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Topology of Complete Intersections*

Fuquan FANG

§1. Introduction

The main aim of this paper is to give several homeomorphism and homotopy classifi-
cation theorems for complete intersections without singularities. Partial results here have
been announced in [6]. Recall that a complete intersection is the transversal intersection
of some complex hypersurfaces defined by the homogeneous polynomials in a complex
projective space. Below we will use X, (d) to denote the complete intersection with multi
degree d = (dy, ...,d,) and complex dimension n. We call the product d; - -d, := d the
total degree. It is a classical observation of R.Thom that the differential topology of
X,(d) is determined by the multi degree and dimension n. Lefschetz hyperplane section
Theorem asserts that the inclusion

Xn(d) = CP™T

is an n-equivalence.

In lower dimensions, the topology of complete intersections are well understood by the
general theory of differential topology. For instance, X,(d) is a complex curve of genus
y=1—§("‘+2- i=1 &i).

X5(d) is a simply connected complex surface. The homotopy and homeomorphism type
is determined by its intersection form([8]. An interesting example of Ebeling [5] asserts
that there are two complete intersections with the same homeomorphism type but not
diffeomorphic.

X3(d) is a simply connected 3-dimensional complex manifold with all homology groups
torsion free. A complete classification of such kinds of manifolds was done by C.T.C.Wall[20]
and Jupp(10].

n = 4 is the first nontrivial dimension in which we can not refer to any classical classifi-
cation theory. In {7], S.Klaus and I proved that two 4-dimensional complete intersections
are homeomorphic if and only if their total degrees, Euler numbers and all Pontryagin
numbers agree. Even in this special dimension, the homotopy classification for complete
intersections is still open.

On the other hand, some general classification for complete intersections were carried
out under certain restriction about the total degree d. For example, under the assumption

*Supported in partial by Sonderforschungsbereich 343 at Universitit Bielefeld and the Max-Planck-
Institut fuer Mathematik at Bonn. The author would like to thank both for their hospitality.

1



that for all prime p with p(p—1) < n+1, the total degree d is divisible by pl(2n+1)/(2p=1}+1
Traving{19](c.f: [12]) proved that two complete intersections with the same total degree
d are diffeomorphic if and only if their Euler numbers and all Pontryagin classes agree.
For the homotopy classification, Libgober and Wood[14] proved that, if the dimension n
is odd and the total degree d has no prime factors less than 252, then two n-dimensional
complete intersections with total degree d are homotopy equivalent if and only if their
Euler numbers agree. They made a further conjecture [16) for the case of n is even. In
this situation, the topology becomes much more complicated. Some more details can be
looked up in [15][16].

In this paper, the following homotopy classification theorem will be proved. The
proof confirms also Libgober-Wood’s conjecture.

Theorem 1.1. Let n be even, X,(d) and X,(d'} be two complete intersections
with the same total degree d. Suppose that d has no small prime factors less than %3
Then X, (d) and X, (d’) are homotopy equivalent if and only if they have the same Euler
charateristic and signatures.

Once the homotopy type of two complete intersections are the same, Sullivan’s
charateristic variety theory can be applied to handle the problem of when they are home-
omorphic or diffeomorphic. For a complete intersection X, (d), the Pontryagin classes p;
must be an integral multiple of %, where z is a 2-dimensional generator of X,,(d). Thus
we can compare Pontryagin classes of two different complete intersections with the same
total degree d just by means of these integers.

Theorem 1.2. Let X,(d) and X, (d') be two homotopy equivalent complete inter-
sections. If d is odd and n # 2° — 2, then they are homeomorphic to each other if and
only if their Pontryagin classes agree.

The proof of the above theorem can not be extended to the case of d even. We shall
explain this with more details in §3. Combining this with the homotopy classification
Theorem above and [14] for n odd, the homeomorphism classification in the case of n #
2' — 2 and d has no prime factors less than 22, With a little bit more argument we have
the following corollary.

Corollary 1.3. Ifn > 3, X,(d) and X, (d') are two complete intersections with
the same total degree d. Suppose that d has no small prime factors less than "%3 Then
Xp(d) and X,(d") are homeomorphic if and only if their Poniryagin classes and Euler
numbers agree.

When I had finished this paper, M.Kreck pointed out to me that under the same
assumption of the above corollary, S.Stolz has a unpublished version to assert the two
complete intersections are even diffeomorphic.

Another very natural question is to ask, if X,,(d) and X,(d’) are diffeomorphic/or
homeomorphic/or homotopy equivalent, is X,(d,a) and X,(d’,a} diffeomorphic for a
natural number a?



To phrase our relevant results on this question, we make a convention, namely, we say
two 2n-dimensional manifolds M and N are S-diffeomorphic(homeomorphic, homotopy
equivalent) if there are integers 7 and s so that M#rS™ x 5™ and N#sS™ x S™ are
diffeomorphic(homeomorphic, homotopy equivalent). The following theorem answer the
above question partially.

Theorem 1.4.  Let X, (d) and X,(d') be two S-diffeomorphic(homeomorphic,
homotopy equivalent) complete intersections. If ay,-- -, ax are positive integers satisfying

maz{ay,- -, } < min{d,d’}.

Then X,(d,a1,---,ax) and Xp(d', a1, -, ax) are S-diffeomorphic(homeomorphic, homo-
topy equivalent).

Without loss of generality we can always assume that the multi degree d does not
contain 1. By the above theorem, if X (d) and X, (d’) are S-equivalent, then so are
X,(d,2,---,2) and X, (d',2,---,2).

The project of the current paper was begun during my visit to Univerty of Mainz.
The discussions with M.Kreck proved to be valuable. T would like to thank him for his
warm hospitality.

§2. Homotopy type

For n odd, every smooth complete intersection can be splitted as the connected sum
K#rS™ x S"#N in the topological category, where I satisfies H,(K) = 0 and N is
(n — 1)-connected with H,(N) =2 Z® Z. K is called the topological core of the complete
intersection. We let K,(d) denote the corresponding topological cores of X,(d). When
n = 1,3 or 7, the piece N will be S™® x S™. For other n, this holds if and only if either
there is homological trivial embedded n-sphere in X,(d)} with nontrivial normal bundle
or the Kervaire invariant of a well-defined quadratic function on H"*(X,(d), Z;) vanishes.
The Kervaire invariant of complete intersection was well investigated by several authors
during 70’s. The main results are:

Proposition 2.1.(J.Wood [21]) There is no homological trivial n-sphere in X, (d)
with nontrivial normal bundle if and only if

(a) : The binomial coefficient is even, wheren =2m+1,# 1,3,7 and ! is the

m
m-+1
number of even entries in d.

If (a) holds, then there is a well defined quadratic function
q: H*(X.(d), Z2) - Z,

by ¢(z) the normal bundle of an embedded n-sphere representing the dual of z. The
Kervaire invariant is just the Arf invariant of ¢. We denote it by K(X,).

Theorem 2.2.(Browder[3], Morita, Wood[21]) If d is odd,



Ku(Xa(d)) = 0 if d = £1(mod8)
1 if d = £3(mod8)

If d is even, K(X,(d) =1 if and only if n = 1(mod8), | = 2 and d is not divisible by 8.
Note in the case of K(X,(d) = 1, the piece N is the Kervaire manifold.

For n even, the situation is quite different, the rank of H,(K,(d)) can never be
zero since not all element of H,(X,(d)) are spherical. By [15], one can get a topological
splitting and topological core K, (d) which has rank H, (K, (d)) < 5. The precise value of
this minimal rank depends on the type of the intersection form as well as the total degree
d. It is readily to see that, at least up to homotopy this topological cores is unique.

For n odd, the cohomology ring H*(K,(d)) = Z[z,y]/{z"% = dy,y* = 0}. If d has
no prime factors less than 22, it is proved in [14] that K;,(d) has the homotopy type of
the 2n-skeleton of E, the homotopy fibre of 2% : CP® — K(Z4,n+1). Thus it depends
only on d, the total degree. The similar method does not work in the case of n even. But
Libgober and Wood make a conjecture that the same conclusion holds when n is even.
This is more or less equivalent to Theorem 1.1. We will give a proof of this fact base on
surgery theory of F. Quinn and Freedman.

Let us recall some notations and main results in the form useful for our purpose in
the surgery theory of Quinn.

Let M be a manifold of dimension 2n and N a codimension 2 submanifold. Let
C = M —intU where U denote a tubular neighborhood of N. We say N is taut if the pair
(C,0C) is (n— 1)-connected. It is proved in {11] that every codimension 2 homology class
can be represented by an embedded taut submanifold. This was generalized by F.Quinn
which we will introduce now adapted for our purpose.

Let f: M — X be a map transversal to a CW subcomplex ¥ C X where ¥ has a
2 dimensional normal bundle. Let E(f,Y) and E(f, X —Y) denote the fibre spaces over
M
E(f,Y) — Y

linclu
M L X

and
Ef,X-Y) — X-Y

l linclu

M <, x

f is called almost canonical with respect to Y if the natural maps f~!(Y) — E(f,Y)
and f7Y (X =Y) = E(f,X —Y) are (n — 1) and n equivalences respectively. When f is
a homotopy equivalence, the maps f : f~(Y) 5 Y and f: f}(X -Y) 2> X —Y are
n — 1 and n equivalences. The following theorem of F.Quinn is very useful for us.



Theorem (F.Quinn[17]). Let Y C X have a dimension 2 normal bundle neighbor-
hood. For every map f : M — X is homotopic holding the boundary fized to an almost
canonical one with respect to Y.

Proof of Theorem 1.1. Obivious we need only to show the sufficiency. Let X, (d)
and X, (d’) be two complete intersections with the same total degree d and same signature,
where n is even and d has no prime factors less than % First we shall show that there is
integers s and ¢ so that X, (d)#sS™ x S™ and X,,(d"}#tS™ x S™ are homotopy equivalent.

By [14], the cores K,41(d) and K,,,,(d’) are homotopy equivalent by the hypothesis
on d. In this case, d is of course odd and so the Kervaire invariant of X, ,,(d) and
Xayi1(d)are the same. Without loss of generality, assume that rankHp41(Xnei(d)) >
rankHy1(Xa4a(d)). Then there is an integer r so that X4 (d) =~ X, 4y (d)#rS™H! x
S™*1 Let f: Xpy1(d) = Xpq(d)#rS™H! x S**1 denote such a homotopy equivalence.

Notice both X,(d) and X, (d’) are taut submanifolds of X, ;,(d) and X, ,,(d")#rS™*t!x
S™+1 representing the 2n-dimensional homology generators respectively. By Quinn’s the-
orem above, we can assume that f is almost canonical with respect to the submanifold
X, (d'). Since f is a homotopy equivalence, it follows that f~!(X,(d’)) is also a taut sub-
manifold of X,4,(d) representing the codimension 2 homological generator. The unique-
ness theorem of Freedman(9] says that X, (d) and f~'(X,(d’)) are stably diffeomorphic.
Note the tautness is invariant under sum some trivial S” x S®. Thus we may assume that
FHXR(d)) = X, (d)#r'S™ x S™.

This gives us a map f : X (d)#r'S™ x S* = X,(d') which is a n-equivalence.
Moreover, f is a degree one map since the two complete intersection have the same total
degree. It follows that the sublattice Kerf, C H,(X,(d)#r'S™ x S") is unimodular.
Notice that Kerf, consists of spherical elements. This can be seen by looking at the
commutative square of the Hurewicz homomorphisms and so it is of even type. The
signature of this sublattice is exactly the difference of the target and source manifolds.
Thus it is zero. This shows that the unimodular lattice Ker f, is isomorphic to the sum
of some copy of the hyperbolic plane H, say mH. As in [16], there is a decomposition
M#mS™ x §* = X, (d)#r'S™ x §® = X,.(d'). Moreover, as f is null homotopy when
restricted to mS™ x S™ —disc, we get amap f': M — X, (d') which is in fact a homotopy
equivalence. This proves that X,,(d) and X,(d’) are S-homotopy equivalent.

In the case of X,(d) and X,(d') have the same Euler numbers, the number m =
r’. That is, by summing the same copy of S"™ x S", the two complete intersections are
homotopy equivalent.

By the same argument as in [16] Proposition 3.3, the cores of these two completes
intersections are homotopy equivalent. Thus X, (d) and X, (d’) are also homotopy equiv-
alent. This completes the proof. &

Remark: The proof above shows in fact also that the conjecture in [16] p126 holds
true.

As pointed out in {16], the condition about d in Theorem 1.1 is sharp. By using



K-theory one can get some more strong restrictions to the multi degrees of two homo-
topy equivalent complete intersections. To illustrate our method, we give a proof of the
following proposition.

Proposition 2.3. Let X,(d) and X, (d") be two complete intersections with ho-
motopy equivalent cores. Let | and ' denote the numbers of even entires in d and d’
respectively. Then 1 — I is divisible by 2/("~1. Here f(n) is as the following table

1 2 3 45 6 7 8 -~ m+8
1 2 2 3 3 3 3 4 - fm+4

Proof: Note that the stable normal bundle of X,,(d) is Hh @--- H¥ —(n+r+1)H ,
here H is the Hopf line bundle over X, (d). If K,(d) and K,(d") are homotopy equivalent,
by the decompositions there are two (n — 1)-connected almost parallelizable manifolds,
saying M and M’ such that X, (d)#M and X,(d')#M’ are homotopy equivalent. We
warn that M and M’ are not necessarily smoothable. By Atiyah [2], the stable normal
spherical fibrations of X, (d)#M and X,(d")#M’ are equivalent up to fibre homotopy.
The restriction on (2n — 2)-skeleton of these normal spherical fibrations are exactly the
restriction of the stable normal bundles of X,,(d) and X, (d’) since M and M’ are almost
parallelizable. In particular, the restrictions of the normal bundles of X,(d) and X,(d)
to CP!%], the subcomplex of the complete intersections are proper fibrewise homotopy
equivalent. In other words, viewed as the element, of the J-group J(CP!3]), H4 @. .. H% —
(n+r+1)H and H4 @ - .- H% — (n+ 7'+ 1)H are the same.

Consider the canonical S'-fibration 7 : RPA21+! — C P}, The complex line bundle
m*(H%) has trivial first Chern class if and only if d; is even as H}(RP3l+1) = 7,
Moreover, when d; is odd, n*(H%) = 7*(H). Thus the difference 7*(H" @ --- H* — (n+
r+1)H)—{H @ - -H% = (n-+7 +1)H} = o*(I' = )H € J(RPAiH) is zero. Note
T (H) = 2n € KO(RPA21), where 7 is the Hopf real line bundle. Thus 2(I’ — 1) must be
a multiple of the order of the J-group J(RP2*1) which is 2/(1341)[1]. This completes
the proof. &

§3. Sullivan’s characteristic variety

This section is devoted to a proof of Theorem 1.2 by using Sullivan’s charateris-
tic variety theory[18]. It had received considerable attentions that when two homotopy
equivalent manifolds are homeomorphic or diffeomorphic. Sullivan’s charateristic variety
theory is a very powerful approach to this problem. For reader’s convenience, we recall
several main results in this theory adapted for our purpose which will be used below.

Let M be an oriented PL m-manifold whose oriented boundary is the disjoint union
of n-copies of closed oriented (m — 1)-manifolds L(with the induced orientations). We
call the polyhedron V obtained from M by identifying these copies of L to one another a
Zn-manifold. We denote by L. C V by 6V, the Bockstein of V.

A finite disjoint union of Z,-manifolds for various n’s and of various dimensions is
called a vartety. If X is a polyhedron, a singular variety in X is a piecewise linear map,
f:V = X, of a variety V to X.



The Z, manifold provides a nice model for Z,-homology classes since every Z,-
manifold V carries a well-defined fundamental class in H,,(V; Z,,). Clearly closed manifold
is a Z,-manifold for each n with Bockstein the empty.

For a homotopy equivalence f : L — M, where L, M are closed PL manifold. Let
V — M be an embedded connected singular Z,-manifold of dimension v. Assuming that
M, V and 8V are all simply connected and dimM > 3. If v = 2s is even, then f can be
deformed to a map f’ so that:
(i): f'is transversal regular to (V,8V) with U = f"'(V) and 6U = f'~'(6V).
(i1): 7' 8U - 6V is a homotopy equivalence.
(iii): f': U = V is s-connected.

Let K, = ker f. C H,(U, Z). This is a unimodular form. Moreover, when s is even,
it is of even type and so its signature is divisible by 8. When s is odd, one has an Arf
invariant in Zs.

By Sullivan, the splitting obstruction 6;(V) of f : L — M along V is defined as the
the Arf invariant of K if s is odd, 2425 (modn) if 5 # 2 even and ﬂg’s‘—&(moﬂn) if s = 2.

In general the splitting invariants 7(V) of a nonconnected singular variety V is
defined as the collection of the corresponding invariant along these connected components.

The characteristic variety Theorem(Sullivan[18]) Let f : L — M be a homotopy
equivalence between two simply connected PL n-manifolds L and M. Assuming n > 6.
Then there is a (charateristic) singular variety in M, V. — M, so that f is homotopic
to a PL homeomorphism if and only if the splitting invariants of f along V 1is identically
zero.

To apply this theorem, it is important to get a charateristic variety for the given
manifold. There is no a general way to define it. For the complex projective space CP™,
as noted in [18], the charateristic variety is the union CP2UCP*U---UCP™ ! C CP".
We will show below that, for a complete intersection X, (d) where n =2m + 1 and d is
odd, the collection of hypersections X3(d) U Xs(d) U---U Xymj41(d) U Xgz42(d) U- - - U
Xp-1(d) € Xn(d) and CP2UCPYU---UCP43] C X,(d) representing the generators of
4i(1 < 4 < [%]) dimensional homology groups is a charateristic variety. Thus by Sullivan’s
theorem above, two odd dimensional homotopy equivalent complete intersections with odd
degree are PL homeomorphic if and only if these splitting invariants along these singular
manifolds are the same.

Lemma 3.1. Ifn and d are both odd. n > 5. Then

V = U X0 (d) U U, Xi(d) UUEICPY € X,(d)

=1

1s a charateristic vartety.

Proof: Note that X, (d) has no odd dimensional homology and all homology groups
are no torsion free. The K-homology group KO_,(X,(d)) ® Z(oaq) = 0 since £X,,(d) has
a cell decomposition with only odd dimensional cells. Moreover, S¢? : H*(X,(d), Z;) —



H*(X,(d), Z,) is an isomorphism. By the proof of Sullivan’s charateristic variety Theo-
rem(refer to [18]page 33, 34), we need only to show the variety satisfies:

(i). A basis of EB,-ZL#"T_IH%H(X,,(d), Z,) can be represented by the fundamental classes
of this variety.

(ii). The image of the oriented bordism classes of the variety under the natural maps S,
and I, below in the groups Q§2(X,(d)) ®qe Z(ouay and @;>1Hs;(X,,(d)) are basis, where

L - Q3 (Xa(d)) = Qi (Xa(d) qie Zioaay/torsion
is the natural projection and

S, Q0(X,(a)) TUndemenipt ot gy o\ Hai( X (d)) /torsion.

(i) is clearly satisfied by our variety since d is odd. To verify (ii), note that
Q2 Xa(d)) Baze Z(oday = Hux(Xn(d), °) ®ase Z(oaa) is torsion free. As all 47 dimen-
sional homology generators are represented by our variety, this completes the proof. &

The characteristic variety for n even is more complicated since we have to count the
~middle dimensional homology and represent them by singular manifolds.

Let © € H?(X,(d) be a generator where n is even. We use h denote 27 N [X,(d)).
By [15], the image of Hurewicz homomorphism 7,(X,(d)) — H,(X,(d)) := H is the
orthogonal complement h'. Let 8 € H,(X,(d)) satisfy w-h = 1. Then H = h* + Zg.
Notice this is not an orthogonal decomposition. By [15], every element in hl can be
represented by an embedded n-sphere with stably trivial normal bundle if n > 2. 8 can
be represented by an embedded CP?% with normal bundle (2 + r)H — 7 H%. Choose a
basis of A+ and represent them by embedded n spheres oy, - - -, a;. Similar to Lemma 2.2
it is readily to check the following lemma. We omit the details.

Lemma 3.2. Let n=2m > 2 and d be odd. Then
v =uz""x, . (d)u Ui Xi(d) U UZlop® U B(CP™) U UL i (SP™) € Xan(d)

1s a charateristic variety.

In general, we can also write down a charateristic variety for a complete intersection
with d even. But it is difficult to compute the Arf type splitting invariant. Now we are
ready to show the theorem 1.2.

Proof of Theorem 1.2.We need only to show the sufficiency. Let f : X,(d) —
X, (d') be a homotopy equivalence. By the charateristic variety Theorem we need to show
the spliiting invariant §;(V') = 0, where V denote the variety defined above.

Let’s consider first the case of n odd. Notice that the splitting invariant along
4i-dimension subvariety, saying Xg;(d'}(or CP?%), is the difference Signf~1(Xy(d')) —
SignXyi(d'). Now X,(d) and X,(d’) have the same Pontryagin classes. Applying Hirze-
bruch signature Theorem, it is easy to show that all splitting invariants along 4i(1 < ¢ < %)
dimensional subvarieties vanish.



The only difficulty is to show the Arf type splitting invariants are all zero along V.
Fortunately the main difficulty have been overcome by Browder and Wood. When d is
odd, by [3] or [21], the Kervaire invariants of X,(d) and X,(d') are well defined and its
value depends only on the total degree d(mod8)(independent of the dimension). Let us
now show the splitting invariant along X, _,(d’) vanishes.

By Quinn’s theorem, we can assume that f is almost canonical with respect to
Xp_1(d). Thus f~}(X,-1(d’)) is a taut submanifold of X,(d) representing the dual of
the generator z € H?(X,(d)). Freedman’s theorem[9] applies to claim that f~!(X,_(d’))
and X,_;(d) are stably diffeomorphic. Consider the restricted map g : f~1(Xp-1(d")) —
Xn-1(d’), applying Quinn’s and Freedman’s Theorems again we can deform g to get a taut
submanifold g='(X,,.2(d’)) which is stably diffeomorphic to X,_o(d). Whenn —2 # 1,3
or 7, the Kervaire invariant is a stably diffeomorphic invariant by the geometric definition.
Therefore, with the exception of n = 1,3 or 7, the Kervaire invariant of ¢=!(X,_2(d"))
is the same as that of X,_5(d) and so as X,_»(d’). By the naturality of the splitting
obstruction, the splitting invariants of g and f along X, »(d') are the same. Notice
the splitting invariant of g along X, _»(d’) is the difference of the Kervaire invariants of
g 1 (Xp-2(d")) and X,_,(d’') which is identically zero. This proves the splitting invariant
along X,_»(d’) vanishes. Continuing this process we can show that the splitting invariants
along X;(d’)(¢ odd) is zero if ¢ > 8.

When ¢ = 7, we have to take care of the framing. Notice that the Kervaire invariant
is a framed bordism invariant. If f : Xg(d) — X(d') is a degree 1 map and 8-equivalence.
The transversal preimage f~'(X7(d’)) is normal bordant to X;(d) since they both rep-
resent the 14-th dimensional homology generator. Thus the splitting obstruction along
X7(d') is zero too. The case of ¢ = 3 is identically. One can also refer to [7] for this detail.
This completes the proof in the case of n odd.

For n # 2 even, everything applies identically except we have to count the splitting
invariants along the subvarieties o;(S™) and CP? if n = 0(mod4). If n = 0(rnod4), these
splitting invariant along ¢; is the signature of its transversal preimage f~'(a;) which
is zero since its all Pontryagin classes are zero. The splitting invariant along CP7? is
Signf~'(8) — 1. By using Hirzebruch signature Theorem one can check directly this is
zero. For n = 2(mod4) but n # 2 — 2, the splitting invariant along «; is the Kervaire
invariant of f~!(;), which is a smooth framed manifold of dimension n # 2' — 2 and thus
its Kervaire invariant vanishes [4].

Now Sullivan’s Theorem applies to conclude our Theorem. &

Proof of Corollary 1.3. By [14], Theorem 1.1 and 1.2, we need only to consider
the case of n even and to show the sufficiency. Note that X,4.;(d) and X, ,(d’) are
S-homotopy equivalent. Thus there is an integer such that, X, ,(d)#rS"**! x Sr+!
and X, (d’) are homotopy equivalent. It is easy to check that all of the Pontryagin
classes of these two manifolds are the same too. Applying Theorem 1.2(with a slightly
extension but identically proof) we have that X, (d)#rS™*! x §**! and X, ;,(d’) are
homeomorphic. Notice that X,(d) C X, (d)#rS™! x ™! and X,(d') C X, (d')



are taut submanifolds. The Freedman’s Theorem([9] applies to conclude that X,(d) and
Xn(d’} are stably homeomorphic. With the exception of d or d' = (1), (2),(2,2) or (3),
the complete intersection X,(d) and X,(d’) can split out a factor S™ x S™(c.f: [15]). Now
applying the cancellation Theorem(12] the proof follows. &

§4. Proof of Theorem 1.4.

This section is devoted to prove the Theorem 1.4. The main idea is to use the
branched covering X, (d, a) = X,(d) with branch set X,_,(d, a) constructed in [21].

Proof of Theorem 1.4. Without loss of generality we consider only the case of n >
4. By induction we can assume k = 1. By [21], X,,(d’, @) is an a-fold branched cover over
Xn(d') with branch set X,_1(d,a). Let p' : X, (d';a) = X, (d') be this cover. If X,(d)
and X,(d') are S-equivalent(homotopy, homeomphism or diffeomorphism). Assuming
rankH,(X,(d)) > rankH,(X,d’)). Thus there is a degree one map f : X, (d) = X,(d')
which is an n-equivalence. By [17], we can assume that f is almost canonical with respect
to X,—1(d',a). Let Y,_), = f(X,_1(d’,a)). Pulling back this covering to X,,(d) we get
a covering 7 : Y, — X,(d) with branch set ¥,_, and a map g : Y, = X,.(d’,a) so that
the following diagram commutes

Yoor -5 Xai(d')a)
[ [
' <5 X, (d', a)
|7 [
Xa(d) L Xa(@)

Note that Y, is a connected manifold, g is a degree one map. Notice that g : Y, —Y,_; —
Xn(d',a) — X,_1(d’, a) is n-connected and the latter space is (n—1)-connected. Moreover,
[ Y, = X,o1(d',a) is a (n — 1)-equivalence. It is easy to check that g is a (n ~ 1)-
equivalence. By Alexander duality, Hy(Y,, Yoo1) = H™ (Y, — Y1) = 0if ¢ # 0,n or
2n. Note that the Euler class of the normal circle bundle of Y, in Y, is a generator of
2-dimensional cohomology group. By applying Gysin cxact sequence it is easy to show
that H*~(Y,) & Z if n — 1 is even and 0 if n — 1 is odd. Thus by the diagram above
it is readily to check that g is an n-equivalence. When n is even, one can check that the
signature of Y, is the same as that of X,,(d’, a). Thus Y, and X, (d’, a) are S-equivalent(c.f
the proof of Theorem 1.1).

Now we want to show that ¥, and X, (d, ) are stably diffeomorphic. The theorem
will follow from this directly. First notice that ¥,_; and X, _,(d, a) are stably diffeomor-
phic{9] since both of them represent the dual of az € H*(X,(d)), where z is a generator.
Thus we have a homotopy

h:Xu(d)x I —CPY

(N large) such that by (Xy_1(a)) = Xn_1(d, @) and AT (X x_,(a)) = Y,_1, where Xy_1(a)
is a hypersurface of degree a. (ho and h, indicate the restriction of & at the two bound-
ary.) By Quinn[17}, we can deform h relatively to the boundary to get an almost canonical
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map with respect to Xy_i(a). Set W = h™'(Xy_i(a)). W is a manifold with bound-
ary X,_1(d,a) and Y,,_; and the map h : W — Xy_;(a) x I is a (n — 1)-equivalence.
Thus W is a (n — 2)-connected cobordism, i.e., H,(W,Y,_ ;) = H,(W, X,,_1(d,a)) = 0 if
g < n — 2. In particular, the complement of W in X, (d) x I is cyclic of order a. Now
we consider the branched cover M over X,(d) x I with branch set W. The boundary
of M is the union of X,(d,a) and Y;, with opposite orientations. It is easy to show that
H,(M,Y,) = Hy(M,X,(d,a}) = 0 for ¢ < n— 1. Moreover, note that each embedded
n-sphere in W has trivial normal bundle by the covering. Applying the handle subtrac-
tion technique[13] it follows that there are two integers s and ¢ so that Y, #sS™ x S™ and
Xn(d, a)#tS™ x S™ are h-cobordant. Thus Y, and X,,(d, a) are stably diffeomorphic. This
completes the proof.

References

(1] Adams, F., Vector fields on spheres, Ann. of Math., 75(1962), 603-632.
[2] Atiyah, M, Thom complezes, Proc. London. Math.Soc., 11(1961), 291-310.

[3] Browder, W. Complete intersections and the Kervaire invariants, Lecture Notes in
Math. 763, Springer-Verlag 1979.

[4] —, The Kervaire invariants of framed manifolds and its generalizations, Ann. of
Math, 90(1969), 157-186.

[5] Ebeling, W. An ezample of two homeomorphic, nondiffeomorphic complete intersec-
tion surfaces, Invent. Math., 99(1990), 651-654.

[6] Fang, F. , Topological Classification of complete intersections, to appear in C.R.
Acad. Paris

[7] — and Klaus, S., Topological Classification of 4-dimensional complete intersections,
to appear in Manuscript. Math.

[8] Freedman, M., The topology of four-dimensional manifolds, J. Diffrential. Geometry,
17(1982), 357-453

[9] —, Uniqueness theorems for taut submanifolds, Pac. J. Math., 62(1976), 379-387

[10] Jupp, P., Classification of certain 6-manifolds, Proc. Cambridge. Philos. Soc.,
73(1973), 292-300.

[11] Kato, M. and Matsumoto, Y., Simply connected surgery of submanifolds in codimen-
sion 2. I, J. Math. Soc. Japan, 24(1972), 586-608.

[12] Kreck, M., Surgery and duality, preprint 1996.

11



[13] —, Bordism of diffeomorphism and related topics, Lecture Notes in Math., 1069,
Springer-Verlag 1985.

[14] Libgober, A. and Wood, J., Differentiable structures on complete intersections. I.,
Topology, 21(1982), 469-482

[15] , On the topological structure of even dimensional complete intersections,

Trans. Amer. Math. Soc., 267 (1981), 637-660

[16] , Differentiable structures on complete intersections. II, Singularities, Proc.

Symp. Math., 40, Part 2, pp 123-133, AMS Providence, R.I., 1983

(17) Quinn, F, Almost canonical inverse images, Comment. Math. Helv., 49(1974), 168-
174.

[18] Sullivan, D., Triangulating and smoothing Homotopy equivalences and homeomor-
phisms, Geometric topology seminar Notes MIT 1968.

[19] Traving, C. Klassifikation vollstindiger Durchschnitte, Diplomarbeit, Mainz 1985.

[20] Wall, C.T.C., Classification problems in differential topology, On certain 6-manifolds,
Invent.Math., 1(1966), 355-374.

[21] Wood, J. Complete intersections as branched covers and Kervaire invariant, Math.
Ann.,240(1979), 223-230

Nankai Institute of Mathematics, Nankai University, Tianjin 300071, P.R.China

Current address: Max-Planck-Institut fiir Mathematik, Gottfried-Claren Strasse 26, D-53225
Bonn, Germany
e-mail: fang@mpim-bonn.mpg.de

12



