
EXPLICIT CALCULATION OF THE

MASLOV-TYPE INDICES OCCURRING IN

GUTZWILLER’S TRACE FORMULA;

APPLICATION TO THE METAPLECTIC

GROUP

Maurice A. de Gosson∗

Max-Planck-Institut für Mathematik
Pf. 7280, DE-53072 Bonn

December 19, 2007

Contents

1 The Maslov index for Symplectic Paths 4

1.1 Hamiltonian periodic orbits . . . . . . . . . . . . . . . . . . . . . 5
1.2 The Maslov index on Sp(n) . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 The Maslov index for loops . . . . . . . . . . . . . . . . . 6
1.2.2 The Maslov index for symplectic paths . . . . . . . . . . . 6

2 The Conley–Zehnder index 7

2.1 Definition of iCZ and first properties . . . . . . . . . . . . . . . . 7
2.1.1 The index iCZ on C±(Sp(n)) . . . . . . . . . . . . . . . . 7
2.1.2 Axiomatic description of iCZ . . . . . . . . . . . . . . . . 9

2.2 Extension of the Conley–Zehnder index . . . . . . . . . . . . . . 9
2.2.1 iCZ and the Leray index . . . . . . . . . . . . . . . . . . . 10
2.2.2 The product formula . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Invariance under conjugation . . . . . . . . . . . . . . . . 11
2.2.4 Relation of iCZ with Morse’s index of concavity . . . . . . 12

3 Conley–Zehnder index and Floquet theory 13

3.1 Symplectic Floquet theory . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Application to the calculation of iCZ(γH) . . . . . . . . . . . . . 15

∗Email: maurice.de.gosson@univie.ac.at , maurice.degosson@gmail.com

1



4 Some Explicit Calculations 15

4.1 The case of prime orbits . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.1 Parabolic blocks . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Elliptic blocks . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.1.3 Hyperbolic blocks . . . . . . . . . . . . . . . . . . . . . . 16
4.1.4 Inverse hyperbolic blocks . . . . . . . . . . . . . . . . . . 17
4.1.5 Loxodromic blocks . . . . . . . . . . . . . . . . . . . . . . 18

4.2 The Conley–Zehnder index of repeated orbits . . . . . . . . . . . 19
4.2.1 The parabolic, hyperbolic, and loxodromic cases . . . . . 19
4.2.2 The inverse hyperbolic case . . . . . . . . . . . . . . . . . 19
4.2.3 The elliptic case . . . . . . . . . . . . . . . . . . . . . . . 20

5 Application to the Metaplectic Group 20

5.1 The Weyl representation of metaplectic operators . . . . . . . . . 21
5.2 Explicit formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2.1 The elliptic case . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.2 The hyperbolic and inverse-hyperbolic cases . . . . . . . . 23

Abstract

The index appearing in Gutzwiller’s trace formula for quantum sys-
tems with classical chaotic analogue is the Conley–Zehnder index for sym-
plectic paths, familiar from the theory of periodic Hamiltonian orbits.
That index is notoriously difficult to calculate for repetitions of prime
periodic orbits. In this paper we use recent results of ours (the product
formula and the relation with Morse’s index of concavity) to give explicit
and rigorous results. We apply our calculations to give, in addition, the
Weyl representation of some metaplectic operators.

Introduction

Gutzwiller’s formula and the Conley–Zehnder index

The physicist M.C. Gutzwiller [17] wrote down in the early 1970s a beautiful
formula for calculating the semiclassical energy levels of a quantum system with
chaotic classical analogue; this formula links the eigenvalues of the Hamilto-
nian operator with the periodic orbits of the corresponding classical system.
Gutzwiller’s approach was heuristic, and posed several difficult mathematical
problems. Major contributions towards a rigorous proof and a better under-
standing of the mathematics underlying Gutzwiller’s formula are nowadays to
be found in the literature (see below for a non-exhaustive list of references).
There is, however, a delicate point that has only been addressed by very few
mathematicians (it has been addressed by many physicists, but unfortunately
not in a very conclusive way). It is that of the precise definition of the “Maslov-
type index” appearing in Gutzwiller’s formula. Let me briefly recall what this
formula looks like; my presentation will be formal and I do not claim any rigor
at this point. Assuming that the Hamiltonian operator Ĥ associated to the
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classical Hamiltonian H has a discrete sequence E0, E1, ...Ej , ... of eigenvalues,
one wants to evaluate the density of states ρ(E) =

∑∞

j=0 δ(E−Ej). Gutzwiller’s
formula says that when ~ → 0 that density is approximated, up to the so-called
“Weyl term” 〈ρ(E)〉, which counts the number of states in the phase-space re-
gion H(z) ≤ E, by the sum

1

π~
Re

∑

γ

i−σγ
Tγe

i
~
Aγ

√
| det(Pγ − I)|

(1)

where γ runs over the set of all periodic orbits of H with energy E and period Tγ

(including their repetitions). This set is assumed to be discrete, and to consist
only of non-degenerate orbits so that the linearized Poincaré map Pγ for γ has
no eigenvalue equal to one; Aγ is the classical action

∮
γpdx. It is the number σγ

that poses problems, and that will preoccupy us in this article. We mention that
the nature of σγ is not even addressed in the otherwise excellent paper of Paul
and Uribe [33], and is called “Maslov index” in Combescure et al. [4] (but this
terminology is misleading because the consideration of simple examples shows
that the index σγ does not have in general the additivity property σγ∗(N) = Nσγ

enjoyed by bona fide Maslov indices of loops). It is indubitably the merit of
Meinrenken [27, 28, 29] to have given the correct answer, and recognized that σγ

is the Conley–Zehnder index iCZ(P̃γ) of a certain symplectic path P̃γ associated
with the Poincaré map Pγ :

σγ = iCZ(P̃γ). (2)

Discussion of some “known” results in the physical litera-

ture

There are many partial results in the literature about the calculation of the
“Maslov type index” appearing in Gutzwiller’s formula. For instance, Sugita
[35] states correct results, but his approach seems to be ad hoc (he does not
to give any clear and easily understandable prescription for obtaining his in-
dices); in addition Sugita uses illicit mathematical methods such as divergent
determinants of infinite matrices (some of his considerations however certainly
deserve to be put on a rigorous mathematical basis). We note that Brack and
Pletyukhov [2] have commented upon Sugita’s results and given a tentative jus-
tification of them. We note that in Robbins [32] one can find valuable partial
results; this also true of Creagh et al. [6] whose discussion of Lagrangian mani-
folds associated to some periodic orbits is very interesting, but their papers do
not give a simple and universal prescription for the practical determination of
the indices in all cases. We mention that Muratore-Ginanneschi [31] has also
identified σγ as being the Conley–Zehnder index, which he relates to an older
index constructed by Gelfand and Lidskii [8]; however, as is the case for Sugita,
Muratore-Ginanneschi makes use of Feynman path integral techniques are not
easy to justify mathematically.

Our review would not be complete if we didn’t mention that deep and rich
results for the Conley–Zehnder indices have been obtained by Long and his
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school (see for instance the papers [23, 24, 25] and the references therein); these
results are of great theoretical interest but it seems however that they are not
directly usable in our context.

Aims and scope of this work

This paper consists of two parts. In the first part (Sections 1–3) we review in
some detail the theory of the Maslov and Conley–Zehnder indices, and of the
extension of the latter which we have proposed in [14] (see [15] for a review).
In addition we discuss two of the most useful consequences of our redefinition,
the product formula

iCZ(ΣΣ′) = iCZ(Σ) + iCZ(Σ′) + 1
2 sign(MS + MS′)

(MS the symplectic Cayley transform of the endpoint of Σ) and the formula

iCZ(Σ) = Mas(Σ) − Inert Wxx

relating the Conley–Zehnder index to the Maslov index and to Morse’s index
of concavity; these formulae will considerably simplify the practical calculations
in most cases. We think this review is useful since the theory of the Conley–
Zehnder index is perhaps not universally known outside a handful of experts
working in the area of dynamical systems or symplectic topology. In the second
part (Sections 4 and ??) we set out to give explicit formulae for the calculation of
the Conley–Zehnder index of periodic Hamiltonian orbits and of their repetitions
in the most important cases; we use –as Sugita does in [35]– reduction to normal
forms of the endpoints of the symplectic paths we consider. The interest of
our calculations certainly goes well beyond their applications to Gutzwiller’s
formula, since they can be used in Hamiltonian mechanics and Morse theory
(for which the Conley–Zehnder index was originally designed!) We finally apply
our calculations to the metaplectic group Mp(n), and give some explicit formulae
for the Weyl representation of some useful metaplectic operators.

Notation 1 Symplectic spaces in general are denoted by (Z, ω); we reserve the
notation σ for the standard symplectic form on Rn × Rn = R2n. By definition
σ(z, z′) = p ·x′−p′ ·x if z = (x, p), z′ = (x′, p′). The standard symplectic matrix

is J =

(
0n×n In×n

−In×n 0n×n

)
and we have σ(z, z′) = z′JzT .

1 The Maslov index for Symplectic Paths

The study of symplectic paths imposes itself quite naturally when one studies the
periodic orbits of Hamiltonian systems. For a detailed treatment and extensive
references for the topics of this section and the following see [13] or our recent
review [15].
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1.1 Hamiltonian periodic orbits

Let H be a Hamiltonian function on R2n × R; we assume that H ∈ C∞(R2n ×
R). We denote by (φH

t,t′) the time-dependent flow determined by Hamilton’s

equations ż = J∂zH : for fixed t′ the function t 7−→ φH
t,t′(z

′) is the solution

curve passing through z′ at time t′. We will set set φH
t = φH

t,0; when H is

time-independent (φH
t ) is the usual Hamiltonian flow. Let z0 ∈ R2n and τ > 0

be such that φH
τ (z0) = z0 and set γH

z0
(t) = φH

t (z0) for t ∈ [0, τ ]: γH
z0

is the
periodic orbit of H with origin z0, we have γH

z0
(0) = γH

z0
(τ). The Jacobian

matrix St(z0) = DφH
t (z0) is symplectic and satisfies the “variational equation”

d

dt
St(z0) = JD2H(φH

t (z0), t)St(z0) , S0(z0) = I (3)

(D2H the Hessian matrix of H). The matrix Sτ (z0) is the monodromy matrix
of the periodic orbit γH

z0
, and we have St+τ (z0) = St(z0)Sτ (z0) for all t ∈ R.

Observe that if the Hamiltonian is time-independent then Sτ (z0) always has at
least one (and hence at least two) eigenvalues equal to one: since φH

t ◦φH
t′ = φH

t+t′

we have
d

dt′ φ
H
t (φH

t′ (z0))|t′=0 = St(z0)XH(z0) = XH(φH
t (z0));

Setting t = τ we get Sτ (z0)XH(z0) = XH(z0) hence XH(z0) is an eigenvector
of Sτ (z0) with eigenvalue one; the multiplicity of this eigenvalue is at least two
since the eigenvalues of a symplectic matrix occur in quadruples (λ, 1/λ, λ̄, 1/λ̄).

Let γH
z0

be a periodic orbit. When t goes from 0 to τ the Jacobian matrix
St(z0) = DγH

z0
describes a path Σ(z0) ∈ Sp(n) starting from the identity I ∈

Sp(n). It is customary to associate to that path two indices:

• The Maslov index, whose vocation is to count (algebraically) the number
of times Σ(z0) intersects the “caustic” of Sp(n) consisting of all S ∈ Sp(n)
such that S`P ∩ `P 6= 0 where `P is the vertical Lagrangian plane 0×Rn;

• The Conley–Zehnder index, whose vocation is to give a count of the num-
ber of times the path Σ(z0) intersects the “Maslov cycle”, which is the set
of all S ∈ Sp(n) such that det(S − I) = 0.

We review both notions below; we will see that the Conley–Zehnder index
can in fact be interpreted as a Maslov index, not for the path Σ(z0) but rather for
the path I ⊕Σ(z0) in a certain symplectic group associated to a 4n-dimensional
symplectic space (formula (15)).

1.2 The Maslov index on Sp(n)

The Maslov index –or “Keller–Maslov” index as it should be more appropriately
called– is one of the oldest intersection indices appearing in symplectic geometry.
Its vocation is to give an algebraic count of the number of times a symplectic
path intersects a certain variety of codimension one. See [11, 13, 21] for details
and historical accounts.
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1.2.1 The Maslov index for loops

We begin by constructing a continuous mapping Sp(n) −→ S1 that will be
instrumental for the definition of both the Maslov and Conley–Zehnder indices.
Let U(n) = Sp(n)∩O(2n) the group of symplectic rotations. We have U ∈ U(n)

if and only if U =

(
A −B
B A

)
and A + iB ∈ U(n, C). We define a mapping

ρ : U(n) −→ S1 by the formula

ρ(U) = detC(U) = det(A + iB). (4)

We extend the mapping ρ into a mapping Sp(n) −→ S1 using polar decompo-
sition: for S ∈ Sp(n) we write S = UP where

U = S(ST S)−1/2 , P = (ST S)1/2. (5)

Both matrices U and P are symplectic: this is obvious for P since it is the
square root of a positive definite symplectic matrix, hence U = SP−1 is also

symplectic. In addition UJ = JU so that U is of the type

(
A −B
B A

)
and we

have u = A + iB ∈ U(n, C).
Let now Γ : [0, 1] −→ Sp(n) be a loop in Sp(n): Γ(0) = Γ(1). By definition,

the Maslov index of Γ is the degree of the mapping ρ ◦ Γ : t 7−→ ρ(Γ(t)):

Mas(Γ) = deg(ρ ◦ Γ). (6)

It is thus explicitly calculated as follows: choose a continuous function θ :
[0, 1] −→ R such that ρ(Γ(t)) = eiθ(t); then

Mas(Γ) =
θ(1) − θ(0)

2π
. (7)

Here is a basic example: the fundamental group π1(Sp(n)) is generated by
the loop α defined by

α(t) = e2πtJ1 ⊕ I2n−2 , 0 ≤ t ≤ 1

where J1 =

(
0 1
−1 0

)
and I2n−2 is the identity on R2n−2 (this notation cor-

responds to a rearrangement of the coordinates of (x, p) as (x1, p1, ..., xn, pn)).
Let r be an integer and denote by αr the r-th repetition of α. We have

Mas(αr) = r (8)

hence Mas : π1(Sp(n)) −→ (Z, +) is a group isomorphism.

1.2.2 The Maslov index for symplectic paths

The Maslov index defined above can be generalized to arbitrary paths starting
from the identity. Let C(Sp(n)) be the set of all continuous paths Σ : [0, 1] −→
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Sp(n) such that Σ(0) = I. The Maslov index of Σ ∈ C(Sp(n)) is by definition
the number

Mas(Σ) =
1

2
(µ(Σ`P , `P ) + n) (9)

where `P = 0 × Rn and µ is the Leray index on the Lagrangian Grassmannian
Lag(n) of the standard symplectic space (R2n, σ) (see de Gosson [10, 11, 13]
where we extend Leray’s [21] original definition, and apply our results to a
general theory of Lagrangian and symplectic intersection indices). When the
endpoint Σ(1) is a free symplectic matrix, i.e. if Σ(1) ∩ `P ∩ `P = 0 (also see
Subsection 2.2.4) then Mas(Σ) ∈ Z. We will need the three following results for
our calculations in Section 3;

Example 2 Assume n = 1; the formulae below all readily follow from (9):

(i) Parabolic endpoint: The path Σ is given by Σ(t) =

(
1 γt
0 1

)
, 0 ≤ t ≤ 1

and γ 6= 0. We have
Mas(Σ) = 1 − sign γ (10)

where sign γ = 1 if γ > 0 and sign γ = −1 if γ < 0;

(ii) Elliptic endpoint: The path Σ is given by Σ(t) =

(
cosαt sinαt
− sin αt cosαt

)
,

0 ≤ t ≤ 1 and α > 0. In this case

Mas(Σ) = −
[α

π

]
(11)

where [·] is the integer part function.

(iii) Hyperbolic endpoint: The path Σ is given by Σ(t) =

(
coshβt sinh βt
sinh βt coshβt

)
,

0 ≤ t ≤ 1 and β > 0. Then
Mas(Σ) = 0. (12)

2 The Conley–Zehnder index

The Conley–Zehnder is an index of symplectic paths generalizing the usual
Morse index for closed geodesics on Riemannian manifolds. See Conley and
Zehnder [5] and Hofer et al. [18]. In Subsection 2.2 we will extend this definition
to paths whose endpoints are arbitrary –this extension is crucial for the practical
calculations that will be done in this paper. (For those interested in recent
developments in the theory of the Conley–Zehnder index, see [16].)

2.1 Definition of iCZ and first properties

2.1.1 The index iCZ on C±(Sp(n))

Recall that C(Sp(n)) is the set of all continuous paths [0, 1] −→ Sp(n) starting
from the identity. We denote by C+(Sp(n)) (resp. C−(Sp(n))) the subset of
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C(Sp(n)) consisting of the paths with endpoint Σ(1) either one of the sets Sp+(n)
or Sp−(n) defined by

Sp+(n) = {S : det(S − I) > 0}
Sp−(n) = {S : det(S − I) < 0}.

Here are two important properties of the sets Sp±(n):

Sp1 Sp+(n) and Sp−(n) are arcwise connected;

Sp2 Every loop in Sp±(n) is contractible to a point in Sp(n).

The complement of Sp+(n) ∪ Sp−(n) in Sp(n) is the set of all symplectic
matrices having at least one eigenvalue equal to one; it is an algebraic variety
with codimension 1. It is denoted by Sp0(n) and sometimes called the “Maslov
cycle” (the terminology is however also often used in the literature to denote
other subsets of Sp(n), for instance the “caustic” consisting of symplectic ma-
trices which are not free). We will write:

C±(Sp(n)) = C+(Sp(n)) ∪ C−(Sp(n)).

Let us introduce the following symplectic matrices S+ and S−:

• S+ = −I ; we have S+ ∈ Sp+(n)

• S− =

(
L 0
0 L−1

)
where L = diag(2,−1, ...,−1); we have S− ∈ Sp−(n).

Let ρ be the mapping Sp(n) −→ S1 defined in previous subsection. We
obviously have ρ(S+) = (−1)n and ρ(S−) = (−1)n−1.

We now have all we need to define the Conley–Zehnder index of a path
Σ ∈ C±(Sp(n)). We extend Σ into a path Σ̃ : [0, 2] −→ Sp(n) by setting

Σ̃(t) =

{
Σ(t) if 0 ≤ t ≤ 1
Σ′(t) if 1 ≤ t ≤ 2

where Σ̃(2) = S+ if Σ(1) ∈ Sp+(n) and Σ̃(2) = S− if Σ(1) ∈ Sp+(n). When

t varies from 0 to 2 the complex number ρ(Σ̃(t)) varies from 1 to ±1 hence

(ρ(Σ̃(t))) describes a loop in S1. By definition, the Conley–Zehnder index of Σ
is the integer

iCZ(Σ) = deg(ρ2 ◦ Γ).

That this definition does not depend on the choice of the extension Σ̃ follows
from property (Sp2) of Sp±(n).

Here is an elementary example; we will use it in Section 3 for the calculation
of the index of a path with loxodromic endpoint:
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Example 3 Define a symplectic path by

Σα(t) =

(
Rα(t) 0

0 Rα(t)

)
, Rα(t) =

(
cosαt sinαt
− sinαt cosαt

)

where 0 < α < π. We have det(Σα(t)− 1) = (det(Rα(t)− I)2 ≥ 0 with equality

only if t = 0 hence Σα ∈ C+(Sp(n)). We can define the extended path Σ̃ by

Σ̃(t) = Σα(t) for 0 ≤ t ≤ 1 and Σ̃(t) = Σπ−α(t + 2α − π) for 1 ≤ t ≤ 2. We

obviously have U(t) = Σ̃(t) hence detC U(t) = det Rα(t) = 1. It follows that

iCZ(Σα) = 0. (13)

2.1.2 Axiomatic description of iCZ

The Conley–Zehnder index is the unique mapping iCZ : C±(Sp(n)) −→ Z char-
acterized by the three following properties (see [18]; also [14]):

CZ1 Inverse path property : We have iCZ(Σ−1) = −iCZ(Σ) (Σ−1 being defined
by Σ−1(t) = (Σ(t))−1 for t ∈ [0, 1]);

CZ2 Homotopy invariance: iCZ(Σ) = iCZ(Σ′) if Σ and Σ′ are homotopic in
C±(Sp(n));

CZ3 Action of π1(Sp(n)): For every Γ ∈ π1(Sp(n)) we have iCZ(Γ ∗ Σ) =
iCZ(Σ) + 2 Mas(Γ).

Remark 4 Notice that (CZ2) implies the following: let Σ ∈ C(Sp(n)) and Σ′

be a path joining the endpoint Σ(1) = S to S ′ ∈ Sp(n). If Σ′ lies in C+(Sp(n))
or C−(Sp(n)) then iCZ(Σ ∗ Σ′) = iCZ(Σ).

The Conley–Zehnder index has in addition the following properties:

CZ4 Normalization: Let J1 be the matrix

(
0 1
−1 0

)
∈ Sp(1). If Σ1 ∈ C(Sp(2))

is the path t 7−→
(

cosπt sinπt
− sin π cosπt

)
joining I to −I , then iCZ(Σ1) = 1.

CZ5 Dimensional additivity : If Σ1 ∈ C(Sp(n1)) and Σ2 ∈ C(Sp(n2), R) and
Σ = Σ1 ⊕ Σ2 ∈ C(Sp(n1 + n2)) then

iCZ(Σ) = iCZ(Σ1) + iCZ(Σ2). (14)

Until, now we have assumed that the endpoint of the symplectic path Σ had
no eigenvalue equal to one. Let us next show that we can relax this condition.
The extension of the Conley–Zehnder index to all of C(Sp(n)) we obtain can take
half-integer values (see the case of paths with parabolic endpoints in Section 3).

2.2 Extension of the Conley–Zehnder index

We review here the results in [14, 15].
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2.2.1 iCZ and the Leray index

Define the symplectic form σ	 = σ⊕(−σ) on R2n⊕R2n where σ is the standard
symplectic form dp ∧ dx on R2n (we write elements of R2n as z = (x, p)).
We denote by Sp	(2n) and Lag	(2n) the symplectic group and Lagrangian
Grassmannian of (R2n⊕R2n, σ	). Let µ	 be the Leray index on Lag	(2n). For
Σ ∈ C(Sp(n)) set Σ	 = I ⊕ Σ. We have Σ	 ∈ C Sp	(2n). In [14] we showed
that:

CZ6 Relation with the Leray index : We have

iCZ(Σ) = 1
2µ	(Σ	∆, ∆) (15)

where ∆ ∈ Lag	(2n) is the diagonal ∆ = {(z, z) : z ∈ R2n} of R2n ⊕R2n.
(Compare formula (9) defining the Maslov index).

Formula (15) can be used to extend the original definition of iCZ given in [5]
and which is only valid for det(S−I) 6= 0; we will take it as a redefinition of the
Conley–Zehnder index. It follows from this redefinition that we can calculate
the Maslov index of loops: it follows from the properties of the Leray index that
for every Γ ∈ π1(Sp(n))

iCZ(Γ) = 2 Mas(Γ); (16)

this formula is actually a particular case of property (CZ3) because it follows
from the antisymmetry of the Leray index that if Σ0 is the constant path (i.e.
Σ0(t) = I for 0 ≤ t ≤ 1) we have iCZ(Σ0) = 0.

2.2.2 The product formula

In [14] we proved, using (15), the following important product formula:

CZ7 If Σ and Σ′ are in C(Sp(n)) then the index of the product path ΣΣ′ defined
by ΣΣ′(t) = Σ(t)Σ′(t) is given by

iCZ(ΣΣ′) = iCZ(Σ) + iCZ(Σ′) + 1
2 sign(MS + MS′) (17)

where MS is the “symplectic Cayley transform”

MS = 1
2J(S + I)(S − I)−1 (18)

of the endpoint S = Σ(1) of the symplectic path Σ; the matrix MS is
symmetric.

Formula (17) in particular implies that one can –in principle– calculate the
index iCZ(Σ∗(N)) of a N times repeated orbit by induction; for instance

iCZ(Σ ∗ Σ) = 2iCZ(Σ) + 1
2 signMS .

It is however not directly obvious what a “nice formula” for iCZ(Σ∗N ) could be.
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2.2.3 Invariance under conjugation

The following simple result is the key to the reduction of the calculation of the
Conley–Zehnder index to normal forms in Section 3; it says that two symplectic-
conjugate paths have the same Conley–Zehnder index:

Proposition 5 The Conley–Zehnder index is invariant under conjugation:

iCZ(S−1ΣS) = iCZ(Σ) (19)

for every S ∈ Sp(n) (the path S−1ΣS is defined by S−1ΣS(t) = S−1Σ(t)S).

Proof. Clearly S−1ΣS ∈ C(Sp(n)) if Σ ∈ C(Sp(n)). Since Sp(n) is connected
there exists a path t′ 7−→ St′ (0 ≤ t′ ≤ 1) joining the identity I ∈ Sp(n) to
S = S1. The function h(t, t′) = S−1

t′ Σ(t)St′ homotopes Σ on S−1ΣS; since we
have

det(S−1
t′ Σ(t)St′ − I) = det(Σ(t) − I)

the function h is is a homotopy in C±(Sp(n)) hence iCZ(S−1ΣS) = iCZ(Σ) in
view of the property (CZ2) of he Conley–Zehnder index.

(It is easy to modify the proof above so that Proposition 5 still holds when
S is replaced by an arbitrary symplectic path.)

It follows from Proposition 5 that the Conley–Zehnder index of a periodic
Hamiltonian orbit is an intrinsic property of that orbit, and does not depend
on the choice of origin of that orbit:

Corollary 6 Let γH
z0

be a τ -periodic orbit such that γH
z0

(0) = z0. Let z1 ∈
γH

z0
([0, τ ]). We have iCZ(γH

z0
) = iCZ(γH

z1
).

Proof. Let z1 = φH
t0 (z0), φH

t the flow determined by the Hamiltonian H .
Writing φH

t = φH
t0 ◦ φH

t ◦ φH
−t0 we have, using the chain rule,

DφH
t (z) = DφH

t0 [φ
H
t ◦ φH

−t0(z)]D[φH
t ◦ φH

−t0(z)]

= DφH
t0 [φ

H
t φH

−t0(z)]DφH
t [φH

−t0(z0)]DφH
−t0(z)

Setting z = z1 = φH
t0 (z0) and DφH

t = St we get

St(z1) = St0(φ
H
t (z0))St(z0)(St0(z0))

−1 (20)

hence, in particular Sτ (z1) and Sτ (z0) are conjugate:

Sτ (z1) = St0(z0)St(z0)(St0(z0))
−1.

Let us denote the paths t 7−→ St(z0) and t 7−→ St(z1) (0 ≤ t ≤ τ) by Σ0 and
Σ1, respectively, so that iCZ(γH

z0
) = iCZ(Σ0) and iCZ(γH

z1
) = iCZ(Σ1). Rewriting

the equality (20) as

St(z1) = Γ(t)St0(z0)St(z0)(St0(z0))
−1

Γ(t) = St0(φ
H
t (z0))(St0(z0))

−1

11



we have Γ(0) = Γ(τ) = I . We thus have

Σ1 = Γ ∗ St0(z0)Σ0(St0(z0))
−1

hence
iCZ(Σ1) = iCZ(St0(z0)Σ0(St0(z0))

−1) + 2 Mas(Γ)

in view of property (CZ3) of the Conley–Zehnder index. By formula (19) in
Proposition (5) above we have

iCZ(St0(z0)Σ0(St0(z0))
−1) = iCZ(Σ0)

hence
iCZ(Σ1) = iCZ(Σ0) + 2 Mas(Γ).

Let us show that the loop Γ is contractible to a point; then Mas(Γ) = 0 and
iCZ(Σ1) = iCZ(Σ0). Define a function h : [0, τ ] × [0, t0] −→ Sp(n) by h(t, t′) =
St′(φ

H
t (z0))(St′ (z0))

−1. Fixing t′ we have h(0, t′) = h(τ, t′) = I ; on the other
hand h(t, t0) = St0(φ

H
t (z0))(St0(z0))

−1 and h(t, 0) = I , hence h homotopes Γ
to the point {I}.

Corollary 6 thus allows us to speak about the Conley–Zehnder of a periodic
Hamiltonian orbit; if γH is such an orbit we will write

iCZ(γH) = iCZ(Σ)

where Σ is a solution curve of the variational equation (3) without reference to
the origin z0.

2.2.4 Relation of iCZ with Morse’s index of concavity

Using (15) one obtains the following very useful result which links the Conley–
Zehnder index to the Maslov index on Sp(n) when the endpoint S of Σ is a free
symplectic matrix. Recall that S ∈ Sp(n) is said to be “free” if S`P ∩ `P = 0

where `P = 0 × Rn; identifying S with its matrix

(
A B
C D

)
in the canonical

symplectic basis of (R2n, σ) this condition is equivalent to det B 6= 0. One calls
the quadratic form

W (x, x′) = 1
2DB−1x2 − B−1x · x′ + 1

2B−1Ax′2 (21)

the generating function of S (note that (x, p) = S(x′, p′) is equivalent to p =
∂xW (x, x′) and p′ = −∂x′W (x, x′)). We have proven in ([14]) the following
important result which links the Conley–Zehnder index to the usual Maslov
index:

Proposition 7 Assume that the endpoint S of Σ ∈ C(Sp(n)) is free. Then

iCZ(Σ) = Mas(Σ) − 1
2 (n + signWxx) (22)

12



where signWxx is the signature of the Hessian matrix of the quadratic form
x 7−→ W (x, x):

Wxx = DB−1 − B−1 − (BT )−1 + B−1A. (23)

When S has no eigenvalue equal to one (i.e. Σ ∈ C+(Sp(n)) or Σ ∈ C−(Sp(n)))
then

iCZ(Σ) = Mas(Σ) − Inert Wxx. (24)

(Compare formulas (4.4) and (4.5) in Creagh et al. [6]).
Proposition 7 combined with the conjugation property in Proposition 5 pro-

vide us, as we will see in Subsection 3, with a powerful tool for calculating
explicitly Conley–Zehnder indices. The idea is to find a symplectic matrix S
such that the endpoint of SΣS−1 is free; it then suffices to apply formula (22)
or (24) to the conjugate path SΣS−1.

The result above is more general than it seems at first sight; not only do free
symplectic matrices form a dense subset of Sp(n), but we have the following
result that shows that any symplectic matrix becomes free if multiplied by a
suitable symplectic matrix:

Proposition 8 For every S ∈ Sp(n) there exists R ∈ Sp(n) such that RS is
free.

Proof. Hofer and Zehnder show in [19] (Appendix A.1, p.270) that there exists
R′ ∈ Sp(n) such that

R′S =

(
A B
C D

)
and det A 6= 0.

Setting R = JR′ the symplectic matrix RS is free.

3 Conley–Zehnder index and Floquet theory

3.1 Symplectic Floquet theory

Consider a linear τ -periodic Hamiltonian system:

ż(t) = JH(t)z(t) , H(t + τ) = H(t) (25)

(H(t) is a real symmetric matrix depending continuously on t ∈ R; the function
t 7−→ z(t) is a solution of the Hamilton equations for the quadratic Hamilton
function H(z, t) = 1

2H(t)z · z). Let St be the fundamental solution defined by

d
dtSt = JH(t)St , S0 = I ; (26)

we have St ∈ Sp(n) for all t. By definition Sτ is the monodromy matrix of the
Hamiltonian system (25). Let us now return to the question of whether the
logarithm X of the monodromy matrix can be chosen real. A classical result is

13



the following (Culver [7]): let Y be a real square matrix. Then there exists a
real square matrix X such that Y = eX if and only if Y is nonsingular and each
Jordan block of Y belonging to a negative eigenvalues occurs an even number
of times. It follows that:

Lemma 9 The square S2τ = S2
τ of the monodromy matrix can be written as

S2τ = e2τX where X is real.

Proof. Since Sτ is real its eigenvalues must come in complex conjugate pairs.
The only negative eigenvalues of S2τ come from those which are purely imagi-
nary.

We observe that Montagnier et al. [30] have shown that one can relax the
“period doubling” procedure in the Floquet decomposition; we will however not
need their results here.

We have not exploited yet the fact that St is symplectic. Elaborating on an
argument by Siegel and Moser [34] (p. 97–103), Wiesel and Pohlen [36] show
that if X is a complex matrix such that eX ∈ Sp(n) then there exist (complex)
matrices F and D such that

X = FDF−1 , F T JF = J , DT J + JD = 0. (27)

We can restate this result in the following way (we denote by sp(n) the Lie
algebra of Sp(n)):

Lemma 10 Let X be a complex matrix such that eX ∈ Sp(n). (i) We have
XT J + JX = 0. (ii) If X is real then X ∈ sp(n) and hence etX ∈ Sp(n) for all
t ∈ R.

Proof. The statement (ii) immediately follows from (i) since the condition
XT J + JX = 0 is equivalent to X ∈ sp(n) when X is real. Differentiating the

function f(t) = etXT

JetX − J we have

d
dtf(t) = etXT

(XT J + JX)etX = 0,

hence, using the relations (27),

XT J + JX = (F−1)T DT F T J + JFDF−1 = 0

hence (i)
Combining Lemmas 9 and 10 we get the following symplectic Floquet de-

composition result:

Proposition 11 Let St be the solution of the variational equation (26). There
exist symplectic matrices Πt+τ = Πt and Qt = etX (X ∈ sp(n)) such that
St = ΠtQt.

Proof. Doubling the period τ if necessary we may assume that Sτ = eτX

with X ∈ sp(n). Writing St = ΠtQt with Qt = etX we have Πt ∈ Sp(n) and
Πt+τ = St+τe−(t+τ)X = St(Sτe−τX)e−tX = Πt since Sτ = eτX .

14



3.2 Application to the calculation of iCZ(γH)

Let now γH be a a Hamiltonian periodic orbit. The discussion above implies
that the Conley–Zehnder index of γH consists of two terms: a Maslov index,
corresponding to the periodic part, and the Conley–Zehnder index of a “simple”
path:

Corollary 12 The Conley–Zehnder index iCZ(γH) = iCZ(Σ) is given by

iCZ(γH) = iCZ(Σ) + 2 Mas(Γ)

where Σ ∈ C(Sp(n)) is the path defined by Σ(t) = Qtτ = etτX and Γ the loop
Γ(t) = Πtτ (0 ≤ t ≤ 1).

Proof. It immediately follows from Proposition (11) and property (CZ3) of the
Conley–Zehnder index.

4 Some Explicit Calculations

We are going to calculate explicitly the Conley–Zehnder indices of a few sym-
plectic paths of interest intervening in practical computations for the Gutzwiller
formula after reduction to normal form. We are following here Sugita’s classi-
fication [35]; the matrices we will write correspond to the choice of symplectic
coordinates

(x, p) = (x1, ..., xn; p1, ..., pn).

The cases we will consider correspond to normal forms of symplectic map-
pings (respectively quadratic Hamiltonian functions); see Burgoyne and Cush-
man [3] or Laub and Meyer [20] for classical accounts extending and extending
the classical symplectic diagonalization procedure of Williamson. More recently
Long and Dong [24] have determined normal forms of symplectic matrices pos-
sessing eigenvalues on the unit circle. Also see Abraham–Marsden [1] for a
discussion of normal forms from the point of view of equilibrium dynamics.

4.1 The case of prime orbits

Let γH
z0

be a periodic Hamiltonian orbit with period τ ; it is a prime orbit if
γH

z0
(t) 6= γH

z0
(0) if 0 < t < τ .

In what follows α and β denote real numbers; we assume β > 0.

4.1.1 Parabolic blocks

They correspond to eigenvalues λ = 1 and are of the type

Spar(t) =

(
1 γt
0 1

)
or S′

par(t) =

(
1 0

−γt 1

)

corresponding to, respectively, H = 1
2γp2 and H = 1

2γx2. Notice that since
S′

par(t) = J−1Spar(t)J both paths are conjugate, hence they have the same
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Conley–Zehnder index in view of Proposition 5. Since Spar(1) is free we can
apply formula (22) in Proposition 7. The generating function of Spar(1) is
W (x, x′) = 1

2γ(x − x′)2 hence Wxx = 0 so that

iCZ(Σpar) = Mas(Σpar) −
1

2
.

Now, Mas(Σpar) = 1 − sign γ (formula (10)) hence we have

iCZ(Σpar) = − 1
2 sign γ. (28)

The index iCZ(Σpar) is thus a half-integer.

4.1.2 Elliptic blocks

They correspond to eigenvalues λ = e±iα with 0 < α < 2π and α 6= π:

Sell =

(
cosα sinα
− sin α cosα

)
;

the associated Hamiltonian is H = 1
2α(x2 + p2) so that

Σell(t) =

(
cosαt sin αt
− sinαt cosαt

)
, 0 ≤ t ≤ 1.

The symplectic matrix Sell is free and its generating function is

W (x, x′) =
1

2 sin α
((x2 + x′2) cosα − 2xx′)

and hence Wxx = − cot(α/2). Since cot(α/2) 6= 0 we can calculate the Conley–
Zehnder index of the path Σell using formula (24), which reads here:

iCZ(Σell) = Mas(Σell) − Inert
[
− cot

α

2

]
. (29)

We have

Mas(Σell) = −
[α

π

]
=

{
0 if 0 < α < π

−1 if π < α < 2π
(30)

(formula (11)) and cot(α/2) > 0 if 0 < α < π and cot(α/2) < 0 if π < α < 2π;
formula (29) thus yields

iCZ(Σell) = −1. (31)

4.1.3 Hyperbolic blocks

They correspond to eigenvalues λ = e±β; the Hamiltonian is here H = −βpx.
We have

Shyp =

(
eβ 0
0 e−β

)
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and the corresponding path is

Σhyp(t) =

(
eβt 0
0 e−βt

)
, 0 ≤ t ≤ 1.

Let S =
1√
2

(
1 −1
1 1

)
. The symplectic matrix

SΣhyp(t)S
−1 =

(
coshβt sinh βt
sinh βt coshβt

)

is free and the generating function of SΣhyp(1)S−1 is

W (x, x′) =
x2

2
(coth β) − xx′

sinh β
+

x′2

2
(coth β);

it follows that

Wxx =
coshβ − 1

sinh β
> 0

hence, by formula (24), Proposition 5, and formula (12)

iCZ(Σhyp) = Mas(Σhyp) = 0. (32)

4.1.4 Inverse hyperbolic blocks

They correspond to eigenvalues λ = −e±β:

Sinv =

(
−eβ 0
0 −e−β

)
;

since Tr(Sinv) < −2 there is no X ∈ sp(n) such that Sinv = eX . However,
Sinv lies on the symplectic path determined by the time-dependent Hamiltonian
defined by H = π(p2 + x2) if 0 ≤ t ≤ 1/2 and H = 2βpx if 1/2 ≤ t ≤ 1. The

corresponding path is given by Σinv = Σ
(1)
inv ∗ Σ

(2)
inv with





Σ
(1)
inv(t) =

(
cos 2πt sin 2πt
− sin 2πt cos 2πt

)
if 0 ≤ t ≤ 1/2,

Σ
(2)
inv(t) =

(
−eβ(2t−1) 0

0 −e−β(2t−1)

)
if 1/2 ≤ t ≤ 1.

Since det(Σ
(2)
inv(t)−I) > 0 for all t the path Σ

(2)
inv stays forever in Sp+(n) we thus

have
iCZ(Σ

(1)
inv ∗ Σ

(2)
inv) = iCZ(Σ

(1)
inv)

in view of Remark 4; using the normalization property (CZ4) of the Conley–

Zehnder index we have iCZ(Σ
(1)
inv) = −1 hence

iCZ(Σinv) = −1. (33)
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4.1.5 Loxodromic blocks

They correspond to eigenvalues λ = e±iα±β with 0 < α < π and we have

Slox =




e−β cosα e−β sin α 0 0
−e−β sin α e−β cosα 0 0

0 0 eβ cosα eβ sin α
0 0 −eβ sin α eβ cosα


 ;

so that

Σlox(t) =




e−βt cosαt e−βt sinαt 0 0
−e−βt sinαt e−βt cosαt 0 0

0 0 eβt cosαt eβt sinαt
0 0 −eβt sin αt eβt cosαt




the corresponding Hamiltonian is H = α(p1x2 − p2x1) − β(p1x1 + p2x2). We
begin by noting that Σlox(t) = Σ′(t)Σα(t) with

Σ′(t) =




e−βt 0 0 0
0 e−βt 0 0
0 0 eβt 0
0 0 0 eβt




Σα(t) =




cosαt sin αt 0 0
− sinαt cosαt 0 0

0 0 cosαt sin αt
0 0 − sinαt cosαt


 .

In view of the product formula (17) we have

iCZ(Σ′Σα) = iCZ(Σ′) + iCZ(Σα) + 1
2 sign(M ′ + Mα)

where M ′ (resp. Mα) is the symplectic Cayley transform (18) of S ′ = Σ′(1)
(resp. Sα = Σα(1)); now iCZ(Σα) = 0 (formula (13)); on the other hand
Σ′ = Σhyp ⊕Σhyp hence, using successively the dimensional additivity property
(CZ5) (formula (14)) and (32), we have iCZ(Σ′) = 2iCZ(Σhyp) = 0. It follows
that

iCZ(Σ′Σα) = 1
2 sign(M ′ + Mα).

A straightforward calculation now shows that

M ′ + Mα =
1

2




0 0 coth β
2 − cot α

2

0 0 cot α
2 coth β

2

coth β
2 cot α

2 0 0

− cot α
2 coth β

2 0 0


 ;

the eigenvalues of this matrix are the solutions of the characteristic equation
[
λ2 −

(
cot2 α

2 + coth2 β
2

)]2

= 0;

it follows that sign(M ′ + Mα) = 0 and hence

iCZ(Σlox) = 0. (34)
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4.2 The Conley–Zehnder index of repeated orbits

For a path Σ ∈ C(Sp(n)) and N a positive integer we denote by Σ∗N the path
Σ ∗ · · · ∗ Σ. Clearly Σ∗N ∈ C(Sp(n)). (Observe however that the condition
Σ ∈ C±(Sp(n)) does not imply that C±(Sp(n))).

4.2.1 The parabolic, hyperbolic, and loxodromic cases

Consider first the parabolic case. Let N be an integer; we have Σ∗N
par(t) =

Σpar(Nt) hence the N -th repetition of a path with parabolic endpoint also has
parabolic endpoint with γ replaced by Nγ. Since γ and Nγ have same sign
formula (34) yields:

iCZ(Σ∗N
par) = − 1

2 sign γ. (35)

The same argument applies in the hyperbolic case: Σ∗N
hyp has parabolic end-

point with β replaced by Nβ; it follows that

iCZ(Σ∗N
hyp) = 0. (36)

Consider next the loxodromic case. It is easy to verify that the endpoint
SN

lox of Σ∗N
hyp is again loxodromic, but with α replaced by Nα and β by Nβ.

If 0 < Nα < π one is led back to the case N = 1; otherwise it suffices to
view SN

lox as a loxodromic endpoint with β replaced by Nβ and α replaced by
α′ = α− 2kNπ where kN is an integer chosen so that 0 < α′ < π. In either case
we get the value

iCZ(Σ∗N
lox ) = 0. (37)

4.2.2 The inverse hyperbolic case

Let us now study the inverse hyperbolic case. We will have to distinguish two
cases.

• We first notice that if N is an even integer then the endpoint of ΣN
inv is

a symplectic path with hyperbolic endpoint; however one must also take

into account the contribution of the N -th power of the path Σ
(1)
inv which is

a loop. In fact, writing N = 2k we have




(Σ
(1)
inv(t))

2k =

(
cos 4kπt sin 4kπt
− sin 4kπt cos 4kπt

)
if 0 ≤ t ≤ 1/2,

(Σ
(2)
inv(t))

2k =

(
−ekβ(2t−1) 0

0 −e−kβ(2t−1)

)
if 1/2 ≤ t ≤ 1.

(Σ
(1)
inv)

∗2k = αk where α is the generator of π1(Sp(n)) and (Σ
(2)
inv)

∗2k = Σ∗2k
hyp

so that Σ∗2k
inv = αkΣ∗2k

hyp. In view of property (CZ3) of the Conley–Zehnder
index we have

iCZ(Σ∗2k
inv ) = iCZ(Σ∗2k

hyp) + 2 Mas(αk)

hence, using formulae (8) and (36):

iCZ(Σ∗2k
inv ) = 4k. (38)
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• Assume next that N = 2k + 1. The same argument as above shows that

we have Σ
∗(2k+1)
inv = αkΣ′

inv (Σ′
inv is Σinv with β replaced by (2k + 1)β),

hence, taking formula (33) into account:

iCZ(Σ
∗(2k+1)
inv ) = −1 + 4k. (39)

Remark 13 Formulae (38), (39) show that iCZ(Σ∗N
inv

) ≡ −1 mod 4 in all cases.
Therefore the number of repetitions of periodic orbits with inverse hyperbolic
endpoint has no influence on the phase in Gutzwiller’s formula.

4.2.3 The elliptic case

Let Σell be a symplectic path with elliptic endpoint. Suppose first that Nα =
2kπ for some integer k. Then Σ∗N

ell is a loop; in fact

Σ∗N
ell (t) =

(
cosNαt sin Nαt
− sin Nαt cosNαt

)
, 0 ≤ t ≤ 1

hence, taking formula (16) into account:

iCZ(Σ∗N
ell ) = 2 Mas(Σ∗N

ell ) = 4N0

where N0 is the smallest positive integer such that N0α ≡ 0 mod 2π. If Nα 6=
2kπ then the endpoint of Σ∗N

ell is again elliptic and we have (cf. formulae (29)
and (30))

iCZ(Σell) = −
[
Nα

π

]
− Inert

[
− cot( 1

2Nα)
]
.

Let us consider the two following cases:

• (2k−1)π < Nα < 2kπ. We then have [Nα/π] = 2k−1 and − cot( 1
2Nα) >

0 hence iCZ(Σell) = −2k + 1;

• 2kπ < Nα < (2k + 1)π. We then have [Nα/π] = 2k and − cot( 1
2Nα) < 0

hence iCZ(Σell) = −2k − 1.

In both cases this is the same thing as

iCZ(Σell) = −2

[
Nα

2π

]
− 1. (40)

5 Application to the Metaplectic Group

The double covering of the symplectic group Sp(n) admits a faithful represen-
tation as unitary operators acting on the square integrable functions on Rn (see
[11, 13, 21] and the references therein). The corresponding group is called the
metaplectic group; we will denote it by Mp(n). The natural projection of Mp(n)
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onto Sp(n) is denoted ; it is chosen so that π(F ) = J where F is the ~-Fourier
transform defined by

Ff(x) =
(

1
2πi

)n
∫

e−ix·x′

f(x′)dnx′.

The formulae obtained in Section 3 will allow us to give explicit formulae for
the Weyl symbols of metaplectic operators in ”normal form” following the clas-
sification given above.

5.1 The Weyl representation of metaplectic operators

Let W be a quadratic form on R
n × R

n such that

W (x, x′) = 1
2Px2 − Lx · x′ + 1

2Qx2 (41)

with P = P T , Q = QT , and det L 6= 0. To W we associate the operator
ŜW,m : S(Rn) −→ S(Rn) defined by

ŜW,mf(x) =
(

1
2πi

)n/2
∆(W )

∫
e−ix·x′

f(x′)dnx′

where ∆(W ) = im
√
| det L|, the integer m corresponds to a choice of the argu-

ment of det L:
mπ = arg det L mod 2π.

The operators ŜW,m extend into unitary operators on L2(Rn) and the inverse

of ŜW,m is given by (ŜW,m)−1 = ŜW∗,m∗ with W ∗(x, x′) = −W (x′, x) and

m∗ = n−m. The operators ŜW,m thus generate a group of unitary operators on
L2(Rn), the metaplectic group Mp(n). One defines a group homomorphism π :

Mp(n) −→ Sp(n) by specifying its value on the generators ŜW,m: by definition

SW = π(ŜW,m) is the free symplectic matrix characterized by

(x, p) = SW (x′, p′) ⇐⇒
{

p = ∂xW (x, x′)
p′ = −∂x′W (x, x′)

.

One readily checks by an explicit calculation that

SW =

(
L−1Q L−1

PL−1Q − LT L−1P

)
;

equivalently, if SW =

(
A B
C D

)
is a free symplectic matrix, we have SW =

π(±ŜW,m) with

W (x, x′) = 1
2DB−1x2 − B−1x · x′ + 1

2B−1Ax2.

An essential result is the following:
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Proposition 14 Every Ŝ ∈ Mp(n) can be written as a product ŜW,mŜW ′,m′

where SW = π(ŜW,m) and SW ′ = π(ŜW ′,m′) are such that det(SW − I) 6= 0 and
det(SW ′ − I) 6= 0, that is SW , SW ′ ∈ Sp±(n).

Proof. The proof that every Ŝ can be written ŜW,mŜW ′,m′ can be found in
[11]; it relies on the fact that the symplectic group acts transitively on pairs

of transverse Lagrangian planes. That ŜW,m and ŜW ′,m′ can be in addition be
chosen such that det(SW − I) 6= 0 and det(SW ′ − I) 6= 0 was established in [12]
(also see [13]).

In [12] (also see [13, 14, 15] for details and comments) we have shown that:

Theorem 15 (i) Let S ∈ Sp(n) be such that det(S − I) 6= 0. Then Ŝ ∈ Mp(n)

has projection S = π(Ŝ) if and only if

Ŝ =

(
1

2π

)n
iν(bS)

√
| det(S − I)|

∫
exp

[
i

2
MSz2

]
T̂ (z)d2nz (42)

where T̂ (z) is the Weyl–Heisenberg operator:

T̂ (z)f(x′) = ei(px′
− 1

2 px)f(x′ − x),

MS the symplectic Cayley transform (18) of S, and

ν(Ŝ) = iCZ(Σ) mod 4 (43)

where Σ ∈ C±(Sp(n)) has endpoint S.

In [9, 11] we have shown that if Ŝ = ŜW,m then m = Mas(Σ) where Σ is
defined as above; hence, taking formula (24) in Proposition (7) into account:

Corollary 16 Let ŜW,m be such that det(SW − I) 6= 0. Then

ŜW,m =

(
1

2π

)n
im−InertWxx

√
| det(S − I)|

∫
exp

[
i

2
MSz2

]
T̂ (z)d2nz (44)

with Wxx = P + Q − L − LT when W is given by (41).

5.2 Explicit formulae

We will content ourselves her with the hyperbolic, inverse hyperbolic, and elliptic
cases. The loxodromic case is calculated similarly.

5.2.1 The elliptic case

We have S = Sell =

(
cosα sinα
− sin α cosα

)
; a trivial calculation yields

det(Sell − I) = 4 sin2 α

2
, Mell =

1

2

(
cot α

2 0
0 cot α

2

)
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(Mell the symplectic Cayley transform of Sell) hence, in view of formulae (42),
(43), and (31),

Ŝell =
1

4πi| sin α
2 |

∫
exp

[
i

4
|z|2 cot

α

2

]
T̂ (z)dz.

5.2.2 The hyperbolic and inverse-hyperbolic cases

Assume first that S = Shyp =

(
eβ 0
0 e−β

)
and

det(Shyp − I) = −4 sinh2 β

2
, Mhyp =

1

2

(
0 tanh β

2

tanh β
2 0

)

hence, taking formula (32) into account,

Ŝhyp =
1

4π sinh β
2

∫
exp

[
i

4
px tanh

β

2

]
T̂ (z)dz.

Suppose next that S = Sinv =

(
−eβ 0
0 −e−β

)
. Then

det(Sinv − I) = 4 cosh2 β

2
, Minv = −1

2

(
0 tanh β

2

tanh β
2 0

)
;

using (33) we get

Ŝinv =
1

4πi cosh β
2

∫
exp

[
− i

4
px tanh

β

2

]
T̂ (z)dz.
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