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Q, Introduction

The moduli space for:marked polarized K3 surfaces or
equivalently the moduli space for marked K3 surfaces with
a Ricci-flat Einstein-K&hler metric ié constructed in
[T1] and [L]. This moduli space is isomorphic to an

open dense subset KQO of

dgf.

KQ SOO(3,19)/SO(2)X s0(19) .

So, it is natural to ask what geometric objects correspond

to the "hole" KQ\KQO

of the moduli space. The purpose

of the present paper is to make some contribution to this

question from differential geometric point of view. Namely
we consider the polarized.periéd map for K3 surfaces with

simple singular points. The flavor of our main result

is most typical in the following:.

Theorem 7. The moduli space of all Einstein metrics on
a K3 surface, including Einstein-orbifold-metrics along

simple singular points, is isomorphic to



I‘\(SOO(3,19)/SO(3)x so(19)) ,

where T is the full group of isometries of the

K3 lattice

01
2(-E8) ® 3 (1 0) .

For the proof of this theorem we need two main
ingredients, one from algebraic geometry and the other
from differential geometry. The algebro-geometric
ingredient is the contribution due to mainly by
Todorov [T1], Looijenga [L], and the generalization
of their arguments by Morrison [Mr] which is very
important in the present paper. The differential
geometric ingredient is the solution of Calabi's
conjecture due to Yau [Yal]) and the "equivariant version"
of it which asserts the existence of a Ricci-flat
Einstein-K&hler orbifold-metric on certain complex
orbifolds. The existence of a Ricci-flat Einstein-K&hler
orbifold-metric makes it possible to use the "isometric
deformation" of Kdhler structures on generalized K3

surfaces.

Einstein-Kéhler orbifold-metrics were also. used to

characterize the ball quotients of finite volume in terms

of numerical invariants of orbifolds [CY] and [Kb]. 1In differential
geometric words, that is the criterion for the wvanishing

of the anti-self-dual Weyl tensor of the Einstein-K&hler



orbifold-metric under consideration. In exactly the

same' spirit, we will obtain the criterion for the
vanishing of the full curvature tensor of a Ricci-flat
Einstein-Kihler orbifold-metric in terms of the numerical

invariants of the orbifold:

Theorem 9, Let X be a compact complex surface
with at worst simple singularities whose minimal

resolution is a K3 surface. Then,

]
24 - }  (e(Ep) - TeeT) 20 -
pE€Sing X Cp

where Ep and {Gpl is the exceptional divisorlfor

the minimal resolution for pé€ Sing X and the order

of the corresponding local fundamental group Gp.

The equality holds if and only if X 1is obtained by
taking the quotient of a complex two torus with respect

to the discrete group of Euclidean motions.

The first author would like to express his gratitude
to Professor David R. Morrison for directing his interest
to this subject and sending him his paper [Mr]. The
reference [Val was also informed him by Morrison. Both
authors would like to express their thanks to Max-Planck-

Insitut fiir Mathematik for suppoft and hospitality.



1. Review on the moduli of K3 surfaces and. the formulation

of the problem

A K3 surface is a compact complex surface X which is

connected and simply connected and has trivial canonical
bundle KX , i.e., X has a unique (up to constant)

nowhere vanishing holomorphic 2-form The notion of

Wy -
a K3 surface is invariant under deformation, i.e., any
deformation of a K3 surface is a K3 surface [Kd]. Moreover
any two K3 surfaces are deformations.of each other [Kd].

S0, there exists a unique underlying differentiable manifold
of K3 surfacés which turns out to be a smooth quartic
suface in P3(E). Hence the lattice HZ(X;Z) with the cup

bilinear form is the same for all K3 surfaces X and can

be called the K3 lattice. K3 lattice L 1is the unique

even unimodular lattice of rank 22 and index -16, i.e.,
_ _ 01

where E8 is the even unimodular positive definite lattice

associated . with the Dynkin diagram of type ES‘

Definition. A choice of an isometry

w:HZ (X;B) > L

is called a marking of X. A pair (X,a) of a K3 surface

X and a marking o is called a marked K3 surface.



Let (X,a) be a marked K3 surface. H2'0

(X) 1is a
C-vector subspace of Hz(x;m)s Lo of dimension 1

generated by w, , which satisfies

X

<w_,w > =0 and <w ,w_>>0
x'%x x'x

We can thus associate to (X,a) a point [am(wx)] in

the classical period domain

Q={wEe Lpi<w,w> = 0, <w,w>>0}/a*

which is an open subset of a hyperquadric in P21(¢).

The classical periocd map for marked K3 surfaces is

the mapping sending a marked K3 surface (X,a) to the

point [am(mx)] in Q.

Another description for £ which we will use later

is the following: Q= {all oriented two-planes E<Lp

such that <,>| is positive definite}. In this description

E
for @ the classical period map for marked K3 surfaces

{X,a) 1is expressed as

(X,a) aﬂz—image of the two-plane Ey in H2(X;IU ]

spanned by Re Wy and Im w, , where w

X
2’0(X) and the orientation

X

is a generator of H

| of Ey is given by (Re Wyr Im wy).



The classical. period domain parametrizes effectively
the local universal deformation {(Kuranishi family) for
any K3 surface X. If p:(%X,X} — (S,0) is the Kuranishi
family for X , we then have a diffeomorphism
t:XxS — X such that pot = pr,. Once we choose a

marking a:Hz(X;z) — L , we get a marking for the

family by setting

def. o o t*:n2(xs;2) —

H"(X:;Z)

o

We thus get a marked Kuranishi family (X — S,a), which

has a period map 7T,:5 — Q , defined by

S

S3s b— TS(S) =[as (wX )] .
T S
Now the local Torelli theorem due to Andreotti-Weil and

Kodaira (Kd] states that the map T is holomorphic and

S
a local isomorphism at 0. Every point x € Q determines
a Hodge structure of weight 2 on L in the following way:

If w €L is a representative for x , we define

T

B0 = €w Ly

Ho'z(x) = 0% C LE

B ) = w2 %) + B9 %t e L

T



The classical periocd domain & classifies in a
bijective way all K3 complex structures on the under-
lying differentiable manifold of a K3 surface with a

fixed marking. See [T1],[BuR] and [LP]. But although

the local Torelli theorem is true, one cannot construct
a universal family of K3 surfaces on (. In fact,

Atggah [At] constructed two non—isomorphic families of
K3 surfaces with the same period map. The reason is that'
the classical period domain sees only Hodge structures,
although the rational curves on a K3 surface play an
essential role in the construction of the fine moduli
space. The following construction due to Burns-Rapoport
[BuR] clarifies the importance of the rational curves on
a K3 surface. For x € , let V+(x) be one of the

connected components of + |
1,1

Vix) = {keH (x) N Ly i<k, k> = 1} , and let
Ax) = {se T (x) AL ;<§,8> = -2}  and
Vz(x)= (ke v (x);<k,6>40 for all 6€A(x)} . Since Q is

simply connected, it is possible to make a continuous

choice of V+(x) with respect to x€ Q. For a K3 surface

X , we Qdefine:

8(x) = {seH T (x) n82(X;%);<6,6> = -2} and

A+(X)= {all effective &€4(X),.i.e., & corresponds to

an effective divisor on X} . By Riemann-Roch, &§ or =-§
+

is effective for all 6€ A(X). So, A(X) = A" (x) u-a*tx)

and if 51,...,6ke.f_\.*(x1 and § = In;§, with % 3 n, 20
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then 4§€ A+(X). Let V+(X) be the connected. component

1’1(X)IWH2(X:HU ; 1<x,x> = 1} which contains

of VI(X) = {K€H
a Kihler metric on X. We define
v;',(x) = {(keV (X);<k,k> = 1, <K,6>>0 for all &€ &(X)}

for a K3 surface X. The half cone

+
CP(X)

+ +
R x VP(X)

{ker M (x) nHZ (X; R) 1<K, k>>0,<x,8>>0

for all 6€ AT (X))

over V;(X) is the Kdhler cone . for X. Note that every K3

surface admits a Kidhler metric ([Sil, i.e., V;(X)=#¢. The
Kdhler cone C;(X) for a Kdhler surface X 1is originally
defined by

1'1(X)ﬂ HZ(X;EU i<k, k>>0 and <x,$>>0

+ —
(*) CP(X) = {KeH
1,1

for all effective classes §E€H ' (X)n H®(X;Z)
But in the case of K3 surfaces, it is sufficient to check
the property (*) for (-2)-effective classes d(£A+(X). See,
for example, [LP]. Burns-Rapoport [BuR] defined the

Burns—-Rapoport period domain @ in the following way.

Define two fiber spaces KQO, K over § Dby

K = {(K,[0]) €L_x 2;k €V (x)}, and

R
KQO ={(x,[w]) € KQ; kEVZ(X)}: where x = [w].

|



. Let n:KQO — Q = (Kﬂ)0/~ be the quotient map
defined by (k,w) ~ (k',u') if and only if w= w' and

k and k' are in the same connected component of the

fiber pr51([m]) in xe%. For each X €0, define the

subgroup W(x) of Aut(L)fWSO(H1'1(x)r1LIQ generated

by the reflections
.s8(8):x b— x + <x,6>8 ,

where ¢ runs over the whole A(x}. Since H1"I(>~:)HL}R

has a signature (1,19), W(x) acts properly discontinuously

on the hyperbolic 19-space V+(x), [Vvn]. <«The set of
fundamental domains in V+(x) is in one-to-one correspondence
with the set of the partition of A(x) into A+(x) and

—A+(x) with the property that if § €A+(x) and

1""'6k
§=In; 6, with Z 3 n 20, then §€4"(x). For a

partition P:A(x) = A+(x)lJ- Af(x), the corresponding

fundamental domain V;(X) “is {x €vV'(x);<x,8>>0 for all §ca” (x)}

which turns out to be a locally finite "polyhedron" whose

sides are given by hyperplanes Hg = {61t for sen(x).

The Burns—-Rapoport.periocd map associates :to each marked K3

surface (X,a) the point in § determined by
n(anﬁg) ,[uI{bx)]), where « 1is a Kahler class on X.

For this period map, the following is known [BuR]:

The Global Torelli Theorem. Let X and X' be two K3

surfaces. If there is an isometry ¢:H2(x';3) ~—+—H2(X;Er
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satisfying ¢¢([mx]) = c[wx,] for some c€C* and
¢E{(V;(X')) = V;(X), then there is a unique isomorphism
¢:X —> X' with p* = ¢.

This. was first proved by Prateckii-Shapiro and
Shafarevich [ShP] in the algebraic case and refined in
the K&hlerian case by Burns-Rapoport .[BaR], simplified
by Looijenga-Peters [LP]. This theorem means that any
two marked K3 surfaces having the same Burns-Rapoport
periods are isomoprhic in the unique way. For the

surjectivity of this period map, Todorov [T1] proved

Surjectivity Theorem. For every iezﬁ, there is a marked

K3 surface whose Burns—-Rapoport period is X .

For the proof, he used Yau's solution to Calabi's
conjecture, i.e., the isometric deformation of K&hler
structures with respect to a Calabi-Yau metric. The
same technique is used in this paper, but now for a
Ricci-flat orbifold-metric. We can thus use the Local
Torelli Theorem, the Global Torelli Theorem, and the
Surjectivity Theorem to glue up marked Kuranishi families
(which should be small enough to be embedded in %) via
the Burns-Rapoport. period map to identify Qith the
fine moduli space for marked K3 surfaces. As was shown
by Atiyah [At] (see also [LP]), the space { is not
Hausdorff. Moreover, Aut{(lL) cannot act on § in a

properly discontinuous fashion. Morrison [Mr] made a

great progress to avoid such unsatisfactory properties of
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Q by introducing the polarized period map for generalized

K3 surfaces. instead of Burns—-Rapoport period map for

smooth K3 surfaces. The following definition are due to

Morrison [Mr].

Definition. A compact complex surface . X 1is called a

generalized K3 surface if X has at worst simple singular

points and its minimal resolution Y 1is a K3 surface.

Definition. Let X be a generalized K3 surface and

1

p:Y — X 1its minimal resolution. Let § ..,Gk(EH ’1(YWIH2(Yﬁm

14"
be the classes of all (-2)-curves contracted by p. The

root system R(X) and the Weyl group W(X) of X are

defined by

def k 2
R(X) =°{s=] a;8; € HY(Y;%);a; €%,<8,8> = -2}
i=1

def.

and W(X) the group generated by {s(§);8 € R(X)}

c Isometry (HZ(Y;Z))

Definition. We let

I(X) def. H2(Y;Z)W(X), i.e., the set of all classes

H2,0

orthogonal to R(X). Note that I(x)m contains (Y)

and so determines the Hodge structure of HZ(Y;x)
Definition. A metric injection

g:I(X) — L
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is a marking of X if o is extendable to an isometry
o of HZ(Y;Z) to L. A pair (X,0) is a marked

generalized K3 surface.

Definition. For a generalized K3 surface X, we let

I(X) >V} (X) def. KEVL(Y); for all 6e gty ne(vE))

with <8,8>=-2,<k,8>=0
if and only if & € R{X)

1’1(‘:{) nHZ(Y:Eﬂ :<x ,x> = 1 and <k,8>>0

where V;(Y) = {x €H
for all effective (-2)-

classes & on Yy }

as before. The Kdhler cone C;(X) is defined by

+ def. + +
CP(X) EXTROx VP(X).

Definition. An element ¢E'V;(X) is called a polarization

on X . A triple (X,¢,0a) 1is a marked polarized generalized

K3 surface. The polarized period map p for marked

polarized generalized K3 surfaces sends (X,¢,a) to
p(X,¢,0) = (ap (¢),[oz(w,)]) €KQ. For this map,
Morrison [Mr] proved the Polarized Global Torelli

Theorem for marked polarized generalized K3 surfaces:

Theorem A [Mr]. Let (X,¢) and (X',¢') be two polarized

generalized K3 surfaces and let p:¥ — X and



~-13-

p':Y' —> X' Dbe their minimal resolutions. Suppose
Y:Iz(x') —_— 12(X) is an isometry such that

2,0 i)y o g2 O
Yg (T (¥')) = H

(Y), Ynz(¢')= ¢ , and extends to
an isometry ?:HZ(Y',Z) — HZ(Y;Z). Then there is a
unique isomorphism ¢:X — X' such that ©¢*=y. ¢
comes from a unique isomorphism &:Y —> Y' which

induces isomorphisms of exceptional sets for p and

p'.

For the surjectivity of this period map, there is

a strong result due to Looijenga [L] (see also [T1] and [Nal):

Theorem B_[L], For every (n,x)EﬁKQO, there is a marked

polarized K3 surface (¥X,¢,c¢) such that p(X,¢,a) = (k,x)

and the polarization ¢ contains a Kd&hler metric.

So it may be natural to ask what geometric objects
correspond to holes KQ\KQO of the moduli space of marked
polarized generélized X3 surfaces. Morrison proved the

following weak version of Surjectivity Theorem:

Theorem C [Mr]. For very (x,x) € KQ , there is a marked

polarized generalized K3 surface (X,¢,a) such that

p(X,dhOl) = (k,x).

Yau's solution to Calabi's conjecture tells us that

KQO is the moduli space for marked Einstein-Kdhler K3

surfaces. On the other hand the point in the hole KQ\KQO

1,1

corresponds to a K3 surface Y and a class ¢ € H (Y)
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with <¢,¢> = 1 such that the area of some effective
curves are zero. So, the problem is to find the

singular Ricci-flat Einstein-K&hler metric corresponding
to ¢. This question is asked by several authors [Be]l,
[Mr]. We shall solve this problem in the following

sections.

2, Ricci- orbi -metrics en ized K3 s s

In [Ya2], Yau presented some results for the existence
of a singular Ricci-flat Kdhler metric on certain complex
manifolds. Since [Ya2] is not published as fas as the
authors know, we include the proof of the equivariant
version of the Calabi-Yau theorem in this section. There
may be many ways arranging the material involved in Yau's
proof of Calabi's conjecture. Here, we shall prove the
simplest version sufficient for our purposes, namely filling
the "holes" of the moduli space of Einstein metrics on a

K3 surface.

Theorem 1. Let X be a compact complex surface with at
worst isolated quotient singularities. Let Y —> X be
the minimal resolution and D :,?Di its exceptional sets
decomposed into irreducible comﬁénents. Choose non-negative
rational numbefs By less than 1 such that

KY + ipiDi'“O near D (such K;'s are uniquely determined).
Assume that some tensor power of Ky + ;piDi is a trivial
line bundle over Y. Then for any Kéhlei form ¢ in the

sense of Fujiki—Moiéezon (if exists) on X, we can find

a unique real-valued orbifold-smooth function U on X
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up to additive constants such that ¢ + /133U is a
Ricci-flat Einstein-Kdhler orbifold-metric form on
X. Moreover the current ¢ + ¥=133U on Y defines the

same cohomology class as w in H2(Y;IU .

For the proof, we follow Yau's proof [Yal] of'
Calabi's conjecture partially simplified By Bourguignon
[Bo 2], namely the simple proof for the Co—estimate. It
is easy to see that there exists a real valued orbifold-
smooth function U, such that ¢4-/:T85U0 =: ¢, is an
orbifold-K&hler form. Since the resolution of quotient
singularities involve only polynomial functions and there
exist nonnegative rational numbers p; such that
KE + i“ini is trivial near D, the following estimates
hold:

azm 0 ("™, aw s 05T,

where ¢ 1is a small positive number, (z,w) are
holomorphic local coordinates near D and

Yy = (l)LI2 + I;.LI2)1/2 is the distance function on

the local uniformization IB2 :(A,u) of the quotieht
singularity corresponding to D. It follows that for any
orbifold-smooth function U on X the current

¢ + /=123U defines the same cohomology class as

¢ € H2(Y;IU . Indeed, we have only to show that

ijdcu AY =0,
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for any smooth closed 2-form V¥ on Y. This is

equivalent to showing that

lim [, a%u A ¥ = o0,

r+~0 87 (r)
where ~ means that the lifting to the local uniformization
and 83(r) is the sphere of radius r centered at the
origin. But this is clear from the above estimates.
Since some tensor power of KY + i”iDi is trivial on Y,
there exists a Ricci-flat volume from V on X which is

orbifold-smooth. Thus we have

for some orbifold-smooth function £ on X. To find @

in Theorem 1, we solve the following Monge-Ampere equation:
(1) (o + /~T330) 2% = ef¢g on X.

The proof of the uniqueness of orbifold-smooth U is
exactly the same .as in [Ya] and [Bo 2]. To solve the

equation (1) we use the continuity method.

Let Ck'a(x) be the Banach space of all ck functions
on X whose k-th derivative are HOlder continuous of

exponent ¢ . This means that any element f in

Ckl'o"' k,a

{X) is of class C
k,a

on local uniformations. The

norm on C (X) 1is defined in completely analogous way
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as in the usual H&lder space. Consider the t1-parameter

family of equations:

i 2 tf Ix¢g 2
(¢0 + /=133U)° = e (———————) o5 .

(1) o
tf, 2
Ixe %%

(1)0 has a solution 0 and (1)1 is what we want
to solve. We show that the non-empty set

A = {t|t€[0.1] and (1), has a solution in C*'*(x)}
is open and c¢losed. Let E be defined by

E = {ujuec’®

k,a

(X) and fxu¢§ = 0} , a closed subspace of

k,a

C (X}. Suppose ue€cC (X) 1is a solution of (1) and

~

let ¢ :=¢, + Y=133U. Define

k=-2,a

H := {h|h€C

(X) and th$2 =0} .

The openess of A follows from:

Lemma. A~:E — H 1is an isomorphism.

¢

Proof. Since jxvﬂgv = fxldvl% is true in the orbifold
category the map A$:E — H 1is injective. To show the
surjectivity it suffices to construct the Green's function
on the Riemannian'orbifold (X,9) . The standard technique
to construct Green's function works in our case. See,

for example, [Au].

Q.E.D.
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The closedness follows from the a-priori
Co—estimate for U. For the complex Monge-Ampére eguation
(¢ + /~T030)" = eF¢n on the compact Kéhler manifold,
where w and F is given, the Co-bound for U 1is
obtained in terms of Co—bound for F. The main

ingredients are: (a) the construction of Green's

function, and (b) the Sobolev inequality forlﬁ-ﬂnmﬁionS'fuﬂIh
2n n-2
n-2, 2n 2 1
c(fI£l ) S (JIdf1°)2 on a compact Riemann manifold.

But (a) 1is carried out without difficulty in our case
(see [Aul]) and (b) is clearly true for some constant

c>0. We thus get:

Lemma, There is a Co—bound for U in terms of the

Co-bound for F..

Since C2 and Cz'a estimates are carried out by
local calculations and the classical maximum
principle, exactly the same arguments in [Yal give us

the C2 and Cz'u

bounds for U in our case, i.e.,
in the orbifold category. Now the proof of Theorem 1

is compléte.

In particular, any generalized K3 surfaces X with
v .
a Fujiki-Moisezon-Kdhler form ¢ admits a ungiue
Einstein-Kihler orbifold-metric form $ such that

[$1=0¢] in HZ(Y;EU .

£

0
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3. Isometric deformations

orem Suppose that X is a generalized K3
surface and 948 is an Einstein-Kadhler orbifold-metric

(necessarily Ricci-flat).on X. Then

(1) X><82 has a complex structure X such that

a) the projection T7m:X —» Szz P1(E) is a holomorphic

map and fibers are generalized K3 surfaces. From
X — P1(E) we can obtain a family of non-singular

K3 surfaces X —» P, (T),

b) if (X,a) 1is a marked generalized K3 surface, then
¢ 1induces an isomorphism of local systems (in fact

trivial systems) a:sz*z¥ s P1(E)x L

c) for each tEIP1(E) the periods in Q of X =n_1(t)

t
is an oriented two-plane in the three dimensional space

E <L spanned by (Re w Im w

R X’
intrincicaly three linearly independent parallel self-

X’ Im gaﬁ) or more

dual two forms with respect to the Ricci~flat orbifold

metric.

(2) For each t¢€ P1(E) the Ricci-flat Riemannian
orbifold-metric (determined by gaﬁ) on X, is
orbifold-Ki&hlerian with respect to the corresponding

complex structure.
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(3) The base space P1(¢) parametrizes all complex

structures with respect to which g is Kdhler.

Proof. The proof is based on the following two lemmas

and the Andreotti-Weil remark.

Lemma 1. The K&hler orbifeold-metric 948 is
Ricci-flat if and only if for a positive constant

ce€ R, we have an equality

PAD = ¢ Wy A Oy
of differentiable 4-forms, where ¢ = Im gaﬁ is the
Kéhler form of g and w is the holomorphic 2-form

X
on X without zeros and poles.

Proof, It is clear. Q.E.D.

Lemma 2. Let (X,g) be as in Theorem. Let p be a

(closed) 2-form written as

P=a wy t b wy *+ € )

where a,b,e€ . Then paAap=0 as.a form if and only if
[p] A [p] = 0 as a cohomology class in H4(X;E) where

[p] denotes the cohomology class of p in Hz(x;m).

Proof. Since paAp = {(2ab + e2c)wx A U; ,

2
pAp =0 e»2ab +e c =0« [p] A [p] = 0. The last
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equivalence is because IX Wy A Wy > 0. Q.E.D.

Andreotti-Weil remark [W]. Let X be an oriented

differentiable manifold of dimension 4. If there is a
C-valued 2-form p on X such that a) pap =0,

b) pap > 0 everywhere, and c) dp = 0, then X
admits a unique complex structure such that p 1is a

holomoxrphic 2-form.

Proof of Theorem 2, 82 parametrizes all oriented two-
planes in the three dimensional space EC:L:IR spanned

by {Re wy,Imw,,Im gaE} . We may assume that

{Re mX,Im wx,Im gaE is an orthonormal basis with
respect to <,>|E. Let E, be any oriented two-plane
in E and let o,BB be an orthonormal basis in Et'
then we define
Wy = @ + 18.
Clearly Wy A wt = 0 and Wy A wt > 0, since «o,B
is an orthonormal basis in E, . So Wy T awy ¥ wa + e Im 9,8

and defines a new complex structure on X. It is clear that
if x 1is a simple singular point on X and U is a
pseudo-convex neighborhood of x and U = V/G, where
Ver? and GeSUA2). Let m:v~{0} —> V~{0}/G = UN{x}.
Then ﬂ*(mtIV\{x}) can be prolonged to a 2-form on V
invar;ant under the action of G. So in such a way we

get a complex analytic family X = U xt . In fact,
tesg?



the complex structure X is nothing but that the
twistor space for a half-conformally flat Riemannian
4-manifold [AtHS]. (Recall that any Kdhler metric with
vanishing Ricci tensor is anti-self-dual.) Now let

Et be a vector orthogonal to Et in E. Let «ao,B,y €R

be such that Et = o Re Wy * B Im Wy + v Im gag. Suppose

that {Re wt,Im mt'gt} defines the same orientation on

c F(X,A+) as {Re w,,Im wx,Im ga—}. L is a closed

X B t

form of type (1,1). det (1t) vanishes nowhere on

X\\ sing X and det (¢,) = ¢ wt/\GZ = cwXJNE; . On the
other hand, for each x ¢ X\Sing X we can find

A€ 50(4) such that

as? (A)guB—)td2,+ ) = 8, in T.X ,

where &% is the homomorphism of S0O(4) to SO(3)
determined by the decomposition of the second exterior
representation of 8S0(4) into irreducible spaces.

So Rt is positive definite and is an Einstein-K&hler
metric on X-Sing X Riemannian equivalent to 9.8 *
Since Re Wy s Im Wy and Im 948 are smooth differential
forms on X in the sense of orbifold, lt defines an
Einstein-Kdhler orbifold-metric with respect to the

new complex structure corresponding to Wy, -
in the family X — 82 = P1(m) we can resolve the

Notice that

singularities and get a family of non-singular X3 surfaces

X — P,(C) . This is so because the singularities of

E
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X are of type EZ/F x P1(E), where T < SU(2). The
desingularization can be done by successive blow ups.

So the marking is well defined on ¥ —> P1(¢), since
all fibers are non-singular K3 surfaces and

X = P1((I:)x Y as C° manifolds, where Y is the minimal

solution of X. See also the arguments in section 5. Q.E.D.
In [Val , Varouchas proved the following:

Fact. Let X be an analalytic variety admitting an
open covering {Ui} and a family of functions

which are continuous and strictly plurisubharmonic

tpj:Uj — R such that wj - wk is pluriharmonic on
UjrlUk. Then X 1is Kdhlerian in the sense of

Fujiki—Moigezon.

Let (X,¢}) be a generalized K3 surface with a
Ricci-flat Kdhler orbifold-metric form ¢. In this
situation the proof of‘Varouchas shows that we can find
a Fujiki-Moigézon-Kéhler form $ in the same cohomology

class as ¢.

4, Surjectivity of polarized period map for generalized
K3 surfaces

In this section, we prove the strong version of

Morrison's Surjectivity Theorem (Theorem C). Namely,
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we show that every polarization ¢ in Theorem C
contains a Kihler form on X in the sense of
Fujiki—Moigezon ([F],[Mo]). Let M be the set of all
isomorphism classeg of marked polarized generalized
K3 surfaces under the following equivalence:
(X,,0) ~ (X',¢',a"') if and only if there is an

isomorphism £:Y' — Y which induces isomorphisms on

the exceptional sets, such that f£f*(¢) = ¢' and the
diagram
2
H™ (Y;Z) )
£f* L
Er
u?(y',z)

is commutative. Thus Theorems A and C are unified in

the following:

Theorem A+C. The polarized period map

p(X,¢,a) = (a32(¢),[am(wx)]) descends to a bijection

T:M —> K{.

Now we define a subset M1 of M in the following way:
the equivalence class of (X,¢,0) .is an element of M1
if and only if ¢ 1is a Kdhler class on X in the sense

cia s . . .
of Fujiki-Moisezon. The main result in this paper is:

Strong Surjectivity Theorem. The map T:M1 —> KQ is

surjective.
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Combining this with Theorem A, we have:
Theorem 3, M= M1 , i1.e., every polarization ¢ for
any generalized K3 surface contains a Kdhler metric in
4
the sense of Fujiki-Moisezon, and the map T:M1= M — K@

is bijective.
Proof of Strong Surjectivit¥ Tgeggem. Let
1RO —> Gi(L_)
* 3R

is defined by w(x,[w]) = P+ R - k , where Pw is an

oriented positive 2-plane in LR whose oriented basis
is {Re w, Im wh GE(LII) is the moduli space for
oriented positive definite 3-planes in L]R which turns

out to be the Riemannian symmetric space

soo(3,19)/so(3)x so(19) .

Using the iscometric deformation of generalized K3 structures
with respect to the Ricci-flat orbifold metric, we get

the following:

Lemma. The image of T:M1 — K consists of fibers of

+

Proof of Lemma. Let (k[w])€ KQ@ be in the image of T.

We find a generalized K3 surface X and the Kidhler form
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¢ such that. aﬂzﬂ¢])? k and [am(wx)]= [w] for

some marking o. From theorem 1, we can find a ungiue
Ricci-flat Einstein-Kihler orbifold-metric in the form
of ¢+ /=100U for an orbifold smooth function U.

The cohomology class of ¢+ /:TaﬁU (in the sense of
current) is the same as [¢]. Now by Theorem 2, there
is an isometric family of generalized K3 structures

parametrized by P. (L) and the period of these

1
structures- is exactly the fiber ﬂ_1(n(x,[w])) = P1(¢).
By Varouchas [Val, the cohomology class .of each

Einstein-K&hler orbifold-metric form contains a Kiahler

form in the sense of Fujiki—Moigezon. This completes

the proof of Lemma.

Just as in the proof of Surjectivity Theorem for
smooth Einstein-K3dhler K3 surfaces [L], the remaining

part of Theorem 1 is divided into three . steps.

Step 1. Suppose (k,[w]) €KQ 1is such that (Pm + R +x)NL
contains a primitive rank 2 lattice M. By Lemma, we

may replace (k,[w]) by any other elements in

1k, [0]). We may thus assume that McP . By the weak
version of Surjectivity Theorem due to Morrison, we can
find a marked polarized generalized K3 surface (X,¢,a);
such that amjﬁ) = k and [aa(wx)] =[w]. Since IZ(X)

is an orthogonal complement of integral classes,

IZ(X) az]R=I(X)R is a linear subspace of H2(Y;IU

defined over @. Since M(c chalz(x)lg- is defined
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over E, the orthogonal complement of P, in

Iz(X)]R is defined over Q. So the elements £ which
are defined over @ are dense in C;(X), By the theorem
of Mayer [Mal, such % contains a Kihler metric on

X in the sense of Fujiki—Moiéezon. Since C;(X) is

a convex cone, ¢ is a linear combination.of rational
points in C;(X) with positive coefficients. So, ¢ 1is

a Kahler class on X in the sense of Fujiki-Moigezon.

Step 2. Suppose . (k,[w]) €K 1s such that (Pw+Ii-K)n L
contains a primitive rank 1 lattice L. 12([w]) = Lg([m])
is defined over @. V'@ ([w]) is partitioned into chambers
by reflection hypersurfaces Hg for 6€A(lw]). Let K
be the chamber containing «. If n € K 1is such that

(Pw + R+n)NL contains a primitive rank 2 lattice, then
(n,[w]) € Im t, i.e., there is a (Xn,¢n,an) with

anllhhn) = n and [anm(wxn)]= [w]. It is §hown in the
proof of the weak version of Surjectivity Theorem (see
pp. 326-327 of [Mr]) that the isomorphism class of

Xn is independent of n € K. Such n with the property
as above are dense in an open convex subcone K of
V+([w]). So,.we can find a marked polarized generalized
K3 surface (X,¢,a) such that ané¢) = K,[am(wx)] = [w]

and ¢ contalns a Kdhler metric in the sense of

iy .Y
Fujiki-Moisezon.

Step 3. Let (k,[w]l) € K@ be an arbitrary point, and

K the chamber of V+([Q]) with respect to the action
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of the Weyl group W([wl]) containing K . Since
Iz([u]) is defined over @, the n such that

(P, + R-n) NL contains a primitive rank 1 lattice
are dense in K. For such n , we can find a

(xn,¢n,an) such that « n, la m(wx )1 = [wl

(¢.) =
ng M n n
and ¢n contains a Kdhler metric, by Step 2. The
isomorphism class of Xn is independent of the choice of

n € K. Since K 1is a convex cone, kK contains a K3hler

metric in the sense of Fujiki—Moiéezon. Q.E.D.

It is shown in [Vn] that the action of the
automorphism group T of L on K{Q = 800(3,19)/50(2)XS0(19)
is discrete and properly discontinuous. We thus have a
moduli space for the isomorphism classes of polarized

generalized K3 surfaces:

Corollary 4. The coarse moduli space for the following

objects are all isomorphic to

F\KQ:=F\(SOO(3,19)/SO(2) x 80(19))

under the correspondence induced by the polarized period

map,

(i) the isomorphism classes of polarized generalized
K3 surfaces,

(ii) the isomorphism classes of polarized generalized
K3 surfaces whose polarization comes from a Kihler

. s .7
form in the sense of Fujiki-Moisezon,
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(iii) the isomorphism classes of Einstein-K&hler

generalized K3 surfaces with volume 1.

Proof. The bijection (ii) > (iii) is given by
Theorem. There is a natural injection (ii) - (i).
Theorem A means that there is an injection (i) — I~NKQ
induced from the period map. Theorem 1 means

(ii) — T~K 1is surjective. Q.E.D.

Remark. Einstein-Kdhler generalized K3 surfaces. with
simple singularities correspond to the fixed points

Fix (W) of the group W <« I' generated by all reflections
SG(V) = v + <v,8> , where G8€L and <§,6>=-2,

Fix (W) 1is a countable union of submanifolds of real

codimension 3 ([Mr]).

5. Modulinof Einstein metrics on a K3 surface.

In this section we define the period map.for Ricci-flat
orbifolds diffeomrophic to generalized K3 surfaces and
sﬁudf its properties. We begin with some standard facts
from 4-dimensional Riemannian geometry [AtHS]. Let (M,q)
be a 4-dimensional Riemannian manifold with a metric g and

A2=A+ ® A the decomposition of 2-forms.into self-dual
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and anti-self-dual parts. The Riemannian curvature

tensor defines a self-adjoint transformation

2 2 1 .
R:A” —> A" expressed as Rleyney) =3 . jik gRiijekAel’
[ r 4
where {ei} is a local orthonormal basis of 1-forms.
A B

If we write R = ( ) relative to the decomposition

B* C

A2= Aren , the decomposition of the curvature tensor

into irreducible pieces under $SO(4) 1is given by
R —> (tr A,B,W_,W_)

where tr A = tr C = % scalar curvature, B = the traceless
Ricci tensor, and W, = A - % tr A, W_ = C - % tr C , the
Weyl tensors. If the metric is Kéhler with vanishing

Ricci-tensor, then R A w = 0, where w 1is the Kihler form.

This means that R 1is anti-self-dual with vanishing Ricci

(8 g) , tr C = 0. For any Einstein metric over

4-manifolds, Hitchin [H] showed an inequality 2el(g) z -P,{g)

tensor: R =

between the Euler form e(g) and the Pontrjagin form
PT(g). The equality occurs if and only if the curvature
R is anti-self-dual and Ricci-flat. In particular any
Ricci-flat Riemannian metric on a K3 surface is anti-

self-dual.

Let X be a real four dimensional differentiable
orbifold which is orbifold-diffeomorphic to a generalized
K3 surface X'. Suppose X admits a Ricci-flat-metric g.

Then we have:
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Theorem 5. Let (X,g) be as above. Then the bundle
of self-dual 2-forms (in the sense of orbifolds) is a
flat trivial bundle with respect to the Levi-Civita

connection.

Proof. As in the proof of Lemma 12 in [Kb] we get

() yeg) sem - (e(E) - &t )
where e(X,g) 1is the Euler form for the Levi-Civita
connection of g, e(Ep) is the Euler number of the
exceptional set Ep for the simple singularitiy

pE€X and |Gpl is the order of the corresponding finite
subgroup Gp of SU(2). Let 94 and d, be two
Riemannian orbifold metrics on X and P1(g1), P1(g2)

the corresponding Pontrjagin forms respectively. Then
P1(g1) - P1(g2) = dn, where n 1is a orbifold-3-form

on X. So, we have IXP1(g1) - IXZ§1(92) = fxdn = 0. Now in a
small neighborhood of simple singularities of X we

can introduce the_canonical orbifold-complex structure,
such as E?/G where G 1is a finite subgroup of SU(2)
and ZBZ is an open ball in ¢2 . We can thus deform g
to be Kdhler-orbifold metric around simple singularities
with respect to the above complex structure. If the

metric g 1is Kdhler then P1(g) = c1(g)2 - 2c2(g). Just

as in the proof of Lemma 12 in [Kb] we have
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1

epT) -

1 .
() 3 P lg) = sign (V) +3 ] (e(Ep) -
pE€Sing X
Formulas (*) and (**) are valid for any Riemannian orbi-
fold metric. Now we assume that g is an orbifold-metric

with vanishing Ricci tensor. From (*) and (**) we have
JX 2e (X,g) + P1(X,g) = 0.

Applying the same argument as in [H] we see that the Ricci-
flat orbifold-metric g 1is anti-self-dual:

R = (g 8) with tr.C = 0. For any oriented Riemannian
four-manifold the curvature of the induced connection on

the bundle A" of self-dual 2-forms from the Levi-Civita
connection is given by A + B* € Hom (A+,A2). In fact,

the bundle A2 of 2-forms is the adjoint bundle

associated with the orthonormal fram bundle and the

. ' A . 2
second exterior power representation A

of SGC(4)

splits irto two irreducible subspaces 2 =2%0 A . The
representation A" defines a homomoxphism £+:SO(4) —> S0 (3)
which gives rise a principal S0(3)-bundle whose adjoint
bundle is A". So, 1n our case, the bundle A+ with the
induced connection is flat. Since the metric g is an
orbifold-metric and the minimal resolution of X is.
simply connected, the bundle AY  is falt and trivial,

i.e., A" has three linearly independent parallel

sections. . Q.E.D.
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Remark. From the above proof one sees that there
exists. an orbifold-complex structure J on X such
that the metric g 1is a Kdhler orbifold-metric. Since
the metric is an Einstein-Kdhler orbifold metric with
vanishing. Ricci tensor and the canonical bundle on

the minimal resolution Y descends.to an orbifold-
holomorphic line bundle on holomorphic orbifold-2-forms,
Y must have trivial canonical bundle. So, Y 1is a K3

surface with the given.complex structure J.

Let (X,g) be as in Theorem 2 and a:Iz(X) — L
a marking, i.e., a metric injection which extends to an
isometry E;HZ(Y) —> L. The triple (X,g,a) is a marked
K3-orbifold with a Ricci-flat metric g. We define the
period map p of all equivalence classes of marked
K3-orbifold with a Ricci-flat metric to
G’;(L]R) = 50;(3,19)/50(3) x S0(19) in the following way:
p(X,g,0) 1is the oriented three-plane in L generated

1R

by the a_-image of the oriented basis (three ordered linearly

r
independent parallel self-dual 2-forms on X} of the
space of parallel self-dual 2-forms. Here, if
{e1,e2,e3,e4} is an oriented basis for Iﬂ then
{e.l,«e2 tejae,, e eyt e, Ay, e e, eer3}
gives the induced orientation on A+CR4)C Az(Iﬁ).
Two marked Ricci-flat K3-orbifolds (X,g,a) and
(X',g',0') are said to be equivalent if there exists

a diffeomorphism £f:¥' —» Y which descends to an
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orbifold-diffeomorphism of X' to X and f*g = g',
a' o f* = o . Write N for the set of all equivalence

classes of marked K3-orbifold with a Ricci-flat metric.

Theorem 6. The period map p(X,g,a)EEGg(LIg descends to

) .

the bijection o:N — G;(L]R
Proof. Suppose p(X,g,a) = p(X',g',a') = X‘EGQ(LEQ .
Pick a point (k,[w]) €KQ in the fiber n—1(x), where
mT:KQ —> G;(Ija) is the natural projection.with the fiber
Sz. There are marked generalized K3 surfaces (X,¢,a) and
(X',¢',a') such that .g and g' are Einstein-K&hler

orbifold-metric. By using the isometric deformation, with

respect to the Ricci-flat orbifold-metric, we may assume that

the polarized periods are the same for (X,¢,a) and (X',¢',a').

From Theorem A, there exists a unique isomorphism

®:Y' —> Y which descends to a unique isomorphism

$:X' —> X such that o¢*=¥=0a' o a (d*=q' o @ on

IZ(X) "and Iz(x')). ¢ , which is an orbifold-diffeomorphism
of X' to X, is an isometry with respect to

g and g'. So, (X,g,a} and (X',g',a'} are equivalent,
i.e., 0 1is injective. To show the surjectivity of o we
pick a point xEZGg(LEQ . Choose any (k,[w]) in the fiber
ﬂ-1(X) < KQ. From the strong version of Surjectivity Theoremn,
there exists a marked generalized Einstein-K&hler K3 surface
(X,¢,0) with its period (x,[{wl). If we forget the complex

structure of (X,¢,a) and look at it only as a Ricci-flat
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marked K3-orbifold, then its period is wi(k,[w]) = x-
Q.E.D.

I acts on both N and Gi(Lp) . The action of T
on G;(LIQ is discrete and properly discontinuous [Vn].
The following is a generalization of the corresponding results

in [Bo1] and (T2].

Theorem 7. The set of all isomorphism classes of Ricci-flat

K3-orbifolds is isomorphic to

F\(SOO(3,19)/SO(3)X 50(19)) .

The Ricci-flat K3-orbifold with simple singularities correspond
to the fixed points Fix(W) of W. Fix(W) 1is a countable

union of submanifold of codimension 3.

Proof. The last statement follows from the arguments in
pp. 311-317 of [Mr]

Q.E.D.

For the convergence of non-singular Ricci-flat metrics

to an orbifold-metric we can show the following:

Theorem 8. Let {Eﬁ} be a sequence of three dimensional

subspaces in L]R such that

a) <,> on each Et is positive definite,

b) for every § € L with <§,8>= -2, sG(Et):tEt ,

c) lim E, = EO , wWhere <,> on EO is positive definite
t+0 °©
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and there exists § € L such that <§,6> = -2 and

SS(EO) = EOI

d) let {gij(t)} be a sequence of Einstein metrics that
corresponds to E_ and suppose that vol (gij(t) =1
for ali t.

Then lim g..
>0 1J

Einstein-Kdhler orbifold-metric with respect to a complex

(t) # g,.(0) exists and gij(O) is an

ij

structure on a generalized K3 surface X corresponding to

some two dimensional oriented subsapce FOC:EO.

Proof. Let FtC:Et be a sequence of two dimensional subspaces

in E such that lim F, = F exists and F is a two
t £>0 t o 0

dimensional subspace in EO. From Surijectivity Theorem and

Global Torelli Theorem, we see that the sequence {Ft}

corresponds to a unique sequence of K3 surfaces (Xt,a)

with a fixed marking a such that 1lim (X_,a) = (X,,a).
£>0 t 0
Let Wy be a unigque holomorphic 2-form such that on Xt
we have Ixt w, A 0 = 1. Clearly tig w, =w, exists and
I« Wy A EE = 1. Now let F! be the two dimensional
£ t
subspace in Et defined by Re Wy and Im gag(t), where
948 is the Einstein-Kdhler metric on Xt corresponding to
G—T(Kt), where «, L F, in E_. Since we may suppose that
KegKke> =0 we get from E, — E, and F,— Fo that
lim «k_ = kx, €E and «k, LF..
0 t 0 0 0 0

So lim Fé = FO exists and repeating the same arguments as
t-+0
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for F, we get that there exists a unique family of

K3 surfaces (Xé,a) with a fixed marking o such that
lim (X!

t
t>0
deformation of X3 structures with respect to tha Calabi-

,a) = (xb,a). From the theory of isometric

Yau metric (see section. 3), we get that if mé is a

holomorphic two form on X! such that [_, w! Aw; = 1,
t Xt t t

then

w! = Re w

£ + 1 Im gaﬁ(t).

Since 1lim mé = w6 exists we get that lim Im gag(t)
t->0 t-+0
exists. Now it is easy to see that 1lim Im g —=(t) 1is an
+-0 of
Einstein-Kdhler orbifold-metric form on XO. This is so

because for each point x€X wvol (g _(t)) = wes W and
aB
wb is an orbifold-holomorphic 2-form in a neighborhood of

some root systems of (-2)-curves in XO.
Q.E.D.

6. The number of quotient .singularities
P

In section 2 we have proved the existence of a Ricci-
flat Einstein-Kdhler orbifold-metric on some orbifolds. This
metric is used to estimate the maximal possible number of
guotient singularities on a certain orbifold and to determine
what occurs in case the maximal number .is attained. The

following is a generalization of Thm. 1 in [N].



-38-

Theorem 9. Let X be a compact complex surface with at
worst isolated quotient singularities which admits a K&hler
form in the sense of Fujiki-Moigezon. Let X be the minimal
resclution for X and D its exceptional sets. Let By

be the nonnegative rational numbers such that

K + Z piD;~0 near D as Q@-divisors (such p,'s are
uniquzly determined), where D = ZDi is the decomposition
into irreducible components. Supp;se.that some tensor power

X
following inequality:

of Ky + ] p;D; is a trivial line bundle. Then we have the
i

= 1
e(X) - N (e(Dp) - y557) 29/
pESing X | IGp
where Dp 1s the exceptional set for the minimal resolution
of p, Gp 1is the corresponding local fundamental group
around p. The equality occurs if and only .if X = F\Tz '
where T2 is a complex 2-torus and T is a group of

Euclidean motions acting on 72 discretely and properly

discontinuously with only isolated .fixed points.

Proof. From Theorem 1, there exists an Riéci;flat Einstein-

Kdhler orbifold-metric on X. Using the same arguments as

in [Kb] we see that the integral of the Euler form with

respect to the Levi-Civita connection of the orbifold-metric

is equal to e(X)- ) (e (Dp) - l_) . on the other
p€Sing X - [

hand, since our metric is Ricci-flat Einstein-Kihler, only

the anti-self-dual Weyl tensor W_ remains in the decomposition
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of the curvature tensor (see section 5). So, the Euler
1

form is equal to > IW_1"417 and thus we get

The equality occurs if and only if W_ =.0 for our Ricci-
flat Einstein-K&hler orbifold-metric. Since every compact |
flat orbifold is uniformized by a torus, the equality occurs

if and only if X 1is uniformized by a torus with the

covering transformation group consisting of Euclidean motions.

Q.E.D.

Corollary 10. For generalized K3 surfaces X ,

1
24 - ) (e(Dp) - 7a5T ) 50,
peSing X Gp

where equality occurs if and only if X ='F\T2, with

T2 a complex 2-torus and ' a group of Euclidean motions.

The Kummer surface with (-2)-curves collapsed is

the simplest example of the above equality: 24 - 16x-§ =0,

2
Ivinskis [I] found a non-trivial example
which is as follows. Consider the double covering branched
over a sexitic curve in Pz(m) with simple singularities.
The double covering X 1is a generalized K3 surface.

If ) (e(py) - , then X = INT?. For the

1
p&Sing X G
sexitic curve , the double cover X
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has 4D4 and 3 A, singularities. So,

1 _ 1 1, _
Y (e(Dp) - 1g57) = 4x(5 = g) + 3x(2 - 5) = 24.

pESing X
For the dual sexitic curve of a smooth one, X has 9 A,

singularities. So,

1 1
) (e(Dp) - 1oy = 9% (3 - 3) = 24.
pESing X °p 3
The sexitics with the above property are classified in [I].

For the classification of complex crystallographic groups,

see (Yo' KT].

These examples show that the equality case in Theorem 9 is
not void. As a final remark, we mention the degeneration
of Riemannian metrics. The convergence in Theorem 8 is the
simplest example of the degeneration of Riemannian metrics
with bounded Ricci curvature and volume. Namely, the
following occurs: there exists certain submanifolds
((-2)-raticnal curves) such that the "area" goes to zero
and the Riemannian sectional curvature concentrates along
these, and the formal Euler number f(Euler.form) decreases
{in a "quantized" way in our case) at the limit. In the
above examples, the curvature tensor.concentrates so

completely that the limit metric is a flat orbifold-metric.
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