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Abstract

In this article we describe elliptic polylogarithms as elements of higher
K-groups explicitly.

Introduction

This article can be considered as an appendix to the article [BL] which
contains exact formulas for motivic elliptic polylogarithms.

The paper goes as follows. In the first section we recall the definitions
of the basic varieties Y™ to whose K-groups the motivic elliptic polyloga-
rithms belong. In the second one we define a collection of functions on the
powers of an elliptic curve over a field in terms of Tate’s form [T]. The third
section is devoted to the construction of symbols and to checking the can-
cellation of tame symbols. T wish to thank A.Beilinson and A.Goncharov for
stimulating discussions. I thank also the Massachusetts Institute for Tech-
nology and the Max-Planck-Institut fiir Mathematik Bonn for their hospi-
tality during my stay there at visiting positions. This work was partially
supported by AMS grants for the former Soviet Union.

1 The basic varieties

We consider a family of elliptic curves p : X = B;0 : B — X, where
X — B is a flat family of the relative dimension 1 with geometrical fibers
of the genus 1; 0 is a section of this map (“zero” of an elliptic curve).



Let X" be the (relatlve) n-th power of X and p(ﬂ) t=1,2,...,n be the
projection on the i-th component. It is useful to introduce the extra map
pSHEI —Yiu, pi where ¥ is summation on an elliptic curve.

Remark. It is clear that on X (®} the n-th symmetric group S, acts.
This action permutes p;, ¢ = 1,2,...,n and is determined by this property.
One can embed X ™ into X("+1) by the map {p; ,i=1,2,...,n+ 1} which
identifies X (™ with the variety of collections of points in X with the sum
zero. This embedding allows us to extend the action of S, on X to an
action of Sp41.

One can define an evident set of divisors on X (™:
DM =pM0), i=1,2,...,n+1,
(") n (ﬂ) (n) - S
A ={Pe XMW (P)=p"(P)}, 4,5=1,2,...,n+1i#].
All these divisors are isomorphic to X (=1 and we fix isomorphisms:

(p(ln)i .. '1]3571)1 o -)ps:l))D;{n) — X(n_.l), 1= ]‘,2, ERTR LN

@™, P D, = XD,
P, B, L pMhal) 5 XD i<

The varieties which are important for us [BL, 6.1.7] are

n+1
U5‘+' - X(n+l)\ U Df"“).
i=1

Let £("+1) be the restriction of p( **1) on Up*l. The image of this map is

n+
= X\ 0. X+ D(”H) is stratified by partial crossings of D( ). every
stratum is isomorphic to some US. The (open) strata are 1ndexed by the
subsets I C {1,...n}, the codimension n 4+ 1 —{ of the stratum U¢; being
equal to #1. The lagerst proper strata are Ugh,y ,1 < j < 41, which we
call the adjacent strata, and we have the correspondent coboundary maps

8;: s () 5 P nM(e(-1)),  1<j<n+l.

The n-th direct image R"E,(.,"+l)(Q(n)) coincides with the restriction of G, =
G/W_,_1(G) on U. The coboundary maps

05 "= (Q(n)) —» B2 (Q(n - 1)



all coincide with the quotient map G,, =& Gt = G,./W_,(G,,).
Denote by #: Y{*) 5 U the product

pX L:UxgU! = BxgU =U,

by pg the projection onto the first factor, and by Y}("'l)

Uc’,‘{j}, the j-th adjacent variety of ¥ (), Then

the product U X

R'm(Q(n+1))=0, I>n+1

and
R (Q(rn+1)) = H Q Ga.

The elliptic polylogarithms define an element P in
Eztl;(H,Gn(1)) = ExtH(Q, H® Gn) = Extl(Q, RV 'm.(Q(n+ 1))).
This group is one term of the spectral sequence

E}? = Extfy(Q, Rm.(Q(n+1))) = Eeo = Eat}(}(Q,Q(n+ 1))

and one has a canonical map
Ezt®t2(Q,Q(n+1)) %% Exth(Q, R™r.(Q(n +1))).

We constract an element Pg) in I{x(Y") such that an(rH(’P ))) P
where rg is the regulator map from K-theory to the absolute Hodge coho-
mology group Ezt*(Q, Q(*)). According to the general Beilinson conjectures
Pﬂ) must come from certain divisors on Y(*) together with elements of Mil-
nor K, g-groups (the subscript Q means tensoring with Q) at their generic
points such that the tame symbols cancel.

2 The basic functions

We wish to introduce a collection of functions on X over the spectrum of
a field.

We use the standard Tate normal form of an elliptic curve X — B over
the spectrum of a field B = Spec(k) [T]:

y: 4+ a1zy + asy = 2 + age? + aqz + ag (1)



The orders of the poles of z and y at “zero” (the marked point of the
elliptic curve = the point at infinity in this normal form) are 2 and 3 respec-
tively. The differential

w=dz/(2y+ 17 + a3) = dy/(3z° + 2a2z + a4 — 1)

is a regular one and its integral t(P) = fopw from 0 to a varible point P
is a local coordinate near 0 in which z = t72 4+ ... and y = =3+ ... .
One can define a differentiation D on the field of rational functions on X :
DPf =df/w. The data z, y, w and D are defined by the curve X up to the
action of the lower triangular group T

T wlz + s
1 0 0
s ut 0 N wy+rati
L s o w v lw

D uD

Introduce a set of functions Pt (t = 0,2,3,...) with poles of order ¢ at
“zero”, PO} = t=i 4 .

P(?k) — l'Gk, 13(2k+1) — .'Ek_ly

The action of T on the column vector (P} is also lower triangular.
For any function £ on X denote by F; the pullback pi(-")*F to X (n).

Definition 2.1 a)The n-th elliptic Vandermonde function W, is the func-
tion on X defined by the determinant :

1 1 1 1
PO p@ p@ ... p@
PO PO PO ... p®
W, = PO pW p L p@ (2)

b)The i-th partial derivative of the n-th elliptic Vandermonde function W;;;i



is the function on X(") defined by the determinant :

1 1 0 1
P1(2) L P:(z) DPi(Z) . P,(,z)
" P1(3) . }3{(3) 'DP‘-{B) . Pn3)
mi=| pl . p pp@® . p) (3)
Pl(n.-l-l) . P{(n-}-l) ,DIDi(n+1) L P,ETH‘I)

Sy, acts on W, by the sign and on Wr,a;i by acting on indexes and the
sign :

W = (~1)"W,, Wi, = (=1)" W) 0 € S,

Proposition 2.1 W, end 1’1’;’1;,« are semi invariants of T of degrees M)i(”—_ll
and ﬂ)‘—,}"—ﬂl respeclively.

Proof. Simple properties of determinants imply the triviality of the ac-
tion of the strictly lower triangular part of T and the degree of the character
of the semisimple part of T'.

Proposition 2.2 a)The divisor of W, is equal to:

(Wa)=—n 3D+ 3 a4 D0, (4)
=1 1<i¢i<n

b)The asymptotic behavior of W, near DE") is described by the following

eTpression:

1 —(n~
Wo = (=" Wt +0(7Y) (5)

c)The asymptotic behavior of W, near A;(',T;), i < j is described by the fol-
lowing expression:

Wy = (=)W + O(t) (6)

Proof. a) The multiplicity of DE"), t # n+ 1 is evident. The anti-
symmetry of W, implies AE:-) < (W3). The intersection of (W,) with any



fiber of the projection X (™ — X{"=1) must be equivalent to the zero divi-
sor. This proves that DS:BI < (W,), and now degree considerations end the
proof.Statements b) and c) are direct consequences of the definitions.

Remark. Statement a) of the previous proposition is the following
generalization of Abel’s theorem. Consider the map of an elliptic curve X
to P! determinated by the linear system of divisors |[O(n0)}|. Then the
sum of n distinct points on X is equal to zero iff their images belong to a
hyperplane.

Proposition 2.3 «)The divisor of W], is equal to:

n
Wia) = =(n+1) S DM —2(n+1)DM
1=1,1%k
+ S APy 3 AW 4al, (7)
1<i<i<nii, ik i=1,ik

b)The asymplotic behavior of W, near D,(-n) i # k ts described by the
following expressions:

Wi = (—1)’*—*7.,'”14/;_1;,,. +O(7™)  ifi>k;

Wiy = (~)" W 0 i<k, ®)

c)The asymptotic behavior of W, near DS:')

expression:

is described by the following

1 -(2n
Wik = (-1)"_kt2(,,—+1)”"n—1 +0(t7 ™). (9)
K

The proof is in complete analogy with the previous one.

Proposition 2.4 Consider the collection of functions on X(":
n

F;'(ﬂ) = W,',;,-/Wm'f =12,...,n and F,El)l = (Wn)™? HE(H)'

i=1
Then S,y acts on {Fi(n)} by the action on indezes and the sign:

o F,E") = (—1)"'9“"1:"57(1,2); 0 € Sny1- (10)



Sketch of the proof. The divisor of F,E") is evidently equal to

n+1 n+1

Z A,’yk—- E D,-—(n+2)Dk.

1=1,i%#k =11k

So the quotient U.F,E”)/Finz) is a function with divisor zero and hence con-
stant. The value of this constant can be calculated by induction on the
dimension n using (5) and (8).

One can represent the Vandermonde functions over the field of complex
numbers (k = C) in terms of theta functions

(&) I1 60(& &)

i=1 1<i<j<n

W, = = ; (11)
e
B+ &) TT0E -6) T1 06 -6)
I'V,i;k — =1 1#£k _ 1<igjgn _7 (12)
g7t (&x) ‘];[1 g7+ (&)
B(& -+ i &) I1 0(& — &)
FM = oL L . (13)
g7+t (&) ,'131 (&)

Here &; denotes the standard coordinate on the i-th factor of X (™.

3 Symbols on Y
Consider the following set {Zt-(n)}, i=1,2,...,n+ 2 of divisors on Y™
2" = 1Q € Y po(@Q) = p{™* Vs (@)

The projections of Zf") onto 'US'H are isomorphisms. The ZJ(") define sub-
divisors AEZH) of Z,-(n) . Their closures {Z‘-(")},i =1,2,...,n+ 2 cut out
divisors {Z,-(”_l)} ,1=1,2,...,n41 of the adjacent variety Y;-("_l) and the

Y (*=1) cut out subdivisor DJ(,-"“) on Z{™ . The “roots of functions ”

Bi(n) = FPTUASE . i=1,2.. 042

7



_

define T-invariant (and consiquently independent of the choice of = and y)
elements of K g of the generic point of Z,(cn) (A denotes the discriminant of
X, which is a semiinvariant of the weight 12). One can define (non-integral)
symbols Si(") on Z‘»(f‘):

1 i-1

sM = (-1)ﬂ(n+2)!(Z;(—1)J‘-1(¢§"’,...,ég"),...&f"’,...,@&’22)
J:
o o P (n)
+ Z(—1)’(¢’1"»---,‘I’;",---<1>j",---,‘1’,{12))- (14)
j=1+1

Proposition 3.1 a) The collection
PE = (2, (1) sy, i= 1,2, ,n 4 1

is antisymmetric with respect to the action of S,42 on the second factor
Ugtt.

b) All tame symbols of PJ(J) cancel on Y™ (the support of the tame
symbol of Pﬁ) is contained in the complement of Y™ in X (n+2}),

c) The tame symbol of P_E\Z) at the j-th adjacent variety )’}(ﬂ_l) (see
Section 1) is equal to (—1)3=1p(n=1),

Proof. Statement a) is an evident corollary of (10). b} The support of
the tame symbol of S}") on X™*!is the union of divisors D; and A, ;. The
D; don’t belong to ¥ ™ and the tame symbols of 'PJ(J) at A; ; cancel because
the permutation (¢, 7) € Sp4.2 acts trivially on it and ’Pj(;) is antisymmetric.

c) The asymptotics of (I)E-n) near D_S-"H) in the coordinate £; = Al/12%¢;
are given by

el 4 i<y
oM = ittt 4 i
0 L =g
Now statement c) is the result of a direct calculation of the tame symbol in
the local coordinate ;.

Proposition 3.2 The image of 'Pfa) in Ext;(Q,H ® G,) is equal to the
elliptic polylogarithm P,



Sketch of the proof. From the uniqueness property of the elliptic poly-
logarithm [BL, 2] it is enough to prove that the “zero”-polylogarithm(which
is simply the standard extension “£” of Q by # on X) can be realised in

this manner. The divisor 'PJ(S,) on the square of X is defined as half of the
difference between the diagonal and the antidiagonal. So its trace at the
fiber of 7 over any point Q is equal to 1((Q) — (-Q)) = (@) — (0). The
image of the latter is evidently as required.

The existence of elliptic polylogarithms as elements of some K-groups
yields the the representation of analytic elliptic polylogarithms [BL, L] as
periods of some differential forms of the third kind on a powers of an elliptic
curve,

Any k-symbol s = (fy, fa,..., fr) on an n-dimensional varicty over C
(k < n) determines a k-form v, = dlog fy Adlog foA...Adlog fr. This map
is exactly the Hodge regulator map. So P(™ determines a current Yp(n) ON
the fiber 771(€) of # over & # 0: the support of vp(m is the union of all

Z,(") and the restriction of this current to Z‘-(“) coincides with the differential

n-form v . The cancellation of tame symbols means that this current is
closed. So vpn defines an element in the (n + 2)-nd cohomology group of
7~1(£) which is trivial (see Section 1) and consequently this current is a

coboundary. This means that there exists a differential (n 4 1)-form  with
)

logarithmic singularities such that its residues in Zi(" coincide with v .

Then the periods of £ are the elliptic polylogarithms.
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