
Topology of Complete Intersections

FuquanFANG

Nankai Institute of Mathematics
Nankai University
Tianjin 300071

P.R.CHINA

Max-Planck-Insti tut
für Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

GERMANY

MPI96-27





Topology of Complete Intersections*

Fuquan FANG

§l. Introduction

The main aim of this paper is to give several homeomorphism and homotopy c1assifi­
cation theorems for complete intersections without singularities. Partial results here have
been announced in [6]. Recall that a complete intersection is the transversal intersection
of some complex hypersurfaces defined by the homogeneous polynomials in a complex
projective space. Below we will use Xn(d) to denote the complete intersection with multi
degree d = (d1, ... , cl,.) and complex dimension n. We call the product d1 •·• cl,. := d the
total degree. It is a c1assical observation of R.Tholn that the differential topology of
Xn(d) is determined by the multi degree and dimension n. Lefschetz hyperplane section
Theorem asserts that the inc1usion

is an n-equivalence.

In lower dimensions, the topology of complete intersections are well understood by the
general theory of differential topology. For instance, XI (d) is a complex curve of genus
g = 1 - ~(r + 2 - Er=1 di ).

X 2 (d) is a simply connected complex surface. The homotopy and homeomorphism type
is determined by its intersection form [8]. An interesting example of Ebeling [5] asserts
that there are two complete intersections with the sarne homeomorphism type but not
diffeomorphic.
X 3 ( d) is a simply connected 3-dimensional complex manifold with all homology groups
torsion free. A complete c1assification of such kinds ofmanifolds was done by C.T.C.Wall[20]
and Jupp[lO].
n = 4 is the first nontrivial dimension in which we can not refer to any c1assical c1assifi­
cation theory. In [7], S.Klaus and I proved that two 4-dimensional complete intersections
are homeomorphic if and only if their total degrees, Euler numbers and all Pontryagin
numbers agree. Even in this special dimension, the hornotopy classification for complete
intersections is still open.

On the other hand, some general classification for complete intersections were earried
out under certain restrietion about the total degree d. For example, uneler the assumption

·Supparted in partial by Sonderforschungsbereich 343 at Universität Bielefeld and the Max-Planck­
Institut fuer Mathematik at Bann. The author wauld like to thank both for their hospitality.
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that for all prime p with p(p -1) ::; n+ 1, the total degree d is divisible by p[(2n+l)/(2p-l)]+l,

Traving[19] (c.f: [12]) proved that two complete intersectiolls with the same total degree
d are diffeomorphic if and only if their Euler numbers and all Pontryagin cIasses agree.
For the homotopy cIassificatioll, Libgober and 'Vood[14] proved that, if the dimension n
is odd and the total degree d has no prime factors less than ni3 , then two n-dimensional
complete intersections with total degree d are homotopy equivalent if and only if their
Euler numbers agree. They made a further conjecture [16] for the case of n is even. In
this situation, the topology becomes much more cOlnplicated. Some more details can be
looked up in [15][16].

In this paper, the following homotopy classification theorem will be proved. The
proof confirms also Libgober-Wood's conjecture.

Theorem 1.1. Let n be even, Xn(d) and Xn(d/) be two complete intersections
with the same total degree d. Suppose that d has no small prime lactors less than nt3

.

Then Xn(d) and Xn(d') are homotopy equivalent if and only if they have the same Euler
charateristic and signatures.

Onee the homotopy type of two complete interseetions are the same, Sullivan's
charateristic variety theory ean be applied to handle the problem of when they are home­
omorphie or diffeomorphic. For a complete interseetion Xn (d), the Pontryagin classes Pi
must be an integral multiple of x 2i , where x is a 2-dinlensional generator of Xn(d). Thus
we eau eompare Pontryagin classes of two different complete interseetions with the same
total degree d just by means of these integers.

Theorem 1.2. Let ..Yn(d) and Xn(d/) be two homotopy equivalent complete inter­
sections. 1f d is odd and n =j:. 2i - 2, then they are homeomorphic to each other if and
only if their Pontryagin classes agree.

The proof of thc above theorem can not be cxtended to the case of d eveu. We shall
explain this with more details in §3. Combining this with the homotopy cIassifieation
Theorem above anel [14] for n odd, the homeomorphism classification in the case of n =j:.
2i - 2 anel d has 00 prime factors less than ni3

. With a little bit more argument we have
the following corollary.

Corollary 1.3. 1f n ~ 3, Xn(d) and Xn(d') are two camplete intersections with
the same total degree d. Suppose that d has no small prime factars less than ni3

• Then
Xn(d) and Xn(d/) are homeamarphic if and anly if their Pontryagin classes and Euler
numbers agree.

~en I had finished this paper, M.Kreck pointed out to nle that uneler the same
assumption of thc above eorollary, S.Stolz has a unpublisheel version to assert the two
complete interseetions are even diffeomorphic.

Another very natural question is to ask, if Xn(d) anel Xn(d') are eliffeomorphiejor
homeomorphic/or homotopy equivalent, is Xn(d, a) anel Xn(d', a) diffeomorphie for a
natural number a?
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To phrase our relevant results on this question, we make a convention, namely, we say
two 2n-dimensional manifolds M and N are S-diffeomorphic(homeomorphic, homotopy
equivalent) if there are integers rand s so that M#rSn x sn and N#ssn X sn are
diffeomorphic(homeomorphic, homotopy equivalent). The following theorem answer the
above questioll partially.

Theorem 1.4. Let Xn(d) and Xn(d/) be two S-dijJeomorphic(homeomorphic,
homotopy equivalent) complete intersections. // al, ... ,ak are positive integers satisfying

Then Xn(d, al,'" 1 ak) and Xn(d', al,"', ak) are S-diffeomorphic(homeomorphic, homo­
topy equivalent).

Without loss of generality we cao always assurne that the multi degree d does not
contain 1. By the above theorem, if Xn(d) and Xn(d') are S-equivalent, then so are
Xn(d, 2,"',2) and Xn(d/, 2, ... ,2).

The project of the cul'rent paper was begun during my visit to Univerty of Mainz.
The discussions with M.Kreck proved to be valuable. I would like to thank hirn for his
warm hospitality.

§2. Homotopy type

For n odd, every smooth complete interseetion can be splitted as the connected surn
K #rSn x sn#N in the topological category, wherc /( satisfies Hn(K) = 0 and N is
(n - l)-connected with Hn(N) f"',.J Z EB Z. K is called the topological core of the complete
intersection. We let Kn(d) denote the corresponding topological cores of Xn(d). When
n = 1,3 01' 7, the piece N will be sn X sn. For other n, this holds if and only if either
there is hOIllological trivial embedded n-sphere in X n (d) with nontrivial normal bundle
or the Kervaire invariant of a wcIl-defined quadratic function on Hn (Xn(d) 1 Z2) vanishes.
The Kervail'e invariant of complete interseetion was weIl investigated by several authors
during 70's. The main results are:

Proposition 2.1.(J.Wood [21]) There is no homological trivial n-sphere in Xn(d)
with nontrivial normal bundle if and only if

(a) : The binomial coefficient ( ::i ) is even, where n = 2m + 1, oF 1,3, 7 and I is the

number of even entries in d.

If (a) holds, then there is a weIl defined quadratic function

by q(x) the normal bundle of an embedded n-sphere representing the dual of x. The
Kervaire invariant is just the Arf invariant of q. We denote it by K(Xn).

Theorem 2.2.(Browder[3], Morita, vVood[21]) 11 d is odd,
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!(n(Xn(d)) = 0 ij d = ±1(mod8)
1 ij r1 = ±3(mod8)

1j d is even, K(Xn(d) = 1 ij and only ij n = 1(1710d8), l = 2 and d is not divisible by 8.

Note in the case of K(Xn(d) = 1, the piece N is the Kervaire manifold.

For n even, the situation is quite different, thc rank of Hn(Kn(d)) can never be
zero since not aIl element of Hn(Xn(d)) are spherical. By [15], one ean get a topological
splitting and topological eore Kn(d) which has rank Hn(Kn(d)) ::; 5. The precise value of
this minimal rank depenels on the type of the intersection form as weIl as the total degree
d. It is readily to see that, at least up to homotopy this topological cores is unique.

For n odd, the cohomology ring H*(](n(d)) "'-' Z[x,yll{x~ = dy,y2 = O}. If d has
no prime faetors less than nt3

, it is proved in [14] that !(n(d) has the homotopy type of

the 2n-skeleton of E, the homotopy fibre ofx~ : Cpoo ~ ]((Zd, n+ 1). Thus it depends
only on d, the total degree. The similar method cloes Hot work in the case of n even. But
Libgober and Wood make a conjecture that the same conclusion holds when n is even.
This is more or less equivalent to Theorem 1.1. We will give a proof of this fact base on
surgery theory of F. Quinn anel Freedman.

Let us reeaIl some notations and main resllits in the form useful for our purpose in
the surgery theory of Quinn.

Let M be a manifold of dimension 2n anel N a coeliInension 2 submanifold. Let
C = M - intU where U denote a tubular neighborhooel of N. We say N is taut if the pair
(C, BC) is (n - 1)-connecteel. It is proved in [11] that every codimension 2 homology class
can be represented by an embedded taut submanifold. This was generalized by F.Quinn
which we will introduee now adapted for our purpose.

Let! : M ~ X be a map transversal to a CW subcomplex Y c X where Y has a
2 dimensional normal bundle. Let E(/, Y) and E(/,)( - Y) denote the fibre spaces over
M

E(!, Y) --1 Y

1 1inclu

M ---4 X

and
E(/,X-Y) --1 X-y

1 1inclu

M ---4 X

f is called almost canonical with respect to Y if the natural maps 1-1 (Y) ~ E(/, Y)
and /-1 (X - Y) ~ E(j, X - Y) are (n - 1) anel n eqllivalences respectively. When j is
a homotopy equivalence, the maps 1 : 1-1 (Y) ~ Y anel 1 : 1-1 (X - Y) -+ X - }' are
n - 1 anel n equivalences. The following theoretn of F .Quinn is vcry useful for uso
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Theorem (F.Quinn[17]). Let Y C X have a dirnension 2 normal bundle neighbor­
hood. For every map f : M --+ X is homotopic holding the boundary fixed to an almost
canonical one with respect to Y.

Proof of Theorem 1.1. Obivious we necd only to show the sufficiency. Let Xn(d)
and Xn(d') be two complete intersections with the saIne total degree d and same signature,
where n is even and d has no prime factors less than 71i3. First we shall show that there is
integers sand t so that Xn(d)#ssn x sn and Xn(d')#tSn x sn are homotopy equivalent.

By [14], the cores K n+1(d) and K n+1(d') are homotopy equivalent by the hypothesis
on d. In this case, d is of course odd anel so the Kervaire invariant of X n+1 (d) anel
X n+1(d')are the same. Without loss of generality, assurne that rankHn+1(Xn +1(d)) ~

rankHn+1(Xn+1(d')). Then there is an integer r so that X n+1(d) ~ X n+1(d')#rSn+1 X

sn+1. Let f : X n+1(d) --+ X n+l (d')#rSn+1 x sn+1 denote such a homotopy equivalence.

Notice both Xn(d) and Xn(d') are taut sublnanifolds of Xn+1(d) and X n+1(d')#rSn+1x
sn+1 representing thc 2n-dimensional homology generators respectively. By Quinn's the­
orem above, we can assurne that f is almost canonical with respect to the submanifold
X n ( d'). Since f is a homotopy equivalence, it follows that f -1 (Xn ( d')) is also a taut sub­
manifold of X n+1(cl) representing the codimension 2 homological generator. The unique­
ness theorem of Freedman[9] says that Xn(d) and f-1(Xn(d/)) are stably diffeomorphic.
Note the tautness is invariant under sum some trivial sn x sn. Thus we may assume that
f- 1(Xn(d')) ':::::. Xn(d)#r,sn X sn.

This gives us a map f : Xn(d)#r' sn X sn --+ Xn(d') which is a n-equivalence.
Moreover, f is a degree one map since the two complcte intcrsection have the same total
degree. It follows that the sublattice !(erf. c Hn (Xn ( d)#r'sn X sn) is unimodular.
Notice that !(erf. consists of spherical elements. This can be seen by looking at the
commutative square of thc Hurewicz homomorphisIns and so it is of even type. The
signature of this sublattice is exactly the difference of the target and source manifolds.
Thus it is zero. This shows that the unimodular lattice !(erf. is isomorphie to the sum
of some copy of the hyperbolic plane H, say 1nH. As in [16], there is a decomposition
M#mSn X sn = Xn(d)#r'sn X sn --+ Xn(d'). Moreover, as f is null homotopy when
restricted to 7nSn X sn - disc, we get a map f' : M --+ Xn(d') which is in fact a homotopy
equivalence. This proves that Xn(d) and Xn(d') are S-horllotopy equivalent.

In the case of Xn(d) and Xn(d') have the sarne Euler numbers, the number m =
r'. That is, by summing the same copy of sn X sn J the two complete intersections are
homotopy equivalent.

By the same argument as in [16] Proposition 3.3, the cores of these two completes
interseetions are homotopy equivalent. Thus Xn(d) and Xn(d') are also homotopy equiv­
alent. This completes the proof. ..

Remark: The proof above shows in fact also that the conjecture in [16] p126 holds
true.

As pointed out in [16], the condition about d in Theorem 1.1 is sharp. By using
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K-theory one can get some more strong restrietions to the multi degrees of two homo­
topy equivalent complete intersections. To illustrate our method , we give a proof of the
following proposition.

Proposition 2.3. Let Xn(d) and Xn(d/) be two complete intersections with ho­
motopy equivalent cores. Let [ and [' denote the n1Lmbers of even entires in d and d'
respectively. Then [ - [' is divisible by 2!(n)-1. Here f(n) is as the Jollowing table

1

1 2 3 4 5 6 7 8 m+8
1 2 2 3 3 3 3 4 f(m) + 4

Proof: Note that the stable normal hundle of Xn(d) is Hdl Ef) .•• Hdr - (n+r+ l)H ,
here H is the Hopf line bundle over Xn(d). Ir ](n(d) and ](n(d') are homotopy equivalent,
by the decompositions there are two (n - l)-connected almost parallelizable manifolds,
saying M and M' such that Xn(d)#M and Xn(d')#!l/!' are homotopy equivalent. We
warn that M and M' are not necessarily smoothahlc. By Atiyah [2J, the stahle normal
spherical fibrations of Xn(d)#M and X n (d')#A1' are equivalent up to fibre homotopy.
The restrietion on (2n - 2)-skeleton of these normal spherical fibrations are exactly the
restriction of the stable normal bundles of Xn(d) and Xn(d/) since M and M' are almost
parallelizable. In particular, the restrictions of the normal bundles of Xn(d) and Xn(d/)
to Cp[.g.l, the subcomplex of the complete intersections are proper fibrewise homotopy
equivalent. In other words, viewed as the element ofthe J-group J(Cp[~l), Hdl ffi· .. Hdr­
(n + r + l)H and Hrfl Ef) ... Hd~1 - (n + r' + l)H are the same.

Consider the canonical SI-fibration 'Jr : Rp2{~1+1 -t Cp[~l. The complex line bundle
'Jr *(Hdi) has trivial first ehern dass if and only if rli is even as H2(Rp2[ i 1+1) rv Z2'
Moreover, when di is odd , 'Jr*(Hdi) :: 'Jr*(H). Thus the difference 'Jr*(Hdl Ef) ••• Hdr - (n+
r + l)H) - {Hd'l Ef) ••• Hd'r l

- (n + r' + l)H} = 7f*(l' - l)H E J(Rp2[%1+1) is zero. Note
Jr*(H) = 27] E KO(Rp2[~J+l), where Tl is the Hopf realline bundle. Thus 2(l' -l) must be
a multiple of the order of the J-group J(Rp2[%1+1) which is 2/(2[%J+l)[1]. This completes
the proof. •

§3. Sullivan's characteristic variety

This section is devoted to a proof of Theorem 1.2 by using Sullivan's charateris­
tic variety theory(18J. It had received considerable attentions that when two homotopy
equivalent manifolds are homeomorphic or diffeomorphic. Sullivan's charateristic variety
theory is a very powerful approach to this problem. For reader's convenience, we recall
several main results in this theory adapted for our pllrpose which will be used below.

Let M be an oriented PL m-manifold whose oriented boundary is the disjoint union
of n-copies of closed oriented (m - 1)-manifolds L(with the induced orientations). We
call the polyhedroll V obtained from M by identifying these copies of L to Olle another a
Zn-maniJold. We denote by L c V by oV, thc Bockstein of V.

A finite disjoint union cf Zn-manifolds far varieus 11,'8 and of various dimensions is
called a variety. If X is a polyhedroll, a singular variety in X is a piecewise linear map,
f : V -+ X, of a variety V to X.
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The Zn manifold provides a nice model for Zn-homology classes since every Zn­
manifold V carries a well-defined fundamental class in Hm(V; Zn). Clearly closed manifold
is a Zn-manifold for each n with Bockstein the CInpty.

For a homotopy equivalence / : L -+ IvI , where L, 111 are closed PL manifold. Let
V -+ M be an embedded connected singular Zn-Inanifold of dimension v. Assuming that
M, V and oV are all simply connected and dirrdvf 2: 3. Ir v = 28 is even, then / can be
deformed to a map /' so that:
(i): f' is transversal regular to (V, oV) with U = /,-1 (V) and 0U = /,-1 (oV).
(ii): f,-1 : oU ~ oV is a homotopy equivalence.
(iii): /' : U ~ V is 8-connected.

Let ]($ = kerf; C Hs(U, Z). This is a unitnodular form. Moreover, when s is even,
it is of even type and so its signature is divisible by 8. When 8 is odd, one has an Arf
invariant in Z2'

By Sullivan, the splitting obstruction Bf(V) of 1 : L ~ M along V is defined as the
the Arf invariant of ]($ if 8 is add, sig~KI! (modn) if 8 i= 2 even and Sig~Kf (mod2n) if 8 = 2.

In general the splitting invariants ef (V) of a nonconnected singular variety V is
defined as the collection of the corresponding invariant along these connected components.

The characteristic variety Theorem(Sullivan[18]) Let f : L ~ M be a homotopy
equivalence between two simply connected PL n-manifolds Land M. Assuming n 2: 6.
Then there is a {charateristic} singular variety in M, V ~ M, so that 1 is homotopic
to a PL homeomorphism i/ and only i/ the splitting invariants 0/ / along V is identically
zero.

To apply this theorem, it is important to get a charateristic variety for the given
manifold. There is no a general way to define it. For the camplex prajective space cpn,
as noted in [18], the charateristic variety is the union Cp2 U Cp3 u·· .U cpn-l C cpn.
We will show below that, for a complete intersectian Xn (d) where n = 2m + 1 anel d is
odd, the collection of hypersections X 3 (d) U Xs(d) U· .. U X2[!f-l+l (d) U X2[~1+2 (d) U ... U

X n- 1(d) C Xn(d) and Cp2 U Cp4 u· .. u Cp2[!f-l C Xn(d) representing the generators of
4i(1 ::; i ::; [;]) dimensional homology groups is a charatcristic variety. Thus by Sullivan's
theorem above, two odd dimensional homotopy equivalent complete intersections with odd
degree are PL homeomorphic if and only if these splitting invariants along these singular
manifolds are the same.

Lemma 3.1. 11 n and d are both odd. n 2: 5. Then

V = u~!lX2i+l(d) U U7;21[yl+2Xi(d) U u~!lcp2i C Xn(d)

is a charatenstic variety.

Proof: Note that Xn(d) has no add dimensional hOInology and all homology groups
are no torsion free. The ](-homology group KO_ 1(Xn (d)) ® Z(odd) = 0 since ~Xn(d) has
a cell decomposition with only odd dimensional cells. NIoreover, Sq2 ; H 2(Xn (d), Z2) -t
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H 4(Xn (d), Z2) is an isomorphism. By the proof of Sullivan's charateristic variety Theo­
rem(refer to [18]page 33, 34), we need only to show thc variety satisfies:
(i). A basis of EI\2: 1,#02"1 H4i+2(Xn (d), Z2) can be reprcsentcd by thc fundamental classes
of this variety.
(ii). The image of the oriented bordism classes of the variety under the natural maps S.
and I. below in the groups n~~(Xn(d)) ~n:o Z(odd) anel EBi2:1H4i(Xn(d)) are basis, where

I. : n~~(Xn(d)) ---+ n:~(Xn(d) ~n:o Z(odd)/torsion

is the natural projection and

s. :n:~(Xn(d)) fundam~al dass tBi2:1H4i(Xn(d))/torsion.

(i) is clearly satisfied by our variety since d is odd. To verify (ii), note that
n~~(Xn(d)) 00:0 Z(odd) r"V H.h(Xn(d), 0;°) 00:0 Z(odd) is torsion free. As all 4i dimen­
sional homology generators are represented by our variety, this completes the proof. ..

The characteristic variety for n even is nl0re complicated since we have to count the
.middle dimensional homology and represent them by singular manifolds.

Let x E H 2 (Xn (d) be a generator where n is evcn. \·Ve use h denote x.!} n [Xn(d)].
By [15], the image of Hurewicz homomorphism 7fn (Xn (d)) -+ Hn(Xn(d)) := H is the
orthogonal complement hl.. Let ß E Hn(Xn(d)) satisfy u . h = 1. Then H = hl. + Zß.
Notice this is not an orthogonal decomposition. By [15], every element in hl.. can be
represented by an enlbcdded n-sphcre with stably trivial nonnal bundle if n ~ 2. ß can
be represented by an embedded cp~ with nonnal bunclle (~ + r)H - E~ Hdi. Choose a
basis of hl.. and represent them by embedded n sphercs al,' . " Qk. Similar to Lemma 2.2
it is readily to check the following lemma. We omit thc details.

Lemma 3.2. Let n = 2m ~ 2 and d be odd. Then

V = u~!1-IX2i+l(d) U U7:21[T1Xi(d) U u~!lcp2i U ß(cpm) U U7=lCti(s2m) C Xn(d)

is a charateristic variety.

In general, we can also write down a charateristic variety for a complete intersection
with d even. But it is difficult to compute the Arf type splitting invariant. Now we are
ready to show the theorem 1.2.

Proof of Theorem 1.2.We need only to show the sufficiency. Let f : Xn(d) -+
X n (d') be a homotopy equivalence. By the charateristic variety Theorem we need to show
the spliiting invariant ef(V) = 0, where V denote thc variety defined above.

Let's consider first thc case of n odd. Notice that the splitting invariant along
4i-dimension subvariety, saying X 2i (d')(or CP2i), is the difference Signj-l (X2i (d')) ­
SignX2i (d'). Now Xn(d) and Xn(d') have the same Pontryagin classes. Applying Hirze­
bruch signature Theorem, it is easy to show that all splitting invariants along 4i(1 ~ i ::; ~)

dimensional subvarieties vanish.
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The only difficulty is to show the Arf type splitting invariants are aB zero along V.
Fortunately the main difficulty have been ovcrcomc by Browder and Wood. When d is
odd, by (3) or [21), the Kervaire invariants of Xn(d) and J\n(d') are weB defined and its
value depends only on the total degree d(mod8)(independent of the dimension). Let us
now show the splitting invariant along X n - 2(d') vanishes.

By Quinn's theoreln, we ean assurne that j is ahnost eanonical with respect to
X n - 1(d'). Thus j-l(Xn _ 1(d')) is a taut submanifold of Xn(d) rcpresenting the dual of
the generator x E H 2 (Xn (d)). Freedman's theorern[9] applies to claim that j-l(Xn _ 1(d'))
and X n - 1(d) are stably diffeomorphic. Consider the restricted map 9 : /-1 (Xn - 1 (d')) -+
X n - 1(d'), applying Quinn's and Freedman's Theorelns again we cau deform 9 to get a taut
submanifold g-I(Xn _ 2(d')) which is stably diffeOlnorphie to X n - 2 (d). When n - 2 i= 1,3
or 7, the Kervaire invariant is a stably diffeomorphie invariant by the geometrie definition.
Therefore, with the exeeption of n = 1,3 or 7, the Kervaire invariant of g-I(Xn _ 2 (d'))
is the same as that of X n - 2 (d) and so as Xn - 2 (d'). By the naturality of tbe splitting
obstruetion, the splitting invariants of 9 and f along X n - 2 (d') are tbe same. Notiee
the splitting invariant of 9 along X n - 2 (d') is tbe differenee of the Kervaire invariants of
g-1 (Xn - 2 (d')) and X n - 2(d') whieh is identieally zero. This proves the splitting invariant
along X n - 2 (d') vanishes. Continuing this proeess we can show that the splitting invariants
along X i (d')( i odd) is zero if i 2: 8.

When i = 7, we have to take care of the framing. Notice that the Kervaire invariant
is a framed bordism invariant. If j : Xs(d) -+ Xs(d') is a degree Ilnap and 8-equivalence.
The transversal preimage /-1 (X7 ( d')) is nonnal bordant to X 7 ( d) since they both rep­
resent the 14-th dimensional homology generator. Thus thc splitting obstruction along
X 7(d') is zero tao. The case of i = 3 is identically. One ean also refer to [7) for this detail.
This completes the proof in thc ease of n odd.

For n i= 2 even, everything applies identically exeept we have to count the splitting
invariants along the subvarieties ai(sn) and Cp~ if n = O(mod4). If n = O(mod4), these
splitting invariant along CYi is tbe signature of its transversal preimage j -1 ( ai) whieh
is zero sinee its all Pontryagin classes are zero. The splitting invariant along Cp~ is
Signf-l (ß) - 1. By using Hirzebruch signature Theorelll one can check direetly this is
zero. For n = 2(mod4) but n =j:. 2i - 2, the splitting invariant along CYi is the Kervaire
invariant of j-l(ai), which is a smooth framed manifold of dimension n i= 2i - 2 and thus
its Kervaire invariant vanishes [4].

Now Sullivan's Theorem applies to conclude our Theorem.•

Proof of Corollary 1.3. By [14], Theorem 1.1 anel 1.2, we need only to consider
the case of n even and to show the suffieiency. Note that X n +1(cl) and X n+1 (cl') are
S-homotopy equivalent. Thus there is an integer such that, X n+ 1(cl)#rSn+ 1 x sn+l

and X n+1 (cl') are homotopy equivalent. It is easy to eheck that all of the Pontryagin
cIasses of these two manifolds are the same too. Applying Theorem 1.2(with a slightly
extension but identieally proof) we have that X n+1(d)#rSn+1 x sn+l and X n+ 1(d') are
homeomorphic. Notiec that Xn(d) C X n+ 1(d)#rSn+1 X sn+l and Xn(d') C Xn+1(d')
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are taut submanifolds. The Freedman's Theormn[9] applies to condude that Xn(d) and
Xn(d/) are stably homeomorphic. With the exception of d or d' = (1), (2), (2,2) or (3),
the complete intersection Xn(d) and Xn(d/) can split out a factor sn X sn (c.f: [15]). Now
applying the cancellation Theorem[12] the proof folIows...

§4. Proof of Theorem 1.4.

This section is devoted to prove the Theorem 1.4. The main idea is to use the
branched covering Xn(d, a) -+ Xn(d) with branch set ..'\n-l (d, a) constructed in [21].

Proof of Theorem 1.4. Without loss of generality we consider only the case of n 2::
4. By induction we can assurne k = 1. By [21]' ./\n(d', a) is an a-fold branched cover over
Xn(d/) with branch set X n- 1(d,a). Let p' : Xn(d/,a) -> Xn(d') be this cover. If Xn(d)
and Xn(d/) are S-equivalent(homotopy, homcOInphisrn or diffeomorphism). Assuming
rankHn(Xn(d)) 2:: rankHn(Xnd')). Thus there is a clegree one map f : Xn(d) -+ Xn(d/)
which is an n-equivalence. By [17], we can assume that f is alnlost canonical with respect
to X n - 1(d', a). Let Yn- l = f- 1(Xn_1(d', a)). Pulling back this covering to Xn(d) we get
a covering 1r : Yn -> Xn(d) with branch set }~l-l and a map 9 : Yn -+ Xn(d/, a) so that
the foUowing diagram commutes

Yn- 1 -4 Xn- 1(d', a)

ln ln
Yn ~ ..'\n(d/, a)

11r lp'
Xn(d) -4 ..'\n(d')

Note that Yn is a connected manifold, 9 is a degree one tnap. Noticc that 9 : Yn - Yn - 1 -+
Xn(d', a)-Xn- 1(d', a) is n-connected and the latterspace is (n-1)-connected. Moreover,
f: Yn- 1 -+ Xn-l(d/,a) is a (n -l)-equivalence. It is easy to check that 9 is a (n -1)­
equivalence. By Alexander duality, Hq(Yn,Yn-d I"V H 2n-

q(Yn - Yn-d = 0 if q =f:. 0, n or
2n. Note that the Euler dass of the normal circle bundle of Yn-l in Yn is a generator of
2-dimensional cohomology group. By applying Gysin cxact scquence it is easy to show
that Hn-l(yn ) ~ Z if n - 1 is even and 0 if n - 1 is odd. Thus by the diagram above
it is readily to check that 9 is an n-equivalence. When n is even, one can check that the
signature of Yn is the same as that of Xn (d', a). Thus Yn and X n (d', a) are S-equivalent(c.f
the proof of Theorem 1.1).

Now we want to show that Yn and Xn(d, a) are stably diffeomorphic. The theorem
will follow from this directly. First notice that )/n-l and X n - 1(d, a) are stably diffeomor­
phic(9] since both of theIn reprcsent the dual cfax E H2(Xn (d)), where x is a generator.
Thus we have a homotopy

h: Xn(d) x I -+ CpN

(N large) such that hOl (XN - 1(a)) = X n - l (d, a) and h1
l (XN _ l (a)) = Yn - 1 , where X N - 1(a)

is a hypersurface of degree a. (ho and h1 indicate thc restriction of h at the two bound­
ary.) By Quinn[17], we can deform h relatively to the boundary to get an almost canonical
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map with respect to XN-1(a). Set W = h- 1(.'YN - 1(a)). W is a manifold with bound­
ary Xn - 1(d, a) and Yn - 1 and the map h : vV -+ X N - 1(a) x I is a (n - l)-equivalence.
Thus W is a (n - 2)-connected cobordism, i.c., Hq(llV, Yn-d = Hq(W, Xn-1(d, a)) = 0 if
q ::; n - 2. In particular, the complement of VV in Xn(d) x I is cyclic of order a. Now
we consider the branched cover M over Xn(d) x I with brancll set W. The boundary
of M is the union of Xn(d, a) alld Yn with opposite orientations. It is easy to show that
Hq(M, Yn ) = Hq(M, Xn(d, a)) = 0 for q ::; n - 1. tvIoreover, note that each embedded
n-sphere in W has trivial normal bundle by the coverillg. Applying the handle subtl'ac­
tion techniquc[13] it follows that there are two integers sand t so that Yn#ssn x sn and
Xn(d, a)#tSn x sn are h-cobordant. Thus Yn and Xn(d, a) are stably diffeomorphic. This
completes the proof....
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