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An Equality of Cusp Invariants
and Cusp Contributions to the Dimension Formula

SHOETSU OGATA

In this paper we prove an equality between two invariants of isolated cusp
singularity (V,p) of even dimension n, namely, the contribution of the cusp
Xoo(p) to the arithmetic genus and the signature defect o(p) of the cusp.

THEOREM. When n = 2k > 2, we have

2"Xoolp) = o(p)-

The signature defect was defined by Hirzebruch[{H1], which coincides with
ours (see Section 1) in the case of Hilbert modular cusps. We can also find
other generalizations by Morita[Mo] and Looijenga[L]. The invariant y(p)
of a Hilbert modular cusp is called the +)-invariant by Ehlers[E]. Satake[Sa]
defined xoo(p) in general as the contribution of the cusp to the dimension
formula of the space of cusp forms by means of Riemann-Roch Theorem.

The theorem above has been conjectured by Satake and Ogata (the co-
jecture C1 in [SO}), while in the case of Hibert modular cusps by Ehlers[E]
(see also Kommentare 51 in [H2]).

Theorem combinning with the result of Atiyah, Donnelly and Singer
[ADS1][ADS2] and Miiller[Mu] gives a proof of the conjecture stated in
p.95 [HG], which is generalized in [SO] as the conjecture(C3’). The equiv-
alent conjecture(C3) for odd dimension was proved by QOgata [O]. We shall
explain the original conjecture. Let (V, p) be a Hilbert modular cusp, that
is, V — {p} is isomorphic to the quotient H*/S(M, V) of the product of
n copies of the upper half plane H by the semidirect product S(M,V) of
a fractional ideal M of a totally real number field F' and a finite index
subgroup V of totally positive units in F preserving M. Then the contribu-
tion of the cusp (V,p) to the dimension formula of the space of cusp forms
derived from the Selberg trace formula (cf. [Sh]) is given by

wy = (=1)"%(2m)"d(M) lim L(M, V, s),
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where d(M) is the discriminant of M and L(M,V,s) is defined by

L(M,V,s)= Z mgnNorm(;sL) for Res > 1.
o, Nom(p)
Atiyah, Donnelly and Singer[ADS1)[ADS2] and Miiller|[Mu] showed that
o(p) = 2" w,.
COROLLARY. Let (V,p) be a Hilbert modular cusp. In the above notation
we have

Xoo(P) = tp.
In other words, both contributions of the cusp to the dimension formula of
the space of Hilbert modular cusp forms from Riemann-Roch Theorem and
from the Selberg trace formula coincide.

The author would like to thank Professors M. Saito and S. Zucker who
suggest him the importance of [CKS] in concerning with Proposition 2.3.
He would like also to thank Max-Planck-Institut-flir-Mathematik for its
hospitality and financial support.

§1. Invariants of Cusps.

Let (V,p) be an isolated cusp singularity of dimension n, i.e., V — {p} is
a quotient of a tube domain R™ 4 +/=1C with a nondegenerate open convex
cone C' C R™ by an action of a discrete group which is a semidirect product
of alattice N in R™® and I" C GL(N)NAutC (see in detail [T]). Let (U, X) —
(V,p) be a desingularization of the cusp by using of toroidal embeddings
of Mumford[ KKKMS] so that X is a divisor with simple normal crossings.
Hence X can be decomposed into the union of irreducible components X =
UierXi, and all X; and intersections Xy := N;esX; (J C I) are nonsingular
toric varieties in the sense of Oda[Od]. Let §; = [X;] be the cohomology
class of X; in H?(U,8U;Z). Then by definition we have

b;
Xoo(P) = [E W] ) [, ou),
which is given by evaluation after expanding as a formal power series. Here
[U, 0U] is the fundamental class of (U,0U) in H,,(U,0U;Z). And the sig-
nature defect of (V, p) is given by

o(p) = [H d; coth 5,-] [U,0U] — sign(U, 0U),

el
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where sign(U, 0U) is the signature of the bilinear form on H"(U, 0U;R)
defined by cup product H*(U) x H™(U,8U) — H?*™(U,dU).

LEMMA 1.1. The definition of xoo(p) and o(p) is independent of the choice
of a toroidal desingularization (U, X) — (V, p).

PROOF: Let Z be a nonsingular projective algebraic variety containing X.
Then we have

Xoo(p) = Td(Tz) — Td(T7z(~ log X))
= x(0z) — Td(Tz(- log X)),

and

o(p) = {Lx(Tz) — Li(Tz(—log X))} — {sign(Z) — sign(Z — U, -0U)}
= sign(Z — U, —0U) — Ly(Tz(— log X)),

where Td is the Todd polynomial and L, is the Hirzebruch L-polynomial.
We must show that Td(Tz(—log X)) and Lg(Tz(—log X)) are independent
of the choice of a resolution of singularity. Let =, : (U;, X;) — (V,p)
(z = 1,2) be two desingularizations. Then we can find a desingularization
wg : (Us, X3) — (V, p) so that 73 factors through both 71 and 7,. Hence it is
enough to consider a desingularization (W,Y") — (V,p) factoring (U, X) —
(V,p). Set ¢: (W, Y) — (U,X). We claim ¢*Ty(~log X) & Tw(—logY).
In fact, since the question is locall, if let (U, X) — (U, X) and (W,Y) —
(W,Y’) be the universal coverings with the covering transformation group
I’ then we have

¢ Ty(—log X) = Ty (~log V)

because of the isomorphism Ty (—logY) & N ®c Oy, (see [0Od]), where

§: (W,Y) — (U, X). Lemma follows from the functoriality of Chern classes
and the claim.

Let A:={J C I;J # 0,X; # 0} and 7o (p) := [[1;¢; 6i coth &] [U,0U].
Then we know from [SO]

(1'2) Too(P) — 2nXoo(p) = Z(_z)n_ﬁA(j)7
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where A(j) := {J € A;|J| = 7} for 1 £ j < n and * denotes the cardinality.

§2. sign(U,0U).
In this section we represent sing(U,0U) by means of A. For J € A(j)
we consider a bilinear form By on H"~2(X ;;R) defined by

B(u,v):= (v UvUc;(Nx, ))[Xs],

where ¢;(Nx,) is the j-th Chern class of the normal bundle Nx, of X; in
U. We see that X ; contributes to sign(U, OU) as signB; by taking acount
of the following diagram.

HYU) x HMU,0U) — H™(U,U)

! T T
H™X;) x H%(X;) — H™ (X))

PROPOSITION 2.1. There exists a following exact sequence.

O —_ Hn(X) - ®iEA(1)Hn(Xi) — @JEA(z)Hn(XJ) —_ ...
— @KeA(k)Hn(XK) — 0.

PROOF: HJ(X) carries a canonical mixed Hodge structure whose weight
filtration is given by the spectral sequence degenerationg at E;-terms

EM=HY( ][] Xx5R) = HTI(X;R).
JEA(p+1)

We claim that the canonical mixed Hodge structure on H’(X) is pure for
J 2 n. In fact, let Z be a nonsingular projective algebraic variety contain-
ing X and consider the following commutative diagram of mixed Hodge
structures (cf. [St]). _

HL(U) = HI{U)

T8 T

Hx(Z) — H(Z)
Here the mixed Hodge structure on HY(U) is induced by the isomorphism
HI(U) S HI(X). Since B is bijective and since « is surjective for j > n
(see [GM]), 7 is surjective for j > n. Since H’(Z) has a natural pure
Hodge structure, the mixed Hodge structure on H’(U) is pure for j > n.
The claim says that E}? = 0 for p+ ¢ > n and p > 1. Proposition is the
case ¢ = n.



PROPOSITION 2.2. We have

sign(U, 0U) = Z( 1)+ )" signB;.

JEA()

PROOF: It follows from the isomorphism H?(U) = H?(X) and Proposition
2.1. :

We must compute signB ;. Since Xy is a complete intersection, we have
¢j(Nx,) = [Licsa(Nx;1x,). We note that ¢;(Nx,) is negative because
X = U;erX; is contracted to a point. Hence we consider a bilinear form on

H™2(X) of the form

By([[ () (wv) i= wuv U ] ()X,

where Lq,...,L; are ample line bundles on X .

ProrosITION 2.3. In the above notation we have

J
signBJ(H c1(L;)) = signB s(c1(L1)?).

i=1

In order to prove Proposition 2.3 we need a lemma, which is implicitly in

[CKS).

LEMMA 2.4. Let Y be a projective manifold and let ¢; € HY(Y;R) (1 =
1,...,8) so that 3 ._, pic; is positive for u; > 0. Define Kihler operators
L. by taking cup product with c;, respectively. Then for | < dimY the
kernel of the map

... L H72(Y) —» H**(Y)
is contained in ): =1 KerH

J#t

PRrooOF: It follows from the same line of the proof of Corollary(1.17) in
[CKS] by taking (s — 1)-th cohomology of the complex B'(Ny,..., N V).
Corollary(1.17) is the cese s = 2.



PROOF OF PROPOSITION 2.3: Let \; = ()\11, ,Aij) € (Rxo)? — {0} for
i =1,...,7. If we take ¢; = ci(A\i) = ,tcl(L) then Lemma 2.4

implies that the bilinear form B([]._, c1(/\ )) is nondegenerate for any
Ai € (R>0)? — {0}. Hence the signature is the same for all such A;.

Noting that H"~%/(X ;) 2 H*=3%=3(X ;) (see [Od]), we have

k—j
signBJ(cl(Ll)j) -~ Z(—l)k_j_i dim Pk_j_i’k_j_i(XJ)
=0
k—j—1
= (1) IRy 42 ) (1) RN (X),
1=0

where PH{(X ) is the primitive part of H**(X 7) with respect to the Kahler
form ¢;(Ly) and R (X;) = dimH%(X;) (cf. [W]). Since signB; =
(—1)signB j(c1(N¥,|x,)’) for any « € J from Proposition 2.3, we have

sign(U, U = Z( 1)+ N (1) {(-1)F I REAI (X )
JeA(y)

+2 _Z (DX )
k

= 3 (~1)kHitt Z pE=ik=i( X ;)

j=1 JEA()

_gz Z 2_:( 1)k—imiph—i—ik—i=i x .

J=1 JEA(j) =1

For J € A(j) we denote Ay := {K € A;J C K} and Ay(k) :== {K €
Ay |K| = k}. Then we have

i) = S0 (T s
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(see [Od]). Here we set sign(U,0U) = I; + I,. Then

ST S e t(z’“ )ﬂAJ(H‘J)

Jj=1 JEA(j) t=0

Zk 1 )”1( :) > tAs(t ),

j=1 t=0 JEA(®)
k—;

NI IEI

j=1 JeA(j) =1

Z (177 ‘(k% Z_JMJ(?& +)

—J -

- 23" ; f(—l)t(kzk.‘j.‘ft) S A+ ).

- JEA()

II

Here we used the equality 3 ;o o ¢j) FDu(t+7) = (t*JTj)"A(t +3). By change

of variables, we have

Ih
Ma- ||Ma- ||'Ma-

ij —yire (37 e
Z_j e (P8 Yo

o (o),

t=1

where we used the equality Z;=1(‘1)‘i (;) =(1-1)—(;) = —1. Also we
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have

) YA(?)

)G

2k — t
k—1—1¢

3

— _1)t+3' (

1:=11¢

J

h=-2) 3>

N
-+
p—
Y
N
+a oy
N’
\-IU
o
I e
i~
o

2
N’
T
+
Py
—
L
AL
~2 -
I~ -
N
—t —
PN
R

PN
)
g
=
TN
+ e
N—
\Illl/ .
+ N P
Rl N N
| e e
[ ] o \llu/ —,
-+ ~+o
“_w L_w ‘oo L_m ~
an ~ | ~ |
_ w3 -2
- A
— - -
Ji = =
- — [ |
AT 3 13
Ll — e .._._ -2 _._.
T 273 T
AN NN
i fa\ N

Thus we have

)}

2k —t
k—171—1t

k—t
ok — ¢
k_t)+2§

C1)HA() {(

k-1
1

L+L=0MA%k)+ Y (

i

Here we have

2k —t

(

22k—t

k—t4-1

i

Hence we have the following.



PROPOSITION 2.5. We have

k k .
sign(U,0U) = (—1)7 {22477 - 3}~ (2’“;3') PA®).

j=1 i=k—j+1
From the equality(1.2) and Proposition 2.5 we have the equality

2% — j
i

(2.6) o(p) —2"xo(p) = Z (=2)* 778 A() + Z (

j=k+1 i=k—j+1

)0,

§3. Relations in A.
In this section we draw several relations in A, which we need in the next
section.

PROPOSITION 3.1. We have the following relations.

(3.1.1) > (-1aG) =0,

j=1

and for 1 <t <2k -2

(312) a-uam= ¥ vi(])a0,

j=t+1

PrOOF: The equality (3.1.1) follows from the fact that the Euler number
of a closed oriented topological minifold of odd dimension vanishes. For
J € A(t) the complex Ay — {J} induces a triangulation of 2k — ¢ — 1
dimensional sphere. Hence we have

2k
1- (1)t = Y (1) HA().

j=t+1

By taking summation over all J € A(t) we have (3.1.2).
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LEMMA 3.2. For a positive integer | there exist integers «g, o, . .., o and
Bo, B,y .., B with ag = Bo = 1 satisfying the following conditions:

. ! . :
7 _ f1—20+2
(3:2:2) (21— 1) N ;a‘ (21— 1 -—z')’
: ! : .
'ANE (1 =21~ 1+2
(3.2.0) (21) B §ﬁ< 20— )

PROOF: For a positive integer 7 we define a polynomial (%) to be H:;lo(m —
v)/i! and (7) = 1. Then we note that if a polynomial f(z) of degree n with
values in integers at £ = 0,1,...,n—1, then we can write f(z) = E?z—ol a; (f)

with a;.€ Z. Put f(z) = (**2/*"). Then we have f(2) = iy a:(%). By

induction we have t
z+2l+1 _ EZI 5, x
21 ST\l —-i)

The polynomial g(z) = (;:) — Zi:o ,B,-(I_gtg"'i) has zeros at . = [+ 1,1+
2,...,2l — 1. On the other hand, ¢(z) = Z?;H_l B (’:_gfj"’i), hence the
equality ¢(I + 1) = 0 implies 83y = 0. By induction we can easily see that
g(z) = 0. Since (%) is a monic polynomial of degree ¢, we have By = 1. This
showes (3.2.b).

We can also prove (3.2.a) in a similar way.

Remark 3.3. From the conditions in Lemma 3.2 we have the relations of
coefficients:

o425 —1 ! 9% 41—1
(3.3.2) ““3_( 21 — 1 )_Z a"(zl—z‘—1>’
t={—sa+1
{

20425+ 1 /25 +1
(3.3.b) 6,_3_( > )—izgﬁﬂi(gl_i),

for 0 € s < I. In particular, oy = 2 and §; = 21 + 1.
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ProprosITiON 3.4. For 0 <[ <k —1 we have

J-;Z:.I(_l)j (77 ) em-e

PROOF: Since (j"i'l) =0forl+1 <3 < 2], we may take summation over
[+1<7 <2k,

For ! = 0, it is just the relation (3.1.1). Let ! > 0. We shall prove it by
induction. Firstly let [ = 2s — 1. Let ap,,...,a, be the integers defined

by Lemma 3.2 for [ = 5. Set

Z;( 1)12 (35T )0,

By changing order of summations, we have

-Fa 3 (- )3(23 zj“)mo)

i=0 J=28—12
2k (9 —2s

= > (372 )0,
j=23

where we used the assumption of induction and a9 = 1. On the other hand,
from (3.2.a) we have

J1 = i (—1)"{(231'_ 1)_2(3‘—0}%@

1=s8+1

Here we may take summation only over 2s < 7 < 2k. Hence we have

Z( (0 ) -2 e ()0

= {_2ﬁA(2s ~ 1)+ 23(—1)3' (233; 1)”A(j)}
- zjgj_l(—l)f (25) a0
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The first term is the relation (3.1.2), hence, vanishes and the second term
vanishes by the assumption of induction.

Next let | = 2s. Let By, 51,...,8s be the integers defined by Lemma 3.2
for | = 5. Set

e 1)5‘1&( 33:3*")%)-

j=s8+1

Then we have

JFE@ DI b UNE

j=2a—141
2k
— 25 —
_ 1y 8 ;
= > (7T a0
3=2s+1

On the other hand, from (3.2.b) we also have

o ST (0 R G O

= > (w(f) s - Y o (TG

Jj=2s+1 j=8+1

The first term is the relation (3.1.2), hence, vanishes and the second term
vanishes by the assumption. Thus we proved the proposition.

§4. Proof of Theorem.
We define series of integers {a;([)}2£, for [ > 0 by

S ai(0AG) =Y (-1 Y (zkz- )”A(f” S (2priag),

j=1 j=1 i=k—j+1 J=k4+1
and inductively by

2k 2k 2k

S o (DIAG) = Y a(l- 1 AG) +ana(-1) 3 (- 1)1( ’)“Au)

j=1 =1 j=21-
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From Proposition 3.4 we see that for all { > 0

2k 2k
>_ai(FA3G) =) a;(0)'A0).

We shall prove a;(k) = 0 for all j. We need two lemmas.
LEMMA 4.1. We have

2k — 1 £ f1-1\ 2k -1
= <[ <
P09 £ (0 s
i=k—I+4+1 ,
2k—1
(2k_1> (1*1)( l) for k+1<1<2k.
0

1=

LEMMA 4.2. We have
l

I“Z(‘l){j—zz_i;l)(j_z_l) o

=0

PROOF: Since (3 —3= 1)( _’_1) ()(’ 1= 1}, we shall prove

S0

Set fi(z) =1 - Zi—=0(—1)‘(:) (Il_i). Then we have fy(z) = 0. Since (:) =

(l_il) + (5:1) for z > 1 and since (zl_i) — (x_j_l) = (x;'_i;l), we have

ro=1-(1)- S () (D))
:1—2(—1)1'(1;1) (mz_z)*g(‘l)m(l—il) (m_;-_l)
_1_;( 1)( )( _ZII)

= fi—1(z — 1).
Hence we have fi(z) = fo(z — 1) =0.

and
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PROPOSITION 4.3. For ! > 0 the number a;(l) vanishes for j < 21, is equal

to
(’”j,:éw{ z( ] j)(“j‘l)}(”"; /)

for2l+1<j<k+1—-1,and

S {-Ber (e e

forj > k+ 1L
PROOF: For | =0, it coincides with the definition of a;(0). Let I > 0. By

definition ag;_;(!) = 0. We assume that aj(I—1)for2/ -1 <3 <k+1-2
is equal to

<-1>=f+{ Z< O j)(j‘j‘l)}(z"’;j),

in particular, ag;—1 (I — 1) = (—1)’(2::?_:_"1'1). If ] < k—1, then we have

t= =3 {1- S ()
{ :Zé( 1)( 1)(2l—t—1)}
A0+ (233’1)}
{1—2( 1)’(1_1 tl>(2l—t—l)}(2::lzl++11)
)

=07 (z ~ 1) (2k - 121++1



Here we used Lemma 4.2 for the last equality. Hence we have

(121(1) = agl(l - 1) + agy— 1(1 - 1)<2l 11) = 0.

Next noting that

(2k—2l+1)_ ’“"Z’“ (j-—21+1 )(Qk—j)
k—141 il k—141-—: ? |
for 21—1 < 3 < k+1[1-11from Lemma 4.1, we have for 2l4+1 < 3 < k+1-2

a;(1) = a;(1 = 1) + (=1) ag—1 (I = 1)<j_—1l>

= (~1) :i:l {1 _ Z( 1)t( tl) (_7 ~ i - 1)} <2ki—j>,

By applying Lemma 4.2 to: =k —j+41land : = k£ — [+ 1 we get the desired
expression of a;({). In a similar way we also have the expression of a;(!) for
J2k+1-1

Finally we shall prove azx(k) = 0. We have

aze(k — 1) = zi; {1 - ;V;:(—l)‘ (2/: _ ?l__tl) (% T 1) } (O)
e (e
tzkjl( ) (Zk zzt— 1) (2k —-tt - 1)

= (-1)"—1(kf1).

Since azg—1(k — 1) = (—=1)*, we have

apk(k) = agp(k — 1) + agp_y(k — 1)(1C f 1) = 0.

i

Proposition 4.3 implies a;(k) = 0 for all 7, hence we complete the proof
of Theorem.

15



REFERENCES

[ADS1] M. F. Atiyah, H. Donnelly and I. M. Singer, Fta invariants, signature defects
of cusps, and values of L-functions, Ann. of Math. 118 (1983), 131-177.

[ADS2] M. F. Atiyah, H. Donnelly and I. M. Singer, Signature defects of cusps, and
values of L-functions: The nonsplit case, Ann. of Math. 119 (1984), 131-177.

[CKS] E. Cattani, A. Kaplan and W. Schmid, L? and intersection cohomologies for
a polarizable variation of Hodge structure, Invent. math. 97 (1987), 217-252.

[E] F. Ehlers, Eine Klasse komplezer Manigfaltigkeiten und die Auflésung einiger
isolierter Singularitaten, Math. Ann. 218 (1975), 127-156.

[GM] M. Goresky and R. MacPherson, On the topology of comples algebraic maps,
in “Algebraic Geometry,” Lecture Notes in Math. 961, Springer-Verlag, Berlin,
Heidelberg and New York, 1982, pp. 119-129.

[H1] F. Hirzebruch, Hilbert modular surfaces, Enseign. Math. 19 (1974), 183-281.

[H2] F. Hirzebruch, “Gesammelte Abhandlungen II,” Springer-Verlag, Berlin, Heidel-
berg and New York, 1987.

[HG] F. Hirzebruch and G. van der Geer, “Lectures on Hilbert Modular Surfaces,”
Presses de ’Universite de Montreal, Montreal, 1981.

[KKMS] G. Kempf, F. Knudson, D. Mumford and B. Saint-Donat, “Toroidal Em-
beddings 1,” Lecture Notes in Math. 339, Springer-Verlag, Berlin, Heidelberg and
New York, 1973.

[L] E. Looijenga, Riemann-Roch and smoothings of singularities, Topology 25 (1986),
293-302.

[Mo] S. Morita, Almost complex manifolds and Hirzebruch invariants for isolated
singularilies in complez spaces, Math. Ann. 211 (1974), 245-260.

[Mu] W. Miiller, “Manifolds with Cusps of Rank One,” Lecture Notes in Math.1244,
Springer, Heidlberg, New York, 1987.

[O] S. Ogata, Spectal Values of zeta functions associated to cusp singularities, Tohoku
Math. J. 37 (1985), 367-384.

[Od] T. Oda, “Convex Bodies and Algebraic Geometry,” Springer-Verlag, Berlin,
Heidelberg, New York, London, Paris and Tokyo, 1988.

[Sa] I. Satake, On numerical tnvariants of arithmelic varieties of Q-rank one, in
“Automorphic Forms of Several Variables,” Taniguchi Symposium, Katata,1983 (1.
Satake and Y. Morita, eds.), Progress in Math. 46, Birkhiauser, Basel, Boston and
Stuttgart, 1984, pp. 353-369.

[Sh] H. Shimizu, On discrete groups acting on the product of upper half planes, Ann.
of Math. 77 (1963), 33-71.

[SO] 1. Satake and S. Ogata, Zeta functions associated to cusps and their special val-
ues, in “Automorphic Forms and Geometry of Arithmetic Varieties,” (Y. Namikawa
and K. Hashimoto eds.) Adv. Studies in Pure Math. 15, Kinokuniya, Tokyo and
North-Holland, Amsterdam, New York, Oxford, 1989, pp. 1-27.

[St] J. Steenbrink, Mized Hodge structures associated with isolated singularities, Proc.
Symp. Pure Math. 40-2 (1983), 513-536.

16



[T] H. Tsuchihashi, Higher dimensional analogues of periodic continued fractions and
cusp singularities, Tohoku Math. J. 35 (1983), 607-639.
(W] A. Weil, “Variétés Kahlériennes,” Act. Sci. Ind. 1267, Hermann, Paris, 1958.

Mathematical Institute, Tohoku University, Sendai 980, Japan and Max-Planck-Institut-
fiir- Mathematik, Gottfried-Claren-strafle 26, D-5300 Bonn 3, Federal Republic of Ger-
many

17



