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An Equality of Cusp Invariants
and Cusp Contributions to the. Dinlension Formula

SHOETSU OGATA

In this paper we prove an equality between two invariants of isolated cusp
singularity (V, p) of even dimension n, narnely, the contribution of the cusp
Xco(p) to the arithmetic genus and the signature defect a(p) of the cusp.

THEOREM. Wben n == 2k > 2, we bave

The signature defect was defined by Hirzebruch[Hl] , which coincides \vith
ours (see Section 1) in the case of Hilbert modular cusps. "Te can also find
other generalizations by Morita[Mo] and Looijenga[L]. The invariant Xco(p)
of a Hilbert modular cusp is called the ?jJ-invariant by Ehlers[E]. Satake(Sa]
defined Xoo(p) in general as the contribution of the cusp to the dimension
formula of the space of cusp forms by means of Riemann-Roch Theorem.

The theorem above has been eonjectured by Satake and Ogata (the co­
jecture Cl in [SO]), while in the case of Hibert modular cusps by Ehlers[E]
(see also I(ommentare 51 in (H2]).

Theorem combinning with the result of Atiyah, Donnelly and Singer
(ADSl][ADS2] and Müller(Mu] gives a proof of the conjecture stated in
p.95 [HG], which is generalized in [SO] as the conjecture(e3'). The equiv­
alent conjeeture(C3) for add dimension was proved by Ogata [0]. Vle shall
explain the original conjecture. Let (V, p) be a Hilbert modular eusp, that
is, V - {p} is isomorphie to the quotient Hn

/ S(A1, V) of the produet of
neopies of the upper half plane H by the semidireet product S(Ai, V) of
a fraetional ideal M of a totally real number field Fand a finite index
subgroup V of totally positive units in F preserving M. Then the eontribu­
tion of the cusp (V, p) to the dimension formula of the space of cusp forms
derived from the Selberg trace formula (cf. [Sh]) is given by
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where deM) is the discriminant of M and L(M, V, s) is defined by

L(M, V,s) = L s;~nNü~mi~) für Res> l.
pEM -{O} IV arm J.l S

Atiyah, Donnelly and Singer[ADSl][ADS2] and Müller[Mu] shawed that
a(p) = 2n w p .

COROLLARY. Let (V, p) be a Hilbert modular cusp. In the above nota.tion
'\-ve have

Xoo(p) = wp '

In other words, both contributions of the cusp to the dimension formula of
the space of Hilbert modular cusp forms from Riemann-Rocb Theorem and
from the Selberg trace forrnula coincide.

The author wauld like to thank Professors M. Saito and S. Zucker who
suggest hirn the importance of [CKS] in conceming with Proposition 2.3.
He would like also to thank Max-Planck-Institut-für-Mathematik for its
hospitality and financial support.

§l. Invariants of Cusps.
Let (V, p) be an isolated cusp singularity of dimension n, i.e., V - {p} is

a quotient of a tube domain [Rn + Ac with a nondegenerate open convex
cone C C !Rn by an action of a discrete group which is a semidirect product
of a lattice N in Rn and r c GL(N)nAutC (see in detail [T]). Let (U, X) --+

(V, p) be a desingularization of the cusp by using of toroidal embeddings
of Mumford[KKMS] so that X is a divisor with simple normal crossings.
Hence X can be decomposed into the union of irreducible components X =
UiE1Xi , and all Xi and intersections XJ := njEJxj (J c I) are nonsingular
toric varieties in the sense of Oda[Od]. Let bi = [Xi] be the cohomology
class of Xi in H2(U, au; Z). Then by definition we have

Xoo(p) = [rr 1 _15;_6.] [U,8U],
iEI n

which is given by evaluation after expanding as a formal power series. Here
[U,8U] is the fundamental class of (U,8U) in H2n (U,8UjZ). And the sig­
nature defect of (V, p) is given by

a(p) := [rr t5i cüth t5i] [U,8U] - sign(U, aU),
'lEI n
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where sign(U, fJU) is the signature of the bilinear form on Hn(U, aUj R)
defined by cup product Hn(u) x Hn(u, aU) -+ H2n(u, aU).

LEMMA 1.1. The definition of Xco(p) and cr(p) ia independent of the choice
of a toroidaldesingularization (U, X) --+ (V, p).

PROOF: Let Z be a nonsingular projective algebraic variety containing X.
Then we have

Xco(p) == Td(Tz ) - Td(Tz (-log X))

== X(Oz) - Td(Tz( -log X)),

and

a(p) == {Lk(Tz) - Lk(Tz (-log X))} - {sign(Z) - sign(Z - U, -aU)}

== sign(Z - U, -au) - Lk(Tz (-log X)),

where Td is the Todd polynomial and L k is the Hirzebruch L-polynomial.
We must show that Td(Tz (-log X)) and Lk(Tz(-log X)) are independent
of the choice of aresolution of singularity. Let ?Ti : (Ui, Xi) -+ (V,p)
(i == 1,2) be two desingularizations. Then we can find a desingularization
7r3 : (U3 , X 3 ) -+ (V, p) so that 7r3 factors through both 7rl and 1r"2. Hence it is
enough to consider a desingularization (W, Y) -+ (V, p) factoring (U, X) --+

(V,p). Set q: (W,Y) --+ (U,X). We claim,q*Tu(~logX) rv Tw(-logY).
In fact, since the question is locall, if let CU, X) -+ (U, X) and (Hr, Y) -+

(W, Y) be the universal coverings with the covering transformation group
r, then we have

qTü (-log X) rv Tw(-log Y)

because of the isomorpmsm Tw(-logY) rv N Q9c 0w (see [Od]), where
ij: (Hr, Y) -+ (Ü, X). Lemma follows from the functoriality of ehern classes
and the claim.

Let 6:= {J C I; J i- 0,XJ i- 0} and Tco(p) :== [ITiE] Oi cothoi]n [U,8U].
Then we know from [SO]

(1.2)
n

Tco(p) - 2nXco(p) == L(-2)n-jU6(j),
j=l
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where 6(j) := {J E 6; IJI = j} for 1 <j < n and ~ denotes the cardinality.

§2. sign(U,oU).
In this section we represent sing(U, aU) by means of 6. For J E D.(j)

we consider a bilinear form B J on H n
-

2i(XJ ; IR) defined by

where ci(NxJ ) is the j-th ehern class of ~he normal bundle N XJ of X J in
U. We see that X J contributes to sign(U, aU) as signBJ by taking acount
of the following diagram.

x

x

Hn(U,aU) -+

i
Hn-2 i (XJ) -+

H 2n(U, aU)
i

H 2n- 2i(XJ )

PROPOSITION 2.1. Tbere exists a following exact sequence.

o-+ Hn(X) -+ EBiE6(1)Hn(Xi) -+ EBJE6(2)Hn(X J ) -+ ...

-t EBKE6(k)H n (XK) -t O.

PROOF: Hi(X) carries a canonical mixed Hodge structure whose weight
filtration is given by the spectral sequence degenerationg at E2 -terms

Erq = Hq( U XJ; R) =} Hp+q(X; R).
JE~(p+l)

H~(U) ~ Hi(U)
)ß i,

H~(Z) -+ Hj(Z)

Here the mixed Hodge structure on Hi(U) is induced by the isomorphism
Hi(U) ~ Hi(X). Since ß is bijective and since a is surjective for j > n

(see [GM]), I is surjective for j > n. Since Hi(Z) has a natural pure
Hodge structure, the mixed Hodge structute on Hj(U) is pure for j > n.
The claim says that E~q = 0 for p + q > n and p > 1. Proposition is the
case q = n.

We claim that the canonical mixed Hodge structure on Hi(X) is pure for
j > n. In fact, let Z be a nonsingular projective algebraic variety contain­
ing X and consider the following commutative diagram of mixed Hodge
structures (cf. [StJ).
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PROPOSITION 2.2. We have

k

sign(U,8U) == L(-l)j+l L signBJ .

j=1 JE l::J.(j)

PROOF: It follows from the isomorphism Hj(U) ~ Hj(X) and Proposition
2.1.

We must compute signBJ. Since XJ is a complete intersection, we have
cj(NxJ ) == IliEJ Cl (NXi IxJ ). We note that cl(Nxi) is negative because
X = UiE1Xi is contracted to a point. Hence we consider abilinear form on
H n - 2 j(XJ ) of the form

. .
J J

BJCTI cl(Li »(u, v) := Cu U v U TI cl(Li »[XJ ],

i=l i=1

where LI, .. . ,Lj are ample line bundles on X J .

PROPOSITION 2.3. In the above notation we have

j

signBJ(II cI(Li» = signBJ(cI(L1 )j).
i=1

In order to prove Proposition 2.3 we need a lemma, which is implicitly in
[CKS].

LEMMA 2.4. Let Y be a projective manifold and let Ci E H 1 ,1 (Y; R) (i =
1, ... ,s) so that 2:::=1 {liCi is positive for fli > Q. Denne Käbler operators
Li by taking cup product with ci, respectively. Then for 1 < dirn Y the
kernel of the map

is contained in 2:::=1 I(er Ilj#i l j.

PROOF: It follows from the same line üf the proof of Corollary(1.17) in
[CKS] by taking (s - l)-th cohomology of the complex B·(Nl , ... , N s ; V).
Corollary(1.17) is the cese s = 2.
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PROOF OF PROPOSITION 2.3: Let Ai == (AiI,' .. , Aij) E (lR~o)j - {O} for

i == 1, ... ,j. If we take Ci == Ci(Ai). L:~=lAitCl(Li)' then Lemma 2.4
implies that the bilinear form B J(Ili=l Ci ( Ai)) is nondegenerate for any
Ai E (R~o)j - {O}. Hence the signature is the same for all such Ai.

Noting that H n - 2 j(XJ ) rv Hk-j,k-j(XJ) (see [Gd]), we have

k-j
signBJ(cl(L1)i) == L(_l)k-i -i dimpk-j-i,k-j-i(xJ )

i=O
k-j-l

== (-1 )k - j hk- j, k- j ( X J ) + 2 L (-1) i h i, i ( ~J{J ),

i=O

where pi,i(XJ ) is the primitive part of Hi,i(XJ ) with respect to the I<:ähler
form cl(L1 ) and hi,i(XJ ) == dimHiJi(XJ ) (cf. [W]). Since signBJ ­

(-l)i signB J (cl(Nxi IXJ )j) for any i E J from Proposition 2.3, we have

k

sign(U,8U) == L(-l)j+l L (-l)j{(-l)k-jhk-j,k-j(XJ)
j=l JE~(j)

k-j-l
+ 2 L (-l)ih i ,i(XJ )}

i=O

k

== L(_1)k+i+1 L hk-j,k-i(XJ )

j=l JE6(j)

k k-j
- 2 L L L(_l)k-j-ihk-i-i,k-j-i(XJ).

j=l JE6(j) i=l

For J E .6.(j) we denote .6. J :== {!( E .6.; J' C ](} and .6.J ( k) := {!( E
.6.J ; II{I == k}. Then we have
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(see [Od]). Here \ve set sign(U, aU) = 11 + 12 . Then

k k-j (')
11 =L(-1)k+i+1 L L(-l)k-i -t 2:~!~tt #,6.At+j)

j=l JE~(j) t=O J

= t ~(_1)t+1 c:~!~tt) L #,6.J(t + j),
j=l t=o J JE~(j)

k k-j

12 = -2L L L(_l)k-j -i

j=l JE~(j) i=l

k~i(_l)k-i -i-t ( 2k ~ j ~ t ) U6J(t + j)
LJ k-J-'l-t
t=o

=-2t~kf\-1)tC2k~j;~t)L #,6.J(t+j).
j=l i=l t=o J JE~(j)

Here we used the equality 2:JE~(j) ~6J(t+j) = (tjj)~6(t+ j). By change
of variables, we have

k k

11 = ~~(-1)i+t+1C:~tt)#,6.(t)

= t t( _1)i+t+1(2k - t) ti 6(t)
k-t

t=l j=l

k

= ~(-l)tC:~tt)#,6.(t),

where we used the equality 2:;=1 (-l)i (;) = (1 - l)t - (~) == -1. Also we

7



have

k k-j k-i

I2 = -2~~~(_l)t+i(k2k:~t) C) U6(t)

. =-2~I:I:(-1)t+i(k2k:~t)(;)U6(t)
t=l ;=1 t=)

= -2~I:t( _l)t+i (k2k :~ t) (;) U6(t)
t=l t=l )=1

=2~~(-1)t( 2k~t )U6(t)
L..-tL..-t k-z-t
i=l t=l

= 2~ ~(_1)t(k2k:~ t)U6(t).

Thus we have

Here we have

( 2k - t) + 2~ ( 2k ~ t) = (2k - t) +~ ( 2k ~ t )
k-t L..-t k-z-t k-t LJ k-z-t

i=l i=l

k-t (2k - t)
+l: k+i

i=l

= k-t (2k _ t) 2k-t (2k - t)l: . + l: .z Z
i=O i=k+l

k

= 22k
-

t
- l: ek

i- t) .
i=k-t+l

Hence we have the following.
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PROPOSITION 2.5. We have

Prom the equality(1.2) and Proposition 2.5 we have the equality

§3. Relations in ~.

In this section we draw several relations in 6, which we need in the next
section.

PROPOSITION 3.1. We have the following relations.

(3.1.1)

and for 1 < t < 2k - 2

2k

L(-1) jU6(j) == 0,
j=l

(3.1.2)
2k .

(1- (-lnUl:;(t) =L (-l)jG)Ul:;U).
)=t+1

PROOF: The equality (3.1.1) follows from the fact that the Euler number
of a closed oriented topological minifold of odd dimension vanishes. For
J E 6(t) the complex 6J - {J} induces a triangulation of 2k - t - 1
dimensional sphere. Hence we have

2k

1 - (-1 )2k-t == L (-1 )i- t - 1U.6(j).
i=t+l

By taking summation over all J E 6(t) we have (3.1.2).
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LEMMA 3.2. For a positive integer 1 tbere exist integers 0'0,01, ... ,0'/ and
ßo, ßl' ... ,ßI witb 0'0 == ßo == 1 satisfying tbe follolving conditions:

(3.2.a)

(3.2.b)

PROOF: For a positive integer i we define a polynomial (~) to be rr~~lo(x­

v)/i! and (~) == 1. Then we note that if a polynomial f(x) of degree n \vith

values in integers at x == 0, 1, ... ,n-1, then we can write J( x) == L:7:: ai (~)

with ai.E Z. Put fex) == (X+;;+l). Then we have fex) == L:7::a1
ai(~)' By

induction \ve have

(
X + 21 + 1) == ~ ß. ( x )

21 L.t 1 21 - i .
i=O

The polynornial g(x) == (;/) - L:~=o ßi (X-;;=i+i) has zeros at x == 1+ 1, 1+
2, ... , 21 - 1. On the other hand, g(x) == L:;~/+l ßi (X-;;=:+i), hence the
equality g(1+ 1) == 0 implies ß21 == O. By induction we can easily see that
g(x) == O. Sinee (~) is a monie polynomial of degree i, we have ßo == 1. This
showes (3.2.b).

We ean also prove (3.2.a) in a similar way.

Remark 3.3. Prom the conditions in Lemma 3.2 we have the relations of
coefficients:

(3.3.a)

(3.3.b)

0: _ == (21 + 28 - 1) _ ~ Q (28 + i-I)
/ s 21 _ 1 L.t 1 21 - i-I '

i=/-s+l

ß _ == (21 + 28 + 1) _ ~ ß. (28 +i)
1 s 21 L.t 1 21 - i '

i=l-s+l

for 0 < 8 < 1. In partieular, 0'1 == 2 and ß/ == 21 + 1.

10



PROPOSITION 3.4. For 0 < 1< k - 1 we have

:f (-l)je-~-l)U.6(j)=O.
j=21+1

PROOF: Since (j-~-1) == 0 für 1+ 1 < j < 21, we may take summation üver
1+ 1 <j < 2k.

For 1 == 0, it is just the relation (3.1.1). Let 1 > O. We shall prüve it by
induction. Firstly let 1 == 2s - 1. Let 0'0,0'1, ... ,0'8 be the integers defined
by Lemma 3.2 für I == s. Set

2k .!I-I (. 2 .)
'" .'" J- s+z Uh = j~l (-1)1~ O!i 28 _ 1 _ i .6(j).

By changing order of summations, we have

J1 = ~O!i :f (_1)j(j-2S+~)Ul.\(j)
... 2s-1-z
1=0 }=28-1

= :f (-l)j (~8-_2~)U~(j),
}=28

where we used the assumption of induction and ao == 1. On the other hand,
from (3.2.a) we have

J1 = :f (-l)j{( j )_2(j-s)}Ul.\(j).
2s - 1 s - 1

j=8+1

Here we may take summation only over 2s < j < 2k. Hence we have

J1 = ~(-l)j( j )U.6(j) -2 ~(-l)j(j - s)U~(j)
L..-t 2s - 1 LJ s - 1
j=2s j=2s

= { -2U.6(28 -1) + j~.(-l)j (28~ l)U.6(j)}

2k (.)
-2 L (-l)j ~=~ U.6(j).

j=2s-I

11



The first term is the relation (3.1.2), hence, vanishes and the second term
vanishes by the assumption of induction.

Next let 1 == 2s. Let ßo, ß1 , ... , ß8 be the integers defined by Lemma 3.2
for 1= s. Set

Then we have

Jz = ~ßi f (_1)i(j-2S=1+i)~6(j)
. .. 2s '1,
t=O )=2.8-t+1

= f (-l)i(j - 2s -1)~6(j).
. 25

)=28+1

On the other hand, from (3.2.b) we also have

The first term is the relation (3.1.2), hence, vanishes and the second term
vanishes by the assumption. Thus we proved the proposition.

§4. Proof of Theorem.
We define series of integers {aj(l) };~1 for 1> 0 by

and inductively by

12



From Proposition 3.4 we see that for all 1> 0

2k 2k

2: a j( l)U .6(j) == 2: a j(O)U .6(j).
j=l j=l

vVe shall prove aj(k) == 0 for all j. We need two lemmas.

LEMMA 4.1. We have

and

ek
; 1) = ~IG-=-~) eki- l) für k +1< I< 2k.

LEMMA 4.2. We have

_2:1 _ i (j - 2i -1) (j - i-I) _1 (1) l' . - o.
- z Z

i=O

I i (1) (j - i-I)
1- ~C-l) i I =0.

Set II(x) == 1 - L:~=o( -l)i(D (X7 i
). Then we have Io(x) == O. Since (D ==

C~l) + (~=~) for i > 1 and since (X7 i
) - (X-;-l) == (X7~;-1), we have

Mx) = 1- G) -t C- 1)i { C~ 1) + G=~) }e7i)
=1- ~C-l)iC~1)(X7i) - ~C_l)i+lC~l)(X-;-l)
_ 2:/-1

i (1 -1) (x - i-I)-1- (-1)
i 1- 1

i=O

==li-l(X-1).

Hence we have II(X) == lo(x - 1) == O.
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PROPOSITION 4.3. For 1 > 0 the number aj(l) vamshes for j < 21, is equal
to

for 21 + 1 < j < k + 1- 1, and

for j > k + 1.

PROOF: For 1 = 0, it coincides with the definition of aj(O). Let 1 > O. By
definition aZl-1(1) = O. We assume that aj(I-1) for 21-1 < j < k + 1- 2
is equal to

in particular, a21-1 (1 - 1) = ( _1)1 (2~=7~i1). If 1< k - 1, then we have

a2/(1-1)= t{l- ~(_1)t(21-~t-l)(21-t-l)}(2k-21.)
l-z-t t k~l+z

i=O t=o

= {1- ~(-1)tC;=~t_-/)C1-tt-1)}
X { (2k - 21) + ( 2k - 21 ) }

k-l k-l+1

= {1- ~(_1)t(21-2t-l)(21-t-l)} (2k-21+1)
LJ I-1-t t k-l+l
t=o

= (_1/-1 ( 1 ) (2k - 21 + 1).
1-1 k-l+1

14



Here we used Lemma 4.2 for the last equality. Hence we have

(
21- 1)

a21(1)=a21(1-1)+a21-1(1-1) 1-1 =0.

Next noting that

(
2k - 21 + 1) = k~. 1 (j - 21 + 1.) (2k ~ j)
k-l+1 Lt k-l+1-2 Z

i=k+l- j

for 21-1 < j < k + 1-1 from Lemma 4.1, we have for 21 + 1 < j < k +1- 2

aj(l) = aj(l- 1) + (-1) ja21-1(1- 1)({~D
= (-l)j i~~~l { 1-~(_l)t (ik-_

2
: ~ t

1
) (i -: -1)}Ck: j)-

By applying Lemma 4.2 to i = k - j +1 and i = k - 1+ 1 we get the desired
expression of aj(l). In a similar way we also have the expression of aj(1) for
j > k +1- 1.

Finally we shall prove a2k(k) = O. We have

a2k(k-1)= ~{1-~(-1)tC~=~1_-/)Ck-/-1)}(~)
k-2

=1- ~(-l)tCk k 21
t
-1)Ck-

t
t-1)

k

= t~l(_l)t Ck k 21
t
- 1) Ck -/ -1)

= (_l)k-l (k k1)­
Since a2k-l(k - 1) = (-l)k, we have

a2k(k) = a2k(k - 1) + a2k-l(k -l)C k 1) = o.

Proposition 4.3 implies aj(k) = 0 for all j, hence we complete the proof
of Theorem.
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