POLARIZED PERIOD MAP FOR GENERALIZED
 K3 SURFACES AND THE MODULI OF EINSTEIN METRICS

by
-Ryoichi Kobayashi and Andrey N. Todorov

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
D-5300 Bonn 3

POLARIZED PERIOD MAP FOR GENERALIZED

K3 SURFACES AND THE MODULI OF EINSTEIN METRICS

Ryoichi Kobayashi and Andrey N. Todorov

Q. Introduction

The moduli space for:marked polarized K3 surfaces or equivalently the moduli space for marked $K 3$ surfaces with a Ricci-flat Einstein-Kähler metric is constructed in [T1] and [L]. This moduli space is isomorphic to an open dense subset $K \Omega^{0}$ of

$$
\mathrm{K}_{8} \text { def. } \mathrm{SO}_{0}(3,19) / \mathrm{SO}(2) \times \mathrm{SO}(19) .
$$

So, it is natural to ask what geometric objects correspond to the "hole" $K \Omega \backslash K \Omega{ }^{0}$ of the moduli space. The purpose of the present paper is to make some contribution to this question from differential geometric point of view. Namely we consider the polarized period map for $K 3$ surfaces with simple singular points. The flavor of our main result is most typical in the following:

Theorem 7. The moduli space of all Einstein metrics on a K3 surface, including Einstein-orbifold-metrics along simple singular points, is isomorphic to

```
                                    -2-
\[
\Gamma \backslash\left(\mathrm{SO}_{0}(3,19) / \mathrm{SO}(3) \times \operatorname{SO}(19)\right)
\]
```

where Γ is the full group of isometries of the K3 lattice

$$
2\left(-E_{8}\right) \oplus 3\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

For the proof of this theorem we need two main ingredients, one from algebraic geometry and the other from differential geometry. The algebro-geometric ingredient is the contribution due to mainly by Todorov [T1], Looijenga [L], and the generalization of their arguments by Morrison [Mr] which is very important in the present paper. The differential geometric ingredient is the solution of Calabi's conjecture due to Yau [Ya1] and the "equivariant version" of it which asserts the existence of a Ricci-flat Einstein-Kähler orbifold-metric on certain complex orbifolds. The existence of a Ricci-flat Einstein-Kähler orbifold-metric makes it possible to use the "isometric deformation" of Kähler structures on generalized K3 surfaces.

Einstein-Kăhler orbifold-metrics were also. used to characterize the ball quotients of finite volume in terms of numerical invariants of orbifolds [CY] and [KB]. In differential geometric words, that is the criterion for the vanishing of the anti-self-dual weyl tensor of the Einstein-Kähler
orbifold-metric under consideration. In exactly the same spirit, we will obtain the criterion for the vanishing of the full curvature tensor of a Ricci-flat Einstein-Kăhler orbifold-metric in terms of the numerical invariants of the orbifold:

Theorem 9. Let X be a compact complex surface with at worst simple singularities whose minimal resolution is a K 3 surface. Then,

$$
24-\sum_{p \in S i n g x}\left(e(E p)-\frac{1}{|G p|}\right) \geq 0,
$$

where $E p$ and $|G p|$ is the exceptional divisor for the minimal resolution for $p \in \operatorname{Sing} x$ and the order of the corresponding local fundamental group Gp. The equality holds if and only if X is obtained by taking the quotient of a complex two torus with respect to the discrete group of Euclidean motions.

The first author would like to express his gratitude to Professor David R. Morrison for directing his interest to this subject and sending him his paper [Mr]. The reference [Va] was also informed him by Morrison. Both authors would like to express their thanks to Max-PlanckInsitut für Mathematik for support and hospitality.

1. Review on the moduli of K3 surfaces and the formulation of the problem

A K3 surface is a compact complex surface X which is connected and simply connected and has trivial canonical bundle K_{X}, i.e., X has a unique (up to constant) nowhere vanishing holomorphic 2 -form ω_{X}. The notion of a K 3 surface is invariant under deformation, i.e., any deformation of a K3 surface is a K3 surface [Kd]. Moreover any two K 3 surfaces are deformations of each other [Kd]. So, there exists a unique underlying differentiable manifold of $K 3$ surfaces which turns out to be a smooth quartic suface in $P_{3}(\mathbb{C})$. Hence the lattice $H^{2}(X ; \mathbb{Z})$ with the cup bilinear form is the same for all K3 surfaces X and can be called the K3 lattice. K3 lattice L is the unique even unimodular lattice of rank 22 and index -16 , i.e.,

$$
L=2\left(-E_{8}\right) \oplus 3\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),
$$

where E_{8} is the even unimodular positive definite lattice associated. with the Dynkin diagram of type E_{8}.

Definition. A choice of an isometry

$$
\alpha: H^{2}(X ; z) \xrightarrow{\sim} L
$$

is called a marking of X. A pair (X, α) of a K3 surface X and a marking α is called a marked $K 3$ surface.

Let (X, α) be a marked K 3 surface. $\mathrm{H}^{2,0}(\mathrm{X})$ is a \mathbb{C}-vector subspace of $H^{2}(X ; \mathbb{C}) \approx L_{\mathbb{C}}$ of dimension 1 generated by ω_{X}, which satisfies

$$
\left\langle\omega_{x}, \omega_{x}\right\rangle=0 \quad \text { and } \quad\left\langle\omega_{x}, \bar{\omega}_{x}\right\rangle>0 .
$$

We can thus associate to (x, α) a point $\left[\alpha_{\mathbb{C}}\left(\omega_{x}\right)\right]$ in the classical period domain

$$
\Omega=\left\{\omega \in L_{\mathbb{C}} ;\langle\omega, \omega\rangle=0,\langle\omega, \bar{\omega}\rangle>0\right\} / \mathbb{C}^{*}
$$

which is an open subset of a hyperquadric in $P_{21}(\mathbb{C})$.

The classical period map for marked $K 3$ surfaces is the mapping sending a marked K 3 surface (X, α) to the point $\left[\alpha_{\mathbb{C}}\left(\omega_{X}\right)\right] \quad$ in Ω.

Another description for Ω which we will use later is the following: $\Omega=\left\{\right.$ all oriented two-planes $E \subset L_{\mathbb{R}}$ such that $<,>\left.\right|_{E}$ is positive definite\}. In this description for Ω the classical period map for marked K3 surfaces (X, α) is expressed as
$(X, \alpha) \mapsto\left[\begin{array}{l}\alpha_{\mathbb{R}} \text {-image of the two-plane } E_{X} \text { in } H^{2}(X ; \mathbb{R}) \\ \text { spanned by Re } \omega_{X} \text { and } \operatorname{Im} \omega_{X} \text {, where } \omega_{X} \\ \text { is a generator of } H^{2,0}(X) \text { and the orientation } \\ \text { of } E_{X} \text { is given by }\left(\operatorname{Re} \omega_{X}, \operatorname{Im} \omega_{X}\right) .\end{array}\right]$

The classical. period domain parametrizes effectively the local universal deformation (Kuranishi family) for any $K 3$ surface X. If $p:(X, X) \rightarrow(S, 0)$ is the Kuranishi family for X, we then have a diffeomorphism $t: X \times S \rightarrow X$ such that po.t $^{\prime}=\mathrm{pr}_{2}$. Once we choose a marking $\alpha: H^{2}(X ; X) \longrightarrow L$, we get a marking for the family by setting

$$
\alpha_{s} \text { def. } \alpha \circ t^{*}: H^{2}\left(x_{s} ; z\right) \rightarrow \underbrace{L}_{H^{2}(x ; \mathbb{Z})}
$$

We thus get a marked Kuranishi family $(x \longrightarrow S, \alpha)$, which has a period map $\tau_{S}: S \longrightarrow \Omega$, defined by

$$
s \ni s \longmapsto \tau_{S}(s)=\left[\alpha_{S_{\mathbb{C}}}\left(\omega_{X_{S}}\right)\right]
$$

Now the local Torelli theorem due to Andreotti-Weil and Kodaira [Kd] states that the map ${ }^{\tau} s$ is holomorphic and a local isomorphism at 0 . Every point $x \in \Omega$ determines a Hodge structure of weight 2 on L in the following way: If $\omega \in \mathrm{L}_{\mathbb{C}}$ is a representative for \mathbf{x}, we define

$$
\begin{aligned}
& H^{2,0}(x)=\mathbb{C}_{\omega} \subset L_{\mathbb{C}} \\
& H^{0,2}(x)=\mathbb{C} \bar{\omega} \subset L_{\mathbb{C}} \\
& H^{1,1}(x)=\left(H^{2,0}(x)+H^{0,2}(x)\right)^{\perp} \subset L_{\mathbb{C}}
\end{aligned}
$$

The classical period domain Ω classifies in a bijective way all K3 complex structures on the underlying differentiable manifold of a K3 surface with a fixed marking. See [T1],[BuR] and [LP]. But although the local Torelli theorem is true, one cannot construct a univerşal family of K 3 surfaces on Ω. In fact, Atiy: [At] constructed two non-isomorphic families of K3 surfaces with the same period map. The reason is that the classical period domain sees only Hodge structures, although the rational curves on a $K 3$ surface play an essential role in the construction of the fine moduli space. The following construction due to Burns-Rapoport [BuR] clarifies the importance of the rational curves on a K3 surface. For $x \in \Omega$, let $V^{+}(x)$ be one of the connected components of .
$V(x)=\left\{k \in H^{1,1}(x) \cap L_{\mathbb{R}} ;\langle k, k\rangle=1\right\}$, and let $\Delta(x)=\left\{\delta \in H^{1,1}(x) \cap L ;\langle\delta, \delta\rangle=-2\right\} \quad$ and $\mathrm{V}_{\Delta}^{+}(\mathrm{x})=\left\{\mathrm{k} \in \mathrm{V}^{+}(\mathrm{x}) ;<\mathrm{k}, \delta>\neq 0\right.$ for all $\left.\delta \in \Delta(\mathrm{x})\right\}$. Since Ω is simply connected, it is possible to make a continuous choice of $\mathrm{V}^{+}(\mathrm{x})$ with respect to $\mathrm{x} \in \Omega$. For a K 3 surface x , we define:
$\Delta(\mathrm{X})=\left\{\delta \in \mathrm{H}^{1,1}(\mathrm{X}) \cap \mathrm{H}^{2}(\mathrm{X} ; \mathrm{z}) ;\langle\delta, \delta\rangle=-2\right\}$ and $\Delta^{+}(X)=\{$ all effective $\delta \in \Delta(X)$, i.e., δ corresponds to an effective divisor on $X\}$. By Riemann-Roch, δ or $-\delta$ is effective for all $\delta \in \Delta(X)$. So, $\Delta(X)=\Delta^{+}(X) u-\Delta^{+}(X)$ and if $\delta_{1}, \ldots, \delta_{k} \in \Delta^{+}(X)$ and $\delta=\sum n_{i} \delta_{i}$ with $z \ni n_{i} \geq 0$
then $\delta \in \Delta^{+}(\mathrm{X})$. Let $\mathrm{V}^{+}(\mathrm{X})$ be the connected component of $V(X)=\left\{\kappa \in H^{1,1}(X) \cap H^{2}(X ; \mathbb{R}) ;:\langle x, k\rangle=1\right\}$ which contains a Kähler metric on X. We define $V_{P}^{+}(X)=\left\{k \in V^{+}(X) ;\langle k, k\rangle=1,\left\langle k, \delta \gg 0\right.\right.$ for all $\left.\delta \in \Delta^{+}(X)\right\}$ for a K 3 surface X . The half cone

$$
\begin{aligned}
C_{P}^{+}(x)= & \mathbb{R}^{+} \times V_{P}^{+}(x) \\
= & \left\{k \in H^{1}, 1(x) \cap H^{2}(x ; \mathbb{R}) ;\langle x, k \gg 0,\langle k, \delta \gg 0\right. \\
& \text { for all } \left.\delta \in \Delta^{+}(x)\right\}
\end{aligned}
$$

over $V_{P}^{+}(X)$ is the Kähler cone for X. Note that every $K 3$ surface admits a Kähler metric [Si], i.e., $\mathrm{V}_{\mathrm{P}}^{+}(\mathrm{X}) \neq \phi$. The Kähler cone $C_{P}^{+}(X)$ for a Kähler surface X is originally defined by
(*) $\quad C_{P}^{+}(X)=\left\{\begin{array}{l}k \in H^{1,1}(X) \cap H^{2}(X ; \mathbb{R}) ;:<x, k \gg 0 \text { and }\langle x, \delta \gg 0 \\ \text { for all effective classes } \delta \in H^{1,1}(X) \cap H^{2}(X ; \mathbb{Z})\end{array}\right\}$.

But in the case of $K 3$ surfaces, it is sufficient to check the property (*) for (-2)-effective classes $d \in \Delta^{+}(X)$. See, for example, [LP]. Eurns-Rapoport [BuR] defined the Burns-Rapoport period domain $\widetilde{\Omega}$ in the following way. Define two fiber spaces. $k \Omega^{0}, \mathrm{~K} \Omega$ over Ω by

$$
\begin{aligned}
& \mathrm{K} \Omega=\left\{(k,[\omega]) \in L_{\mathbb{R}} \times \Omega ; k \in V^{+}(x)\right\} \text {, and } \\
& K_{\Omega}^{0}=\left\{(\kappa,[\omega]) \in K \Omega ; k \in V_{\Delta}^{+}(x)\right\} \text {, where } x=[\omega] .
\end{aligned}
$$

Let $\pi: K_{\Omega}{ }^{0} \longrightarrow \Omega=\left(K_{\Omega}\right)^{0} / \sim$ be the quotient map
defined by $(k, \omega) \sim\left(k^{\prime}, \omega^{\prime}\right)$ if and only if $\omega=\omega^{\prime}$ and k and k^{\prime} are in the same connected component of the fiber $\operatorname{pr}_{2}^{-1}([\omega])$ in $k \Omega^{0}$. For each $x \in \Omega$, define the subgroup $W(x)$ of Aut (L) $\cap \operatorname{So}\left(H^{1,1}(x) \cap L_{\mathbb{R}^{\prime}}\right) \quad$ generated by the reflections

$$
s(\delta): x \longmapsto x+<x, \delta>\delta,
$$

where δ runs over the whole $\Delta(x)$. Since $H^{1,1}(x) \cap L_{\mathbb{R}}$ has a signature $(1,19), W(x)$ acts properly discontinuously on the hyperbolic 19-space $\mathrm{V}^{+}(\mathrm{x}),[\mathrm{Vn}]$. The set of fundamental domains in $\mathrm{V}^{+}(\mathrm{x})$ is in one-to-one correspondence with the set of the partition of $\Delta(x)$ into $\Delta^{+}(x)$ and $-\Delta^{+}(x)$ with the property that if $\delta_{1}, \ldots, \delta_{k} \in \Delta^{+}(x)$ and $\delta=\Sigma n_{i} \delta_{i}$ with $\mathbb{Z} \ni n_{i} \geq 0$, then $\delta \in \Delta^{+}(x)$. For a partition $P: \Delta(x)=\Delta^{+}(x) u-\Delta^{+}(x)$, the corresponding fundamental domain $V_{D}^{+}(x)$ is $\left\{x \in V^{+}(x) ;<x, \delta \gg 0\right.$ for all $\left.\delta E \Delta^{+}(x)\right\}$
which turns out to be a locally finite "polyhedron" whose sides are given by hyperplanes $H_{\delta}=\{\delta\}^{\perp}$ for $\delta \in \Delta(x)$. The Burns-Rapoport. period map associates :to each marked K3 surface (X, α) the point in $\widetilde{\Omega}$ determined by $\pi\left(\alpha_{\mathbb{R}}(k),\left[\alpha_{\mathbb{R}}\left(\omega_{X}\right)\right]\right)$, where k is a Kähler class on x. For this period map, the following is known [BuR]:

The Global Torelli Theorem. Let X and X^{\prime} be two k3 surfaces. If there is an isometry $\phi: H^{2}\left(X^{\prime} ; Z\right) \longrightarrow H^{2}(X ; X):$
satisfying $\phi_{\mathbb{C}}\left(\left[\omega_{X}\right]\right)=c\left[\omega_{X},\right]$ for some $c \in \mathbb{C}$ * and $\phi_{\mathbb{R}}\left(\mathrm{V}_{\mathrm{P}}^{+}\left(\mathrm{X}^{\prime}\right)\right)=\mathrm{V}_{\mathrm{P}}^{+}(\mathrm{X})$, then there is a unique isomorphism $\Phi: \mathrm{X} \longrightarrow \mathrm{X}^{\prime}$ with $\Phi^{*}=\phi$.

This. was first proved by Prateckii-Shapiro and Shafarevich [ShP] in the algebraic case and refined in the Kahlerian case by Burns-Rapoport.[BaR], simplified by Looijenga-Peters [LP]. This theorem means that any two marked K 3 surfaces having the same Burns-Rapoport periods are isomoprhic in the unique way. For the surjectivity of this period map, Todorov [T1] proved

Surjectivity: Theorem. For every $\tilde{x} \in \tilde{\Omega}$, there is a marked K3 surface whose Burns-Rapoport period is $\tilde{\mathrm{x}}$.

For the proof, he used Yau's solution to Calabi's conjecture, i.e., the isometric deformation of Kähler structures with respect to a Calabi-Yau metric. The same technique is used in this paper, but now for a Ricci-flat orbifold-metric. We can thus use the Local Torelli Theorem, the Global Torelli Theorem, and the Surjectivity Theorem to glue up marked Kuranishi families (which should be small enough to be embedded in $\widetilde{\Omega}$) via the Burns-Rapoport period map to identify $\widetilde{\Omega}$ with the fine moduli space for marked K 3 surfaces. As was shown by Atiyah [At] (see also [LP]), the space $\widetilde{\Omega}$ is not Hausdorff. Moreover, Aut(L) cannot act on $\widetilde{\Omega}$ in a properly discontinuous fashion. Morrison [Mr] made a great progress to avoid such unsatisfactory properties of
$\widetilde{\Omega}$ by introducing the polarized period map for generalized K3 surfaces instead of Burns-Rapoport period map for smooth K3 surfaces. The following definition are due to Morrison [Mr].

Definition. A compact complex surface. x is called a generalized K3 surface if X has at worst simple singular points and its minimal resolution Y is a K3 surface.

Definition. Let X be a generalized $K 3$ surface and $\rho: Y \longrightarrow X$ its minimal resolution. Let $\delta_{1}, \ldots, \delta_{k} \in H^{1,1}(Y) \cap H^{2}(Y ; \mathbb{Z})$ be the classes of all (-2)-curves contracted by ρ. The root system $R(X)$ and the Weyl group $W(X)$ of X are defined by

$$
R(X) \text { def. }\left\{\delta=\sum_{i=1}^{k} a_{i} \delta_{i} \in H^{2}(Y ; \mathbf{z}) ; a_{i} \in \mathbf{z},\langle\delta, \delta\rangle=-2\right\}
$$

and $W(X){ }^{\text {def }}$ the group generated by $\{s(\delta) ; \delta \in R(X)\}$ c Isometry $\left(\mathrm{H}^{2}(\mathrm{Y} ; \mathrm{Z})\right)$

Definition. We let
$I(X)$ def. $H^{2}(Y ; X)^{W(X)}$, i.e., the set of all classes orthogonal to $R(X)$. Note that $I(X)_{\mathbb{C}}$ contains $H^{2,0}(Y)$ and so determines the Hodge structure of $H^{2}(Y ; X)$

Definition. A metric injection

$$
\alpha: I(X) \longrightarrow L
$$

is a marking of X if α is extendable to an isometry
$\bar{\alpha}$ of $H^{2}(Y ; \mathbb{Z})$ to L. A pair (X, α) is a marked generalized K3 surface.

Definition. For a generalized $K 3$ surface X, we let

$$
I(X) \supset V_{P}^{+}(X) \text { def. }\left\{\begin{aligned}
\mathcal{L} \in \overline{\mathrm{V}_{\mathrm{P}}^{+}(\mathrm{Y}) ;} & \text { for all } \left.\delta \in \mathrm{H}^{1,1}(\mathrm{Y}) \cap \mathrm{H}^{2}(\mathrm{Y} ; \mathrm{Z})\right) \\
& \text { with }\langle\delta, \delta\rangle=-2,\langle k, \delta\rangle=0 \\
& \text { if and only if } \delta \in \mathrm{R}(\mathrm{X})
\end{aligned}\right\}
$$

where $V_{P}^{+}(Y)=\left\{k \in H^{1,1}(Y) \cap H^{2}(Y ; \mathbb{R}) ;\langle x, k\rangle=1\right.$ and $\langle k, \delta\rangle>0$ for all effective (-2)classes δ on Y \}
as before. The Kähler cone $C_{P}^{+}(X)$ is defined by

$$
C_{P}^{+}(X) \text { def. } \mathbb{R}^{+} \times V_{P}^{+}(x)
$$

Definition. An element $\phi \in V_{P}^{+}(X)$ is called a polarization on X. A triple (X, ϕ, α) is a marked polarized generalized K3 surface. The polarized period map p for marked polarized generalized $K 3$ surfaces sends (X, ϕ, α) to $p(X, \phi, \alpha)=\left(\alpha_{\mathbb{R}}(\phi),\left[\alpha_{\mathbb{C}}\left(\omega_{Y}\right)\right]\right) \in K \Omega$. For this map, Morrison [Mr] proved the Polarized Global Torelli Theorem for marked polarized generalized K3 surfaces:

Theorem A [Mr]. Let (X, ϕ) and ($\left.X^{\prime}, \phi^{\prime}\right)$ be two polarized generalized K 3 surfaces and let $\rho: Y \longrightarrow X$ and

```
\rho':Y' }\longrightarrow\mp@subsup{X}{}{\prime}\mathrm{ be their minimal resolutions. Suppose
\gamma:I'}\mp@subsup{}{}{2}(\mp@subsup{X}{}{\prime})\longrightarrow\mp@subsup{I}{}{2}(X)\quad\mathrm{ is an isometry such that
\mp@subsup{\gamma}{\mathbb{C}}{}(\mp@subsup{H}{}{2,0}(\mp@subsup{Y}{}{\prime}))=\mp@subsup{H}{}{2,0}(Y),\mp@subsup{\gamma}{\mathbb{R}}{}(\mp@subsup{\phi}{}{\prime})=\phi, and extends to
an isometry }\overline{\gamma}:\mp@subsup{H}{}{2}(\mp@subsup{Y}{}{\prime},\mathbb{Z})\longrightarrow\mp@subsup{H}{}{2}(Y;\mathbb{Z}). Then there is a
unique isomorphism \phi:X \longrightarrow (' such that $* = \gamma. \Phi
comes from a unique isomorphism }\overline{\Phi}:Y\longrightarrowY' whic
induces isomorphisms of exceptional sets for \rho and
\rho'.
```

For the surjectivity of this period map, there is a strong result due to Looijenga [L] (see also [T1] and [Na]):

Theorem B[L], For every $(k, x) \in K \Omega^{0}$, there is a marked polarized $K 3$ surface (X, ϕ, α) such that $p(X, \phi, \alpha)=(\kappa, x)$ and the polarization ϕ contains a Kähler"metric.

So it may be natural to ask what geometric objects correspond to holes $K \Omega \backslash K_{\Omega}{ }^{0}$ of the moduli space of marked polarized generalized K 3 surfaces. Morrison proved the following weak version of Surjectivity Theorem:

Theorem $C[M r]$. For very $(k, x) \in K \Omega$, there is a marked polarized generalized $K 3$ surface (X, ϕ, α) such that $p(X, \phi, \alpha)=(k, x)$.

Yau's solution to Calabi's conjecture tells us that $K_{\Omega}{ }^{0}$ is the moduli space for marked Einstein-Kähler K3 surfaces. On the other hand the point in the hole $k \Omega \backslash K \Omega{ }^{0}$ corresponds to a $K 3$ surface Y and a class $\phi \in H^{1,1}(Y)$
with $\langle\phi, \phi\rangle=1$ such that the area of some effective curves are zero. So, the problem is to find the singular Ricci-flat Einstein-Kähler metric corresponding to ϕ. This question is asked by several authors [Be], [Mr]. We shall solve this problem in the following sections.

2. Ricci-flat orbifold-metrics on generalized K3 surfaces

In [Ya2], Yau presented some results for the existence of a singular Ricci-flat Kähler metric on certain complex manifolds. Since [Ya2] is not published as fas as the authors know, we include the proof of the equivariant version of the Calabi-Yau theorem in this section. There may be many ways arranণinণ the material involved in Yau's proof of Calabi's conjecture. Here, we shall prove the simplest version sufficient for our purposes, namely filling the "holes" of the moduli space of Einstein metrics on a K3 surface.

Theorem 1. Let X be a compact complex surface with at worst isolated quotient singularities. Let $Y \rightarrow X$ be the minimal resolution and $D=\sum_{i}^{\sum D_{j}}$ its exceptional sets decomposed into irreducible components. Choose non-negative rational numbers μ_{i} less than 1 such that $K_{Y}+\sum \mu_{i} D_{i} \sim 0$ near $D \quad\left(s u c h \mu_{i}^{\prime} s\right.$ are uniquely determined). Assume that some tensor power of $K_{Y}+\sum_{i} \mu_{i} D_{i}$ is a trivial line bundle over Y. Then for any Kähler form ϕ in the sense of Fujiki-Moisezon (if exists) on X, we can find a unique real-valued orbifold-smooth function U on X
up to additive constants such that $\phi+\sqrt{-1} \partial \bar{\partial} U$ is a Ricci-flat Einstein-Kähler orbifold-metric form on X. Moreover the current $\phi+\sqrt{-1} \partial \bar{\partial} U$ on Y defines the same cohomology class as ω in $H^{2}(Y ; \mathbb{R})$.

For the proof, we follow Yau's proof [Ya] of Calabi's conjecture partially simplified by Bourguignon [Bo 2], namely the simple proof for the c^{0}-estimate. It is easy to see that there exists a real valued orbifoldsmooth function U_{0} such that $\phi+\sqrt{-1} \partial \bar{\partial} U_{0}=: \phi_{0}$ is an orbifold-Kähler form. Since the resolution of quotient singularities involve only polynomial functions and there exist nonnegative rational numbers μ_{i} such that $K_{Y}+\sum_{i} \mu_{i} D_{i}$ is trivial near D, the following estimates hold:

$$
d z \approx O\left(\gamma^{\varepsilon-1}\right), d w \approx O\left(\gamma^{\varepsilon-1}\right),
$$

where ε is a small positive number, $(2, w)$ are holomorphic local coordinates near D and $\gamma=\left(|\lambda|^{2}+|\mu|^{2}\right)^{1 / 2}$ is the distance function on the local uniformization $\mathbb{B}^{2}:(\lambda, \mu)$ of the quotient singularity corresponding to D. It follows that for any orbifold-smooth function U on X the current $\phi+\sqrt{-1} \partial \bar{\partial} U$ defines the same cohomology class as $\phi \in H^{2}(Y ; \mathbb{R})$. Indeed, we have only to show that

$$
\int_{\mathrm{Y}} \mathrm{dd}^{\mathrm{c} u} \wedge \Psi=0,
$$

for any smooth closed 2 -form ψ on Y. This is equivalent to showing that

$$
\lim _{r \rightarrow 0} \int_{S^{3}(r)} d^{C \sim} \sim \tilde{\tilde{u}}=0
$$

where ~ means that the lifting to the local uniformization and $s^{3}(r)$ is the sphere of radius r centered at the origin. But this is clear from the above estimates. Since some tensor power of $K_{Y}+\sum_{i}^{\sum} \mu_{i} D_{i}$ is trivial on Y, there exists a Ricci-flat volume from V on X which is orbifold-smooth. Thus we have

$$
\phi_{0}^{2}=e^{-f} V
$$

for some orbifold-smooth function f on X. To find U in Theorem 1, we solve the following Monge-Ampère equation:

$$
\begin{equation*}
\left(\phi_{0}+\sqrt{-1} \partial \bar{\partial} U\right)^{2}=e^{f} \phi_{\dot{0}}^{2} \quad \text { on } x . \tag{1}
\end{equation*}
$$

The proof of the uniqueness of orbifold-smooth U is exactly the same as in [Ya] and [BO 2]. To solve the equation (1) we use the continuity method.

Let $c^{k, \alpha}(X)$ be the Banach space of all c^{k} functions on X whose k-th derivative are Hölder continuous of exponent α. This means that any element f in $c^{k, \alpha}(\mathrm{X})$ is of class $\mathrm{C}^{\mathrm{k}, \alpha}$ on local uniformations. The norm on $C^{k, \alpha}(x)$ is defined in completely analogous way
as in the usual Hölder space. Consider the 1-parameter family of equations:
(1) $t \quad\left(\phi_{0}+\sqrt{-1 \partial \bar{\partial} U}\right)^{2}=e^{t f}\left(\frac{\int_{X} \phi_{0}^{2}}{\int_{X} e^{t f} \phi_{0}^{2}}\right) \phi_{0}^{2}$. $(1)_{0}$ has a solution 0 and (1) 1 is what we want to solve. We show that the non-empty set $A=\left\{t \mid t \in[0.1]\right.$ and (1) t has a solution in $\left.C^{k, \alpha}(X)\right\}$ is open and closed. Let E be defined by $E=\left\{u \mid u \in C^{k, \alpha}(X)\right.$ and $\left.\int_{X} u \phi_{0}^{2}=0\right\}$, a closed subspace of $c^{k, \alpha}(X)$. Suppose $u \in C^{k, \alpha}(X)$ is a solution of (1) and let $\tilde{\phi}:=\phi_{0}+\sqrt{-1} \partial \bar{\partial} U$. Define

$$
H:=\left\{h \mid h \in C^{k-2, \alpha}(X) \quad \text { and } \int_{X} h^{\tilde{\phi}^{2}}=0\right\} .
$$

The openess of A follows from:

Lemma. $\Delta_{\tilde{\phi}}: E \longrightarrow H$ is an isomorphism.
Proof. Since $\int_{X} v \widetilde{\phi}^{v}=\int_{X}|d v| \frac{2}{\tilde{\phi}}$ is true in the orbifold category the map $\Delta \tilde{\phi}: E \longrightarrow H$ is injective. To show the surjectivity it suffices to construct the Green's function on the Riemannian orbifold ($\mathrm{X}, \tilde{\phi}$). The standard technique to construct Green's function works in our case. See, for example, [Au].

The closedness follows from the a-priori
C^{0}-estimate for U. For the complex Monge-Amperre equation $(\phi+\sqrt{-1} \partial \bar{\partial} U)^{n}=e^{F_{\phi}}{ }^{n}$ on the compact Kähler manifold, where ω and F is given, the C^{0}-bound for U is obtained in terms of C^{0}-bound for F. The main ingredients are: (a) the construction of Green's function, and (b) the Sobolev inequality for L_{1}^{2}-functions f with $\int f=0$ $c\left(\int|f|^{\frac{2 n}{n-2}}\right)^{\frac{n-2}{2 n}} \leq\left(\int|d f|^{2}\right)^{\frac{1}{2}}$ on a compact Riemann manifold.

But (a) is carried out without difficulty in our case (see [Au]) and (b) is clearly true for some constant $c>0$. We thus get:

Lemma. There is a C^{0}-bound for U in terms of the C^{0}-bound for F..

Since c^{2} and $c^{2, \alpha}$ estimates are carried out by local calculations and the classical maximum principle, exactly the same arguments in [Ya] give us the c^{2} and $c^{2, \alpha}$ bounds for U in our case, i.e., in the orbifold category. Now the proof of Theorem 1 is complete.

In particular, any generalized K 3 surfaces X with
a Fujiki-Moisezon-Kähler form ϕ admits a unqiue Einstein-Kähler orbifold-metric form $\tilde{\phi}$ such that $[\tilde{\phi}]=[\phi]$ in $H^{2}(Y ; \mathbb{R})$.
3. Isometric deformations

Theorem 2. Suppose that X is a generalized $K 3$ surface and $g_{\alpha \bar{\beta}}$ is an Einstein-Kähler orbifold-metric (necessarily Ricci-flat) on X. Then
(1) $X \times S^{2}$ has a complex structure $*$ such that
a) the projection $\pi: x \longrightarrow S^{2} \approx P_{1}(\mathbb{C})$ is a holomorphic map and fibers are generalized K 3 surfaces. From $x \longrightarrow P_{1}(\mathbb{C})$ we can obtain a family of non-singular K3 surfaces $\tilde{x} \longrightarrow P_{1}(\mathbb{C})$,
b) if (X, α) is a marked generalized K 3 surface, then α induces an isomorphism of local systems (in fact trivial systems) $\alpha: R^{2} \pi_{\star}{ }^{\mathbb{Z}} \tilde{x} \xrightarrow{\sim} P_{1}(\mathbb{C}) \times L$
c) for each $t \in P_{1}(\mathbb{I})$ the periods in Ω of $X_{t}=\pi^{-1}(t)$ is an oriented two-plane in the three dimensional space $E \subset L_{\mathbb{R}}$ spanned by ($\operatorname{Re} \omega_{X}$, $\operatorname{Im} \omega_{X}$, $\operatorname{Im} g_{\alpha \bar{B}}$) or more intrincicaly three linearly independent parallel selfdual two forms with respect to the Ricci-flat orbifold metric.
(2) For each $t \in P_{1}(\mathbb{C})$ the Ricci-flat Riemannian orbifold-metric (determined by $g_{\alpha \bar{B}}$! on X_{t} is orbifold-Kählerian with respect to the corresponding complex structure.
(3) The base space $\mathrm{P}_{1}(\mathbb{C})$ parametrizes all complex structures with respect to which g is Kähler.

Proof. The proof is based on the following two lemmas and the Andreotti-Weil remark.

Lemma 1. The Kähler orbifold-metric $\quad g_{\alpha \bar{\beta}}$ is Ricci-flat if and only if for a positive constant $c \in \mathbb{R}_{+} \quad$ we have an equality

$$
\phi \wedge \phi=c \omega_{X} \wedge \overline{\omega_{X}}
$$

of differentiable 4-forms, where $\phi=\operatorname{Im} g_{\alpha \bar{\beta}}$ is the Kähler form of g and ω_{X} is the holomorphic 2-form on X without zeros and poles.

Proof. It is clear. Q.E.D.

Lemma 2. Let (X, g) be as in Theorem. Let ρ be a (closed) 2-form written as

$$
\rho=a \omega_{X}+b \bar{\omega}_{X}+e \phi
$$

where $a, b, e \in \mathbb{C}$. Then $\rho \wedge p=0$ as a form if and only if $[\rho] \wedge[\rho]=0$ as a cohomology class in $H^{4}(X ; \mathbb{C})$ where $[\rho]$ denotes the cohomology class of ρ in $H^{2}(X ; \mathbb{C})$.

Proof. Since $\rho \wedge \rho=\left(2 a b+e^{2} c\right) \omega_{X} \wedge \overline{\omega_{X}}$, $\rho \wedge \rho=0 \leftrightarrows 2 a b+e^{2} c=0 \leftrightarrows[\rho] \wedge[\rho]=0$. The last
equivalence is because $\int_{\mathrm{X}} \omega_{\mathrm{X}} \wedge \bar{\omega}_{\mathrm{X}}>0$.
Q.E.D.

Andreotti-Weil remark [W]. Let X be an oriented differentiable manifold of dimension 4. If there is a ©-valued 2 -form ρ on X such that a) $\rho \wedge \rho=0$, b) $\rho \wedge \bar{\rho}>0$ everywhere, and $c) d \rho=0$, then X admits a unique complex structure such that ρ is a holomorphic 2-form.

Proof of Theorem 2. S^{2} parametrizes all oriented twoplanes in the three dimensional space $E \subset L_{\mathbb{R}}$ spanned by $\left\{\operatorname{Re} \omega_{X}, \operatorname{Im} \omega_{X}, \operatorname{Im} g_{\alpha \bar{\beta}}\right\}$. We may assume that $\left\{\operatorname{Re} \omega_{\mathrm{X}}, \operatorname{Im} \omega_{\mathrm{X}}, \operatorname{Im} g_{\alpha \bar{\beta}}\right\} \quad$ is an orthonormal basis with respect to $<,>\left.\right|_{E}$. Let E_{t} be any oriented two-plane in E and let α, β be an orthonormal basis in E_{t}, then we define

$$
\omega_{t}=\alpha+i \beta .
$$

Clearly $\omega_{t} \wedge \omega_{t}=0$ and $\omega_{t} \wedge \bar{\omega}_{t}>0$, since α, β is an orthonormal basis in E_{t}. So $\omega_{t}=a \omega_{X}+b \bar{\omega}_{X}+e \operatorname{Im} g_{\alpha \bar{B}}$ and defines a new complex structure on X. It is clear that if x is a simple singular point on X and U is a pseudo-convex neighborhood of x and $U=V / G$, where $V \subset \mathbb{C}^{2}$ and $G \subset S U(2)$. Let $\pi: V \backslash\{0\} \rightarrow V \backslash\{0\} / G \cong U \backslash\{x\}$. Then $\pi^{*}\left(\omega_{t} \mid V \backslash\{x\}\right)$ can be prolonged to a 2 -form on V invariant under the action of G. So in such a way we get a complex analytic family $x=\underset{t \in S^{2}}{ } X_{t}$. In fact,
the complex structure x is nothing but that the twistor space for a half-conformally flat Riemannian 4-manifold [AtHS]. (Recall that any Kähler metric with vanishing Ricci tensor is anti-self-dual.) Now let ℓ_{t} be a vector orthogonal to E_{t} in E. Let $\alpha, \beta, \gamma \in \mathbb{R}$ be such that $\ell_{t}=\alpha \operatorname{Re} \omega_{X}+\beta \operatorname{Im} \omega_{X}+\gamma \operatorname{Im} g_{\alpha \bar{\beta}}$. Suppose that $\left\{\operatorname{Re} \omega_{t}, \operatorname{Im} \omega_{t}, \ell_{t}\right\}$ defines the same orientation on E $\subset \Gamma\left(X, \Lambda^{+}\right)$as $\left\{\operatorname{Re} \omega_{X}, \operatorname{Im} \omega_{X}, \operatorname{Im} g_{\alpha \bar{\beta}}\right\}$. ℓ_{t} is a closed form of type $(1,1)$. det $\left(\ell_{t}\right)$ vanishes nowhere on $x \backslash$ sing x and $\operatorname{det}\left(l_{t}\right)=c \omega_{t} \wedge \bar{\omega}_{t}=c \omega_{x} \wedge \overline{\omega_{x}}$. On the other hand, for each $x \in X \backslash S i n g X$ we can find $A \in \operatorname{so(4)}$ such that

$$
d \ell^{+}(A)\left(g_{\alpha \bar{B}}\right)^{t} d \ell^{+}(A)=\ell_{t} \text { in } T_{x} X
$$

where ℓ^{+}is the homomorphism of $S O(4)$ to $S O(3)$ determined by the decomposition of the second exterior representation of $S O(4)$ into irreducible spaces. So l_{t} is positive definite and is an Einstein-Kähler metric on X-Sing X Riemannian equivalent to $g_{\alpha \bar{\beta}}$. Since $\operatorname{Re} \omega_{X}$, Im ω_{X} and $\operatorname{Im} g_{\alpha \bar{\beta}}$ are smooth differential forms on X in the sense of orbifold, ℓ_{t} defines an Einstein-Kähler orbifold-metric with respect to the new complex structure corresponding to ω_{t}. Notice that in the family $x \longrightarrow s^{2} \cong P_{1}(\mathbb{C})$ we can resolve the singularities and get a family of non-singular $k 3$ surfaces $\tilde{X} \longrightarrow P_{1}(\mathbb{C})$. This is so because the singularities of
x are of type $\mathbb{C}^{2} / \Gamma \times \mathrm{P}_{1}(\mathbb{\mathbb { C }})$, where $\Gamma \subset \operatorname{SU}(2)$. The desingularization can be done by successive blow ups. So the marking is well defined on $\tilde{x} \longrightarrow P_{1}(\mathbb{C})$, since all fibers are non-singular K 3 surfaces and $\widetilde{X} \cong P_{1}(\mathbb{C}) \times Y$ as C^{∞} manifolds, where Y is the minimal solution of X. See also the arguments in section 5. Q.E.D.

In [Va], Varouchas proved the following:

Fact. Let X be an analalytic variety admitting an open covering $\left\{U_{i}\right\}$ and a family of functions which are continuous and strictly plurisubharmonic $\psi_{j}: U_{j} \rightarrow \mathbb{R}$ such that $\psi_{j}-\psi_{k}$ is pluriharmonic on $U_{j} \cap U_{k}$. Then X is Kählerian in the sense of Fujiki-Moisezon.

Let (X, ϕ) be a generalized K 3 surface with a Ricci-flat Kähler orbifold-metric form ϕ. In this situation the proof of Varouchas shows that we can find a Fujiki-Moiצezon-Kähler form $\tilde{\phi}$ in the same cohomology class as ϕ.
4. Surjectivity of polarized period map for generalized K3 surfaces

In this section, we prove the strong version of Morrison's Surjectivity Theorem (Theorem C). Namely,
we show that every polarization ϕ in Theorem C contains a Kähler form on X in the sense of Fujiki-Moišezon ([F],[Mo]). Let M be the set of all isomorphism classes of marked polarized generalized K3 surfaces under the following equivalence: $(X, \phi, \alpha) \sim\left(X^{\prime}, \phi^{\prime}, \alpha^{\prime}\right)$ if and only if there is an isomorphism f:Y' $\longrightarrow Y$ which induces isomorphisms on the exceptional sets, such that $f *(\phi)=\phi^{\prime}$ and the diagram

is commutative. Thus Theorems A and C are unified in the following:

Theorem A+C. The polarized period map $p(X, \phi, \alpha)=\left(\alpha_{\mathbb{R}}(\phi),\left[\alpha_{\mathbb{C}}\left(\omega_{X}\right)\right]\right)$ descends to a bijection $\tau: M \longrightarrow K \Omega$.

Now we define a subset M_{1} of M in the following way: the equivalence class of (X, ϕ, α) is an element of M_{1} if and only if ϕ is a Kahler class on X in the sense of Fujiki-moisezon. The main result in this paper is:

Strong Surjectivity Theorem. The map $\tau: M_{1} \rightarrow K \Omega$ is surjective.

Combining this with Theorem A, we have:

Theorem 3. $M=M_{1}$, i.e., every polarization ϕ for any generalized $K 3$ surface contains a Kähler metric in the sense of Fujiki-Moisezon, and the map $\tau: M_{1}=M \rightarrow K \Omega$ is bijective.

Proof of Strong Surjectivity Theorem. Let

$$
\pi: \mathrm{K} \Omega \longrightarrow \mathrm{G}_{3}^{+}\left(\mathrm{L}_{\mathbb{R}}\right)
$$

is defined by $\pi(k,[\omega])=P_{\omega}+\mathbb{R} \cdot k$, where P_{ω} is an oriented positive 2 -plane in ${ }^{L} \mathbf{R}$ whose oriented basis is $\quad\{\operatorname{Re} \omega, \operatorname{Im} \omega\} . G_{3}^{+}\left(L_{\mathbb{R}}\right)$ is the moduli space for oriented positive definite $3-$ planes in $L_{\mathbb{R}}$ which turns out to be the Riemannian symmetric space

$$
\mathrm{SO}_{0}(3,19) . / \mathrm{SO}(3) \times \operatorname{SO}(19)
$$

Using the isometric deformation of generalized K3 structures with respect to the Ricci-flat orbifold metric, we get the following:

Lemma. The image of $\tau: M_{1} \longrightarrow K \Omega$ consists of fibers of $\pi: K \Omega \quad \longrightarrow G_{3}^{+}\left(L_{\mathbb{R}}\right)$.

Proof of Lemma, Let $(\kappa[\omega]) \in K \Omega$ be in the image of τ. We find a generalized $K 3$ surface X and the Kähler form
ϕ such that. $\alpha_{\mathbb{R}}([\phi]) \div k$ and $\left[\alpha_{\mathbb{C}}\left(\omega_{X}\right)\right]=[\omega]$ for some marking α. From theorem 1, we can find a unqiue Ricci-flat Einstein-Kähler orbifold-metric in the form of $\phi+\sqrt{-1} \partial \bar{\partial} U$ for an orbifold smooth function U. The cohomology class of $\phi+\sqrt{-1} \partial \bar{\partial} U$ (in the sense of current) is the same as [ϕ]. Now by Theorem 2, there is an isometric family of generalized K3 structures parametrized by $P_{1}(\mathbb{C})$ and the period of these structures is exactly the fiber $\pi^{-1}(\pi(k,[\omega])) \cong P_{1}(\mathbb{C})$. By Varouchas [Va], the cohomology class of each Einstein-Kähler orbifold-metric form contains a Kähler form in the sense of Fujiki-Moisezon. This completes the proof of Lemma.

Just as in the proof of Surjectivity Theorem for smooth Einstein-Kähler K3 surfaces [L], the remaining part of Theorem 1 is divided into three steps.

Step 1. Suppose $(\kappa,[\omega]) \in K \Omega$ is such that $\left(P_{\omega}+\mathbb{R} \cdot \kappa\right) \cap L$ contains a primitive rank 2 lattice M. By Lemma, we may replace $(\kappa,[\omega])$ by any other elements in $\pi^{-1} \pi(\kappa,[\omega])$. We may thus assume that $M \subset P_{\omega}$. By the weak version of Surjectivity Theorem due to Morrison, we can find a marked polarized generalized K 3 surface (X, ϕ, α) ; such that $\alpha_{\mathbb{R}}(\phi)=K$ and $\left[\alpha_{\mathbb{C}}\left(\omega_{X}\right)\right]=[\omega]$. Since $I^{2}(X)$ is an orthogonal complement of integral classes, $I^{2}(X) \otimes_{\mathbf{Z}} \mathbb{R}=I(X)_{\mathbb{R}}$ is a linear subspace of $H^{2}(Y ; \mathbb{R})$ defined over \mathbb{Q}. Since $M\left(\subset P_{\omega} \subset I^{2}(X)_{\mathbb{R}}\right)$ is defined
over \mathbb{Z}, the orthogonal complement of P_{ω} in $I^{2}(X) \mathbb{R}$ is defined over \mathbb{Q}. So the elements $\&$ which are defined over Q are dense in $C_{P}^{+}(X)$. By the theorem of Mayer [Ma], such ℓ contains a Kähler metric on x in the sense of Fujiki-Moisezon. Since $C_{P}^{+}(X)$ is a convex cone, ϕ is a linear combination of rational points in $C_{P}^{+}(X)$ with positive coefficients. So, ϕ is a Kähler class on x in the sense of Fujiki-Moišzon.

Step 2. Suppose. $(\kappa,[\omega]) \in K \Omega$ is such that $\left(P_{\omega}+\mathbb{R} \cdot K\right) \cap L$ contains a primitive rank 1 lattice $L . I^{2}([\omega])=L_{\mathbb{C}}^{W}([\omega])$ is defined over $\mathbb{Q} \cdot \mathrm{V}^{+}([\omega])$ is partitioned into chambers by reflection hypersurfaces H_{δ} for $\delta \in \Delta([\omega])$. Let K be the chamber containing K. If $\eta \in K$ is such that $\left(P_{\omega}+\mathbb{R} \cdot n\right) \cap L$ contains a primitive rank 2 lattice, then $(\eta,[\omega]) \in \operatorname{Im} \tau$, i.e., there is a $\left(X_{\eta}, \phi_{\eta}, \alpha_{\eta}\right)$ with $\alpha_{\eta \mathbb{R}}\left(\phi_{n}\right)=\eta$ and $\left[\alpha_{n \mathbb{C}}\left(\omega_{X_{n}}\right)\right]=[\omega]$. It is shown in the proof of the weak version of Surjectivity Theorem (see pp. 326-327 of [Mr]) that the isomorphism class of X_{η} is independent of $\eta \in K$. Such η with the property as above are dense in an open convex subcone K of $\mathrm{V}^{+}([\omega])$. So, we can find a marked polarized generalized K3 surface (X, ϕ, α) such that $\alpha_{\mathbb{R}}(\phi)=\kappa,\left[\alpha_{\mathbb{C}}\left(\omega_{X}\right)\right]=[\omega]$ and ϕ contains a Kähler metric in the sense of Fujiki-Moisézon.

Step 3. Let $(K,[\omega]) \in K \Omega$ be an arbitrary point, and K the chamber of $V^{+}([\omega])$ with respect to the action
of the Weyl group $W([\omega])$ containing k. Since $I^{2}([\omega])$ is defined over 0 , the η such that $\left(P_{\omega}+\mathbb{R} \cdot n\right) \cap L$ contains a primitive rank 1 lattice are dense in K. For such η, we can find a $\left(x_{n}, \phi_{n}, \alpha_{n}\right)$ such that $\alpha_{\eta_{\mathbb{R}}}\left(\phi_{n}\right)=n,\left[\alpha_{n \mathbb{C}}\left(\omega_{x_{n}}\right)\right]=[\omega]$ and ϕ_{η} contains a Kähler metric, by Step 2. The isomorphism class of X_{η} is independent of the choice of $\eta \in K$. Since K is a convex cone, K contains a Kähler metric in the sense of Fujiki-Moišzon. Q:E.D.

It is shown in [Vn] that the action of the automorphism group Γ of L on $\mathrm{K} \Omega \cong \mathrm{SO}_{0}(3,19) / \mathrm{SO}(2) \times \mathrm{SO}(19)$ is discrete and properly discontinuous. We thus have a moduli space for the isomorphism classes of polarized generalized K3 surfaces:

Corollary 4. The coarse moduli space for the following objects are all isomorphic to

$$
\Gamma \backslash K \Omega=\Gamma \backslash\left(S O_{0}(3,19) / S O(2) \times S O(19)\right)
$$

under the correspondence induced by the polarized period map,
(i) the isomorphism classes of polarized generalized K3 surfaces,
(ii) the isomorphism classes of polarized generalized K3 surfaces whose polarization comes from a Kähler form in the sense of Fujiki-Moiśsezon,
(iii) the isomorphism classes of Einstein-Kähler generalized K3 surfaces with volume 1.

Proof. The bijection (ii) $\underset{\ddagger}{+}$ (iii) is given by Theorem. There is a natural injection (ii) $\rightarrow(i)$. Theorem A means that there is an injection (i) $\rightarrow \Gamma \backslash K \Omega$ induced from the period map. Theorem 1 means (ii) $\rightarrow \Gamma \backslash K \Omega$ is surjective. Q.E.D.

Remark. Einstein-Kähler generalized K3 surfaces with simple singularities correspond to the fixed points Fix (W) of the group $W \subset \Gamma$ generated by all reflections

$$
S_{\delta}(v)=v+\langle v, \delta\rangle \text {, where } \delta \in L \text { and }\langle\delta, \delta\rangle=-2 \text {. }
$$

Fix (W) is a countable union of submanifolds of real codimension 3 ([Mr]).

5. Moduli of Einstein metrics on a K3 surface.

In this section we define the period map.for Ricci-flat orbifolds diffeomrophic to generalized K3 surfaces and study its properties. We begin with some standard facts from 4-dimensional Riemannian geometry [AtHS]. Let (M,g) be a 4-dimensional Riemannian manifold with a metric g and $\Lambda^{2}=\Lambda^{+} \oplus \Lambda^{-}$the decomposition of 2 -forms into self-dual
and anti-self-dual parts. The Riemannian curvature tensor defines a self-adjoint transformation $R: \Lambda^{2} \longrightarrow \Lambda^{2}$ expressed as $R\left(e_{i} \wedge e_{j}\right)=\frac{1}{2} \sum_{i, j, k, \ell} R_{i j k \ell} e_{k} \wedge e_{\ell}$, where $\left\{e_{i}\right\}$ is a local orthonormal basis of 1 -forms. If we write $R=\left(\begin{array}{ll}A & B \\ B^{*}\end{array}\right)$ relative to the decomposition $\Lambda^{2}=\Lambda^{+} \oplus \Lambda^{-}$, the decomposition of the curvature tensor into irreducible pieces under $S O(4)$ is given by

$$
R \longrightarrow\left(\operatorname{tr} A, B, W_{+}, W_{-}\right)
$$

where $\operatorname{tr} A=\operatorname{tr} C=\frac{1}{4}$ scalar curvature, $B=$ the traceless Ricci tensor, and $W_{+}=A-\frac{1}{3} \operatorname{tr} A, W_{-}=C-\frac{1}{3} \operatorname{tr} C$, the Weyl tensors. If the metric is Kähler with vanishing Ricci-tensor, then $R \wedge \omega \equiv 0$, where ω is the Kähler form. This means that R is anti-self-dual with vanishing Ricci tensor: $\mathrm{R}=\left(\begin{array}{ll}0 & 0 \\ 0 & \mathrm{C}\end{array}\right)$, tr $\mathrm{C}=0$. For any Einstein metric over 4 -manifolds, Hitchin $\overline{[H]}$ showed an inequality $\overline{2 e(g)} \geq \overline{-P_{1}(g)}$ between the Euler form $\mathrm{e}(\mathrm{g})$ and the Pontrjagin form $P_{1}(g)$. The equality occurs if and only if the curvature R is anti-self-dual and Ricci-flat. In particular any Ricci-flat Riemannian metric on a K 3 surface is anti-self-dual.

Let X be a real four dimensional differentiable orbifold which is orbifold-diffeomorphic to a generalized K3 surface X^{\prime}. Suppose X admits a Ricci-flat-metric g. Then we have:

Theorem 5. Let (X, g) be as above. Then the bundle of self-dual 2-forms (in the sense of orbifolds) is a flat trivial bundle with respect to the Levi-Civita connection.

Proof. As in the proof of Lemma 12 in [Kb] we get

$$
\begin{equation*}
\int_{X} e(X, g)=e(Y)-\sum_{p \in S i n g X}\left(e(E p)-\frac{1}{|G p|}\right), \tag{*}
\end{equation*}
$$

where $e(x, g)$ is the Euler form for the Levi-Civita connection of g, $e(E p)$ is the Euler number of the exceptional set Ep for the simple singularitiy $p \in X$ and $|G p|$ is the order of the corresponding finite subgroup $G p$ of $\operatorname{su}(2)$. Let g_{1} and g_{2} be two Riemannian orbifold metrics on X and $P_{1}\left(g_{1}\right), P_{1}\left(g_{2}\right)$ the corresponding Pontrjagin forms respectively. Then $P_{1}\left(g_{1}\right)-P_{1}\left(g_{2}\right)=d \eta$, where η is a orbifold-3-form on X. So, we have $\int_{X} P_{1}\left(g_{1}\right)-\int_{X} \dot{P}_{1}\left(g_{2}\right)=\int_{X} d \eta=0$. Now in a small neighborhood of simple singularities of X we can introduce the canonical orbifold-complex structure, such as $\mathbb{I B}^{2} / G$ where G is a finite subgroup of $\operatorname{SU}(2)$ and \mathbb{B}^{2} is an open ball in \mathbb{C}^{2}. We can thus deform g to be Kähler-orbifold metric around simple singularities with respect to the above complex structure. If the metric g is Kähler then $P_{1}(g)=c_{1}(g)^{2}-2 c_{2}(g)$. Just as in the proof of Lemma 12 in [Kb] we have
$(* *) \quad \frac{1}{3} \int_{X} P_{1}(g)=\operatorname{sign}(Y)+\frac{2}{3} \sum_{p \in \operatorname{Sing} X}\left(e(E p)-\frac{1}{|G p|}\right)$.

Formulas (*) and (**) are valid for any Riemannian orbifold metric. Now we assume that g is an orbifold-metric with vanishing Ricci tensor. From (*) and (**) we have

$$
\int_{X} 2 e(X, g)+P_{1}(X, g)=0
$$

Applying the same argument as in [H] we see that the Ricciflat orbifold-metric g is anti-self-dual: $R=\left(\begin{array}{ll}0 & 0 \\ 0 & C\end{array}\right)$ with tr. $C=0$. For any oriented Riemannian four-manifold the curvature of the induced connection on the bundle Λ^{+}of self-dual 2-forms from the Levi-Civita connection is given by $A+B^{*} \in \operatorname{Hom}\left(\Lambda^{+}, \Lambda^{2}\right)$. In fact, the bundle Λ^{2} of 2 -forms is the adjoint bundle associated with the orthonormal fram bundle and the second exterior power representation λ^{2} of $S O(4)$ splits irto two irreducible subspaces $\quad \lambda^{2}=\lambda^{+} \oplus \lambda^{-}$. The representation λ^{+}defines a homomorphism $\ell^{+}: S O(4) \rightarrow$ SO(3) which gives rise a principal SO(3)-bundle whose adjoint bundle is Λ^{+}. So, in our case, the bundle Λ^{+}with the induced connection is flat. Since the metric g is an orbifold-metric and the minimal resolution of X is simply connected, the bundle Λ^{+}is falt and trivial, i.e., Λ^{+}has three linearly independent parallel sections. Q.E.D.

Remark. From the above proof one sees that there exists. an orbifold-complex structure J on X such that the metric g is a Kähler orbifold-metric. Since the metric is an Einstein-Kähler orbifold metric with vanishing. Ricci tensor and the canonical bundle on the minimal resolution Y descends.to an orbifoldholomorphic line bundle on holomorphic orbifold-2-forms, Y must have trivial canonical bundle. So, Y is a K3 surface with the given complex structure J.

Let (X, g) be as in Theorem 2 and $\alpha: I^{2}(X) \rightarrow L$ a marking, i.e., a metric injection which extends to an isometry $\bar{\alpha}: H^{2}(Y) \rightarrow$. The triple (X, g, α) is a marked K3-orbifold with a Ricci-flat metric g. We define the period map p of all equivalence classes of marked K3-orbifold with a Ricci-flat metric to
$\mathrm{G}_{3}^{+}\left(\mathrm{L}_{\mathbb{R}}\right) \cong \mathrm{SO}_{0}(3,19) / \mathrm{SO}(3) \times \mathrm{SO}(19)$ in the following way: $p(X, g, \alpha)$ is the oriented three-plane in $L_{\mathbb{R}}$. generated by the $\alpha_{\mathbb{R}}$-image of the oriented basis (three ordered linearly independent parallel self-dual 2-forms on X) of the space of parallel self-dual 2-forms. Here, if $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is an oriented basis for \mathbb{R}^{4} then $\left\{e_{1} \wedge e_{2}+e_{3} \wedge e_{4}, e_{1} \wedge e_{3}+e_{4} \wedge e_{2}, e_{1} \wedge e_{4}+e_{2} \wedge e_{3}\right\}$ gives the induced orientation on $\Lambda^{+}\left(\mathbb{R}^{4}\right) \subset \Lambda^{2}\left(\mathbb{R}^{4}\right)$. Two marked Ricci-flat K3-orbifolds ($\mathrm{X}, \mathrm{g}, \mathrm{a}$) and ($X^{\prime}, g^{\prime}, \alpha^{\prime}$) are said to be equivalent if there exists a diffeomorphism $f: Y^{\prime} \rightarrow Y$ which descends to an
orbifold-diffeomorphism of X^{\prime} to X and $f^{*} g=g^{\prime}$, $\overline{\alpha^{\prime}} \circ f^{*}=\bar{\alpha}$. Write N for the set of all equivalence classes of marked K3-orbifold with a Ricci-flat metric.

Theorem 6. The period map $p(x, g, \alpha) \in G_{3}^{r}\left(I_{\mathbb{R}}\right)$ descends to the bijection $\quad a: N \longrightarrow G_{3}^{+}\left(L_{\mathbb{R}}\right)$.

Proof. Suppose $p(x, g, \alpha)=p\left(X^{\prime}, g^{\prime}, \alpha^{\prime}\right)=x \in G_{3}^{+}\left(L_{\mathbb{R}}\right)$. Pick a point $(k,[\omega]) \in K \Omega$ in the fiber $\pi^{-1}(x)$, where $\pi: K \Omega \longrightarrow G_{3}^{+}\left(L_{\mathbb{R}}\right) \quad$ is the natural projection. with the fiber S^{2}. There are marked generalized K 3 surfaces $(\mathrm{X}, \phi, \alpha)$ and ($X^{\prime}, \phi^{\prime}, \alpha^{\prime}$) such that g and g^{\prime} are Einstein-Kähler orbifold-metric. By using the isometric deformation, with respect to the Ricci-flat orbifold-metric, we may assume that the polarized periods are the same for (X, ϕ, α) and ($\mathrm{X}^{\prime}, \phi^{\prime}, \alpha^{\prime}$). From Theorem A, there exists a unique isomorphism $\bar{\Phi}: Y^{\prime} \longrightarrow Y$ which descends to a unique isomorphism $\Phi: \mathrm{X}^{\prime} \longrightarrow \mathrm{X}$ such that $\Phi^{*}=\overline{\bar{\gamma}}=\overline{\alpha^{\prime}} \circ \bar{\alpha}\left(\Phi^{*}=\alpha^{1^{-1}} \circ \alpha\right.$ on $I^{2}(X)$ and $\left.I^{2}\left(X^{\prime}\right)\right) . \Phi$, which is an orbifold-diffeomorphism of X^{\prime} to X, is an isometry with respect to g and g^{\prime}. So, (X, g, α) and ($\left.X^{\prime}, g^{\prime}, \alpha^{\prime}\right)$ are equivalent, i.e., σ is injective. To show the surjectivity of σ we pick a point $x \in G_{3}^{+}\left(L_{\mathbb{R}}\right)$. Choose any $(\kappa,[\omega])$ in the fiber $\pi^{-1}(x) \subset K \Omega$. From the strong version of Surjectivity Theorem, there exists a marked generalized Einstein-Kähler K3 surface (X, ϕ, α) with its period ($k,[\omega]$). If we forget the complex structure of (X, ϕ, α) and look at it only as a Ricci-flat
marked K 3 -orbifold, then its period is $\pi(\kappa,[\omega])=\mathrm{x}$.

> Q.E.D.
Γ acts on both N and $G_{3}^{+}\left(L_{\mathbb{R}}\right)$. The action of Γ on $G_{3}^{+}\left(L_{\mathbb{R}}\right)$ is discrete and properly discontinuous [Vn]. The following is a generalization of the corresponding results in [BO1] and [T2].

Theorem 7. The set of all isomorphism classes of Ricci-flat K3-orbifolds is isomorphic to

$$
\Gamma \backslash\left(\mathrm{SO}_{0}(3,19) / \mathrm{SO}(3) \times \operatorname{SO}(19)\right)
$$

The Ricci-flat K3-orbifold with simple singularities correspond to the fixed points Fix(W) of W. Fix(W) is a countable union of submanifold of codimension 3.

Proof. The last statement follows from the arguments in pp. 311-317 of [Mr].
Q.E.D.

For the convergence of non-singular Ricci-flat metrics to an orbifold-metric we can show the following:

Theorem 8. Let $\left\{E_{t}\right\}$ be a sequence of three dimensional subspaces in $L_{\mathbb{R}}$ such that
a) <,> on each E_{t} is positive definite,
b) for every $\delta \in L$ with $\langle\delta, \delta\rangle=-2, s_{\delta}\left(E_{t}\right) \neq E_{t}$,
c) $\lim _{t \rightarrow 0} E_{t}=E_{0}$, where $<,>$ on E_{0} is positive definite
and there exists $\delta \in \mathrm{L}$ such that $\langle\delta, \delta\rangle=-2$ and $s_{\delta}\left(E_{0}\right)=E_{0}$,
d) let $\left\{g_{i j}(t)\right\}$ be a sequence of Einstein metrics that corresponds to E_{t} and suppose that $\operatorname{vol}\left(g_{i j}(t)=1\right.$ for all t.

Then $\lim _{t \rightarrow 0} g_{i j}(t) \neq g_{i j}(0)$ exists and $g_{i j}(0)$ is an Einstein-Kähler orbifold-metric with respect to a complex structure on a generalized $K 3$ surface X corresponding to some two dimensional oriented subsapce $\mathrm{F}_{0} \subset \mathrm{E}_{0}$.

Proof. Let $F_{t} \subset E_{t}$ be a sequence of two dimensional subspaces in E_{t} such that $\lim _{t \rightarrow 0} F_{t}=F_{0}$. exists and F_{0} is a two dimensional subspace in E_{0}. From Surjectivity Theorem and Global Torelli Theorem, we see that the sequence $\left\{F_{t}\right\}$ corresponds to a unique sequence of $K 3$ surfaces ($\left.X_{t}, \alpha\right)$ with a fixed marking α such that $\lim _{t \rightarrow 0}\left(X_{t}, \alpha\right)=\left(X_{0}, \alpha\right)$. Let ω_{t} be a unique holomorphic 2-form such that on X_{t} we have $\int_{X_{t}} \omega_{t} \wedge \overline{\omega_{t}} \equiv 1$. Clearly $\lim _{t \rightarrow 0} \omega_{t}=\omega_{0}$ exists and $\int_{X_{t}} \omega_{0} \wedge \overline{\omega_{0}}=1$. Now let F_{t}^{\prime} be the two dimensional subspace in E_{t} defined by $R e \omega_{t}$ and $\operatorname{Im} g_{\alpha \bar{\beta}}(t)$, where $g_{\alpha \bar{\beta}}$ is the Einstein-Kähler metric on X_{t} corresponding to $\alpha^{-1}\left(\kappa_{t}\right)$, where $\kappa_{t} \perp F_{t}$ in E_{t}. Since we may suppose that $<k_{t}, k_{t}>=1$ we get from $E_{t} \longrightarrow E_{0}$ and $F_{t} \longrightarrow F_{0}$ that

$$
\lim _{t \rightarrow 0} k_{t}=k_{0} \in E_{0} \text { and } k_{0} \perp F_{0} .
$$

So $\lim _{t \rightarrow 0} F_{t}^{\prime}=F_{0}$ exists and repeating the same arguments as
for F_{t} we get that there exists a unique family of K3 surfaces $\left(X_{t}^{\prime}, \alpha\right)$ with a fixed marking α such that $\lim _{t \rightarrow 0}\left(X_{t}^{\prime}, \alpha\right)=\left(X_{0}^{\prime}, \alpha\right)$. From the theory of isometric deformation of K 3 structures with respect. to tha CalabiYau metric (see section 3), we get that if ω_{t}^{\prime} is a holomorphic two form on X_{t}^{\prime} such that $\int_{X_{t}^{\prime}} \omega_{t}^{\prime} \wedge \bar{\omega}_{t}^{\top}=1$, then

$$
\omega_{t}^{\prime}=\operatorname{Re} \omega_{t}+i \operatorname{Im} g_{\alpha \bar{B}}(t)
$$

Since $\lim _{t \rightarrow 0} \omega_{t}^{\prime}=\omega_{0}^{\prime}$ exists we get that $\quad \lim _{t \rightarrow 0} \operatorname{Im} g_{\alpha \bar{\beta}}(t)$ exists. Now it is easy to see that $\lim _{t \rightarrow 0} \operatorname{Im} g_{\alpha \bar{\beta}}(t)$ is an Einstein-Kähler orbifold-metric form on X_{0}. This is so because for each point $x \in X$ vol $\left(g_{\alpha \bar{B}}(t)\right)=\omega_{t} \wedge \overline{\omega_{t}}$ and ω_{0}^{\prime} is an orbifold-holomorphic 2-form in a neighborhood of some root systems of (-2)-curves in X_{0}.
Q.E.D.

6. The number of guotient singularities

In section 2 we have proved the existence of a Ricciflat Einstein-Kähler orbifold-metric on some orbifolds. This metric is used to estimate the maximal possible number of quotient singularities on a certain orbifold and to determine what occurs in case the maximal number is attained. The following is a generalization of Thm. 1 in [N].

Theorem 9. Let X be a compact complex surface with at worst isolated quotient singularities which admits a Kähler form in the sense of Fujiki-Moisezon. Let $\overline{\mathrm{X}}$ be the minimal resolution for X and D its exceptional sets. Let μ_{i} be the nonnegative rational numbers such that
$K_{\bar{X}}+\sum_{i} \mu_{i} D_{i} \sim 0$ near D as \mathbb{Q}-divisors (such $\mu_{i}{ }^{\prime} s$ are uniquely determined), where $D=\int_{i} D_{i}$ is the decomposition into irreducible components. Suppose that some tensor power of $K_{\bar{X}}+\sum_{\dot{i}} \mu_{i} D_{i}$ is a trivial line bundle. Then we have the following inequality:

$$
e(\bar{X})-\sum_{p \in S i n g}\left(e\left(D_{\mathrm{P}}\right) \cdot-\frac{1}{|G p|}\right) \geq 0,
$$

where $D p$ is the exceptional set for the minimal resolution of $p, G p$ is the corresponding local fundamental group around p. The equality occurs if and only if $X=\Gamma \backslash T^{2}$, where T^{2} is a complex 2-torus and Γ is a group of Euclidean motions acting on T^{2} discretely and properly discontinuously with only isolated fixed points.

Proof. From Theorem 1, there exists an Ricci-flat EinsteinKähler orbifold-metric on X. Using the same arguments as in [Kb] we see that the integral of the Euler form with respect to the Levi-Civita connection of the orbifold-metric is equal to $e(\bar{X})-\sum_{p \in S i n g ~}\left(e(D p)-\frac{1}{|G p|}\right)$. On the other hand, since our metric is Ricci-flat Einstein-Kähler, only the anti-self-dual Weyl tensor $W_{\text {_ }}$ remains in the decomposition
of the curvature tensor (see section 5). So, the Euler form is equal to $\frac{1}{8 \pi^{2}}\left|W_{-}\right|^{2} * 1$ and thus we get

$$
0 \leq \frac{1}{8 \pi^{2}} \int_{X}\left|W_{-}\right|^{2} * 1=e(\bar{X})-\sum_{p \in S i n g}\left(e(D p)-\frac{1}{|G p|}\right) .
$$

The equality occurs if and only if $W_{\mathbf{L}} \boxminus 0$ for our Ricciflat Einstein-Kähler orbifold-metric. Since every compact , flat orbifold is uniformized by a torus, the equality occurs if and only if X is uniformized by a torus with the covering transformation group consisting of Euclidean motions.
Q.E.D.

Corollary 10. For generalized K 3 surfaces X ,

$$
24-\sum_{p \in \operatorname{Sing} x}\left(e(D p)-\frac{1}{T G p}\right) \leq 0,
$$

where equality occurs if and only if $X=\Gamma \backslash T^{2}$, with T^{2} a complex 2-torus and Γ a group of Euclidean motions.

The Kummer surface with (-2)-curves collapsed is the simplest example of the above equality: $24-16 \times \frac{3}{2}=0$. Ivinskis [I] found a non-trivial example
which is as follows. Consider the double covering branched over a sexitic curve in $P_{2}(\mathbb{C})$ with simple singularities. The double covering x is a generalized $k 3$ surface. If $\sum_{p \in S i n g ~}\left(e\left(D_{P}\right)-\frac{1}{T G T_{V}}\right)=24$, then $x=\Gamma \backslash T^{2}$. For the sexitic curve , the double cover x
has $4 D_{4}$ and $3 A_{1}$ singularities. So,

$$
\sum_{\text {pESing } x}\left(e(D p)-\frac{1}{|G p|}\right)=4 \times\left(5-\frac{1}{8}\right)+3 \times\left(2-\frac{1}{2}\right)=24 .
$$

For the dual sexitic curve of a smooth one, X has $9 A_{2}$ singularities. So,

$$
\sum_{p \in \operatorname{Sing} X}\left(e(D p)-\frac{1}{\mid G p T}\right)=9 \times\left(3-\frac{1}{3}\right)=24 .
$$

The sexitics with the above property are classified in [I]. For the classification of complex crystallographic groups, see [YOKT].

These examples show that the equality case in Theorem 9 is not void. As a final remark, we mention the degeneration of Riemannian metrics. The convergence in Theorem 8 is the simplest example of the degeneration of Riemannian metrics with bounded Ricci curvature and volume. Namely, the following occurs: there exists certain submanifolds ((-2)-rational curves) such that the "area" goes to zero and the Riemannian sectional curvature concentrates along these, and the formal Euler number \int (Euler form) decreases (in a "quantized" way in our case) at the limit. In the above examples, the curvature tensor. concentrates so completely that the limit metric is a flat orbifold-metric.

REFERENCES

[At]	Atiyah, M.: On analytic surfaces with double points, Proc. R. Soc. Lond. Ser A $245,237-244$ (1958).
[AtHS]	Atiyah, M., Hitchin, N., Singer, I.: Self-duality in four-dimensional Riemannian geometry, Proc. R. Soc. Lond. Ser A 362, 425-461 (1978).
[Au]	Aubin, T.: "Nonlinear Analysis on Manifolds, MongeAmpère Equations", Springer-Verlag, Grundlehren der Math. 252 (1982).
[Be]	Beauville, A.: Application aux espaces de modules, in Géometrie des surfaces K 3 : modules et périodes, Astérisque 126, 141-152 (1985).
[Bo1]	Bourguignon, J.P.: Déformations des métriques d'Einstèin, Astérisque 80, 21-31 (1980).
[Bo2]	Bourguignon, J.P. et al.: Première classe de Chern et courbure de Ricci: preuve de la conjecture de Cālabi, Séminaire Palaiseau, Astérisque 58, Soc. Math. France (1978)
[BuR]	Burns, D., Rapport, M.: On the Torelli problem for Kählerian K3 surfaces, Ann. scient. Ec. Norm. Sup. 8, 235-274 (1975).
LCY]	Cheng, S.Y., Yau, S.T.: Inequality between Chern numbers of singular Kahler surfaces and characterization of orbit spaces of discrete group of $\mathrm{SU}(2,1)$. in "Complex Differential Geometry and Nonlinear Differential Equations" edited by Y.T. Siu, Contemporary Mathematics, Vol. 49 (1986), American Mathematical Society.
[F]	Fujiki, A.: Closedness of the Douady space of compact Kähler spaces, Publ. RIMS, Kyoto Univ. 1-52 (1978).
[H]	Hitchin, N.: Compact four dimensional Einstein manifolds, J. Differential Geometry 9, 435-441 (1974).
[I]	Ivinskis, K.: Normale Flächen und die Miyaoka-KobayashiUngleichung, Diplomarbeit, Bonn (1985).
[Kb]	Kobayashi, R.: Einstein-Kähler V-metrics on open Satake V-surfaces with isolated quotient singularities, Math. Ann. 385-398 (1985).
[Kd]	Kodaira, K.: On the structure of compact analytic surfaces, I. Amer. J. Math., 86, 751-798 (1964).

[L] Looijenga, E.: A Torelli theorem for Kähler-Einstein K3 surfaces, Lecture Notes in Math. 894, 107-112(1981).
[LP] Looijenga, E., Peters, C.: Torelli theorems for Kähler K3 surfaces, Compositio math. 42, 145-186 (1981).
[Ma] Mayer, A.: Families of $K 3$ surfaces, Nagoya Math. J. 48, 1-17(1972).
[Mo] Moisezon, B.: Singular Kählerian spaces, Manifolds and related topics in topology, Tokyo, Univ. of Tokyo Press, 343-351 (1973).
[Mr] Morrison, D.: Some remarks on the moduli of K3 surfaces, in Classification of Algebraic and analytic manifolds, Progress of Math. vol. 39, 303-332, Birkhäuser (1983).
[Na] Namikawa, Y.: On the surjectivity of the period map of K3 surfaces, in "Classification of Algebraic and Analytic Manifolds", Progress of Math. 39 (1983), Birkhäuser.
[Ni] Nikulin, V.: On Kummer surfaces, Math. USSR Izv. 9, 261-275 (1975).
[Shy] Shafarevich, I.R., Shapiro-Piatechii, A.: A Torelli theorem for algebraic surfaces of type K3, Math. USSR Izv. 5, 547-587 (1971).
[Si] Siu, Y.T.: Every K3 surface is Kähler, Inventiones math. 73, 139-150 (1983).
[T1] Todorov, A.: Applications of Kähler-Einstein-Calabi-Yau metrics to moduli of K 3 surfaces, Inventiones math. 61 , 251-265 (1980).
[T2] Todorov, A.: How many Kähler metrics has a K3 surface? Algebraic geometry and number theory: papers dedicated to I.R. Shafarevich, (1983).
[Va] Varouchas, J.: Stabilité des variétés kählériennes par certains morphism propres, preprint, Université de Nancy I.
[Vn] Vinberg, E.B.: Discrete groups generated by reflections in Lobachevskii spaces, Math. USSR Sbornik 1, 429-444 (1967).
[W]. Weil, A.: Collected papers, vol. 2, pp. 393-395, Springer-Verlag (1979).
[Ya1] Yau, S.T.: On the Ricci curvature of a compact Kähler manifolds and the complex Monge-Ampère equation, I, Comm. Pure and. Appl. Math. 31, 339-441 (1978).
[Ya2] Yau,S.T.: Lectures given at the Institute for Advanced Study, Princeton (1980).
[YoKт] Yoshida, M., Kaneko, J., Tokunaga, S.: Complex crystallographic groups II, J. Math. Soc. Japan, vo. 34 , no. 4, 595-605 (1982).

Mathematical Institute and Institute of Mathematics

Tohoku University
Sendai, 980
JAPAN

Bulgarian Academy of Sciences P.B. 373, Sofia 1000

BULGARIA

