
RANK TWO FILTERED (ϕ, N)-MODULES WITH GALOIS

DESCENT DATA AND COEFFICIENTS

GERASIMOS DOUSMANIS

Abstract. Let K be any finite extension of Qp, F any finite Galois extension
of K and E any finite, large enough, extension of Qp containing the maximal
unramified extension F0 of Qp inside F. We list the isomorphism classes of
weakly admissible filtered (ϕ, N, F/K, E)-modules of rank two over E⊗Qp F0.
For simplicity we restrict ourselves to the nonscalar F -semisimple case, but our
method works in full generality.

1. Introduction

LetK be any finite extension of Qp, ρ : GK → GLn(Q̄p) a continuous n-dimensional
representation ofGK and F any finite Galois extension ofK. ρ is called F -semistable
if it becomes semistable when restricted to GF . The field of definition E of ρ is a
finite extension of Qp which may be extended to contain the maximal unramified
extension F0 of Qp inside F. Let k ≥ 1 be any integer. By a theorem essen-
tially due to Colmez and Fontaine (see [SAV05, §2]) the category of F -semistable
E-representations of GK with Hodge-Tate weights in the range {0, 1, ..., k − 1} is
equivalent to the category of weakly admissible filtered (ϕ, N, F/K, E)-modules
D such that Fil0(F ⊗F0

D) = F ⊗F0
D and Filk(F ⊗F0

D) = 0. We classify
two-dimensional F -semistable E-representations of GK by listing the isomorphism
classes of all weakly admissible filtered (ϕ,N, F/K, E)-modules of rank two over
E ⊗Qp

F0. To avoid an excessive number of cases we restrict ourselves to the non
scalar F -semisimple case (see definition 2.3), although our method works in com-
plete generality. Special cases of the problem have been treated by Fontaine and
Mazur [FM95], Breuil and Mézard [BM02] who initiated the subject with arbitrary
coefficients, Savitt [SAV05] and most recently by Ghate and Mézard [GM07]. For
the next few introductory sections we refer to the original sources [FO88], [FO94],
[CF00], [BM02], the expository articles of Berger [BE04] and Berger-Breuil [BB04],
the course notes of Breuil [BR01] and Colmez [CO07], and the excellent forthcoming
Springer book by Fontaine and Ouyang.

1.1. Fontaine’s rings. Let Cp be the completion of Q̄p for the p-adic topology.

Cp is algebraically closed and complete. Let Ẽ = lim
←−

x7→xp

Cp = {(x(0), x(1), ..., x(n), ...)

such that (x(n+1))p = x(n) for all n ≥ 0} and Ẽ+ be the set of all x = (x(0), x(1), ...,

x(n), ...) ∈ Ẽ with vE(x) := vp(x
(0)) ≥ 0. Ẽ with addition and multiplication defined

by (x + y)(n) = lim
m→∞

(x(n+m) + y(n+m))pm

and (xy)(n) = x(n)y(n) for all n ≥ 0 is

an algebraically closed field of characteristic p. vE is a valuation on Ẽ for which Ẽ
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is complete and has valuation ring Ẽ+. Let Ã+ be the ring of Witt vectors with

Ẽ+ coefficients and B̃+ = Ã+[ 1
p
] = {

∑
k�−∞

pk[xk], xk ∈ Ẽ
+}, where [x] ∈ Ã+ is

the Teichmüler lift of x ∈ Ẽ+. The ring B̃+ is endowed with a ring epimorphism

θ : B̃+ → Cp given by θ(
∑

k�−∞

pk[xk]) =
∑

k�−∞

pkx
(0)
k . By functorial properties of

Witt vectors the absolute Frobenius ϕ : Ẽ+ → Ẽ+ lifts to a ring epimorphism ϕ :

B̃+ → B̃+given by ϕ(
∑

k�−∞

pk[xk]) =
∑

k�−∞

pk[xp
k]. Let ε = (ε(i))i≥0 ∈ Ẽ where

ε0 = 1 and ε(i) is a primitive pi-th root of 1 such that ε(i+1)p

= ε(i) for all i. If

π = [ε]−1 and π1 = [ε
1

p ]−1, define ω = π
π1

and q = ϕ(π)
π

= (π+1)p−1
π

. The kernel of

the map θ : B̃+ → Cp is the principal ideal generated by ω. The ring B+
dR is defined

to be the separated ker θ-adic completion of B̃+, B+
dR = lim

←−
n

B̃+/(ker θ)n. Since ker θ

is generated by ω, each element of B+
dR can be written (in a multitude of ways) as

a sum x =
∞∑

n=0
xnω

n with xn ∈ B̃+. The series log([ε]) = −
∞∑

n=1

(1−[ε])n

n
converges

to some element t ∈ B+
dR with the property that gt = χ(g)t for all g ∈ GQp

, where
χ : GQp

→ Z×
p is the cyclotomic character. The map θ extends to a map θ :

B+
dR → Cp whose kernel is generated by t. If x ∈ B+

dR, there exists unique k ≥ 0

such that x ∈ (ker θ)k\(ker θ)k+1. This defines a valuation on B+
dR with respect

to which B+
dR is a complete discrete valuation ring. B+

dR has a natural continuous

GQp
-action. Define BdR = B+

dR[ 1
t
]. BdR is a field with a decreasing exhaustive and

separated filtration given by FiljBdR = tjB+
dR for all integers j. An unfortunate

feature of the topology of B+
dR is that the Frobenius map ϕ : B̃+ → B̃+ does not

extend to a continuous map ϕ : B+
dR → B+

dR. We define a ring B+
cris which is a

subring of B+
dR with elements sequences satisfying some growth condition, namely

B+
cris = {

∑

n≥0

an

ωn

n!
where an ∈ B̃+ is a sequence converging to 0}.

Let Bcris = B+
cris[

1
t
]. Bcris is a subring of BdR, not a field, (e.g. ω − p is not

invertible), such that for any finite extension K of Qp, B
GK

cris = K0. It is endowed
with the induced Galois action and a continuous Frobenious endomorphism ϕ which

extends ϕ : B̃+ → B̃+. Continuity of ϕ implies that ϕ(t) = pt. There is an exact
sequence (known as the fundamental exact sequence)

0→ Qp → B
ϕ=1
cris → BdR/B

+
dR → 0,

which means that (a) B
ϕ=1
cris ∩B+

dR = Qp and (b) B
ϕ=1
cris = Qp +B+

dR (not direct sum).

1.2. Potentially semistable representations. Let K be a finite extensions of

Qp and V be a Qp-linear representation of GK . The fact that B
GK

dR = K is part
of a technical condition called regularity which implies that the K-vector space
DdR(V ) = (BdR ⊗Qp

V )GK has dimension ≤ dimQp
(V ). The representation V is

called de Rham if equality holds. All representations coming from geometry are
de Rham. DdR(V ) is equipped with a natural decreasing exhaustive and separated
filtration given by FiljDdR(V ) = (tjB+

dR ⊗Qp
V )GK for any integer j. An integer

j is called a Hodge-Tate weight of the de Rham representation V if Fil−jDdR(V ) 6=



FILTERED MODULES WITH COEFFICIENTS 3

Fil−j+1DdR(V ) and is counted with multiplicity dimQp
(Fil−jDdR(V )/F il−j+1DdR(V )).

There are d = dimQp
(V ) Hodge-Tate weights for V, counting multiplicities.

Between Bcris and BdR sits (non canonically) a ring Bst = Bcris[X ], where X is
a polynomial variable over Bcris. Bst is equipped with a Frobenius which extends
the Frobenius on Bcris and is such that ϕ(X) = pX. There is also a Q̄p-linear

monodromy operator N = − d
dX

which satisfies Nϕ = pϕN. Let p̃ ∈ Ẽ+ be any

element with p̃(0) = p and let

log[p̃] = logp(p)−

∞∑

n=1

(1− [p̃]/p)n−1

n
.

There exist Galois equivariant, Bcris-linear, embeddings of Bst in BdR which mapsX
to log[p̃], but they require a choice of logp(p). We always assume that logp(p) = 0.
Bst is equipped with a Galois action which extends the Galois action on Bcris,
B

GK

st = K0 and the map F ⊗F0
B

GK

st → BdR is injective. The chosen inclusion
of Bst in BdR defines (non canonically) a filtration on Dst(V ) = (Bst ⊗Qp

V )GK

which is preserved by the Galois action. By the construction of the ring Bst,
dimF0

Dst(V ) ≤ dimQp
(V ). V is called semistable when equality holds. It is called

potentially semistable if it becomes semistable when restricted to GF , for some
finite extension F of K. Crystalline representations are semistable and semistable
representations are de Rham with the converse inclusions being false. Potentially
semistable representations are de Rham. The converse is also true, but harder to
prove, and is known as the p-adic monodromy theorem.

1.3. Preliminaries and notations. We retain the notation of the introduction
and we denote f the residual degree of F over Qp and σ the absolute Frobenius of
F0. We fix an inclusion i : F0 ↪→ E and we let τj = i ◦ σj for all j = 0, 1, ..., f − 1.
We fix once and for all the f -tuple of embeddings (τ0, τ1, ..., τf−1). The map ξ :
E⊗Qp

F0 →
∏

τ :F0↪→E

E given by ξ(x⊗Qp
y) = (τ(x)y)τ , with the embeddings ordered

as above, is a ring isomorphism. The ring automorphism ϕ :
∏

τ :F0↪→E

E →
∏

τ :F0↪→E

E

with ϕ(x0, x1, ..., xf−1) = (x1, ..., xf−1, x0) is the unique one making the following
diagram commute, where in the horizontal arrows ϕ = 1E ⊗Qp

σ

E ⊗Qp
F0 ϕ

−−−→
E ⊗Qp

F0

ξ ↓ ξ ↓∏
τ :F0↪→E

E ϕ
−−−→

∏
τ :F0↪→E

E

We denote ej = (0, ..., 1, ..., 0) the idempotent of
∏

τ :F0↪→E

E where the 1 occurs in

the τj-th component for any j ∈ {0, 1, ..., f − 1}.

1.4. Potentially semistable representations with coefficients. Let ρ : GK →
GLE(V ) be as continuous finite dimensional representation of GK with K and E as
above. Dst(V ) is an E ⊗Qp

F0-module and V is F -semistable if and only if Dst(V )
is free of rank dimE V. Throughout this section we assume that V is F -semistable.
Dst(V ) may be viewed as a module over

∏
τ :F0↪→E

E via the ring isomorphism ξ of sec-

tion 1.3. We filter each component eiDst(V ) by setting FiljeiDst(V ) = eiFil
jDst(V )

for all j ∈ Z. The Frobenius endomorphism of Bst induces an automorphism ϕ on
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Dst(V ) which is semilinear with respect to the automorphism ϕ of E ⊗Qp
F0. The

monodromy operator N of Bst induces an E⊗Qp
F0-linear, nilpotent endomorphism

N onDst(V ) such thatNϕ = pϕN. DF
st(V ) = F⊗F0

Dst(V ) is equipped with the fil-
tration induced by the injection F⊗F0

Dst(V )→ DdR(V ). It has the properties that
FiljDF

st(V ) = 0 for j � 0 and FiljDF
st(V ) = DF

st(V ) for j � 0. It is also equipped
with an F0-semilinear, E-linear action of G = Gal(F/K) which commutes with ϕ
and N and preserves the filtration. We remark that the E⊗Qp

F0-modules eiDst(V )
are not necessarily free (compare dimensions over E). They are equidimensional
over E with dimension dimE V because the maps ϕ : eiDst(V ) → ei−1Dst(V ) are
E-linear isomorphisms for all i.

1.5. Filtered modules with coefficients and descent data.

Definition 1.1. A filtered (ϕ, N, F/K, E)-module of rank n is a free E ⊗Qp
F0-

module D of rank n equipped with

• an F0-semilinear, E-linear automorphism ϕ,
• an E ⊗Qp

F0-linear nilpotent endomorphism N such that Nϕ = pϕN,

• a decreasing filtration on DF = F ⊗F0
D such that FiljD = 0 for j � 0

and FiljD = D for j � 0, and
• an F0-semilinear, E-linear action of G = Gal(F/K) commuting with ϕ and
N and preserving the filtration.

A morphism of filtered (ϕ, N, F/K, E)-modules is an E⊗Qp
F0-linear map which

preserves the filtrations and commutes with ϕ, N, and the Gal(F/K)-action.

Definition 1.2. A filtered (ϕ, N, F/K, E)-module is called weakly admissible if
it is weakly admissible as a filtered (ϕ, N, E)-module in the sense of [BM02, cor
3.1.2.1].

The Galois action plays no role in weak admissibility. We have the following fun-
damental theorem essentially due to Colmez and Fontaine (see [SAV05, § 2]).

Theorem 1.3. Let k ≥ 1 be any integer. The category of F -semistable E-representations
of GK with Hodge-Tate weights in the range {0, 1, ..., k−1} is equivalent to the cate-
gory of weakly admissible filtered (ϕ, N, F/K, E)-modules D, such that Fil0(F⊗F0

D) = F ⊗F0
D and Filk(F ⊗F0

D) = 0.

2. The rank two filtered (ϕ,N)-modules

Notation 1. Let I0 = {0, 1, ..., f − 1}. For each J ⊂ I0 we write fJ =
∑
i∈J

e
i
. If

~x ∈
∏

τ :F0↪→E

E, we denote Nmϕ(~x) =
f−1∏
i=0

ϕi(~x) and Trϕ(~x) =
f−1∑
i=0

ϕi(~x). For any

~x ∈
∏

τ :F0↪→E

E we denote xi the i-th component of ~x, J~x the support of ~x i.e. the

set {i ∈ I0 : xi 6= 0} and ~x−1 the vector
∑

i∈J~x

e
i
x−1

i (~0−1 = ~0). For any matrix

A ∈ M2(
∏

τ :F0↪→E

E) we write Nmϕ(A) = Aϕ(A)...ϕf−1(A), with ϕ acting on each

entry of A.
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2.1. Putting the Frobenius into shape. Let (D,ϕ) be a ϕ-module of rank two
over

∏
τ :F0↪→E

E. We start by putting the matrix of the Frobenius endomorphism ϕ

in a convenient form. The following elementary lemma will be used frequently.

Lemma 2.1. (i) The operator Nmϕ :
∏

τ :F0↪→E

E →
∏

τ :F0↪→E

E is multiplicative. (ii)

Let ~α, ~β ∈
∏

τ :F0↪→E

E×. The equation in ~α · ~A = ~β · ϕ( ~A) has nonzero solutions if

and only if Nmϕ(~α) = Nmϕ(~β). In this case all the solutions are
~A = A(1, α0

β0

, α0α1

β0β1

, ...,
α0α1...αf−2

β0β1...βf−2

), for any A ∈ E.

Proof. Obvious. �

Let η̄ and ē be ordered basis of D over
∏

τ :F0↪→E

E and let (η1, η2) = (e1, e2)A for

some matrix A ∈ GL2(
∏

τ :F0↪→E

E). We write A = [1]ēη̄ and it is clear that [ϕ]ē =

A[ϕ]η̄ϕ(A)−1. The main observation of this section is the following

Proposition 1. Let D be a rank two ϕ-module over
∏

τ :F0↪→E

E. After enlarging E

if necessary, there exists ordered base η̄ of D with respect to which the matrix of ϕ
takes one of the following forms:

(i) [ϕ]η̄ =

(
α ·~1 ~0
~0 δ ·~1

)
for some α, δ ∈ E× with αf 6= δf , or

(ii) [ϕ]η̄ =

(
α ·~1 ~0
~0 α ·~1

)
for some α ∈ E×, or

(iii) [ϕ]η̄ =

(
α ·~1 ~0

~γ α ·~1

)
for some α ∈ E× and some ~γ ∈

∏
τ :F0↪→E

E with

Trϕ(~γ) 6= ~0.

To prove proposition 1 we use the following

Lemma 2.2. Let D be a rank two ϕ-module over
∏

τ :F0↪→E

E. After enlarging E if

necessary the following hold:
(i) If ϕf is not an E×-scalar times the identity map, there exists ordered base η̄ of

D over
∏

τ :F0↪→E

E such that [ϕ]η̄ =

(
~ε ~0

~η ~θ

)
, with the additional properties that

(α) If Nmϕ(~ε) 6= Nmϕ(~ϑ), then ~η = ~0 and (β) If Nmϕ(~ε) = Nmϕ(~ϑ), then ~ε = ~θ

and ~Γϕ = ~1, where ~Γϕ = ~Γϕ,η̄ is the (2, 1) entry of the matrix Nmϕ([ϕ]η̄).
(ii) If ϕf is an E×-scalar times the identity map, there exists ordered base η̄ of D
over

∏
τ :F0↪→E

E such that [ϕ]η̄ = diag((A, 1, ..., 1), (A, 1, ..., 1)) for some A ∈ E×.

Proof. (i) Since ϕf is a
∏

τ :K↪→E

E-linear isomorphism, there exists ordered base ē of

D over
∏

τ :K↪→E

E such that [ϕf ]ē =

(
~A ~0
~C ~D

)
with AiDi 6= 0 for all i ∈ I0, Ci = 0

whenever Ai 6= Di and Ci ∈ {0, 1} whenever Ai = Di. Let [ϕ]ē be the matrix
of ϕ with respect to ē. We repeatedly act by ϕ on (ϕ(e1), ϕ(e2)) = (e1, e2)[ϕ]ē
and get (ϕf (e1), ϕ

f (e2)) = (e1, e2)Nmϕ([ϕ]ē). Let P = [ϕ]ē = P0 × P1 × ... ×
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Pf−1 and Q = Nmϕ(P ) = Q0 × Q1 × ... × Qf−1. Since Q = Pϕ(Q)P−1, Qi =

PiQi+1P
−1
i for all i and {Ai+1, Di+1} = {Ai, Di}. Since AiDi = d = detQ0,

{Ai+1, dA
−1
i+1} = {Ai, dA

−1
i }. Let A = dA−1

0 , then for all i, Ai ∈ {A, dA
−1} and

Nmϕ(P ) =

(
(A0, ..., Af−1) (0 , . . . , 0)
(C0, ..., Cf−1) (D0, ..., Df−1)

)
with Ai ∈ {A, dA

−1} and Di =

dA−1
i . If A2 6= d, then ~C = ~0 and if A2 = d, then Ci ∈ {0, 1} for all i. We have

RQR−1=

(
(dA−1, ..., dA−1) ~C
~0 (A, ..., A)

)
where R = R0 × R1 × ... × Rf−1 and

Ri=

(
1 0
0 1

)
or

(
0 1
1 0

)
depending on whether Ai = dA−1 or A respectively.

If A2 6= d, then RQR−1 = diag((dA−1, ..., dA−1), (A,A, ..., A)). If A2 = d, then

Nmϕ(P ) =

(
(A, ..., A) (1, ..., 1)
(0, ..., 0) (A, ..., A)

)

(Since Pϕ(Q)P−1 = Q, if Cj = 0 for some j, then Cj+1 = 0 and ϕf = A · i~d

contradiction. Hence ~C = ~1). Hence there exists base η̄ of D over
∏

τ :K↪→E

E such

that [ϕf ]η̄ =

(
(A, ..., A) (0, . . . , 0)
(C, ..., C) ( d

A
, ..., d

A
)

)
for some A ∈ E× and such that C = 0

if A2 6= d and C = 1 if A2 = d. We compute the matrix of ϕ with respect to

η̄. Let [ϕ]η̄ =

(
~ε ~ζ

~η ~θ

)
. Since Nmϕ([ϕ]η̄) = [ϕf ]η̄ and [ϕ]η̄ϕ (Nmϕ([ϕ]η̄)) =

Nmϕ([ϕ]η̄)[ϕ]η̄ , a direct calculation proves the following:

(1) If A2 6= d, then ~C = ~0, ~η = ~0 and ~ζ = ~0.

(2) If A2 = d, then ~C = ~1, ~ζ = ~0 and ~ε = ~θ.
(ii) Follows immediately from the fact that the matrix of ϕf is base-independent
and the following

Claim. Let P ∈ GL2(
∏

τ :K↪→E

E) such that Nmϕ(P ) = diag( ~A, ~A) with ~A =

(A,A, ..., A) for some A ∈ E×. There exists matrix Q∗ ∈ GL2(
∏

τ :K↪→E

E) such that

Q∗Pϕ(Q∗)−1 = diag((A, 1, .., 1), (A, 1, .., 1)).
Proof. Write P = P0 × P1 × ...× Pf−1. We easily see that there exist matrices

Qi ∈ GL2(E) such that for Q = Q0 × Q1 × ... × Qf−1, Qϕ(P )ϕ(Q)−1 = T0 ×

T1 × ...× Tf−2 × Tf−1 for some Ti =

(
αi 0
γi δi

)
for i = 0, 1, ..., f − 2 and Tf−1 =

(
αf−1 βf−1

γf−1 δf−1

)
∈ GL2(E). Then Nmϕ(QPϕ(Q)−1) = QNmϕ(P )(Q)−1 =

Qdiag( ~A, ~A)(Q)−1 = diag( ~A, ~A).

This implies that
f−1∏
i=0

αi = A and (
f−2∏
i=0

αi)βf−1 = 0.Hence βf−1 = 0 andQϕ(P )ϕ(Q)−1=
(
~α ~0

~γ ~δ

)
withNmϕ(~α) = Nmϕ(~δ) = ~A. Let ~x = (1, α0A

−1,α0α1A
−1, ..., α0α1...αf−2A

−1),

~y = (1, δ0A
−1, δ0δ1A

−1, ...,δ0δ1...δf−2A
−1) and R =

(
~x ~0
~0 ~y

)
Q. Then RPϕ(R)−1 =

(
(A, 1, .., 1) ~0

~Γ (A, 1, .., 1)

)
for some ~Γ ∈

∏
τ :K↪→E

E. If ~Γ = (Γ0,Γ1, ...,Γf−1), the
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fact that Nmϕ(RPϕ(R)−1) = diag( ~A, ~A) implies that Γ0 + A
f−1∑
i=1

Γi = 0. Let

S =

(
(1, 1, ..., 1) (0, 0, ..., 0)

(z0, z1, ..., zf−1) (1, 1, ..., 1)

)
where z0 = 1, z1 = 1−Γ1−Γ2 − ...−Γf−1,

z2 = 1 − Γ2 − ... − Γf−1, ..., zf−2 = 1 − Γf−2 − Γf−1, zf−1 = 1 − Γf−1 and

Q∗ = SR. The fact that Γ0 + A
f−1∑
i=1

Γi = 0 and a simple computation yield that

Q∗Pϕ(Q∗)−1 = diag((A, 1, .., 1), (A, 1, .., 1)). �

Proof of proposition 1. (i) Suppose [ϕ]ē = diag(~ε, ~η) with Nmϕ(~ε) 6= Nmϕ(~η). Let

α, δ ∈ E× (enlarge E if necessary) such that Nmϕ(~ε) = αf ·~1 and Nmϕ(~θ) = δf ·~1.

We need a matrix A ∈ GL2(
∏

τ :F0↪→E

E) such that A([ϕ]η̄)ϕ(A)−1 = diag(α ·~1, δ ·~1)

with αf 6= δf . Its existence follows immediately from lemma 2.1.
(ii) Suppose [ϕ]ē = diag((A, 1, , , 1), (A, 1, ..., 1)). Take α ∈ E× to be an f -th root
of A and proceed as in case (i).
(iii) Let ē be an ordered base of D such that [ϕ]ē = diag((A, 1, ..., 1), (A, 1, ..., 1))
for some A ∈ E×. Let where α be an f -th root of A contained in E. As in the

previous cases, [ϕ]η̄ =

(
α ·~1 ~0

~γ α ·~1

)
for some ordered base η̄.

Since [ϕf ]η̄ =

(
αf ·~1 ~0

αf−1Trϕ(~γ) αf ·~1

)
and [ϕf ]ē =

(
A ·~1 ~0
~1 A ·~1

)
, we have

Trϕ(~γ) 6= ~0. �

Definition 2.3. A ϕ-moduleD is called F -semisimple , F -scalar or non F -semisimple
if and only if the

∏
τ :F0↪→E

E-linear map ϕf has the corresponding property. One can

easily prove that D is F -semisimple if and only if there exists ordered base with re-
spect to which the matrix of ϕ is as in cases (i) or (ii) of the proposition above, with
D being non F -scalar in case (i) and F -scalar in case (ii). D is non F -semisimple
if and only if there exists ordered base with respect to which the matrix of ϕ is as
in case (iii). We refer to such a base as a canonical base of (D,ϕ).

From now on we assume that all the ϕ-modules are F -semisimple and nonscalar.
Each ϕ-module D comes equipped with some ordered base η̄ with respect to which
the matrix of ϕ has the form [ϕ]η̄ = diag(α ·~1, δ ·~1) with αδ 6= 0 and αf 6= δf . The
matrix of any operator on D will always be with respect to such a base.

2.2. The monodromy operator. The condition Nϕ = pϕN is equivalent to

[N ]η̄[ϕ]η̄ = p [ϕ]η̄ϕ([N ]η̄). Indeed, (ϕ(η1), ϕ(η2)) = (η1, η2)[ϕ]η̄ . We act by N and
get (Nϕ(η1), Nϕ(η2)) = (η1, η2)[N ]η̄ [ϕ]η̄ . Since Nϕ = pϕN, the left hand side
of the last equation equals p(ϕN(η1), ϕN(η2)). But (N(η1), N(η2)) = (η1, η2)[N ]η̄
and therefore (ϕN(η1), ϕN(η2)) = (η1, η2)[ϕ]η̄ϕ([N ]η̄) whence the formula. A short
computation using lemma 2.1 and taking into account that N is nilpotent yields
the following:

• If αf 6= p±fδf , then N = 0.

• If αf = pfδf , then [N ]η̄ =

(
~0 ~0
~N ~0

)
, where ~N = N(1, ζ, ζ2, ..., ζf−1),

ζ = α
pδ

and N any element of E.
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• If δf = pfαf , then [N ]η̄ =

(
~0 ~N
~0 ~0

)
, where ~N = N(1, ε, ε2, ..., εf−1),

ε = δ
pα

and N any element of E.

Remark 2.4. For all rank two filtered (ϕ, N, F/K, E)-modules, N 2 = 0.

2.3. The Galois action.

2.3.1. The Galois action on
∏

τ :F0↪→E

E. We use the isomorphism ξ of section 1.3 to

define an E-linear G-action on
∏

τ :F0↪→E

E by setting gξ(x) = ξ(gx) for all g and x.

Let α ∈ F0 be an element of F0 such that {α, σ(α), ..., σf−1(α)} is a normal base of

F0 over Qp (with σ the absolute Frobenius of F0). Let ej = ξ(
f−1∑
i=0

λj
i ⊗ σ

i(α)) with

λj
i ∈ E. For each j ∈ I0 the λj

i satisfy the following system of equations:

f−1∑

i=0

σk+i(α)λj
i = δkj for all k, j = 0, 1, ..., f − 1.

For each g ∈ G = Gal(F/K) there exists unique integer n(g) ∈ I0 such that

g|F0
= σn(g). Since ej = ξ(

f−1∑
i=0

λj
i ⊗ σ

i(α)), gej =
f−1∑
k=0

M j
k(g)ek, where M j

k(g) =

f−1∑
k=0

λj
iσ

i+k+n(g). Since the λj
i satisfy the system of equations above, M j

k(g) =

δj,k+n(g) for all g (where for indices we use the convention that i = j when-
ever i ≡ jmod f). Therefore, gej = ej−n(g) for all j and g which implies that
g~α = (αn(g), αn(g)+1, ..., αn(g)+f−1) for all ~α = (α0, α1, ..., αf−1). Notice that g~α =

ϕn(g)(~α) and (g~α)i = αi+n(g). We shall denote g~α instead of g~α. Let n(G) = {n(g),
g ∈ G}. We have n(G) = {0} if and only if F0 ⊂ K and n(G) = I0 if and only if
there exists element of G whose restriction to F0 is the absolute Frobenius of F0.

It is obvious that Nmϕ(g~α) = Nmϕ(~α) for all ~α ∈
∏

τ :F0↪→E

E and g ∈ G. For G

to act on D we must have [g1g2]η̄ = [g1]η̄(g1 [g2]η̄) for all g1, g2. We determine the
shape of the matrices [g]η̄ utilizing the fact that the Galois action commutes with
the Frobenius and the monodromy.

2.3.2. Commutativity with the Frobenius. The Galois action commutes with the

Frobenius if and only if [ϕ]η̄ϕ([g]η̄) = [g]η̄(g [ϕ]η̄) for all g ∈ G. We write [g]η̄ =(
~A(g) ~B(g)
~Γ(g) ~∆(g)

)
for all g. Since αf 6= δf , lemma 2.1 implies that ~B(g) = ~Γ(g) = ~0.

We need (α · ~1) · ϕ( ~A(g)) =g (α · ~1) · ~A(g) and (δ · ~1) · ϕ(~∆(g)) =g (δ · ~1) · ~∆(g)

which have solutions given by ~A(g) = A(g) · ~1 and ~∆(g) = ∆(g) · ~1 for functions
A,∆ : G → E, i = 1, 2. Since [g1g2]η̄ = [g1]η̄(g1 [g2]η̄), since G acts trivially on

vectors of the form α · ~1, α ∈ E and given that A(1) = ∆(1) = 1, we deduce that
A and ∆ are E×-valued characters of G containing Gal(F/KF0) in their kernel.
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2.3.3. Commutativity with the monodromy. The Galois action commutes with the

monodromy if and only if [N ]η̄[g]η̄ = [g]η̄(g [N ]η̄) for all g.

• When N = 0 this always holds.

• When αf = pfδf , then [N ]η̄ =

(
~0 ~0
~N ~0

)
with ~N = N(1, ζ, ζ2, ..., ζf−1),

ζ = α
pδ

and N ∈ E arbitrary. Assuming that N 6= 0, a straightfor-

ward computation shows that the commutativity condition is equivalent
to A(g) = ζn(g)∆(g) for all g ∈ G.

• When αf = p−fδf , then [N ]η̄ =

(
~0 ~N
~0 ~0

)
with ~N = N(1, ε, ε2, ..., εf−1),

ε = δ
pα

and N ∈ E arbitrary. Assuming that N 6= 0, the commutativity

condition is equivalent to ∆(g) = εn(g)A(g) for all g ∈ G.

2.3.4. Summary of the Galois action. (A) The potentially crystalline case: If (D,ϕ)
is F -semisimple and nonscalar if and only if there exist characters χi : G → E×

with Gal(F/KF0) ⊂ kerχi, i = 1, 2 such that [g]η̄ = diag(χ1(g), χ2(g)) for all
g ∈ G.

(B) The potentially semistable, noncrystalline case.

Let [ϕ]η̄ = diag(α ·~1, δ ·~1) with αδ 6= 0, αf 6= δf and αf = p±fδf .

• If δf = pfαf , then [N ]η̄ =

(
~0 ~N
~0 ~0

)
with ~N = N(1, ε, ..., εf−1), ε = δ

pα

and N ∈ E×. There exists character χ : G → E× with Gal(F/KF0) ⊂

kerχ, such that [g]η̄ = diag(χ(g) ·~1, εn(g)χ(g) ·~1) for all g ∈ G.

• If αf = pfδf , then [N ]η̄ =

(
~0 ~0
~N ~0

)
with ~N = N(1, ζ, ..., ζf−1), ζ = α

pδ

and N ∈ E×. There exists character χ : G → E× with Gal(F/KF0) ⊂

kerχ, such that [g]η̄ = diag(ζn(g)χ(g) ·~1, χ(g) ·~1) for all g ∈ G.

2.4. The filtrations. In this section we describe the shape of the filtrations of

rank two filtered modules and compute those stable under the Galois action. The
notion of a labelled Hodge-Tate weight will be important.

2.4.1. Labelled Hodge-Tate weights. A filtered (ϕ, N, F/K, E)-module D over
E ⊗Qp

F0 may be viewed as a module over
∏

τ :F0↪→E

E via the ring isomorphism ξ of

section 1.3. The Frobenius endomorphism ϕ of D is semilinear with respect to the
ring automorphism ϕ of

∏
τ :F0↪→E

E defined in the same section . We filter each com-

ponent Di = eiD be setting FiljDi = eiFil
jD, where FiljD is the filtration of the

filtered module D. An integer j is called a labelled Hodge-Tate weight of D with
respect to the embedding τi of F0 in K if and only if eiFil

−jD 6= eiFil
−j+1D. It

is counted with multiplicity dimE

(
eiFil

−jD/eiFil
−j+1D

)
. Since ϕ is an E-linear

isomorphism from Di to Di−1 for all i, the components Di are equidimensional
over E. As a consequence there are n = rkE⊗Qp F0

(D) labelled Hodge-Tate weights

for each embedding, counting multiplicities. The labelled Hodge-Tate weights of
D are by definition the f -tuple of ”sets” (W0, ...,Wf−1), where each such ”set”
Wi contains n integers, the opposites of the jumps of the filtration of Di, with
repetitions allowed. The labelled Hodge-Tate weights will always be labelled with
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respect to the f -tuple of embeddings fixed in section 1.3. From now on we re-
strict attention to rank two filtered modules with labelled Hodge-Tate weights
({0,−k0}, {0,−k1}, ..., {0,−kf−1}), with ki non negative integers. When the la-
belled Hodge-Tate weights are arbitrary we can always shift them into this range,
after twisting by some appropriate admissible rank one filtered ϕ-module (see ap-
pendix).

Notation 2. Let k0, k1, ..., kf−1 be non negative integers which we call ”weights”.
Assume that after ordering them and omitting possibly repeated weights we get
w0 < w1 < ... < wt−1, where w0 is the smallest weight, w1 the second small-
est weight,...,wt−1 is the largest weight and 1 ≤ t ≤ f. Let I0 = {0, 1, ..., f − 1},
I1 = {i ∈ I0 : ki > w0}, ..., It−1 = {i ∈ I0 : ki > wt−2} = {i ∈ I0 : ki = wt−1} and

It = ∅. Notice that
t−1∑
i=0

wi(| Ii | − | Ii+1 |) =
f−1∑
i=0

ki.

2.4.2. The shape of the filtrations. Let D be a filtered ϕ-module with labelled

Hodge-Tate weights ({−k0, 0}, {−k1, 0}, ..., {−kf−1, 0}). By the definition of a la-
belled Hodge-Tate weight we have

eτi
Filj(D) =





eτi
D if j ≤ 0,

Di if 1 ≤ j ≤ ki,
0 if j ≥ 1 + ki,

whereDi = (
∏

τ :K↪→E

E)e
i
(~xiη1+~y

iη2) for some ~xi = (xi
0, x

i
1, ..., x

i
f−1), ~y

i = (yi
0, y

i
1, ...,y

i
f−1)

∈
∏

τ :K↪→E

E, with the additional condition that (xi
i, yi

i) 6= (0, 0) whenever ki > 0.

The condition (xi
i, y

i
i) 6= (0, 0) is forced when ki > 0, and one may choose the

xi
i and yi

i arbitrarily when ki = 0. We may therefore assume that (xi
i, y

i
i) 6=

(0, 0) for all i ∈ I0. From now on we shall always make this assumption. Since

Filj(D) =
f−1⊕
i=0

e
i
Filj(D), F iljD = D for j ≤ 0 and FiljD = 0 for j ≥ 1 + wt−1.

Let 1 + wr−1 ≤ j ≤ wr for some r ∈ {0, 1, ..., t − 1}, (with w−1 = 0). Then

FiljD =
⊕

i∈Ir

Di. If ~x = (x0
0, x

1
1, ..., x

f−1
f−1), ~y = (y0

0 , y
1
1 , ..., y

f−1
f−1) with (xi

i, y
i
i) 6= (0, 0)

for all i ∈ I0 we get

Filj(D) =






D if j ≤ 0,
(
∏

τ :K↪→E

E)fI0(~xη1 + ~yη2) if 1 ≤ j ≤ w0,

(
∏

τ :K↪→E

E)fI1(~xη1 + ~yη2) if 1 + w0 ≤ j ≤ w1,

....................................................................
(
∏

τ :K↪→E

E)fIt−1
(~xη1 + ~yη2) if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1.

Remark 2.5. The filtration of D can be put into this shape with respect to any
ordered base of D, for appropriately chosen vectors ~x and ~y. We may replace ~y by
fJ~y

and modify ~x accordingly without changing the filtration. From now on we
shall usually assume that ~y = J~y.
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2.4.3. The Galois stable filtrations. Let [g]η̄ = diag( ~A(g), ~∆(g)) with ~A(g) = A(g) ·

~1 and ~∆(g) = ∆(g) ·~1 as in section 2.3.2. The filtration of D with respect to η̄ has
the form

Filj(D) =





D if j ≤ 0,
(
∏

τ :F0↪→E

E)fI0(~xη1 + fJ~y
η2) if 1 ≤ j ≤ w0,

(
∏

τ :F0↪→E

E)fI1(~xη1 + fJ~y
η2) if 1 + w0 ≤ j ≤ w1,

........................................................................
(
∏

τ :F0↪→E

E)fIt−1
(~xη1 + fJ~y

η2) if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1.

for some ~x, ~y ∈
∏

τ :F0↪→E

E with (xi, yi) 6= (0, 0) for all i ∈ I0. We need g(FiljD) ⊂

FiljD for all g ∈ G and j ∈ Z. Let r ∈ {0, 1, ..., t−1}.There must exist ~t ∈
∏

τ :F0↪→E

E

such that A(g)(gfIr∩J~x
) · (g~x) = ~t · fIr∩J~x

· ~x (1) and ∆(g)(gfIr∩J~y
) = ~t · fIr∩J~y

(2).

Throughout the paper n(g) is as in section 2.3.1 for all g ∈ G.

Notation 3. For any g ∈ G and any J ⊂ I0 we denote gJ the set −n(g) + J =
{−n(g) + j, j ∈ J} with all elements viewed mod f.

Lemma 2.6. For any J, J1, J2 ⊂ I0 and g ∈ G the following hold: (i) fJ1
· fJ2

=
fJ1∩J2

, (ii) g(fI) = f(gI), (iii) (gfJ1
) · fJ2

= f(gJ1)∩J2
and (iv) g(J1 ∩ J2) =

(gJ1) ∩ (gJ2).

Proof. (i), (ii) and (iii) are completely straightforward. For (iv) notice that
fg(J1∩J2) =g (fJ1

· fJ2
) = (gfJ1

)(gfJ2
) = f(gJ1)∩(gJ2). �

Since A(g) 6= 0 for all g, A(g)(gfIr∩J~x
) · (g~x) = ~t · fIr∩J~x

·~x implies that g(Ir ∩J~x)∩
Jg~x ⊂ Ir ∩J~x. By lemma 2.6, this is equivalent to g(Ir ∩J~x) ⊂ Ir ∩J~x for all g, and
this is equivalent to g(Ir ∩ J~x) = Ir ∩ J~x. Similarly, g(Ir ∩ J~y) = Ir ∩ J~y for all g.

The components of ~t on Ir ∩ J~x are uniquely determined by (1), on Ir ∩ J~y by (2),
and all the other components can be chosen arbitrarily. We may therefore solve for
~t if and only if

gIr ∩
g J~x = Ir ∩ J~x for all g ∈ G and r ∈ {0, 1, ..., t− 1},

gIr ∩
g J~y = Ir ∩ J~y for all g ∈ G and r ∈ {0, 1, ..., t− 1},

A(g)(gfIr∩J~x
) · fJ~y

· (g~x) = ∆(g)(gfIr∩J~y
) · ~x.

By lemma 2.6 the last equation is equivalent to A(g)(g~x) · fgIr∩gJ~x∩J~y
= ∆(g)~x ·

fgIr∩gJ~y∩J~x
which is equivalent to A(g)(g~x) · fJ~x∩J~y

= ∆(g)~x · fJ~x∩J~y
. Hence the

filtration is fixed by the Galois action if and only if

gIr ∩
g J~x = Ir ∩ J~x for all g ∈ G and r ∈ {0, 1, ..., t− 1},

gIr ∩
g J~y = Ir ∩ J~y for all g ∈ G and r ∈ {0, 1, ..., t− 1},

A(g)(g~x) · fJ~x∩J~y
= ∆(g)~x · fJ~x∩J~y

.

The following are easy to verify (see also remarks 4.1 and 4.2 below):
(i) The first equation is equivalent to xi 6= 0 and ki > wr−1 if and only if xi+n(g) 6=
0 and ki+n(g) > wr−1 for all g ∈ G, the second equation is equivalent to yi 6= 0 and
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ki > wr−1 if and only if yi+n(g) 6= 0 and ki+n(g) > wr−1 for all g ∈ G and the
third equation is equivalent to A(g)xi+n(g) = ∆(g)xi for all i ∈ J~x ∩ J~y. When
n(G) = {0}, the only condition is A(g) = ∆(g) when J~x ∩ J~y 6= ∅.
(ii) When n(G) = I0, there exist Galois-stable lines if and only if all the labelled
Hodge-Tate weights are equal. In this case the only Galois-stable

∏
τ :F0↪→E

E-lines

are the two axis and those spanned by vectors ~xη1 +η2 (compare with [GM07, prop

3.3]), where ~x = x0
~X(g), where ~X(g) = (1, ( A(g)

∆(g) ), (
A(g)
∆(g) )

2, ..., ( A(g)
∆(g) )

f−1) for any

x0 ∈ E
×, with g being any element of G such that g|F0

= FrobF0
. Notice that the

vector ~X(g) is independent of the choice of g.

3. Admissibility

3.1. Submodules fixed by the Frobenius and the monodromy.

Lemma 3.1. Let (D,ϕ) be a rank two ϕ-module over
∏

τ :F0↪→E

E and suppose the

matrix of ϕ with respect to some base η̄ = (η1, η2) of D has the form [ϕ]η̄ =(
~α ~0

~γ ~δ

)
. All the ϕ-stable submodules of D are 0, D, D2 = (

∏
τ :F0↪→E

E)η2 or of

the form D~θ
= (

∏
τ :F0↪→E

E)(η1 + ~θη2) for some ~θ ∈
∏

τ :F0↪→E

E.

Proof. Let M be a ϕ-stable submodule of D. (A) If M ∩ (
∏

τ :K↪→E

E)η2 6= 0, let

~xη2 ∈ M with ~x 6= ~0. If J~x = {i ∈ I0 : xi 6= 0} then
∑

i∈J~x

eτi
η2 ∈ M and after

multiplying by eτi
for some i ∈ J~x we see that eτi

η2 ∈ M for some (in fact all)
i ∈ J~x. We act by ϕ repeatedly and get that eτi

η2 ∈ M for all i ∈ I0, therefore

η2 ∈ M. If ~xη1 + ~yη2 ∈ M for some ~x 6= ~0, then ~xη1 ∈ M. Arguing as before and
using the fact that η2 ∈M we get η1 ∈M and M = D. Hence M = (

∏
τ :K↪→E

E)η2 or

M = D. (B) If M ∩ (
∏

τ :K↪→E

E)η2 = 0. Assume M 6= 0 and let ~xη1 + ~yη2 ∈M with

~x 6= ~0 , then (
∑

i∈J~x

eτi
)η1 + ~y1η2 ∈ M for some ~y1 and eτi

η1 + ~y2η2 ∈ M for some

i ∈ J~x and some ~y2. We apply ϕ repeatedly and use the fact that N is ϕ-stable to

get that η1 +~θη2 ∈M for some ~θ. We’ll show that M = (
∏

τ :K↪→E

E)(η1 +~θη2). Every

nonzero element of M has the form ~αη1 + ~βη2 with ~α 6= ~0. Since ~αη1 + ~α · ~θη2 ∈M,

(~α · ~θ− ~β)η2 ∈M and ~α · ~θ = ~β. Hence ~αη1 + ~βη2 = ~αη1 + ~α · ~θη2 = ~α(η1 + ~θη2). �

We determine the vectors ~θ for which D~θ
= (

∏
τ :F0↪→E

E)(η1 + ~θη2) is a ϕ-stable

submodule of the F -semisimple, nonscalar ϕ-module D. D~θ
is ϕ-stable if and only

if there exists ~t ∈
∏

τ :F0↪→E

E such that ϕ(η1 + ~θη2) = ~t(η1 + ~θ η2). We repeatedly

act on the latter equation by ϕ and get ϕf (η1) + ~θϕf (η2) = Nmϕ(~t)(η1 + ~θη2).

This gives Nmϕ(α · ~1)η1 + ~θ · Nmϕ(δ · ~1)η2 = Nmϕ(~t)η1 + Nmϕ(~t) · ~θη2. Hence

Nmϕ(α · ~1) = Nmϕ(~t) and ~0 = (αf − δf ) · ~θ. Since αf 6= δf , ~θ = ~0. Therefore
the only nontrivial ϕ-stable submodules of D are D1 = (

∏
τ :F0↪→E

E)η1 and D2 =
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(
∏

τ :F0↪→E

E)η2. Combining the results of the previous paragraph with section 2.2 we

get the following

Proposition 2. Let η̄ be a canonical base of (D,ϕ). If (D,ϕ) is F -semisimple
and nonscalar, the submodules of D fixed by the Frobenius and the monodromy
are: (i) 0, D, D1 = (

∏
τ :F0↪→E

E)η1 and D2 = (
∏

τ :F0↪→E

E)η2 if (D,ϕ) has trivial

monodromy. (ii) 0, D, D1 = (
∏

τ :F0↪→E

E)η1, if (D,ϕ) has nontrivial monodromy

[N ]η̄ =

(
~0 ~N
~0 ~0

)
and (iii) 0, D, D2 = (

∏
τ :F0↪→E

E)η2, if (D,ϕ) has nontrivial

monodromy [N ]η̄ =

(
~0 ~0
~N ~0

)
.

Proposition 3. tEH(D) =
t−1∑
i=0

wi(| Ii | − | Ii+1 |) =
f−1∑
i=0

ki.

Proof. Let Ir = {i1 < i2 < ... < is}, s = s(r) ≥ 1. The eτii
(~xη1 + ~yη2),

j = 1, 2, ..., s clearly generate (
∏

τ :K↪→E

E)fIr
(~xη1 + ~yη2) over E. If

s∑
j=1

λjeτii
(~xη1 +

~yη2) = 0 ∈ D, with λj ∈ E, then
s∑

j=1

λjeτii
~x = ~0 and

s∑
j=1

λjeτij
~y = ~0, therefore

s∑
j=1

(0, ..., λjx
ij

ij
, ..., 0) = ~0 and

s∑
j=1

(0, ..., λjy
ij

ij
, ..., 0) = ~0. Since i1 < i2 < ... < is and

(xi
i, y

i
i) 6= (0, 0) for all i ∈ I0, λj = 0 for all j. �

Let D2 = (
∏

τ :F0↪→E

E)η2. By definition, Filj(D2) = D2 ∩ Fil
j(D) for all j. Let

1 + ws−1 ≤ j ≤ ws for some s = 1, ..., t − 1. We have ~tη2 = ~ξ · fIs
(~xη1 + ~yη2)

if and only if ~ξ · ~x · fIs
= ~0 and ~ξ · ~y · fIs

= ~t. For all i ∈ Is such that xi 6= 0,

ξi = 0. If xi = 0, then yi 6= 0 and ~ξ · ~y · fIs
can be anything in fIs∩J

′

~x
(
∏

τ :K↪→E

E) as

~ξ varies in
∏

τ :K↪→E

E. Let Is,~x = Is ∩ J
′
~x, then Filj(D2) = (

∏
τ :K↪→E

E)fIs,~x
η2 for all

1 + ws−1 ≤ j ≤ ws and

Filj(D2) =






D2 if j ≤ 0,
(
∏

τ :K↪→E

E)fI0,~x
η2 If 1 ≤ j ≤ w0,

..................................................
(
∏

τ :K↪→E

E)fIt−1,~x
η2 if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1.

In this case, tEH(D2) =
t−1∑
i=0

wi(| Ii,~x | − | Ii+1,~x |) where It,~x = ∅.

Since | Ii,~x | − | Ii+1,~x |= #{j ∈ I0 : kj = wi and xj = 0},
t−1∑
i=0

wi(| Ii,~x | − | Ii+1,~x |) =
∑

{i∈I0: xi=0}

ki and tEH(D2) =
∑

{i∈I0: xi=0}

ki.

For D1 = (
∏

τ :K↪→E

E)η1,an identical computation gives tEH(D1) =
∑

{i∈I0: yi=0}

ki. If
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~α = α · ~1, ~δ = δ · ~1, then tEN (D) = f · vp(αδ). With the notation of section 3.1,

tEN (D2) = vp(Nmϕ(~δ)) = f · vp(δ) and tEN (D1) = vp(Nmϕ(~α)) = f · vp(α).

4. The weakly admissible rank two modules.

Let k0, k1, ..., kf−1 be non negative integers. In this section we list all the non-
scalar, F -semisimple weakly admissible filtered (ϕ, N, F/K, E)-modules with
labelled Hodge-Tate weights ({0,−k0}, ..., {0,−kf−1}). Summarizing the results of
the previous sections, we have the following:

4.1. The potentially crystalline case. There exists ordered base η̄ of D over∏
τ :F0↪→E

E such that

• The Frobenius endomorphism ϕ of D is given by [ϕ]η̄ = diag(α · ~1, δ · ~1)
with α, δ ∈ E, αδ 6= 0 and αf 6= δf .

• The Galois action is given by [g]η̄ = diag(χ1(g) · ~1, χ2(g) · ~1), where χi :
G→ E× are characters with Gal(F/KF0) ⊂ kerχi.

• The Galois-stable filtrations are

Filj(D) =






D if j ≤ 0,
(
∏

τ :F0↪→E

E)fI0(~xη1 + fJ~y
η2) if 1 ≤ j ≤ w0,

(
∏

τ :F0↪→E

E)fI1(~xη1 + fJ~y
η2) if 1 + w0 ≤ j ≤ w1,

............................................................
(
∏

τ :F0↪→E

E)fIt−1
(~xη1 + fJ~y

η2) if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1.

with ~x, ~y ∈
∏

τ :F0↪→E

E and (xi, yi) 6= (0, 0) for all i ∈ I0 such that

(i) (gIr) ∩ (gJ~x) = Ir ∩ J~x for all g ∈ G and r ∈ {0, 1, ..., t− 1},
(ii) (gIr) ∩ (gJ~y) = Ir ∩ J~y for all g ∈ G and r ∈ {0, 1, ..., t− 1},
(iii) χ1(g)xi+n(g) = χ2(g)xi for all i ∈ J~x ∩ J~y and g ∈ G with n(g) as in

section 2.3.1.

Remark 4.1. When n(G) = {0} or equivalently F0 ⊂ K, the three conditions above
are equivalent to χ1 = χ2 if J~x ∩ J~y 6= ∅ and are empty if J~x ∩ J~y = ∅.

Remark 4.2. When n(G) = I0, equations (i) and (ii) for r = 0 imply that J~x, J~y ∈
{∅, I0}.
(α) If J~x = ∅. Since (xi, yi) 6= (0, 0) for all i, J~y = I0. Since gIr = Ir for all g
and r, Ir = ∅ for all r ≥ 1 and all the labelled Hodge-Tate weights have to be
equal. In this case the third equation is empty and FiljD = (

∏
τ :F0↪→E

E)fIr
η2 if

1 + wr ≤ j ≤ wr for all r ∈ {0, 1, ..., t− 1}.
(β) If J~y = ∅. Then J~x = I0, all the labelled Hodge-Tate weights have to be equal

and the third equation gives xi+n(g) = χ−1
1 (g)χ2(g)xi for all i ∈ I0 and g ∈ G.

Since J~x = I0 and J~y = ∅, F iljD = (
∏

τ :F0↪→E

E)fIr
η1 if 1 + wr ≤ j ≤ wr for all

r ∈ {0, 1, ..., t− 1}.
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(γ) If J~x = J~y = I0. As above all the labelled Hodge-Tate weights have to be
equal. A simple computation shows that FiljD = (

∏
τ :F0↪→E

E)fIr
(~xη1 + η2) for

all 1 + wr ≤ j ≤ wr and all r ∈ {0, 1, ..., t − 1}, where ~x = x0
~X(g), ~X(g) =

(1, (χ1(g)
χ2(g) ), (

χ1(g)
χ2(g) )

2, ..., (χ1(g)
χ2(g) )

f−1) for any x0 ∈ E
×, with g being any element of G

such that g|F0
= FrobF0

. Notice that the vector ~X(g) is independent of the choice
of g.

• The Frobenius-stable submodules are 0, D, D2 = (
∏

τ :F0↪→E

E)η2 and

D1 = (
∏

τ :F0↪→E

E)η1.

• D is weakly admissible if and only if (i) vp(αδ) = 1
f

∑
i∈I0

ki (ii) vp(α) ≥

1
f

∑
{i∈I0: yi=0}

ki and (iii) vp(δ) ≥
1
f

∑
{i∈I0: xi=0}

ki.

• Assuming that D is weakly admissible,
(i) D is irreducible if and only if both the inequalities above are strict.
(ii) D is nonsplit-reducible if and only if exactly one of the inequalities
above is strict.
If vp(α) = 1

f

∑
{i∈I0: yi=0}

ki and vp(δ) >
1
f

∑
{i∈I0 : xi=0}

ki, the only admissible

submodule is D1.
If vp(δ) = 1

f

∑
{i∈I0: xi=0}

ki and vp(α) > 1
f

∑
{i∈I0 : yi=0}

ki, the only admissible

submodule is D2.
(iii) D is split reducible if and only if {i ∈ I0 : ki > 0} ∩ J~x ∩ J~y = ∅. The
admissible submodules are D1 and D2 and D = D1 ⊕D2.

4.2. The potentially semistable, noncrystalline case. There exists ordered
base η̄ of D over

∏
τ :F0↪→E

E such that the Frobenius endomorphism ϕ of D is given

by [ϕ]η̄ = diag(α ·~1, δ ·~1) with αδ 6= 0 and αf 6= δf . We have the following cases:
(A) If αf = pfδf . Let ζ = α

pδ
, then:

• The monodromy operator is given by [N ]η̄ =

(
~0 ~0
~N ~0

)
, where ~N =

N(1, ζ, ..., ζf−1) with N any element of E×.

• The Galois action is given by [g]η̄ = diag(ζn(g)χ(g) · ~1, χ(g) · ~1), where
χ : G→ E× is a character with Gal(F/KF0) ⊂ kerχ.

• The Galois-stable filtrations are

Filj(D) =





D if j ≤ 0,
(
∏

τ :F0↪→E

E)fI0(~xη1 + fJ~y
η2) if 1 ≤ j ≤ w0,

(
∏

τ :F0↪→E

E)fI1(~xη1 + fJ~y
η2) if 1 + w0 ≤ j ≤ w1,

........................................................................
(
∏

τ :F0↪→E

E)fIt−1
(~xη1 + fJ~y

η2) if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1.

with ~x, ~y ∈
∏

τ :F0↪→E

E and (xi, yi) 6= (0, 0) for all i ∈ I0 such that
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(i) (gIr) ∩ (gJ~x) = Ir ∩ J~x for all g ∈ G and r ∈ {0, 1, ..., t− 1},
(ii) (gIr) ∩ (gJ~y) = Ir ∩ J~y for all g ∈ G and r ∈ {0, 1, ..., t− 1},

(iii) ζn(g)xi+n(g) = xi for all i ∈ J~x ∩ J~y and g ∈ G.
• The submodules fixed by the Frobenius and the monodromy are 0, D and
D2 = (

∏
τ :F0↪→E

E)η2.

• D is weakly admissible if and only if

(i) vp(δ) = − 1
2 +

1

2f

∑
i∈I0

ki and (ii)
∑

{i∈I0: xi 6=0}

ki ≥ f +
∑

{i∈I0: xi=0}

ki.

• Assuming that D is weakly admissible, D is nonsplit-reducible if and only
if vp(δ) = 1

f

∑
{i∈I0: xi=0}

ki. Such a D is never split-reducible.

(B) If δf = pfαf . Let ε = δ
pα
, then:

• The monodromy operator is given by [N ]η̄ =

(
~0 ~N
~0 ~0

)
, where ~N =

N(1, ε, ..., εf−1) with N any element of E×.

• The Galois action is given by [g]η̄ = diag(χ(g) · ~1, εn(g)χ(g) · ~1), where
χ : G→ E× is a character with Gal(F/KF0) ⊂ kerχ.

• The Galois-stable filtrations are

Filj(D) =






D if j ≤ 0,
(
∏

τ :F0↪→E

E)fI0(~xη1 + fJ~y
η2) if 1 ≤ j ≤ w0,

(
∏

τ :F0↪→E

E)fI1(~xη1 + fJ~y
η2) if 1 + w0 ≤ j ≤ w1,

........................................................................
(
∏

τ :F0↪→E

E)fIt−1
(~xη1 + fJ~y

η2) if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1.

with ~x, ~y ∈
∏

τ :F0↪→E

E and (xi, yi) 6= (0, 0) for all i ∈ I0 such that

(i) (gIr) ∩ (gJ~x) = Ir ∩ J~x for all g ∈ G and r ∈ {0, 1, ..., t− 1},
(ii) (gIr) ∩ (gJ~y) = Ir ∩ J~y for all g ∈ G and r ∈ {0, 1, ..., t− 1},
(iii) xi+n(g) = εn(g)xi for all i ∈ J~x ∩ J~y and g ∈ G.

• The submodules fixed by the Frobenius and the monodromy are 0, D and
D1 = (

∏
τ :F0↪→E

E)η1.

• D is weakly admissible if and only if

(i) vp(α) = − 1
2 +

1

2f

∑
i∈I0

ki and (ii) vp(α) ≥ 1
f

∑
{i∈I0: yi=0}

ki.

• Assuming that D is weakly admissible, D is nonsplit-reducible if and only
if vp(α) = 1

f

∑
{i∈I0: yi=0}

ki. In this case the only admissible submodule is

D1 = (
∏

τ :F0↪→E

E)η1. Such a D is never split-reducible.

Remark 4.3. For the special cases when n(G) = {0} or I0, see remarks 4.1 and 4.2.

5. Determining the isomorphism classes

Let (D1, ϕ1, N1) and (D2, ϕ2, N2) be isomorphic filtered (ϕ, N, F/K, E)-modules.
It is clear that D1 is nonscalar F -semisimple, if and only if D2 is and that D1 has
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trivial monodromy if and only if D2 does. Let h : D1 → D2 be an isomorphism of

filtered (ϕ, N, F/K, E)-modules. For basis η̄i of Di as in lemma 1 we let Q = [h]η̄
2

η̄1

and we write Q =

(
~A ~B
~Γ ~∆

)
.

5.1. Commutativity of h with the Frobenius. Commutativity of h with the

Frobenius is equivalent to ([ϕ2]η̄2)·ϕ(Q) = Q·([ϕ1]η̄1). Let [ϕi]η̄i =

(
αi ·~1 ~0
~0 δi ·~1

)

with αiδi 6= 0 and αf
i 6= δf

i . The commutativity condition is equivalent to α1
~A =

α2ϕ( ~A), δ1 ~B = α2ϕ( ~B), α1
~Γ = δ2ϕ(~Γ) and δ1~∆ = δ2ϕ(~∆). If αf

1 6∈ {α
f
2 , δ

f
2 }, then

by lemma 2.1 we must have ~A = ~Γ = ~0 contradiction. Hence αf
1 ∈ {α

f
2 , δ

f
2 }, and

similarly δf
1 ∈ {α

f
2 , δ

f
2 }. Since αf

i 6= δf
i for i = 1, 2 we have the following cases:

(i) If αf
1 = αf

2 and δf
1 = δf

2 . Then by lemma 2.1, Q =

(
~A ~0
~0 ~∆

)
where ~A =

A(1, µ1, µ
2
1, ..., µ

f−1
1 ), ~∆ = ∆(1, µ2, µ

2
2, ..., µ

f−1
2 ), µ1 = α1

α2

, µ2 = δ1

δ2

and with A,∆ ∈

E× arbitrary scalars.

(ii) If αf
1 = δf

2 and δf
1 = αf

2 . Then by lemma 2.1, Q =

(
~0 ~B
~Γ ~0

)
where ~B =

B(1, ξ1, ξ
2
1 , ..., ξ

f−1
1 ), ~Γ = Γ(1, ξ2, ξ

2
2 , ..., ξ

f−1
2 ), ξ1 = δ1

α2

, ξ2 = α1

δ2

and with B,Γ ∈ E×

arbitrary scalars.

5.2. Commutativity of h with the monodromy. The monodromy operators

commute with h if and only if [h]η̄
2

η̄1 [N1]η̄1 = [N2]η̄2 [h]η̄
2

η̄1 . It is clear that the mon-

odromy of one of the filtered modules is trivial if and only if the monodromy of the
other is.

(i) If Q =

(
~A ~0
~0 ~∆

)
and [N1]η̄1 =

(
~0 ~N1

~0 ~0

)
, where ~N1 = N1(1, ε1, ..., ε

f−1
1 )

with N1 any element of E× and ε1 = δ1

pα1

. We easily see that the monodromy of

D2 has to be of the form [N2]η̄2 =

(
~0 ~N2

~0 ~0

)
, where ~N2 = N2(1, ε2, ..., ε

f−1
2 )

with N2 6= 0 and ε2 = δ2

pα2

. The condition [h]η̄
2

η̄1 [N1]η̄1 = [N2]η̄1 [h]η̄
2

η̄1 is equivalent to

~N2 · ~∆ = ~N1 · ~A which is in turn equivalent to AN1 = ∆N2 and µ1ε1 = µ2ε2. The
last equation always holds.

(ii) If Q =

(
~A ~0
~0 ~∆

)
and [N1]η̄1 =

(
~0 ~0
~N1

~0

)
, where ~N1 = N1(1, ζ1, ..., ζ

f−1
1 ),

N1 6= 0 and ζ1 = α1

pδ1

. We easily see that the monodromy of D2 has to be of the

form [N2]η̄2 =

(
~0 ~0
~N2 ~0

)
, where ~N2 = N2(1, ζ2, ..., ζ

f−1
2 ), N2 6= 0 and ζ2 = α2

pδ2

.

The condition [h]η̄
2

η̄1 [N1]η̄1 = [N2]η̄1 [h]η̄
2

η̄1 is equivalent to ~N1 · ~∆ = ~N2 · ~A which is in

turn equivalent to AN2 = ∆N1 and µ1ζ1 = µ2ζ2. The last equation always holds.

(iii) If Q =

(
~0 ~B
~Γ ~0

)
and [N1]η̄1 =

(
~0 ~0
~N1

~0

)
, where ~N1 = N1(1, ζ1, ..., ζ

f−1
1 ),

N1 6= 0 and ζ1 = α1

pδ1

. We easily see that the monodromy of D2 has to be of the form
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[N2]η̄2 =

(
~0 ~N2

~0 ~0

)
, where ~N2 = N2(1, ε2, ..., ε

f−1
2 ) with N2 ∈ E

× and ε2 = δ2

pα2

[h]η̄
2

η̄1 [N1]η̄1 = [N2]η̄1 [h]η̄
2

η̄1 is equivalent to ~Γ · ~N2 = ~B · ~N1 which is in turn equivalent

to BN1 = ΓN2 and ξ1ζ1 = ξ2ε2. The last equation always holds.

(iv) If Q =

(
~0 ~B
~Γ ~0

)
and [N1]η̄1 =

(
~0 ~N1

~0 ~0

)
, where ~N1 = N1(1, ε1, ..., ε

f−1
1 ),

N1 6= 0 and ε1 = δ1

pα1

. We easily see that the monodromy of D2 has to be of the

form [N2]η̄2 =

(
~0 ~0
~N2

~0

)
, where ~N2 = N2(1, ζ2, ..., ζ

f−1
2 ), N2 6= 0 and ζ2 = α2

pδ2

.

The condition [h]η̄
2

η̄1 [N1]η̄1 = [N2]η̄1 [h]η̄
2

η̄1 is equivalent to ~B ~N2 = ~Γ ~N1 which is in

turn equivalent to BN2 = ΓN1 and ξ1ζ2 = ξ2ε1. The last equation always holds.

5.3. Commutativity of h with the Galois action. The Galois actions com-

mutes with h if and only if [h]η̄
2

η̄1 [g]η̄1 = [g]η̄2(g [h]η̄
2

η̄1). We have the following cases:

(i) If Q =

(
~A ~0
~0 ~∆

)
as in case (i) of section 5.1. Let [g]η̄1 = diag(χ1(g)·~1, χ2(g)·~1)

and [g]η̄2 = diag(ψ1(g) · ~1, ψ2(g) · ~1). We immediately see that the commutativity

condition is equivalent to χ1(g) = µ
n(g)
1 ψ1(g) and χ2(g) = µ

n(g)
2 ψ2(g) for all g.

(ii) If Q =

(
~0 ~B
~Γ ~0

)
as in case (ii) of section 5.1. Let [g]η̄1 = diag(χ1(g)·~1, χ2(g)·

~1) and [g]η̄2 = diag(ψ1(g) ·~1, ψ2(g) ·~1). We immediately see that the commutativity

condition is equivalent to χ1(g) = ξ
n(g)
2 ψ2(g) and χ2(g) = ξ

n(g)
1 ψ1(g) for all g.

5.4. Preserving the filtrations. The isomorphism of filtered ϕ-modules h should
preserve the filtrations: h(FiljD1) = FiljD2 for all j. Suppose that for i = 1, 2

Filj(Di) =





Di if j ≤ 0,
(
∏

τ :F0↪→E

E)(~xiη
i
1 + fJ~yi

ηi
2) if 1 ≤ j ≤ w0,

(
∏

τ :F0↪→E

E)fI1(~xiη
i
1 + fJ~yi

ηi
2) if 1 + w0 ≤ j ≤ w1,

........................................................................
(
∏

τ :F0↪→E

E)fIt−1
(~xiη

i
1 + fJ~yi

ηi
2) if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1

We define I∗1 =






∅ if all the labelled Hodge-Tate weights are zero,
I0 if all labelled Hodge-Tate weights are positive,

I1 if there are positive and zero labelled Hodge-Tate weights






(i) If Q =

(
~A ~0
~0 ~∆

)
as in case (i) of section 5.1. Since h is (

∏
τ :F0↪→E

E)-linear,

h(Filj(D)) = Filj(D1) is equivalent to (
∏

τ :F0↪→E

E)fI∗

1
(fJ~x1

·~x1 · ~Aη1 +fJ~y1
· ~∆η2) =
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(
∏

τ :F0↪→E

E)fI∗

1
(fJ~x2

· ~x2 · e1 + fJ~y2
e2). The latter is equivalent to

{
fI∗

1
∩J~x1

· ~A · ~x1 = ~t · fI∗

1
∩J~x2

fI∗

1
∩J~y1

· ~∆ · ~x2 = ~t · fI∗

1
∩J~y2

}
(1) and

{
fI∗

1
∩J~x2

= fI∗

1
∩J~x1

· ~t1 · ~A

fI∗

1
∩J~y2

= fI∗

1
∩J~y1

· ~t1 · ~∆

}
(2)

for some ~t, ~t1 ∈
∏

τ :F0↪→E

E. We immediately see that (1) and (2) imply fI∗

1
∩J~x1

∩J~y2
·

~A·~x1 = fI∗

1
∩J~x2

∩J~y1
·~∆·~x2. Since ~A ∈

∏
τ :F0↪→E

E×, (1) implies that I∗1∩J~x1
⊂ I∗1 ∩J~x2

and (2) implies the inverse inclusion, hence I∗1 ∩J~x1
= I∗1 ∩J~x2

. Similarly, since ~∆ ∈∏
τ :F0↪→E

E×, I∗1 ∩ J~y1
= I∗1 ∩ J~y2

. Conversely, arguing as in section 2.4.3, we see that

if I∗1 ∩J~x1
= I∗1 ∩J~x2

, I∗1 ∩J~y1
= I∗1 ∩J~y2

and fI∗

1
∩J~x1

∩J~y2
· ~A ·~x1 = fI∗

1
∩J~x2

∩J~y1
· ~∆ ·~x2

we can solve for ~t and ~t1 in both (1) and (2). Hence the existence of ~t and ~t1 in (1)
and (2) is equivalent to

{
I∗1 ∩ J~x1

= I∗1 ∩ J~x2

I∗1 ∩ J~y1
= I∗1 ∩ J~y2

}

and fI∗

1
∩J~x1

∩J~y1
· ~A ·~x1 = fI∗

1
∩J~x2

∩J~y2
· ~∆ ·~x2 in Pf−1(E).The equation fI1∩J~x∩J~y

· ~A ·

~x1 = fI1∩J~x∩J~y
· ~∆·~x2 can be written (in Pf−1(E)) as fI1∩J~x∩J~y

· ~A0 ·~x1 = fI1∩J~x∩J~y
·

~∆0 · ~x2, with ~A0 = (1, ε1, ε
2
1, ..., ε

f−1
1 ), ~∆0 = (1, ε2, ε

2
2, ..., ε

f−1
2 ). Conversely, if αf

1 =

αf
2 and δf

1 = δf
2 and the equations above are satisfied, then the

∏
τ :F0↪→E

E-linear map

h : (D1, ϕ1)→ (D2,ϕ2) defined by Q = [h]η̄
2

η̄1 =

(
~A0

~0
~0 ~∆0

)
is an isomorphism of

filtered ϕ-modules.

(ii) If Q =

(
~0 ~B
~Γ ~0

)
, similarly we see that h(FiljD1) = FiljD2 is equivalent to

{
I∗1 ∩ J~x1

= I∗1 ∩ J~y2

I∗1 ∩ J~y1
= I∗1 ∩ J~x2

}

and fI∗

1
∩J~x1

∩J~y1
· ~B0 = fI∗

1
∩J~y2

∩J~x2
·~Γ0·~x1·~x2 in Pf−1(E) with ~B0 = (1, ξ1, ξ

2
1 , ..., ξ

f−1
1 ),

~Γ0 = (1, ξ2, ξ
2
2 , ..., ξ

f−1
2 ). Conversely, if αf

1 = δf
2 , δ

f
1 = αf

2 and the equations above
are satisfied, then that the

∏
τ :F0↪→E

E-linear map h : (D1,ϕ1)→ (D2,ϕ2) defined by

Q = [h]η̄
2

η̄1
=

(
~0 ~B0

~Γ0
~0

)
is an isomorphism of filtered ϕ-modules.
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6. The isomorphism classes

Let (D1, ϕ1, F/K, N1), (D2, ϕ2, F/K, N2) be filtered ϕ-modules. Let η̄i be

a basis of Di i = 1, 2 as in section 4. Let [ϕi]η̄i = diag(αi · ~1, δi · ~1), [g]η̄1 =

diag(χ1(g) ·~1, χ2(g) ·~1), [g]η̄2 = diag(ψ1(g) ·~1, ψ2(g) ·~1) for all g and

Filj(Di) =





Di if j ≤ 0,
(
∏

τ :F0↪→E

E)(~xiη
i
1 + fJ~yi

ηi
2) if 1 ≤ j ≤ w0,

(
∏

τ :F0↪→E

E)fI1(~xiη
i
1 + fJ~yi

ηi
2) if 1 + w0 ≤ j ≤ w1,

........................................................................
(
∏

τ :F0↪→E

E)fIt−1
(~xiη

i
1 + fJ~yi

ηi
2) if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1

for i = 1, 2.

6.1. The potentially crystalline case. If both the monodromies are trivial, then

(D1, ϕ1, F/K) ' (D2, ϕ2, F/K) if and only if either

(I)

{
αf

1 = αf
2

δf
1 = δf

2

}
,

{
I∗1 ∩ J~x1

= I∗1 ∩ J~x2

I∗1 ∩ J~y1
= I∗1 ∩ J~y2

}
,

{
χ1(g) = µ

n(g)
1 ψ1(g)

χ2(g) = µ
n(g)
2 ψ2(g)

}

for all g ∈ G and ~A · fI∗

1
∩J~x1

∩J~y1
· ~x1 = ~∆ · fI∗

1
∩J~x2

∩J~y2
· ~x2 in Pf−1(E) with ~A

= (1, µ1, µ
2
1, ..., µ

f−1
1 ), ~∆ = (1, µ2, µ

2
2, ..., µ

f−1
2 ), where µ1 = α1

α2

and µ2 = δ1

δ2

, or

(II)

{
αf

1 = δf
2

δf
1 = αf

2

}
,

{
I∗1 ∩ J~x1

= I∗1 ∩ J~y2

I∗1 ∩ J~y1
= I∗1 ∩ J~x2

}
,

{
χ1(g) = ξ

n(g)
2 ψ2(g)

χ2(g) = ξ
n(g)
1 ψ1(g)

}

for all g ∈ G and ~B · fI∗

1
∩J~x1

∩J~y1
= ~Γ · fI∗

1
∩J~x1

∩J~y1
· ~x1 · ~x2 in Pf−1(E), with

~B = (1, ξ1, ξ
2
1 , ..., ξ

f−1
1 ), ~Γ = (1, ξ2, ξ

2
2 , ..., ξ

f−1
2 ), where ξ1 = δ1

α2

and ξ2 = α1

δ2

.

6.2. The potentially semistable, noncrystalline case. If both the monodromies
are nontrivial, then (D1, ϕ1, F/K, N1) ' (D2, ϕ2, F/K, N2) if and only if either

(I)

{
αf

1 = αf
2

δf
1 = δf

2

}
,

{
I∗1 ∩ J~x1

= I∗1 ∩ J~x2

I∗1 ∩ J~y1
= I∗1 ∩ J~y2

}
,

{
χ1(g) = µ

n(g)
1 ψ1(g)

χ2(g) = µ
n(g)
2 ψ2(g)

}

for all g ∈ G, where µ1 = α1

α2

and µ2 = δ1

δ2

and

(α) If [Ni]η̄i =

(
~0 ~Ni

~0 ~0

)
with ~Ni 6= ~0 be as in section 2.2. The filtered modules

are isomorphic if and only if in addition to the conditions in (I) the equation ~A ·

f∗
I1∩J~x1

∩J~y1

·~x1 = ~∆·f∗
I1∩J~x1

∩J~y1

·~x2 holds in Pf−1(E), where ~A = (1, µ1, µ
2
1, ..., µ

f−1
1 )

and ~∆ = (1, µ2, µ
2
2, ..., µ

f−1
2 ).

(β) If [Ni]η̄i =

(
~0 ~0
~Ni

~0

)
with ~Ni 6= ~0 be as in section 2.2. The filtered modules

are isomorphic if and only if in addition to the conditions in (I) the equation
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~A · f∗
I1∩J~x1

∩J~y1

· ~x1 = ~∆ · f∗
I1∩J~x1

∩J~y1

· ~x2 holds in Pf−1(E), with ~A and ~∆ are as in

case (I)(α), or

(II)

{
αf

1 = δf
2

δf
1 = αf

2

}
,

{
I∗1 ∩ J~x1

= I∗1 ∩ J~y2

I∗1 ∩ J~y1
= I∗1 ∩ J~x2

}
,

{
χ1(g) = ξ

n(g)
2 ψ2(g)

χ2(g) = ξ
n(g)
1 ψ1(g)

}

for all g ∈ G, where ξ1 = δ1

α2

and ξ2 = α1

δ2

and

(α) If [N1]η̄1 =

(
~0 ~0
~N1

~0

)
and [N2]η̄2 =

(
~0 ~N2

~0 ~0

)
with ~Ni 6= ~0 be are as in

section 2.2, the filtered modules are isomorphic if and only if in addition to the

conditions in (II) the equation ~B · fI∗

1
∩J~x1

∩J~y1
= ~Γ · fI∗

1
∩J~x1

∩J~y1
· ~x1 · ~x2 holds in

Pf−1(E), where ~B = (1, ξ1, ξ
2
1 , ..., ξ

f−1
1 ) and ~Γ = Γ(1, ξ2, ξ

2
2 , ..., ξ

f−1
2 ).

(β) If [N1]η̄1 =

(
~0 ~N1

~0 ~0

)
and [N2]η̄2 =

(
~0 ~0
~N2

~0

)
with ~Ni 6= ~0 be as in section

2.2, the filtered modules are isomorphic if and only if in addition to the conditions

in (II) the equation ~B · fI∗

1
∩J~x1

∩J~y1
= ~Γ · fI∗

1
∩J~x1

∩J~y1
· ~x1 · ~x2 holds in Pf−1(E),

where the ~B and ~Γ are as in case (II)(α).

Appendix

The potentially crystalline E×-valued characters of GK

Let k0, k1, ..., kf−1 be integers, not necessarily non negative. Assume that E is large

enough to contain an element π such that πf = p
P

i∈I0
ki . The admissible rank one

filtered (ϕ, F/K, E) modules with labelled Hodge-Tate weights (−k0,−k1, ...,−kf−1)
are of the form D = (

∏
τ :F0↪→E

E)e with ϕ(e) = u(π, π, ..., π)e for some u ∈ E× ∩ Z̄×
p

and g(e) = (χ(g) · ~1)e for some E×-valued character χ of Gal(F/K) factoring
through Gal(F0K/K). They have filtrations given by

Filj(D) =





(
∏

τ :F0↪→E

E)e if j ≤ w0,

fI1(
∏

τ :F0↪→E

E)e if 1 + w0 ≤ j ≤ w1,

..........................................................
fIt−1

(
∏

τ :F0↪→E

E)e if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1.

Call such a filtered ϕ -module (Du, χ). Then (Du, χ) and (Dv , ψ) are isomorphic if
and only if (i) uf = vf and (ii) χ(g) = εn(g)ψ(g) for all g ∈ G, where ε = uv−1.

Proof. Exercise. �
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