. Then ¢ takes the form

(33) e = (id—A(z,) = B(w,") - %A(aw, )z + aw),
w' = (id=2i(z,a”) — #w,?) — i{aw, a?)) " w.

This formula can be obtained from (29), as in the case of the Heisenberg sphere
by cancelling appropriate matrices. We show in the Appendix that

(34) (I(Hp)(o,o) 2Hq) _ (id TA("_Z) —2a -—IQB(-,_Z) +:ﬂi(a-_, z)) y
7 (Uo)ooy Y —i(-, atb) id +i{a-, aw) — (-, w)
x (id—-fi(z, ) — B(w,") — %A(aw, ) 0 )
0 id =2i(z, 7y — #(w,”) — t{aw,a?) )
Furthermore,
( P, ) _ (id—z&(-,z) —2(1—23(-,7.)—}-/1((1-,2)) (z+a.w)
2Q. —i(-,aw)  id+i{a,, aw) — (-, W) w ‘

The theory of Poincaré automorphisms gives a complete description of the automor-
phisms of nondegenerate quadrics of codimension k = 1,2,n* and of real associative
quadrics (see [4] [5]). However, Palinchak [10] found a quadric in C* of codimension 3
with a 9-dimensional Autg;q group which does not contain Poincaré automorphisms.

9. AUTOMORPHISMS OF DIFFERENT TYPES OF RIGID QUADRICS

We introduce the following terminology: A nondegenerate quadric @ will be called
s-rigid if from (X z, sw) € go follows that s = t - id with ¢ € R (in particular, any
hyperquadric is s-rigid); it will be called a-rigid, resp., r-rigid if 4 = {0}, resp.,
R = {0}.

Proposition 1. If a nondegenerate quadric Q is a-rigid then it is also r-rigid.

Proof. Consider PP in (28). For a = 0 follows that B(-,p) is contained in A for all
p € € . Hence, if there was some B # 0 then would exist some p € C* such that

B(p)#0. O

Proposition 2. If Q is a s-rigid nondegenerate quadric then Autyiq@Q consists of
fractional linear mappings. If, moreover, k > 1 then @} is r-rigid.

Proof. Consider Q7 in (28). Then 5 = R implies

(35) (p, aw) = l(p)w,
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where ! is a complex linear functional on C*. Setting in (35) w = (z,() one
obtains a solution A of (31) corresponding to a: (p,a{z,()) = U(p){(,z) = (I(p)(, 2},
i.e., A(p,¢) = 2:l(p)¢. But then

= (1-=2il(z) —il{aw)) ' (z + aw)
w' = (1-2l(z) —il(aw))'w

is the uniquely determined automorphism corresponding to («,0).
Now we consider @9, and set there a = 0. It follows

(36) r(q,w) = Mq)w,

where X is a real linear functional on R*. Setting again w = (z,(), one obtains
B(u,z) = Au)z and #(w,w) = Mw)a.

Hence,

22 = (l=Aw)) 'z
w = (1= AMw))'w
is the automorphism corresponding to r.

From the symmetry of r follows r(u,v) = A(u)v = A(v)u, i.e.,if s =R and k > 1,
then R={0}. O

10. CANONICAL PARAMETRIZATION OF CHAINS

Let I'o = {z = 0,Imw = 0} be the standard chain on Q. Then there exists a
canonical family of parametrizations of Iy which can be obtained from the stan-
dard parametrization {z = 0,w = u : © € R*} by means of a "reparametrization”
automorphism corresponding to parameters (0, r).

From (29) and (23) we derive a simple equation for this reparametrization map:

Proposition 3. The automorphism ¢,., corresponding to (0,r) has the form

z* = (id—B(w,")) 'z
w = (id=2r(w,-) + 2r(r(w, ), w) = r(r(w,w)")) " (e = r(w, w)).
Proof. At first we set in (23) @ = 0. It follows
flz,w) = g—'—i-z

Setting in
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of

0z

a = 0 one obtains immediately f(z,w) = (id - B(w,))™'z.

The expression for g can be derived by setting ¢ = 0 in (29). O

( HP)(OsO) =

The expression for the g-component in ¢, can be simplified if the following condition
is satisfied:

Proposition 4. Let ¢, be as in Proposition 3 and +(-) be a linear map C* — gl(C, k)
with

(37) Mww = r(w,w)

Fw)? = #(r(w,w)),
then
w* = g(z,w) = (id =#(w)) 'w.

Proof. From Proposition 3 follows that g does not depend on z. The recursive formula
for g therefore takes the simple form

({ = Dagi(z,w) = agl_lr(w,w)

w

with go = 0 and ¢, = w.
One easily verifies that g; := #(w)~'w is the solution of the recursive equations. [

It follows
Proposition 5. Let Q be a nondegenerate quadric and r € R with the property
r(w,w) = (aw,a®w) (resp. r(w,w) = —(aw,aw)). Then #{w) = (aw,a) (resp.
F{w) = —{aw, a~)) satisfies (37).
Proof. Set r(w,w) = (aw, aw) and 7(w) = (aw, a>). Because of (3) then
F(w)? = (aw, a{a”, aw)) = %(A(uw,aw),aT).
i

On the other hand it follows from (27) that

#{r(w, w) = {e{a, aw)a) = 9—-(A(uw, @w), a-).

1
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Remark. The representation r(w,w) = (ew,aw) is not unique. Moreover, there
can exist tensors 7 satisfying (37) which cannot be obtained in the described manner.

For automorphisms corresponding to {(¢,0) one can derive the following simple
equation for the g-component:

Proposition 6. Let ®, € Autg;q Q withr =0. Then
w* = (id —=2i(z, @*) — i{aw, a*)) " w.

Proof. Set d := 2i{z,a") + i{aw,a”). We show by induction that g = d'~'w. This
implies the assertion.

For | = 1 we have g, = w. By inductive assumption then ¢;_y = d'~*w. Using the
recursive formula (19) we come to

1-3
(=Vg = > & (2(A(z,2),a7) + 2i(Aaw, z),a”) +
=1
+2(a(z, aw), aT))d""aw +
1-3
+3 d*(=2(a(z,a®), a7)) — (a{aw, a@), a7))d " Pw +
=1
+d"7%(2i(z, a®) + i{aw, ad))
-3
= > d*(2(A(z,2),a") + 2i{A(aw, ), a7) —
=1
—{a{aw, aw), a"¥d' 2w +
+d'7%(2i(z, a®) + i{aw, aw))
The assertion follows if we show that

21{A(z, z), &) + 2i{A(aw, z), &) — (a(aw, a), a*)) = d°.
For d* we obtain

d* = —4{z,a{a-,z2)) - (ew,a{d", aw)) —
—2(z, a{a, aw)) — 2{aw, (a7, 2)).

Because of (3) then

—4(z,a{a,2)) = 21(A(z,z),a)
and — 2(z,a(a-, aw)) — 2{aw, (a7, 2)) = 2i(A(aw,z),d").
Because of (27) and (3)
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—{aw, (a7, aw)) = %(A(aw,aw), a-) = —(aw, (a7, aw)).

a

Proposition 6 and Theorem 4 give a description of the chains including the canon-
ical parameter:

Corollary 1. The chains of the nondegenerate quadric } have the following canon-
ical parametrization

f(w) = a(id—i{au,a'))™"
g(u) = (id—i{au,a-))'u

with u € R*.

Proof. The expression for g can be obtained by setting z = 0 and w = u in the
formula from Proposition 6. The expression for f follows then from Theorem 4. [J

11. APPENDIX

For the proof of (34) we use the following facts:
Let 2 be the set of all pairs (D, d) € gl(n,C)x gl (k, C) with the property (Dz,z) =
d(z,z). Then 2 is an algebra with unit. It follows from (31) and (32) that

Da = ad,

A(Dz,¢) = A(z,D¢) = DA(z,(),
A(Dz,() = A(z DC) = DA(z,0),
B(dw,z) = B(w,Dz)= DB(w,z),
Hldw,w) = dif(w,w),
r(dw,w) = dr(w,w).

Moreover, (31) and (32) mean that

(38) (A(z,-),2i{z,a7)) € U
and
(39) (B(w, ), 7(w,)) € A.

The equality of the left upper blocks is a consequence of the equalities
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(40) id =
(41) —24(z,") =
(42) — B(w,z)

(43) —-é-/i(aw,-) =
(44) A(A(z,),2) =
(15)  sA(A(aw,),2) =

(46) A(B(wa')az) =

—-A(A(z,aw), ) + A(A(z) ')a aw) +

A(A(-, aw), 2) + 2a(z, a(aw, -))

A(B(w,),2) = A(B(w,2), ) + iB((-,a), ) -
—1B({z,aw),-) + B(w, A(z,-)),

Equations (40) and (42) are tautologies, (41) follows by symmetrization of (31).

To prove (43) we show that £

A(-,aw) = ia(-, a) and apply (41). The latter equality

follows from the fact that (/i(p,-),?i(p, a’)) € A and, that for any (D,d) € 2 and
for any a € A holds Da = ad. (44) can be obtained by the following sequence of

equivalent transformations

24(A(z,),2) — A(A(z,2),)) = 24(A(z,),2) — A(-, A(z, 2))

In (45) we use the identity

2a(z,a{aw, "))

= —iA(z,a{-, an)) = —%fl(/i(::,-),aw).

The right hand side of (45) takes then the form
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“La(A, aw), ) - 2 a(Aaw, 2), ) + +%A(A(z, 3, aw) + %A(/i(~, 2), aw) +

Lol A0 ol N1 B

= ——A(z, A(aw,")) — - A(aw, A(z,")) + -;—fl(z, A(-,aw)) + %A(-,A(z,aw)) +

Lol N

AC, Alaw, 2)) + g Alaw, A(, 2)) - %fi(/‘i(z, ), aw)

A(A(z,-), aw)

It remains to prove (46). Using the symmetry of A and (39) we see that A(B(w, '), z)—
A(B(w, z},-) = 0. Therefore, the right hand side of (46) takes the form

iB({(:,aw), z) —iB((z,ew),-) + B(w, A(z,"))
= %B(Qi(-,uﬁr), z) — %B(Zi(z,au‘:)), )+ B(w, A(z,))

= %B(w,/i(-,z)) - %B(w,/?l(z, )+ B(w, A(z,+))

= Bi(wa A(:z))
= A(B(w,-),z).

The equality of the right upper blocks is a consequence of the equalities
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4iAB((z, a’),z)
— 21 A(a(z,07), 2)
2B(f(w,~), 2)

4iB((z,a%), 2)

(47 —2a = -2a

(48 —2B(.,z) = -2B(-,z)

(49 dia(z,a”) + Ala-,z) = 24(a-,z) + 2ia(z,a?)
(50 2af(w,”) = 2B(w,a')

( = 2ia(aw,a?)

(

(

(

)
)
)
)
51) 2ia{aw, a’)
)
)
)

[T
=

B
=
&

(55) - A(ai(w,?), z)+
+2: B({aw, a*), 2) —B(w, A(a+, 2)) —i1B((0+, aw), z) —
—B(-,a{z,w)) + iB(w, a{z,7)) —
—-B(-, Alaw, z)) + 21 B((z,a"),aw) +
+:B((aw, a*), z) - 4i1a(z, B(w, «")) +
+2ia{z,ar(w,?)) + A(B(w, 2),a") —
—-A(B(w,a),z) + A(B(, 2),aw) +
+A(B(-,aw), z) — ia{B(w, 2),a) +
+ia(B(-, z), ww)
(56) —iA(alaw, ), z) = —ia(z, A(aw,a”) — A(A(aw, ,a),z) +
+A(A(aw, 2),a-) — A(A(a, 2), aw) —
—1a{A(z,aw), ) + 1a{A(z, ), aw) ~

—a(aw, a{a’, 2)) + a{a-, alaw, z)).

The equalities (47), (48), (51), (52) are tautologies. Using (38) and (39), one easily
proves (49) and (50).

The equality (53) is a consequence of
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*ZA(A(Z,G‘),

To prove (54) we notice that B(w

2B(r(-,w),z) =

tn

The left hand side of (55) equals A(B(w,a-)

z)+ A(A(z,2),a) =

z,z),a)

—A(A(z,a), 2
——Qifi(a(z,(ﬁ,z).

, B(:,2)) = B(:, B(w, z)). Then we obtain

B(#(w,%),z) + B(#(-,w), 2)
B(#(w,%), z) + B(w, B(,, z})

(Mw,”), 2) + B(:, B(w, z))
2B(r z

&3

(w,7), 2).

,z) — A(aw, B(-, z)). The rlght hand

side can be transformed in the following way

1 - 1 .
—§B(w, Ala-,2)) — §B(w, A(z,a')) -

%A(Zi B(w: a)) - :

1.

+5Aew, B(,2))
L1

2
1
2

2

This equals to

LA(B(w, 2), ) + %A(a-, B(w, 2)) - %A(B(w, 0,

+=A(B(-, z),aw) + %A(aw, B(.,z))— %B(w, Az, a)) + %A(B(, aw),

Ala-, B(w, 2)) - %/i(z, B(-, aw)) +

N o—

5B, Alaw,2)) - %B(-,A(Z,am)) + A(z, B(-, aw)) +

- in(z, B(-, aw)) + %A(:,m‘(-,t?})) + %A(z,aﬁ(wﬁ)) +

1 -
3) - aA(z, B(wa a')) +

z)+

+lf1(z, B(-,aw)) + %B(-, A(z, aw))
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L A(B(w,a),z) - %A(B(w 2)a) - %A(B(w,a.),z) - %A(B(-,Z),awwf
+5A(B(w,2), ) = ZA(B(, aw), ) = SAB(, 2),aw) + AB(,2),a) +
+EAB( aw), 2) = 2A(B(- 2), aw) + A(B(-, z), aw) + lfi(B(w, 2),a)+

+ A(B(w,a),z)—%;l(B(w,a) z) — %A(B(w,b) (L)+;A(B( z),aw) +
+EAB( aw),z) — —;-A(B(w,z),a )+ %fi(B(-,'aw),z) + §A(B(-,z),aw) +

o

+
DI — B =B — N = | = D] —
> > > > >

(B('az)1aw)

Cancelling appropriate terms and using the identity

A(B(w, z),a") = A(B(-, z), aw)
we obtain an expression which coincides with the left hand side of (55)
It remains to prove (56). We transform the right hand side:

—%a(z, A(aw,a?)) — %a(z,/i(av, a®d)) — %A(/i(aw a),z) — 1A(A(a- aw), z) +
+%A(z‘i(aw,z),a-)+ %A(A(z,a ),a) — §A(A(a z), aw) — -A(A( a), aw) —
—é—a(z‘i(z,aw),cﬁ) - —;—a(ﬁ(aw, z),a7) + aa(A(z,a-),mu) —.a(/i(a-, z), a) +
+%a(/i(aw, z), @) — %a(,&(u-, z), aib).

The terms fa(A(aw, z),@) as well as a(A(a-, z), a@) with positive and negative

sign cancel out.
Using the identities

1 - 1 . R

§A(A(aw,a-), z)= iA(aw, Ala, 2)) = %A(aw, A(z,a)) = ;A(A(aw,z),a-)
and

1 J

~A(A(z,aw),a') = —A(z Alaw,a')) = =A(z, A(a-, aw)) = = A(A(z, a), aw)

2

two more pairs cancel out.
Thus, we obtain

1
2

t\:Jln—'l
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? s t Ao 1. J
—ia(z,A(aw,a-)) - E'a(z,A(a-,aw)) - §A(a-, Alaw, z)) — §A(a-, A(z,aw)) —
—ia(A(z, aw), a*) + §a(A(z, a-),aw).

This can be transformed to

—a(z,a{aw,a-)) + a(z,a(a~, aw})) — a{z, e{a", aw)) — a{z,al{aw, a-)) —

1. R 1. .
Al Alaw, 2)) - 5 A(a-, A(z,aw))

Aa-, A(z, aw)) — = A(a-, A(aw, 2))

= —2(1(2, a(aﬁ)) a)) -

Ul N=F S

a

A(a, A(z, aw)) = = A(a-, A(z, aw)) — =A(a-, A(aw, 2))

3N}

= A(a-, Alaw, z))

B — DO =

The latter expression equals to the term at the left hand side of (56).
The equality of the left lower blocks is a consequence of the equalities

(57) —i(,a0) = —i(-e0)

(58) i(A(z,),a0) = -za(ew,)

(59) i(Blw,),00) = Z(B(w,"),a) = (-, ar(id,@)) +
. +ir({:, aw), w)

(60) %(/i(aw,-),aﬁ)) = —(aw,alad,)).

(57) is a tautology, (58) a direct consequence of (38) and (60) holds because of
(31). In order to prove (59) we have to show

(B(w,"),aw) = —{-, ar(w,w)) + 2r({, aw), w).

We transform the right hand side as follows

—(-,ar(w,w)) + 2r((-,e@),w) = —{(,ar(w,w))+ 2(-, er(w,w))

I
——
-

=

-
—

=

=
-

~

[d}
—
—

x
——
-
=
=

-
-
::l
~1
—
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The equality of the right lower blocks is a consequence of the equalities

(61) id
(62) ~ 2i(z,a")
(63) = Hw,”) — 7(-, )
(64) — i{aw, a*) + i{a-, aw)
(65) 27 ((z,a),w

(66) 2(a(z,a%), aw

(67)

(68)

(69)

{a{aw, ), ab)

id

—2i(z,a%)

=2r(-,w)

—i{aw, &) + 1{a*, a0)

2i(z, B(w, a%))

2(z,a{aw,a"))

2r(r(w, ), w) — r(r(w,w),-)
—i{B(w,a-),aw) + i{ar(w, ), aw) —
—ir({a-, aw), w) + i-r((aw, a),w) —~
—z'r((mu, aw),-) + 5((1-,(17'(1.0, w)) —
—%(ar(w, w), @) + i{aw, ar(w,"))

(aw, a{a®, @7)).

The equalities (61), (62), (64) are tautological, (63) follows from (4) and (32). (65)

is a consequence of (39), (66) follows

from (38). (31) and (38) imply (69) (67) can

be obtained by the following transformations of the right hand side:

2T(T(wa ')a w) - r(r(w, w)a )

It remains to prove (68). Since

—t{ar(w,), aw) = —i(B(w, «), ww),

these terms cancel out immediately. In the remainding terms on the right hand

side we express 7 by 7.
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§<f1f‘(w’7), aﬁ)) + _(m:(', LD)! au_J) - Ef((a" (“'D)a ﬂ-’) - 5‘1‘:(‘10, (ai” a)) +
+ 11"((aw, a’), w) + =7(w, (a7, aw) — ‘—;-1"((aw, aw),) — %1"(., (aw, aw)) +

(ar(w,w), @) + %(aw, ar(w,)) + %(aw, ar (7, w))

N . D] ».

+§(a‘, ar(w,w)) —

Using the identities

%<a,=(w,.),m> = Zi(w,(ed,a)
%(“7:( ,10),aw) = ';"F(-, (a0, aw)
__%F((a-,aﬁ)) w) = +%(a-,a1‘-(1ﬁ,w))
%f'(w, (a7, aw) = %(ar(w, W), a7
%f'((“ws aw),?) = %(aw, ar (7, w))

%(aw, ar(w, ) = -;-1"(((110, a’), w)

and cancelling out the corresponding terms in the right hand side of {68) we obtain

F({aw, @), W),

which coincides with the remaining term on the left hand side.
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