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Abstract

In this article we describe elliptic polylogarithms as elements of higher
K-groups explicitly.

Introduction

This article can be considered as an appendix to the article [BL] which
contains exact formulas for rnotivic elliptic polylogarithrns.

The paper goes as folIows. In the first section we recall the definitions
of the basic varieties y(n) to whose [(-groups the motivic elliptic polyloga­
rithms belang. In the second one we define a collection of functions on the
powers of an elliptic curve over a field in terms of Tate's form [T]. The third
section is devotcd to the construction of sym bols and to checking the can­
cellation of tarne symbols. I wish to thank A.Beilinson and A.Goncharov for
stimulating discussions. I thank also the Massachllsetts Institute for Tech­
nology and the Max-Planck-Institut für Mathematik Bonn for their hospi­
tality du ring my stay there at visiting positions. This work was partially
supported by AMS grants for the former Soviet Union.

1 The basic varieties

We consider a family of clliptic curves p : ..-Y --+ B; 0 : B --+ )( 1 where
.X --+ B is a flat family of the relative dimension 1 with geometrical fi bers
of the genus 1j 0 is a section of this rnap ("'zero" of an elliptic curve).
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Let x(n) be the (relativ~) n-th power of ..-y aqd p!n) i = 1,2, ... , n be the
projection on the i-th component. Jt is useful to introdllce the extra map

P~~I = - L:i=1 Pi where L: is summation on an elliptic curve.
Remark. It is clear that on ..-y(n) the n-th symmetric group Sn acts.

This action permutes Pi, i = 1,2, ... , n and is determined by this property.
One can embed ..-y(n) into ..-y(n+l) by the map {pi, i = 1,2, ... , n + I} which
identifies ..-y(n) with the variety of collections of points in ..-y with the surn
zero. This embedding allows us to extend thc action of Sn on ..-y(n) to an

action of Sn+l.
One can define an evident set of divisors on ..-y(n):

D~n) = p!n,*(O), i = 1,2, ... , n + 1,

~tj) = {P E ..-y(n)}lp!n)(p) = p;n)(p)}, i,j = 1,2, ... , n + 1, i # j.

All these divisors are isomorphie to ..-y(n-I) and we fix isomorphisms:

(
(n) A(n) (n»)D(n) v(n....:t)PI' ... , ]J i ,..., ]Jn i -t..-\. , i=1,2, ... ,n,

( (n) (n-l») D(n) ~~(n-I)
PI , ... , Pn n+l -t ..-\ ,

( (n) A(n) (n») A (n) v(n-l) . < .PI , ... 1Pj , ... , Pn Ui,j -+..-\ ,1, _ J.

The varieties which are important far us [BL, 6.1.7] are

n+l
UÖ+1 = ..-y(n+l) \ U D~n+l).

i=l

Let E(n+l) be the restriction of p~~~t) on UÖ+1 . The image of this map is

U = --,y \ O. ..-y(n+l) \ D~~~l) is stratified by partial crossings of D~n+1); every
stratum is isomorphie to some u6. The (open) strata are indexed by the
subsets I ~ {I, .. .n}, the codimension n + 1 - I of the stratum U61 bcing
equal to #I. The lagerst proper strata are U(;{j} ,1 ::; j ::; n + 1, which we
call the adjacent strata, and wo have thc carrespandent coboundary maps

l::;j::;n+l.

The n-th direct image RnE~n+l)(Q(n))coincides with thc restrietion ofGn =
G/H'-n-dG) on U. The caboundary maps

Oj: RnE~n+l)(Q(n)) -+ Rn-lE~n)(Q(n - 1))
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all coincide with the quotient map Gn ---+ Gn- 1 = Gn/~V-n(Gn).

Denote by 7r: y(n) ---+ U the product

P x E: UXBUJ;+l ---+ BXBU = U,

by Po the projection onto the first factor, and by 1j(n-l) the product U x

UJ;{j}' the j-th adjacent variety of y(n). Then

RI1r*(Q(n + 1)) = 0, I > n +1

and
Rn+I 1r*(Q(n + 1)) = 1i 0 Gn .

The elliptic polylogarithms define an element p(n) in

This group is one term of the spectral sequence

and one has a canonical map

We constract an element pt) in !(n(yn) such that O'n(rH(P.l~))) = p(n),
where rH is the regulator map from [(-theory to the absolute Hodge coho­
mology group Ext* (Q, Q(*)). According to the general Beilinson conjectures

pt) must come [rom certain divisors on y(n) together with elements of Mil­
nor ['l"n,Q-groups (the subscript Q means tensoring with Q) at their gcneric
points such that the tarne symbols cancel.

2 The basic functions

We wish to introduce a collection of functions on ..-y(n) over the spectrum of
a field.

We use the standard Tate normal form of an elliptic curve X.. --+ B over
the spectrum of a field B = Spec(k) [T]:

(1)
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The orders of the poles of x and y at "zero" (the marked point of tlte
elliptic curve =the point at infinity in this normal form) are 2 and 3 respec­
tively. The differential

is a regular one and its integral t(P) = Jr w from 0 to a varible point P
is a local coordinate near 0 in which x = t-2 + ... and y = /.-3 + ....
One can define a differentiation 1J on the field of rational functions on X :
1Jf = df/w. The data x, y, wand 'D are defined by the Cllrve ~'( up to the
action of the lower triangular group T:

Introd uce a set of functions p(i) (i = 0, 2, 3
"

,,) with poles of order i at
"zero", p(i) = t- i +... :

p(2k) = xk, p(2k+1) = xk-ty

The action of T on the column vcctor (p(i)) is also lower triangular.

For any fllnction F on ..Y denote by Fi the pullback p~n)*F to ~y(n).

Definition 2.1 a)The n-th eUiptic Vandermonde function ~Fn is the /unc­
tion on ..-y(n) defined by the d~terminant .'

1 1 1 1
p(2) p,(2) p,(2) p2)

1 2 3
p(3) p,(3) p(3) PA3)

vV - t 2 3
(2)n - p(4) p54) p(4) PA4

)
1 2 3

p(n) p(n) p(n) PAn)
1 2 3

b)The i-th partial derivative 0/ the n-th elliptic Vandermonde function W~;i
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is the functio11 011 ...y(n) definecl by the determinant :

1 1 0 1
p(2) p~2) 'D p.(2) p~2)

1 1 ~

p(3) p.(3) 'DP~3) p~3}

W~;i =
1 1 I

(3)p(4) p.(4) Vp.(4) pJ4)
1 1 t

p(n+l) pJn+l) VpJn+l} p~n+l}
1 ~ t

Sn acts on IVn by the sign and on IV~;i by acting on indexes and the
sign:

(J~Wn = (_1)si9twufnl (J vV' - (1)si9nO'lfV' • (J E S
~ n... n,i - - n,O'(i)l n'

Proposition 2.1 ItVn and Hf~;i are semi invnriants ofT of degrees (n+2)l
n
-l)

and (n+1)1 n+2 ) respectively.

Proof. Simple properties of determinants imply the triviality of the ac­
tion of the strictly lower triangular part of T and thc degree of the charactcr
of the semisimple part of T.

Proposition 2.2 a)The divisor of lrVn is eqtln! to:

n

(Wn ) = -n L D1 n
) + L ~tj) + D~11

i=l l~i<i~n

(4)

b)The asymptotic behavior 01 Wn uear D1n
) is descT"ibed by the /ollowing

expression:

w = (_l)n-i~w +O(f-(n-l»)
n tTJ n-l ~

I

(5)

c) The asymptotic behavioT" 0 f Hfn near ~~J}, i ~ j is described by the /01­
!owing expression:

vV = ( .... l)n+i-i t ·uf' .+O(t~)n ' 1 n n-l;1 ~ (6)

Proof. a) The multiplicity of D1 n
) 1 i #- n + 1 is evident. The anti­

symmetry of Wn implies ß~j} ~ (Wn ). The intersection of (Wn ) with any
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fiber of the projection --,y(n) ---+ --,y(n-l) must be equivalent to the zero divi­

sor. This proves that D~~l ::; (H'n ), and now degree considerations end the
proof.Statements b) and c) are direct consequences of the definitions.

Remark. Statement a)" of thc previous proposition is the following
generalization of Abel's theorem. Consider the map of an elliptic curve )(
to pn-l determinated by the linear system of divisors IO(nO)I. Then the
sum of n distinct points on )( is eqllal to zero iff their images belang to a
hyperplane.

Proposition 2.3 a) The divisor 01 Hl~;k is equnl to:

n

(Hl~;k) = -(n + 1) L D~n) - 2(n + l)Din)
i=l,i;ek

+ (7)

b)The asymptotic behavior 01 Hl~;k near D~n) ,i =j:. k tS described by the
following expressions:

(8)
if i > kj

if i < k.

l'f1~;k = (_1)n-i~Hl~_1;k +O(t.i n
)

YV~;k = (_l)n-i+l t?~; l'f1~_l;k_l + O(ti n
)

c)The asymptotic behavior oj lV~;k nenr D1n
) is described by the following

expressIOn:

lV' - (l)n-k 1 lXI O( -(2n+l»)
". n;k - - t 2(n+l) 'Vn-l + ti .

k

(9)

The proof is in complete analogy with the previolls one.

Proposition 2.4 C071sider the collection of functions on --,y(n):

n

P (n) - W' /W .. - 2 d p(n) - (W )-2 TI p(n)i - n;i n, l - 1, , ... I n an n+l - n i'
i=l

Then Sn+l acts on {Fi(n)} by the action on indexes and the sign:

(! P(n) _ (_l)"igna p(n) .
'" k - a(k)' (! E Sn+l. (10)
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Sketch of the proof. The divisor of Fkn
) is evidently eqllal to

n+l n+l
L ~i,k - L Di - (n + 2)Dk.

i= 1 ,i:Fk i= 1,i:Fk

So the quotient u.Fkn
) / p;7f) is a fllnction with divisor zero and hence con­

stant. The value of this constant can be calculated by induction on the
dimension n using (5) and (8).

One can represent the Vandermonde functions over the field of complex

numbers (k = C) in terms of theta functions

p(n)
k

nn Bn (ei)
i=1
n

B(ek + L: ei) n B(ej - ~k) n B(ej - ei)
i=1 jtfk l$i<j$n

n
Bn+l (~k) n Bn+l (ei)

i=1

n
Bn+l (~k) n B(~i)

i=1

(11 )

(12)

(13)

Here ei denotes the standard coordinate on the i-th ractor of ./y(n).

3 Symbols on y(n)

Consider the following set {ZJn)}, i = 1,2, ... ! n + 2 o[ divisors on y(n):

The projections of Z!n) onto ·U~+l are isomorphisms. Thc ZJn) define sub­

divisors ~~J+l) of Z!n) . Their closures {Zfn)}, i = 1} 2}",} n + 2 cut out

divisors {Zfn-l)} ,i = 1,2, .. "n+l ofthe adjacent varicty Y;(n-l) and the

y(n-l) cut out subdivisor D]n+l) on zfn) . The "roots of fUllctiolls "

i = 1,2 ... J n+ 2
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define T-invariant (and consiquently independent of the choice of x and y)
elements of I<I,Q of the generic point of z1n

) (.6 denotes the discriminant of
...Y, which is a semiinvariant of the weight 12). One can definc (non-integral)

symbols sfn
) on z~.~):

s~n) =
~

+

i-I

(-w ( 1 2) ,(2::( _1)1-1 (<I>\n), ... , eI>}n), ... eI>jn), ... , <I>~~2)
n+ .. 1

J=

n+2 .
E (-l)j (<I>~n) 1 ... 1 <i>~n) 1 ... <i>;n) , ... 1 <I>~~2))' (14)

j=i+l

1
± --1 "",(n-l) 'f"t i 'cl" i + ... 1 1 "l < J

<I>(n) = ±t--:-Lli.(n-l) + 'f . .
~ J 'J:.'1-1 .. 0' I "l > J .

±--(n+3) 0f . _ .
tj + .. '1 1 t - J

Now statement c) is the result of a direct ealculation of the tame symbol in
the Ioeal eoordinate Lj.

Proposition 3.1 a) The colleetion

is antisymmetrie with respect to the action of Sn+2 on the seeond factor
11n+lUo .

b) All tame symbols of P.I~) cancel on y(n) (the support of the tarne

symbol of pt) is contained in the eomplement of y(n) in ./y(n+2)).

e) The tarne symbol oJ -;::,t) at the j-th adjacent variety }j'n-l) (see

Section 1) is equal to (_1)i-1p(n-I).

Proof. Statement a) is an evident eorollary of (10). b) The support of

the tarne symbol of S!n) on ...yn+l is the union of divisors Di and .6i,j. The

Vi don 't belong to y(n) and the tarne symbols of p.l~) at .6i,j eaneel because

the permutation (i , j) E Sn+2 aets triviallyon it and pt) is antisymmetrie.

e) The asymptotics of <f>~n) near D]n+l) in the eoordinate tj = .6 1/ 12 tj

are given by

Proposition 3.2 The image oJ PJ~) in Exth(Q,l{ 0 Gn ) is eqtwl to the
elliptic polylogarithm p(n) 0
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Sketch ofthe proof. Prom the uniqueness property of the elliptic poly­
logarithm [BL, 2] it is enough to prove that the "zero"-polylogarithrn(which
is simply thc standard extension "~" of Q by 1l on .X) can be realised in

this manner. The divisor p~) on the square of .."( is defined as half of the
difference between the diagonal and the antidiagonal. So its trace at the
fi ber of 1r over any point Q is equal to ! ((Q) - (-Q)) = (Q) - (0). Thc
image of the latter is evidently as required.

The existence of elliptic polylogarithms as elements of some [(-groups
yields the the representation of analytic elliptic polylogarithrns [BL, L] as
periods of some differential forms of thc third kind on a powcrs of an elliptic
curve.

Any k-symbol s = (ft I f21 ... , fk) on an n-dimensional varicty over C
(k ::; n) determines a k-form V 3 = cllogft t\dlogf2/\" ./\dlogfk. This map
is exactly the Hodge regulator map. So p(n) determines a currellt Vp(n) on
the fiber 7r-

1(E) of 7r over E f:. 0: thc support of Vp(n) is the union of all

zfn) and the restriction of this current to zfn) coincides with the differential

n-form v s~n). The cancellation of tarne sym bols means that this current is

closed. S~ Vp(n) defines an element in the (n + 2)-nd coholllology group of
7r- 1(E) which is trivial (see Section 1) and consequently this current is a
coboundary. This means that there exists a differential (n + 1)-form n with

logarithmic singularities such that its resid ues in Zi(n) coincide with v s(n) .

Then the periods of n are the elliptic polylogarithms. '
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