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Ryoichi Kobayashi and Andrey N. Todorov

0. Introduction

The moduli space for:marked polarized K3 surfaees or

equivalently the moduli space for marked K3 surfaees with

a Ricci-flat Einstein-Kähler metrie is construeted in

[T1) and [L). This moduli space is isomorphie to an

open dense subset KnO of

Kn d~f. SOO ( 3 , 1 9) / so (2) x SO ( 19) .

So, it i5 natural to ask what geometrie objects eorrespond

to the "holell Kn\KnO of the moduli 5paee. The purpose

of the present paper is to make some contribution to this

question from differential geometrie point of view. Narnely

we eonsider the polarized peri6d map for K3 surfaees with,

simple singular points. The flavor of our main result

is most typieal in the followirig:·

Theorem 7. The moduli spaee of all Einstein metries on

a K3 surface, including Einstein-orbifold-metrics along

simple singular points, is isomorphie to
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r\(SOO(3,19}/SO(3} x SO(19}} ,

where r is the full group of isometries of the

K3 lattiee

For the proof of this theorem we need two main

ingredients, one from algebraie geometry and the other
I

from differential geornetry. The algebro-geometrie

ingredient is the contribution due to mainly by

Todorov [T1], Looijenga [L], and the generalization

of their arguments by Morrison [Mr] whieh is very

irnportant in the present paper. The differential

geometrie ingredient is the solution of Calabi's

eonjeeture due to Yau [Ya1]and the "equivariant version"

of it whieh asserts the existenee of a Rieei-flat

Einstein-Kähler orbifold-metrie on eertain eornplex

orbifolds. The existenee of a Rieei-flat Einstein-Kähler

orbifold-rnetrie rnakes it possible to use the "isometrie

deformation" of Kähler struetures on generalized K3

surfaees.

Einstein-Kähler orbifold-rnetries were also. used to

eharaeterize the ball quotients of finite volume in terms

of numerieal invariants of orbifolds [CY] aild [Kb] 6 "In differential

geometrie words, that is the criterion for the vanishing

of the anti-self-dual Weyl tensor of the Einstein-Kähler
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orbifold-metrie under eonsideration. In exaetly the

same'spirit, we will obtain the eriterion for the

vanishing of the full eurvature tensor of a Rieei-flat

Einstein-Kähler orbifold-metrie in terms of the numerieal

invariants of the orbifold:

Theorem 9. Let X be a eompaet eomplex surfaee

with at worst simple singularities whose minimal

resolution is a K3 surfaee. Then,

24 - L (e (Ep) - Idp I) ~ 0 ,
pESing X

where Ep and IGpl is the exeeptional divisor for

the minimal resolution for p E Sing X and the order

of the eorresponding loeal fundamental group Gp.

The equality holds if and only if X is obtained by

taking the quotient of a eornplex two torus with respeet

to the diserete Qroup of Euelidean rnotions.

The first author would like to express his gratitude

to Professor David R. Morrison for direeting his interest

to this subjeet and sending hirn his paper [Mr]. The

referenee [Va] was also inforrned hirn by Morrison. Both

authors would like to express their thanks to Max-Planek-

Insitut für Mathematik for support and hospitality.
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1. Review on the moduli of K3 surfaces and.the formulation

of the problem

A K3 surface is a compact complex surface X which is

connected and simply connected and has trivial canonical

bundle KX ' i.e., X has a unique (up to constant)

nowhere van~shing holomorphic 2-form wX . The notion of

a K3 surface is invariant under deformation, i.e., any

deformation of a K3 surface is a K3 surface [Kd). Moreover

any two' K3 surfaces are deformations.of each other [Kd).

So, there exists a unique underlying differentiable manifold

of K3 surfaces which turns out to be a smooth quartic

suface in P3(~). Hence the lattice H2(Xi~) with the cup

bilinear form is the same for all K3 surfaces X and can

be called the K3 lattice. K3 lattice L is the unique

even unimodular lattice of rank 22 and index -16, i.e.,

where ES is the even unimodular positive definite lattice

associated.with the Dynkin diagram of type ES.

Definition. A choice of an isometry

2 ~
a:H (XiX) ~ L

is called a marking of X. A pair (X,a) of a K3 surface

X and a marking a is called a marked K3 surface.
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Let (X,a) be a rnarked K3 surface. H2 ,O(X) is a­

~-vector subspace of H2(X;~)~ L~ of dimension 1

generated by wx ' which satisfies

<w ,w > = ° andx x

We can thus associate to (X,a) a point [a~(wx)] in

the classical per iod domain

n = {w E La:;<w,w> = 0, <w,w»O}/a:*

which i5 an open subset of a hyperquadric in P21 ([) •

The classical period rnap for marked K3 surfaces is

the mapping sending a marked K3 surface (X,a) to the

in n.

Another description for Q which we will use later

is the following: Q = {all oriented two-plane5 E c: L
lR

such that <,>I E is positive definite}. In this description

für Q the classical periüd map für rnarked K3 surfaces

(X,a) is expressed as

(X, a) ~ aJR -image of the two-plane Ex in H
2 (X;]R)

spanned by Re Wx and Im Wx ' where Wx
is a generator of H2 ,0(X) and the orientation
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The classical.period domain parametrizes effectively

the loeal universal deformation (Kuranishi family) for

any K3 surface X. If p:(*,X) ~ (S,O) is the Kuranishi

family for X, we then have a diffeomorphisrn

t: Xx S ---* * such that P?t = pr2. Once we choose a

,'.

rnarking 2a:H (XiZ) ~ L , we get a rnarking for the

family by setting

a 0

We thus get a rnarked Kuranishi family (* ~ S,a), whieh

has a period map TS:S ~ Q , defined by

Now the loeal Torelli theorem due to Andreotti-Weil and

Kodaira [Kd] states that the map TS is holomorphic and

a Ioeal isornorphism at 0. Every point x Endetermines

a Hodge structure of weight 2 on L in the following way:

If w E L~ is a representative for x, we define

H2 ,0 (x) = a: w c La:
HO,2(x) == a:w c La:
H1 ,1 (x) = (H 2 ,0 (x) + HO· , 2 (x) ) .l

C La: .
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The elassieal period domain n elassifies in a

bijeetive way all K3 complex structures on the under-

lying differentiable manifold of a K3 surfaee with a

fixed marking. See [Tl],[BuR] and [LP]. But although

the loeal Torelli theorem is true, one cannot eonstruct

a univer~al farnily of K3 surfaces on n. In fact,

Ati1cah [At] eonstructed two non-isomorphie farnilies of

K3 surfaces with the same period.map. The reason is that

the classieal period domain sees only Hodge struetures,

although the rational curves on a K3 surfaee play an

essential role in the construction of the fine moduli

space. The fol~owing construetion due to Burns-Rapoport

[BuR] clarifies the irnportance of the rational curves on

a K3 surfaee. For x ,E: n, let V+ (x) be one of the

eonnected eomponents of

v (x) = {/< E H1 , 1 (x) n LJR ; <I<: , ~ > = 1 } , and let

i1(x) = {8 E H1 , 1 ("x) nL ;<8,8> = -2} and

+ + o E fj, (x) }Vfj,(x) = {kEV (x);<k,o>:t=O for all . Since n i5

simply eonnected, it is possible to make a continuous

ehoiee of V+ (x) with re5pect to, x E n. For a K3 surfaee

x , we define:

b. (X) = {o E H1
,
1

(X) n H 2 (X ; Z) ; <0 , 8> = - 2 } and

b. + (X) = {all effective 0 E ö (X) , "i. e. , 8 corresponds to

an effective divisor on X}. By Riemann-Roch, 0 or-o

is effective for all 0 E fj, (X). So, + +fj, (X) = Ö (X) U - fj, (X)

and if and 0 =" En, Ö , wi th Z:3 n1.' '= 01. 1.



then

of

-8-

+ +oE!J. (X). Let V (X) be the connected .. component

V(X) := {K E H1,1 (X) n H2 (XiJR) i :<lC.,"K> := 1} which contains

a Kähler metric on X.- We define

+ +
Vp(X) := {kE V (X) i<Jc:,K> := 1, <K,o»O for all ö E &(X)}

for a K3 surface X. The half cone

c; (X) := lR+ X V; (x)

:= {KE H1 ,1 (X) nH2 (XilR) i<X,k»O,<K,O»O

f or all 0 E !1+ (X) }

over V;(X) is the Kähler cone. for X. Note that every K3

surface admits a Kähler rnetric +[Si], i. e., Vp (X) * ep. The

Kähler cone C;(X) for a Kähler surface X is originally

defined by

(* ) c; (X) := {)C;:E H1,1 (X) n H2
(XiJR) i -:<):,1<:»0 and <x,$,»O }

for all effective classes 3 E H1, 1 (X) n H2 (X ijz)

But in the case of K3 surfaces, it is sufficient to check

the property (*) for (-2) -effective classes d E !J. + (X). See,

for example, [LP). Burns-Rapoport [BuR], defined the

Burns-Rapoport ,per iod domain n in the following way.

Define two fiber spaces KnO, Kn over n by

+
Kn = {(K, [t..r]) E LJR ~ niJc: E V (x)}, and

KOO ={ (K , [w]) E Kn i Je:: E V~ (x) } , where x = [w].
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Let ° (KO)O/~ be the quotientTT:KQ ~ 0 = map

defined by (k ,W) ~ (k I I WI ) if and only if w= w' and

k and k' are in the same connected component of the

-1 in KOO.fiber pr 2 ([ w] ) For each x E 0 I define the

subgroup W(x) of Aut(L) n so (H 1
I 1 (x) n L:IR) genera ted

by the reflections

,s(O):x ~ x + <x,ö>o ,

where 0 runs over the whole I:::. (x). Since H1 , 1 (x) n LJR

has a signature (1,19), W(x)

on the hyperbolic 19-space

acts properly discontinuously

+V (x), [Vn]. <The set of

fundamental domains in +V (x) is in one-to-one correspondence

with the set of the partition of I:::. (x) into 1:::.+ (x) and

+ +
-lJ. (x) with the property that if 01 , .•• , 0k E ß (x) and

+o = Ln. O. with ~ 3 n.· ~ 0, then 0 E!i (x). For a
111

partition P:!i (x) = I:::. + (x) U - !i + (x) I the corresponding

fundamental domain V; (X) . is {x E v+ (x) ; <x I Q;;'° for all Ci LI:::. + (x)}

which turns out to be a locally finite "pol yhedron ll whose

sides are given by hyperplanes
.1Ho = {o} for oE 6 (x) •

The Burns-Rapoport. period, rnap associates :to each rnarked K3

surface (X,a) the point in n deterrnined by

TI (a:IR(~) I [a
JR

tux) ]), where K i5 a Kähler class on X.

For this period rnap, the following is known [BuR]:

The Global Torelli Theorem. Let X and Xl be two K3

5urfaces. If there is an isornetry <p : H2 (X I ;Z) --+ H2 (X ;1"1):
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satisfying <Pa: ( [wx ]) = e [wX I ] for some e E 0::* and

<Pm. (V; (XI)) = V; (X), then there is a ,unique isomorphisrn

4>:X ----40- XI with r.IJ * = ep-.

This.was first proved by Prateckii-Shapiro and

Shafarevieh [ShP] in the algebraie ease and refined in

the Kählerian ease by Burns-Rapoport.[BaR]~simplified

by Looijenga-Peters [LP]. This .theorem means th~t any

two rnarked K3 surfaees having the same ,Burns-Rapoport

periods are isomoprhie in the unique way. For the

surjeetivity of this period map, Todorov [T1] proved

Surieetivi ty: Theorem. For every xE n, there 1s a marked

K3 surfaee whose Burns-Rapoport period is x.

For the proof, he used Yau's solution to Calabils

conjeeture, i.e., the isometrie deformation of Kähler

struetures with respect to a Calabi-Yau rnetric. The

same technique is used in this paper, hut now for a

Ricci-flat orbifold-metric. We can thus use the Local

Torelli Theorem,the Global Torelli Theorem, and the

Surjectivity Theorem to glue up marked Kuranlshi families

(which should be small enough to be embedded in n) via

the Burns-Rapoport.period rnap to identify n with the

fine moduli space for marked K3 surfaces. As was shown

by Atiyah [At] (see also [LP]), the spaee n is not

Hausdorff. Moreover, Aut(L) cannot act on n in a

properly discontinuous fashion. Morrison [Mr] made a

great progress to avoid such unsatisfaetory properties of
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ff by introducing the polarized period map for generalized

K3 surfaces.instead of Burns-Rapoport period map for

smooth K3 surfaces. The following definition are due to

Morrison [Mr].

Definition. A compact complex surface.. X is called a

generalized K3 surface if X has at worst simple singular

points and its minimal resolution Y is a K3 surface.

Definition. Let X be a generalized K3 surface and

p : Y~ X i ts minimal resolution. Let 6
1

, ... , 6
k

E H1, 1 (y)n H2 (Y·;71)

be the classes of all (-2)-curves contracted by p. The

root system .R(X) and the Weyl group W(X) of X are

defined by

def. k 2
R (X) - {o = l. a. 6. E H (Y; Z) ;.a

i
E Z , <6 , 6> = - 2 }

. 1 1. 1.1.=

and W (X) d~f. the group generated by {s (0) ; 6 E R (X) }

c Isometry (H2 (y;Z»

Definition. We let

I(X) d~f. H2 (y;Z)W(X), i.e., the set of all classes

orthogonal to R(X). Note that I(X)~ contains H2 ,O(y)

and so determines the Hodge structure of H2 (y;Z)

Definition. Ametrie injection

a:I(X) -+ L
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is a marking of X if a is extendable to an isometry

a of H2 (YiZ) to L. A pair (X,a) is a marked

generalized K3 surface.

Definition. For a generalized K3 surface X, we let

I (X) => v; (X) d~f . ..K:EV;(yri for all 8EH 1 ,1(y) nH 2 (YiZ)l

j
)

with <0,8> =-2, <x, 8>=0

if and only if 0 E R(X) ,

where v; (Y) = {je EH 1 ,1 (Y) nH 2
(YiJR) i<X ,x> = 1 and <k,8»0

for all effective (-2)-

classes 8 on y}

as before. The Kähler cone C;(X) is defined by

C+ ( ) d~ f . + + ( )P X JR x vp X •

Definition. An element 4> E v; (X) is called a polarization

on X. A triple (X,4>,a) is a marked polarized generalized

K3 surface. The polarized period map p for marked

polarized generalized K3 surfaces sends (X,4>,a) to

p(X,ep,a.) = (oJR (ep) I [oa:(wy )]) E KS"L For this map,

Morrison [Mr] proved the Polarized Global Torelli

Theorem for marked polarized generalized K3 surfaces:

Theorem A [Mr]. Let (X,ep) and (Xt,epl) be two polarized

generalized K3 surfaces and let p:y ~ X and
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pl:y l
~ Xl be their minimal resolutions. Suppose

Y:I 2 (X ' ) ~ 1 2 (X) is an isometry such that

YCI: (H 2 , 0 (Y I )) = H2, 0 (Y), Y:IR (<P I) = <p , and extends to

an isornetry Y:H2(y',~) ~ H2 (y;Z). Then there is a

unique isomorp.hism <p: X --...,... X I such that 4>* = y. 4>

comes from a unique isornorphism ~:Y ~ y l which

induces isomorphisms of exceptional sets for p and

pi.

For the surjectivity of this period map, there is

a strong result due to Looijenga [L] (see also [T1] and [Na]):

Theorem B [L]. For every (K,X) E Kn O, there is a rnarked

polarized K3 surface (X,~,a) such that p(X,<p,a) = (K,X)

and the polarization ~ contains a Kähler '-metric.

So it may be natural to ask what geometrie objects

correspond to holes KQ'KnO of the moduxi space of marked

polarized generalized K3 surfaces. Morrison proved the

following weak version of Surjectivity Theorem:

Theorem C [MrJ. For very ($"x) E K,Q , there is a marked

polarized generalized K3 surface (X,<p,a) such that

p(X,<p,a) = (K,X).

Yauls solution to Calabi's conjecture teIls us that

KO D is the moduli space for marked Einstein-Kähler K3

surfaces. On the other hand the point in the hole KO'KOO

corresponds to a K3 surface Y and a class <P E H1 ,1 (y)
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with <~,~> = 1 such that the area of some effective

curves are zero. So, the problem is to find the

singular Ricci-flat Einstein-Kähler metric corresponding

to ~. This question is asked by several authors [Be],

tMr]. We shall solve this problem in the following

sections.

2. Ricci-flat orbifold-metrics on generalized K3 surfaces

In [Ya2], Yau presented some results for the existence

of a singular Ricci-flat Kähler metric on certain complex

manifolds. Since [Ya2] is not published as fas as the

authors know, we include the proof of the equivariant

version of the Calabi-Yau theorem in this section. There

may be many ways arranginq the material involved in Yau's

proof of Calabi's conjecture. Here, we shall prove the

simplest version sufficient for our purposes, namely filling

the "holes" of the moduli space of Einstein metries on a

K3 surface.

Theorem 1. Let X be a compact complex surface with at

worst isolated quotient singularities. Let Y~ X be

the minimal resolution and D = ED. its exceptional sets-. ~
.~

decornposed into irreducible components. Choose non-negative

rational nurnbers ~. less than 1 such that
~

K _ + E~ . D. r-J 0 near D (s uch J.1i'S are unique ly deterrnined).
,y i ~ ~

Assume that sorne tensor power of Ky + E~.D. is a trivial
i 1. 1.

line bundle over Y. Then for any Kähler form ~ in the

sense of FUjiki-Moi§ezon (if exists) on X, we can find

a unique real-valued orbifold-srnooth function U on X
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up to additive constants such that ep + ~aau is a

Ricci-flat Einstein-Kähler orbifold-metric form on

x. Moreover the current ~ + ~aau on Y defines the

same cohomology class as w in H
2

(Yim)

For the proof, we follow Yauls proof [Ya] of

Calabi's conjecture partially simplified by Bourguignon

[Bo 2], namely the simple proof for the CO-estimate. It

is easy to see that there exists areal valued orbifold-

smooth function Uo such that ~ +l=1aauO =: ~O is an

orbifold-Kähler form. Since the resolution of quotient

singularities involve only polynomial functions and there

exist nonnegative rational nurnbers ~i such that

KX + f~iQi is trivial near D, the following estimates

hold:
E-1 E-1dz R;J 0 (y ), dw F:::l 0 (y )

where E is a small positive number, (z ,w) are

holornorphic loeal coordinates near D and

y = (IAI 2 + 1~12)1/2 is the distance function on

the loeal uniformization
2

]ß : (A,~J) of the quotient

singularity corresponding to D. It follows that for any

orbifold-smooth funetion U on X the current

~ + ~aau defines the same cohomology class as

$ E H
2 (Yim) . Indeed, we have only to show that
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for any smooth elosed 2-form ~ on Y. This is

equivalent to showing that

lim I
1

de~ A ~ = 0,
r-+O S-, (r)

where ~ means that the lifting to the loeal uniformization

and S3(~) is the sphere of radius r eentered at the

origin. But this is elear from the above estimates.

Sinee some tensor power of K + L~iD. is trivial on Y,
y i 1

there exists a Rieei-flat volume from V on X whieh is

orbifold-smooth. Thus we have

~2 =o
-f

e .v

for some orbifold-smooth funetion f on X. Ta find U

in Theorem 1, we solve the following Monge-Ampere equation:

( 1 ) on X.

The proof of the uniqueness of orbifold-smooth U is

exaetly the same.as in [Ya] and [Bo 2]. To solve the

equation (1) we use,the eontinuity method.

Let Ck,a(X) be the Banaeh spaee of all ck funetions

on X whose k-th derivative are Hölder eontinuous of

a . This means that any element f inexponent

Ck,a(X) i5 of elas5 on loeal uniformations. The

norm on i5 defined in eompletely analogous way
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as in the usual Hölder space. Consider the 1-parameter

family of equations:

(1)0 has a solution 0 and (1)1 is what we want

to salve. We show that the non-empty set

A = {tltE[O.l] and (1)t has a solution in Ck,a(X)}

is open and closed. Let E be defined by

k a
E = {uluEC ' (X)

k aC ' (X). Suppose

and Jxu~~ = O} , a closed subspace of

u E ck , 0. (X) is a solution of (1) and

let ~ :=~O + l=Taau. Define

H .. = {hlhE Ck - 2 ,a(X) d f h......2 O}an X ~ = •

The openess of A follows from:

Lemma. ß~:E ~ H is an isomorphism.

2
Proof. Since fxvß~v = Jxldvl$ is true in the orbifold

category the map ß~:E ~ H is injective. To show the

surjectivity it suffices to construct the Green's function

on the Riemannian orbifold (x,~). The standard technique

to construct Green's function works in our case. See,

for example, [Au].

Q.E.D~
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The closedness follows from the a-priori

CO-estimate for u. For the complex Monge-Ampere equation

(<p + l='Taau)n = eF<p n on the compact Kähler manifold,

where and F is given, the ° for isw C -bound U

obtained in terms of cO-bound for F. The main

ingredients are: (a) the construction of Green's

function, and (b) the Sobolev inequali ty far L~-fW1ctions 'fJ.with f f=O

2n n-2 1

c (J I f I n- 2 )2i1 ~ (f Idf I 2 ),2 011 a compact Riemann manifold.

But (a) is carried out without diffieulty in our case

(see [Au]) and (b) is clearly true for some constant

e > o. We thU5 get:

Lemma. There i5 a CO-bound for U in terms of the

°C -bound for F,.

Since c 2 and C2 ,o estirnates are carried out by

loeal ealeulations and the classical maximum

principle, exactly the same arguments in [Ya] give us

h C2 d C2 ,a b d f U' .t e an oun S or ln our ease, 1.e.,

in the orbifold eategory. Now the proof of Theorem 1

is eomplete.

In particular, any generalized K3 surfaees X with

./
a Fujiki-Moisezon-Kähler form <p admits a unqiue

Einstein-Kähler orbifold-metrie form $ such that

in 2H (Y;:IR) •
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3. Isometrie deformations

Theorem 2. 5uppose that X is a generalized K3

surfaee and gaß is an Einstein-Kähler orbifold-metrie

(necessarily Rieei-flat) .on X. Then

(1 ) X x 52 has a complex strueture X sueh that

a) the projeetion is a holomorphie

map and fibers are generalized K3 surfaees. From

x~ P1 (~) we ean obtain a family of non-singular

K3 surfaees X~ P1 (~) ,

b) if (X,a) is a marked generalized K3 surfaee, then

a induees an isomorphism of loeal systems (in faet

trivial ~ysterns) a:R
2TI*Zx ~ P 1 (~)x L

e) for eaeh t E P 1 (II) the periods in n of

is an oriented two-plane in the three dimensional spaee

E C:Lm spanned by (Re wx ' Im wx ' Im gaß) or more

intrineiealy three linearly independent parallel self-

dual two forms with respeet to the Rieei-flat orbifold

metrie.

(2) For eaeh tE P 1 (II) the Rieei-flat Riemannian

orbifold-metrie (determined by gaß~ on Xt is

orbifold-Kählerian with respeet to the eorresponding

eornplex strueture.
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(3) The base space P 1 (~) parametrizes all complex

structures with respect to which g is Kähler.

Proof. The proof is based on the following two lemmas

and the Andreotti-weil remark.

isThe Kähler orbifold-metric gciß

Ricci-flat if and only if for a positive constant

Lemma 1.

c E lR+ we have an equality

of differentiable 4-forms., where ~ = Im g - is theaß
Kähler form of g and Wx is the holomorphic 2-form

on X without zeros and poles.

Proof. It is clear. Q.E.D.

Lemma 2. Let (X,g) be as in Theorem. Let p be a

(closed)" 2-forrn written as

where a,b,e E~. Then p A P = 0 as -a form if and only if

[p] A [p] = 0 as a cohomology class in

[p] denotes the cohomology class of p

H
4

(Xi([) where

2in H (Xi«:).

Proof. Since

pAp=O ~

2
P A P = ( 2ab + e c) Wx A Wx '

2
2ab + e c = 0 -- [p] A [p] = O. The last
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equivalence is because Ix Wx A Wx > o.

Andreotti-Weil remark ~W]. Let X be an oriented

Q.E.D.

differentiable manifold of dimension 4. If there is a

([-valued 2-form p on X such that a) p A P == 0,

b) pA P > 0 everywhere, and c) dp = 0, then X

admits a unique complex structure such that p is a

holomorphic 2-form.

Proof cf Theorem 2. 8 2 parametrizes all oriented two-

planes in the three dimensional space E c L:R spanned

by {Re wx,Imwx,Irn gaS} • We rnay assume that

{Re wx,Im wx,Im g~ß} is an orthonormal basis with

respect to <,>I E . Let Et be any oriented two-plane

in E and let a,ß be an orthonormal basis in Et ,

then we define

== a + i ß.

Clearly wt A wt
::: 0 and LI:lt A wt > o, since a,ß

is an orthonormal basis in Et · So wt = awx + bwx + e Im g -aß
and defines a new complex structure on x. It 1s clear that

if x is a simple singular point on X and U is a

pseudo-convex neighborhood of x and U = V/G, where

V c 0: 2 and Ge SO;( 2) ..Let TI: V""'" {o} ~ V....... {O} /G ~ U....... {x}.

Then n*(wtlv....... {x}) can be prolonged to a 2-form on V

invariant under the action of G. So in such a way we

get a cornplex analytic farnily X = U x t . In fact,
tES 2
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the complex structure X is nothing but that the

twistor space for a half-conformally flat Riemannian

4-manifold [AtHSJ. (Recall that any Kähler metric with

vanishing Ricci tensor is an~l-self-dual.) Now let

tt be a vector orthogonal to Et in E. Let a, ß ,y ElR

be such that tt = a Re Wx + ß Im Wx + y Im gaß. Suppose

defines the same orientation on E

C f(X,A+) as {Re wx,Im wx,Im gaß}. R. t is a closed

form of type (1,1). det (R. t ) vanishes nowhere on

X \ Sing X and det (R. t ) = c wt A wt = CW X A Wx • On the

other hand, for each x ~ X\ 5ing X we can find

AE 50(4) such that

T X
x

where ~+ is the homomorphisrn of 50(4) to 50(3)

determined by the decomposition of the second exterior

representation of 50(4) into irreducible spaces.

50 ~t is positive definite and i5 an Einstein-Kähler

metric on X-5ing X Riemannian equivalent to gaß -
5ince Re wX' Im Wx and Im gaß are smooth differential

forms on X in the sense of orbifold, J?t defines an

Einstein-Kähler orbifold-rnetric with respect to the

'new complex structure corresponding to wt - Notice that

in the family X~ 52 ~ P1 (~) we can resolve the

singularities and get a family of non-singular K3 surfaces

X~ P1 (~) · This is so because the singularities of
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X are of type ~2/r x P1 (~), where rc 8U(2). The

desingularization can be done by successive blow ups.

80 the marking is weIl defined on *~ P1 (~), since

all fibers are non-singular K3 surfaces and

x = P1 (~) x Y as
co

C manifolds , where Y is the minimal

solution of X. See also the arguments in section 5. Q.E.D.

In [Va] I Varouchas proved the following:

Fact. Let X be an analalytic variety admitting an

open covering {U,} and a family of functions
1

which are continuous and strictly plurisubharmonic

lJJ ' : U. ---+ JR such that lJJ, - lJJk is pluriharmonic on
J J J

U
j

n Uk . Then X is Kählerian in the sense of

F ,. k' ,"UJl l.-Mo1.sezon.

Let (X/~) be a generalized K3 surface with a

Ricci-flat Kähler orbifold-metric form ~. In this

situation the proof of Varouchas shows that we can find

a Fujiki-Moi~ezon-Kähler form ~ in the same cohomology

class as ~.

4. Surjectivity of polarized period map for generalized

K3 surfaces

In this section, we prove the strong version of

Morrison's Surjectivity Theorem (Theorem Cl. Namely,
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we show that every polarization ~ in Theorem C

contains a Kähler form on X in the sense of

Fujiki-Moi~ezon ([F],[MO]). Let M be the set of all-

isomorphism classes of marked polarized generalized

K3 surfaces under the following equivalence:

(X,~,a) ~ (Xl ,~' ,0') if and only if there is an

isomorphism f:Y' ~ Y which induces isomorphisms on

the exceptional sets, such that f*(~) = ~' and the

diagram

is comrnutative. Thus Theorems A and C are unified in

the following:

Theorem A+C. The polarized period map

p(X,~,a) = (a~ (~) ,[a~(wx)·]) descends to a bijection

T:M ~ Kü.

Now we define a subset M1 of M in the following way:

the equivalence class of (X,~,a) ,is an element of M1

if and only if ~ is a Kähler class on X in the sense

of Fujiki-Moi~ezon. The main result in this paper is:

StrongSurjectivity Theorem. ~he map T:M 1 ~ Kn is

surjective.
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Combining this with Theorem A, we have:

Theorem· 3. M= M1 ' i. e ., every polari zation <p for

any generalized K3 surface contains a Kähler metric in

h f j Ok' 0' d M Mt e sense 0 Fu 1. 1.-Mo1.sezon, an the map T: 1 = ~ KS1

is bijeetive.

Proof of Strong Surieetivity Theorem. Let

is defined by 7T(K,[W]) = P + :IR . K , where P is an
W W

oriented positive 2-plane in L
R

whose oriented basis

is {Re Im wl. + moduliw, G3 (L:IR.) is the space for

oriented positive definite 3-planes in LJR which turns

out to be the Riemannian symmetrie spaee

SOO(3,19).I50(3) x SO(19) •

Using the isometrie deformation of generalized K3 structures

with respeet to the Ricei-flat orbifold metric, we get

the following:

Lemma. The image of T:M 1 ~ KS1 eonsists of fibers of

Proof of Lemma. Let (K[w])E Kn be in the image of T.

We find a generalized K3 surfaee X and the Kähler form
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some marking o. From theorem 1, we can find a unqiue

Ricci-flat Einstein-Kähler orbifold-metric in the form

of ~+ l=Taau for an orbifold smooth function U.

The cohomology class of ~ + l=Taau (in the sense of

current) is ·the same as [~]. Now by Theorem 2, there

is an isometrie family of generalized K3 structures

parametrized by P1 (~) and the period of these

structures' is exactly the fiber TI -1 (TI (K, [w)) ;::;; p 1 (~) .

By Varouchas [Va], the cohomology class.of each

Einstein-Kähler orbifold-metric form contains a Kähler

form in the sense of Fujiki-Moi~ezon. This completes

the proof of Lemma.

Just as in the proof of Surjectivity Theorem for

smooth Einstein-Kähler K3 surfaces [L), the remaining

part of Theorem 1 is divided into three.steps.

Step 1. Suppose (K , [ w]) E Kn is such that (P + R· K) nLw

contains a primitive rank 2 lattice M. By Lemma, we

may replace (K,[W) by any other elements in

-1
TI TI (K, [w) ). We may thus assume that Me P . By the weakw

version of Surjectivity Theorem due to Morrison, we can

find a marked polarized geneIalized K3 surface (X,~,a»)

such that 0R(~) =.K and [o~(wx)] =[w]. Since 1 2 (X)

is an orthogonal complement of integral classes,

r 2 (X) ~zJR =r (X) :R is a linear subspace of H2 (Y i R)

defined over W. Since M(c Pw c, r 2 (X) JR)' is defined



-27-

over Z, the orthogonal complement of Pw in

I 2 (X)E is defined over ~. So the elements 1 which

are defined over Ware dense in +Cp(X) .. By the theorem

of Mayer [Ma], such 1 contains a Kähler rnetric on

X in the sense of Fujiki-Moi~ezon. Since C;(X) is

a convex cone, $ is a linear combination.of rational

points in C;(X) with positive coefficients. So, $ is

a Kähler class on X in the sense of Fujiki-Moi§ezon.

Step 2. Suppose. (K, [w]) E Kn is such that (P +E · K) n L
-- w

contains a primitive rank 1 lattice L. I 2 ([w]) = L~([w])

+is defined over W. V ([w]) is partitioned into chambers

by reflection hypersurfaces Hö for ö E !J. ([w]). Let K

be the charnber containing K. If n E K is such that

(P + E ·n) n L contains a primitive rank 2 lattice, then
w

(n, [w]) E Im T, i. e., there is a (X, $ , Ct) wi th
n n n

Ct JR($I' ) = n and [0 !f'(WX )] = [w]. It is shown in the
n n n~ n

proof of the weak version of Surjectivity Theorem (see

pp. 326-327 of [Mr]) that the isomorphism class of

X is independent of n E K. Such n with the property
n

as above are dense in an open convex subcone K of

v+([w]). So, we can find a marked polarized generalized

K3 surface (X,$,a) such that CtJR($) = K,[aa:(wX)] = [w]

and $ contains a Kähler metric in the sense of

FUjiki-Moisezon.

Step 3. Let (K,[W]) E Kn be an arbitrary point, and

+K the chamber of V ([w]) with respect to th~ action
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of the Weyl group W([w) containing K. Since

1 2 ([w]) is defined over ~, the n such that

(Pw + :IR ·n) n L contains a primitive rank 1 lattice

are dense"in K. For such n , we can find a

(Xn,tPn,an ) such that an (<Pn) = n, [una:(wx ») = [w]
]R n

and tP
n

contains a Kähler metric, by Step 2. The

isomorphism class of x
n

is independent of the choice of

n E K. Since K is a convex cone, K contains a Kähler

"metric in the sense of Fujiki-Moisezon.

It is shown in [Vn] that the action of the

Q.. E.D.

automorphism group r of L on Kn ~ SOO(3,19)/SO(2)xSO(19)

is discrete and properly discontinuous. We thus have a

moduli space for the isornorphism classes of polarized

generalized K3 surfaces:

Corollary 4. The eoarse moduli space for the following

objects are all isomorphie to

r......Kn = r~ (so0 ( 3 , 1 9) / so (2) x SO ( 1 9) )

under the eorrespondenee induced by the polarized period

rnap,

(i) the isomorphism classes of polarized generalized

K3 surfaces,

(ii) the isornorphism classes of polarized generalized

K3 surfaces whose polarization comes from a Kähler

./
form in the sense of Fujiki-Moisezon,
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(iii) the isomorphism classes of Einstein-Kähler

generalized K3 surfaces with volume 1.

Proof. The bijection (ii) + (iii)
~

is given by

Theorem. There is a natural injection (ii) + (i).

Theorem A means that there is an injection (i) ~ r'Kn

induced from the period map. Theorem 1 means

(ii) ~ r'Kn is surjective. Q.E.D.

Remark. Einstein-Kähler generalized K3 surfaces,with

simple singularities correspond to the fixed points

Fix (W) of the group Wer generated by all reflections

s Ö(v) = v + <v, 6. >, where 6 E L and <6,6>=-2.

Fix (W) is a countable union of subrnanifolds of real

codimension 3 ([Mr]).

5. Modul! ~f Einstein m~trics on a K3 surface.

In this section we define the period map.for Ricci-flat

orbifolds diffeomrophic to generalized K3 surfaces and

study its properties. We begin with some standard facts

from 4-dimensional Riemannian geometry [AtHS]. Let (M,g)

be a 4-dimensional Riemannian manifold with a rnetric g and

A2 =A+ ~ A- the decomposition of 2-forms.into self-dual
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and anti-self-dual parts. The Riemannian eurvature

tensor defines a self-adjoint transformation

R •• !l 2 ------:0..... A2 d R ( ) 1 \' R
.Il -------,.-- expresse as e i 1\ e j = '2 /.. . °kiekl\e.Q,'

i,j,k,R., 1.J

where {e.} is a loeal orthonormal basis of 1-forms.
1.

If we write, relative to the decomposition

A2 = A+ e A- , the deeomposition of the eurvature tensor

into irredueible pieces under 50(4) is given by

1where tr A = tr C = 4 scalar eurvature, B =

1
Ricei tensor, and W+ = A - 3 tr A, W_ = C

the traceless

13 tr C , the

Weyl tensors. If the metric is Kähler with vanishing

Rieci-tensor, then R 1\ W = 0, where w is the Kähler form.

This means that R is anti-self-dual with vanishing Rieei

tensor: R = (~ ~) , tr C = o. For any Einstein metric over

4'-manifolds I Hi tchin [H] showed an inequality 2e (g) ;;;; -P l' .("g)

between the Euler form e(g) and the Pontrjagin form

P
1

(g). The equality occurs if and only if the curvature

R is anti-self-dual and Ricci-flat. In particular any

Ricei-flat Riemannian metric on a K3 surface is anti-

self-dual.

Let X be areal four dimensional differentiable

orbifold which is orbifold-diffeomorphic to a generalized

K3 surface ,Xl. Suppose X admits a Ricci-flat-metric g.

Then we have:
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Theorem 5. Let (X,g) be as above. Then the bundle

of self-dual 2-forms (in the sense of orbifolds) is a

flat trivial bundle with respect to the Levi-Civita

connection.

Proof. As in the proof of Lemma 12 in [Kb] we get

(*) Ix e(X,g) = e(Y) - L (e(Ep) - 16p I ) ,
pESing X

where e(X,g) is the Euler form for the Levi-Civita

connection of g, e(Ep) is the Euler nurnber of the

exceptional set Ep for the simple singularitiy

P E X and IGp I is the order of the corresponding finite

g

subgroup Gp of SU(2). Let gt and g2 be two

Riemannian orbifold metries on X and P1 (g1)' P1 (g2)

the corresponding Pontrjagin forms. respectively. Then

P, (g1) - P1 (g2) = dn, where n is a orbifold-3-form

on X. So, we have I xP 1 (g1) Ix P1 (g2) ;;: fxdn = :0. Now in a

small neighborhood of simple singularities of X we

can introduce the canonical orbifold~complex structure,

such as -d /G where G is a fini te subgroup of SU (2)

and E 2 is an open ball in ~2 . We can thus deforrn

to be Kähler-orbifold rnetric around simple singularities

with respect to the above complex structure. If the

2metric g is Kähler then P 1 (g) = c 1 (g) - 2c 2 (g). Just

as in the proof of Lemma 12 in [Kb] we have



(**)

-32-

2 \' 1
= sign (Y) + "3 L. (e (Ep) - TGPT) •

pESing X

Formulas (*). and (**) are valid for any Riemannian orbi-

fold metric. Now we assurne that g is an orbifold-metric

with vanishing Ricci tensor. From (*) and (**) we have

Ix 2e(X,g) + P, (X,g) = o.

Applying the same argument as in [H] we see that the Ricci-

flat orbifold-metric g is anti-self-dual:

R = (~g) with tr. C = O~ For any oriented Riemannian

four-manifold the curvature of the induced connection on

the bundle A+ of self-dual 2-forms from the Levi-Civita

connection is given by A + B* E Horn (A+,A 2 >. In fact,

the bundle A2 of 2-forms is the adjoint bundle

associated with the orthonormal fram bundle and the

second exterior power representation

splits ipto two irreducible subspaces

>..2 of 50(4)

2 + -
~\ =).. ED >.. • The

i \ +representat on 1\ defines a homomorphism +
~ :SO(4) ~ SO(3)

which gives rise a principal 50(3)-bundle whose adjoint

bundle is +A • So, in our case, the bundle A+ with the

induced connection is flat. Since the metric g is an

orbifold-metric and the minimal resolution of Xis.

simply connected, the bundle A+ is falt and trivial,

i.e., A+ has three linearly independent parallel

sections. Q.E.D.
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Frorn the above proof one sees that there

exists.an orbifold-cornplex structure J on X such

that the metric g is a Kähler orbifold-metric. Since

the rnetric is an Einstein-Kähler orbifold metric with

vanishing,Ricci tensor and the canonical. bundle on

the minimal resolution Y descends.to an orbifold-

holomorphic line bundle on holomorphic orbifold-2-forrns,

Y must have trivial canonical bundle. So, Y is a K3

surface with the given.complex structure J.

Let (X,g) be as in Theorem 2 and a:I 2 (X) ~ L

a rnarking, i.e., ametrie injection which extends to an

isornetry - 2a:H (Y) ~ L. The tripIe (x,g,cd is a rnarked

K3-orbifold with a Ricci-flat rnetric g. We define the

period map p of all equivalence classes.of marked

K3-orbifold with a Ricci-flat metric to

G; (L lR) ~ SOÖ (3,19) ISO (3) x SO (19) in the following way:

p(X,g,a) is the oriented three-plane in ,Lm. generated

by the alR-imageof the oriented basis (three ordered linearly

independent parallel self-dual 2~forms on X) of the

space of parallel self-dual 2-forms. Here, if

{e
1

,e
2

,e
3

,e
4

} is an oriented basis for lR,4 then

{e 1 "e2 + e 3 "e4 , e, "e3 + e 4 "e2 , e 1 "e4 + e 2 "e3 }

gives the induced ,orientation on 11.+ (lR,4) C 1\2 (JR4) .

Two rnarked Ricci-flat K3-orhifolds (X,g,a) and

(X',g',a l
) are said to be equivalent if there exists

a diffeornorphism f:Y' ~ Y which descends to an
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orbifold-diffeomorphism of XI to X and f*g = gl,

~ 0 f* = a. Write N for the set of all equivalence

classes of marked K3-orbifold with a Rieei-flat metric.

Theorem 6. The period map

the bijeetion

descends to

Piek a point (K,[W]) EKn

Proof. Suppose p(X,g,~) = p(X' ,gl,~I)

in the fiber

+= XEG 3 (LJR) •

TT- 1 (X), where

+
TT:Kn ~ G

3
(L

JR
) is the natural projection.with the fiber

S2. There are marked generalized K3 surfaees (X,~,a) and

(XI,~I ,~I) such that _g and gl are Einstein-Kähler

orbifold-metrie. By using the isometrie deformation, with

respeet to the Ricci-flat orbifold-metric, we may assume that

the polarized periods are the same for (X,~,a) and (XI,~I ,al).

From Theorem A, there exists a unique isomorphism

i:yl ----+ Y which descends to a unique isomorphism

<1':X I
----;... x such that <1'* = ;;r = (iT 0 a -1

(<1'*= a l
0 a on

1 2 (X) "and 1 2 (X'». $ , which is an orbifold-diffeomorphism

of XI to X, is an isornetry with respect to

g and gl. So, (X,g ,~) and (X' ,gi ,al) are equivalent,.

i.e., a is injective. To show the surjectivity of a we

pick a point
+

x E G
3

(L
lR

) . Choose any (K,[W]) in the fiber

-1TT (x) c Kn. From the strong version of Surjeetivity Theorem,

there exists a marked generalized Einstein-Kähler K3 surface

(X,$,U) with its period (K,[W]). If we forget the cornplex

strueture of (X,~,a) and look at it only as a Rieei-flat
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marked K3-orbifold, then its period is n(K,[w]) = x~

Q.E.D.

r acts on both N and G;(Lm). The action of r
+on G3(L~) is discrete and properly discontinuous [Vn].

The following is a generalization of the corresponding results

in [Bo1] and [T2].

Theorem 7. The set of all isomorphism elasses of Rieci-flat

K3-orbifolds is isomorphie to

r ...... (SO0 (3 , 1 9) / so (3) x SO.( 1 9» •

The Rieci-flat K3-orbifold with simple singularities correspond

to the fixed points Fix(W) of W. Fix(W) is a countable

union of submanifold of codimension 3.

Proof. The last statement follows from the arguments in

pp. 311-31 7 of [Mr] •

Q.E.D.

For the convergence of non-singular Ricci-flat metries

to an orbifold-metric we can show the following:

Theorem 8. Let {Et} be a sequence of three dimensional

subspaces in LJR such that

a) <,> on each Et is positive definite,

b) for every eS E: L with <0,0>= -2, So (Et ) * Et ,

c) lim Et = E , where <,> on E O is positive definite
t-+O 0



-36-

and there exists 0 E L such that <0,8> = -2 and

d) let {go . (t)}
1.J

be a sequence of Einstein metrics that

corresponds to Et and suppose that

for all t.

vo1 (g.. (t) = 1
1.J

Then lim g .. (t) ;= g .. (0) exists and giJ' (0) is an
t-+O 1.J 1.J

Einstein-Kähler orbifold-metric with respect to a complex

structure on a generalized K3 surface X corresponding to

some two dimensional or.iented subsapce F 0 c: EO•

Proof. Let F t c: Et be a sequence of two dimensional subspaces

in Et such that 1im Ft = F exists and F O is a two
t-+O 0

dimensional subspace in EO. Frorn Surjectivity Theorem and

Global Tore1li Theorem, we see that the sequence {Ft }

corresponds to a unique sequence of K3 surfaces (xt,a)

with a fixed marking a such that lim (Xt,a) = (Xo,a).
t-;O

Let wt be a unique holomorphic 2-form such that on Xt

we have JX wt 1\ wt ::: 1. C1early lim wt = Wo exists and
t t-;O

J
Xt

Wo 1\ Wo = 1. Now let Ft be the two dimensional

subspace in Et defined by Re wt and Im gaS(t) , where

is the Einstein-Kähler metric on

in

corresponding to

Et . Since we may suppose that

So lim F
t
l = FO exists and repeating the same arguments as

t-;O
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for Ft we get that there exists a unique family of

K3 surfaces (Xt,u) with a fixed marking a such that

1im (X',a) = (XO',u). From the theory of isometrie
t-+O t
deformation of K3 structures with respect. to.tha Calabi-

Yau metric (see section. 3), we get that if w't is a

holomorphic two form on

then

X't such that w' AW'" = 1,t t

w' =t

Since 1im w' = w' exists we get that
t-+O t 0

exists. Now it is easy to see that lim
t-+O

Einstein-Kähler orbifold-metric form on

1im Im g -ß (t)
t-+O a

Im gaS(t) is an

XO. This is so

Q.E.D.

because for each -point x E X vol (g _ (t)) = WtA Wt and
aß

Wo is an orbifold-holomorphic 2-form in a neighborhood of

some root systems of (~2)-curves in XO.

6. The nurnber of quotient.singularities

In section 2 we have proved the existence of a Ricci-

flat Einstein-Käh1er orbifold-metric on some orbifo1ds. This

metric is used to estimate the maximal possible number of

quotient singularities on a certain orbifold and to determine

what occurs in case the maximal number.is attained. The

following is a generalization of Thm. 1 in [N].
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Theorem 9. Let X be a compact complex surface with at

worst isolated quotient singularities which adrnits a Kähler

form in the sense of Fujiki-Moi~ezon. Let X be the minimal

resolution for X and D its exceptional sets. Let ~.
J.

be the nonnegative rational numbers such that

K-X + L ~. D. ~ 0 near D as (D-divisors (such J.1. I S are
i J.J. J.

uniquely determined) I where D = LD. is the decomposition
. J.
1

into irreducible components. Suppose.that some tensor power

of KX + I J.1.D. is a trivial line bundle. Then we have the
. J. 1
1

following inequality:

e (X) - L (e (D p),' - I~p I) ~ 0,
pESing X '

where Dp is the exc:eptional set for the minimal resolution

of p, Gp is the eorresponding loeal . fundamental group

around p. The equality occurs if and only.if X = r .......T2 ,

where T2 is a cornplex 2-torus and r is a group of

Euclidean rnotions acting on T2 diseretely and properly

discontinuously with only isolated.fixed points.

Proof. From Theorem 1, there exists an Ricci-f~at Einstein­

Kähler orbifold-metric on X. Using the same arguments as

in [Kb] we see that the integral of the Euler form with

respeet to the Levi-Civita connection of the orbifold-metric

15 equal to e(X)- L X (e(Dp) - I~pl) . On the other
pESing

hand, sinee our metric is Ricci-flat Einstein-Kähler, only

the anti-self-dual Weyl tensor W rema1ns in the deeomposition
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of the curvature tensor (see section 5). So, the Euler

form is equal to and thus we get

r (e (Dp)
pESing X

1
TGPT) ·

The equali ty occurs if and only if W ELIO for our Ricci-

flat Einstein-Kähler orbifold-metric. Since every compact

flat orbifold 1s uniformized by a torus, the equality occurs

if and only if X 1s uniformized by a torus with the

covering transformation group consisting of Eublidean motions.

Q.E.D.

Corollary 10. For generalized K3 surfaces X,

2 4 - L (e (Dp) - I~p I ) SO,
pE'Sing X

. 2
where equality occurs if and only if X = r'T , with

2T a complex 2-torus and r a group of Euclidean motions.

The Kummer surface with (-2)-curves collapsed is

th~ simplest exarnple of the above equali ty: 24 - 16 x i = O.

Ivinskis [I] found a non-trivial example

which i5 as follows. Consider the double covering branched

over a sexitic curve in P2(~) with simple 5ingularities.

The double covering X i5 a generalized K3 surface.

If L (e(D ) - ~) = 24, then
pE:.Sing X P P \I

sexitic curve ~ , the double cover X
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has 4D4 and 3 A, singularities. So,

L (e(Dp)
pESing X

IG~ I) = 4x (5 - ~) + 3 x( 2 - ~) = 24.

For the dual sexitic curve of a smooth one, X has 9 A2

singularities. So,

L (e(Dp)
pESing X

IG~ I) = 9 x (3 - ~ ) = 24.

The sexitics with the above property are classified in [1].

For the classification of complex crystallographic groups,

These examples show that the equality case in Theorem 9 is

not void. As a final remark, we mention the degeneration

of Riemannian metrics. The convergence in Theorem 8 is the

simplest example of the degeneration of Riemannian metrics

with bounded Ricci curvature and volurne. Namely, the

following occurs: there exists certain submanifolds

( (-2) -rational curves) sU,ch that the "area 11 goes to zero

and the Riemannian sectional curvature concentrates along

these, and the formal Euler number J(Euler, form) decreases

(in a "quantized" way in our case) at the limit. In the

above examples, the curvature tensor.concentrates so

completely,that the limit metric i5 a flat orbifold-metric.
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