A REMARK ON BICANONICAL MAPS

OF SURFACES OF GENERAL TYPE
by

Lin Weng

Max-Planck-Institut
für Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3
Federal Republic of Germany

Department of Mathematics Jiao Tong University Shanghai 200030
P. R. China

A Remark on Bicanonical Maps of Surfaces of General Type

Lin Weng

Pluricanonical maps of surfaces of general type have been studied for quite a long time. After Bombieri's remarkable work [2], recently, Reider [4] uses a new method, i.e. non-stable rank 2 vector bundle, to deal with them successfully. Now such problems only have their meaning on bicanonical maps for small $\mathrm{K}_{\mathrm{S}}^{2}(\leq 4)$, and canonical maps.

In this small note, we will study bicanonical maps. As there are no examples and real methods, in this care, we have the following:

Conjecture: If S a minimal surface with $\mathrm{p}_{\mathrm{g}}=0$ and $\mathrm{K}_{\mathrm{S}}^{2}=3$ or 4 , then bicanonical map $\Phi_{\left|2 K_{S}\right|}$ is a morphism, i.e. the complete linear system $\left|2 K_{S}\right|$ has no fixed points.

For this conjecture, we only deal with the fixed part. Using the technique of rank two vector bundles, we can prove the following:

Theorem. Let S be a minimal surface of general type with $\mathrm{p}_{\mathrm{g}}=0$.
I. If $K_{S}^{2}=3,\left|2 K_{S}\right|$ has no fixed part, except for one case:
$\left|2 \mathrm{~K}_{\mathrm{S}}\right|$ has a decomposition $|\mathrm{M}|+\mathrm{V}$ with $|\mathrm{M}|$ as its moving part and V as its fixed part, which has the following properties:
a) V is an irreducible reduced curve with $\mathrm{p}_{\mathrm{a}}(\mathrm{V})=1$;
b) $\quad \mathrm{K}_{\mathrm{S}} \cdot \mathrm{V}=1$;
c) There is a non-trivial extension of vector bundles:

$$
0 \longrightarrow q_{S} \longrightarrow \delta \longrightarrow q_{S}\left(\mathrm{~K}_{\mathrm{S}}-\mathrm{V}\right) \longrightarrow 0
$$

with δ a H -stable bundle, which comes from a nontrivial $\mathrm{pu}(2)$-representation of $\pi_{1}(S) ;$
II. If $K_{S}^{2}=4,(-2)$ - curve could not be a component of the fixed part of $\left|2 \mathrm{~K}_{\mathrm{S}}\right|$.

Remark: Although the exceptional case in 1 is totally unreasonable, I could not throw it away.

At first, we want to prove the following

Lemma: With the same notation as above, if C is a (-2) - curve, then C is not a fixed component of $\left|2 K_{S}\right|$.

Proof: Otherwise, the exact sequence

$$
\left.0 \longrightarrow \sigma_{S}\left(2 \mathrm{~K}_{\mathrm{S}}-\mathrm{C}\right) \longrightarrow{\sigma_{S}}^{\left(2 \mathrm{~K}_{\mathrm{S}}\right.}\right) \longrightarrow o_{\mathrm{c}} \longrightarrow 0
$$

implies

$$
\mathrm{h}^{1}\left(2 \mathrm{~K}_{\mathrm{S}}-\mathrm{C}\right) \neq 0
$$

i.e.

$$
\mathrm{h}^{1}\left(\mathrm{C}-\mathrm{K}_{\mathrm{S}}\right) \neq 0 .
$$

Thus there exists a nontrivial extension
(*)

$$
0 \longrightarrow q_{S} \longrightarrow \varepsilon_{1} \longrightarrow q_{S}\left(\mathrm{~K}_{S}-\mathrm{C}\right) \longrightarrow 0
$$

As $c_{1}\left(\mathscr{\zeta}_{1}\right)=K_{S}-C, c_{2}\left(\mathscr{\zeta}_{1}\right)=0$ and $\left(K_{S}-C\right)^{2}=K_{S}^{2}-2>0$,

$$
c_{1}\left(\xi_{1}\right)^{2}>4 \mathrm{c}_{2}\left(\xi_{1}\right)
$$

which implies that δ_{1} is unstable.

By Bogomolov Lemma [3], there is a sub-line bundle $L \longrightarrow \xi_{1}$ and a cluster ξ_{1} on S, such that

1. there exists a diagram with row and column exact:

where $\mathbf{J}_{\xi_{1}}$ denotes ideal sheaf of ξ_{1}.
2. $\quad\left(\mathrm{K}_{\mathrm{S}}-\mathrm{C}-\mathrm{L}\right) \cdot \mathrm{L}+\left|\xi_{1}\right|=0$;
3. $\left(\mathrm{L}-\left(\mathrm{K}_{\mathrm{S}}-\mathrm{C}-\mathrm{L}\right) \cdot \mathrm{H}>0\right.$, for any ample line bundle H .

From 3, it is easy to have

$$
\mathrm{L} \cdot \mathrm{~K}_{\mathrm{S}} \geq \frac{\mathrm{K}_{\mathrm{S}}-\mathrm{C}}{2} \cdot \mathrm{~K}_{\mathrm{S}}
$$

i.e. $2 L \cdot K_{S} \geq K_{S}^{2}>0$.

So we have a oblique imbedding.

As (*) is a nontrivial extension, there is a real effective divisor $\mathrm{E}>0$, such that

$$
\mathrm{L}+\mathrm{E}=\mathrm{K}_{\mathrm{S}}-\mathrm{C} .
$$

I. $\quad \mathrm{K}_{\mathrm{S}}^{2}=3$. From $3=\mathrm{K}_{\mathrm{S}}^{2}=\mathrm{K}_{\mathrm{S}}\left(\mathrm{K}_{\mathrm{S}}-\mathrm{C}\right)=\mathrm{K}_{\mathrm{S}}(\mathrm{L}+\mathrm{E}) \geq \mathrm{K}_{\mathrm{S}} \mathrm{E}+\frac{3}{2}$,
we have

$$
\mathrm{K}_{\mathrm{S}} \mathrm{~L}=2, \mathrm{~K}_{\mathrm{S}} \mathrm{E}=1 ;
$$

or

$$
\mathrm{K}_{\mathrm{S}} \mathrm{~L}=3, \mathrm{~K}_{\mathrm{S}} \mathrm{E}=0
$$

If $\mathrm{K}_{\mathrm{S}} \mathrm{L}=2, \mathrm{~K}_{\mathrm{S}} \mathrm{E}=1$, we have $\mathrm{K}_{\mathrm{S}}(\mathrm{E}+\mathrm{C})=1$.

By Algebraic Index Theorem,

$$
\mathrm{E}^{2} \leq-1 \text { and }(\mathrm{E}+\mathrm{C})^{2} \leq-1
$$

Note that

$$
2+\left|\xi_{1}\right|=(C+L) \cdot L=1+E(E+C)
$$

we have

$$
E(E+C)=1+\left|\xi_{1}\right|
$$

which implies $\mathrm{EC} \geq 2$.

On the other hand,

$$
-1 \geq(E+C)^{2}=E(E+C)+C(E+C) \geq E(E+C)+2-2=1+\left|\xi_{1}\right|
$$

It is a contradiction:

If $K_{S} L=3, \quad K_{S} E=0, E$ is the sum of (-2)-curves. Thus $E^{2} \leq-2$ and $(E+C)^{2} \leq-2$.

Note that

$$
3+\left|\zeta_{1}\right|=(C+L) L=3+E(C+E)
$$

we have $\left|\xi_{1}\right|=E(C+E)$.

Thus CE ≥ 2.

On the other hand,

$$
-2 \geq(E+C)^{2}=E(E+C)+C(E+C) \geq E(E+C)+2-2=\left|\xi_{1}\right|
$$

We also have a contradiction:
II. $\mathrm{K}_{\mathrm{S}}^{2}=4$.

With the same method as above, we can deduce a contradiction similarly. We leave the details to readers.
Q.E.D.

From above, to prove our theorem, it is sufficient to deal with $K_{S}^{2}=3$.

Let $\left|2 \mathrm{~K}_{\mathrm{S}}\right|=|\mathrm{M}|+\mathrm{V}$ be a decomposition with $|\mathrm{M}|$ as its moving part and V as its fixed part. As $\mathrm{K}_{\mathrm{S}} \mathrm{M} \geq 1, \mathrm{~K}_{\mathrm{S}} \mathrm{V} \geq 1$, it is easy to show $\mathrm{MV} \geq 3$. In fact, it is an immediately consequence of Proposition 6.2 of [1], p. 219. On the other hand, as $\Phi_{\left|2 K_{S}\right|}(S)$ is a non-degenerate surface in $\mathbb{P}^{3}, M^{2} \geq 4$. In fact, otherwise, S is not of general type.

With this,

$$
2 \mathrm{~K}_{\mathrm{S}} \mathrm{M}=\mathrm{M}^{2}+\mathrm{MV} \geq 7 .
$$

Thus

$$
\mathrm{K}_{\mathrm{S}} \mathrm{M}=4, \mathrm{~K}_{\mathrm{S}} \mathrm{~V}=2, \mathrm{M}^{2}=4, \mathrm{MV}=4, \mathrm{~V}^{2}=0 ;
$$

or

$$
\mathrm{K}_{\mathrm{S}} \mathrm{M}=5, \mathrm{~K}_{\mathrm{S}} \mathrm{~V}=1, \mathrm{M}^{2}=5, \mathrm{MV}=5, \mathrm{~V}^{2}=-3 ;
$$

or

$$
\mathrm{K}_{\mathrm{S}} \mathrm{M}=5, \mathrm{~K}_{\mathrm{S}} \mathrm{~V}=1, \mathrm{M}^{2}=7, \mathrm{MV}=3, \mathrm{~V}^{2}=-1
$$

If $K_{S} M=4, S$ is a double covering on a degree 2 surface in \mathbb{P}^{3}. More precisely, we have

$$
\Phi_{\left|2 K_{S}\right|} S \longrightarrow \mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3}
$$

But in this case, $\mathrm{K}_{\mathrm{S}}^{2} \equiv 0(\bmod 2)$, contradiction;

If $K_{S} M \geq 5$, and $M^{2}=5$. We easily find out that $|M|$ has one and only one simple base point. In fact, if $|M|$ is base point free, $\Phi_{\left|2 K_{S}\right|}(S)$ is a degree 5 surface in \mathbb{P}^{3}, which is birational to S itself. By [5], it is impossible.

On the other hand, if $|M|$ has one base point p, blowing-up S at p, the resulting surface $\tilde{S}=B_{p}(S)$ is a real double covering on $\mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3}$. An easy calculation for this double covering with formulas at p. 183 of [1] implies that it is also impossible.
$\mathrm{K}_{\mathrm{S}} \mathrm{M}=5, \mathrm{M}^{2}=7$. As $\mathrm{K}_{\mathrm{S}} \mathrm{V}=1$, by Lemma, V is an irreducible reduced curve with $\mathrm{P}_{\mathrm{a}}(\mathrm{V})=1$. As V is the fixed part of $\left|2 \mathrm{~K}_{\mathrm{S}}\right|, \mathrm{h}^{1}\left(2 \mathrm{~K}_{\mathrm{S}}-\mathrm{V}\right) \neq 0$. Thus we have a non-trivial extension

$$
\begin{equation*}
0 \longrightarrow a_{\mathrm{S}} \longrightarrow \delta \longrightarrow a_{\mathrm{S}}\left(\mathrm{~K}_{\mathrm{S}}-\mathrm{V}\right) \longrightarrow 0 \tag{**}
\end{equation*}
$$

Next, we want to prove that $\sqrt{6}$ is of stable. Otherwise, there exists a line bundle $L \longleftrightarrow \delta$ such that

$$
\mathrm{LH} \geq \frac{\mathrm{K}_{\mathrm{S}}-\mathrm{V}}{2} \cdot \mathrm{H},
$$

here H is an ample line bundle on S . Thus we have

1) $\quad \mathrm{LK}_{\mathrm{S}} \geq \frac{\mathrm{K}_{\mathrm{S}}-\mathrm{V}}{2} \mathrm{~K}_{\mathrm{S}}=1$
2) there exists a diagram with row and column exact

where $\boldsymbol{\xi}$ is a cluster on S, E is a line bundle. In fact, it is an easy consequence of the following facts:

$$
\mathrm{c}_{1}(\zeta)=\mathrm{K}_{\mathrm{S}}-\mathrm{V}, \mathrm{c}_{2}(\zeta)=0 \text { and } \mathrm{c}_{1}(\zeta)^{2}=4 \mathrm{c}_{2}(\zeta) .
$$

As $\mathrm{LK}_{\mathrm{S}}>1, \mathrm{~L} \longrightarrow \mathrm{~K}_{\mathrm{S}}-\mathrm{V}$. Note that the horizontal extension is not trivial,

$$
\mathrm{K}_{\mathrm{S}}-\mathrm{V}=\mathrm{L}+\mathrm{E}
$$

with $\mathrm{E}>0$.

By $K_{S}(L+E)=K_{S}\left(K_{S}-V\right)=2$, we have

$$
\mathrm{K}_{\mathrm{S}} \mathrm{~L}=1, \mathrm{~K}_{\mathrm{S}} \mathrm{E}=1
$$

or

$$
\mathrm{K}_{\mathrm{S}}^{\mathrm{L}=2, \mathrm{~K}_{\mathrm{S}}^{\mathrm{E}}=0 .}
$$

If $\mathrm{K}_{\mathrm{S}} \mathrm{L}=1, \mathrm{~K}_{\mathrm{S}} \mathrm{E}=1$, by $\mathrm{c}_{2}(\boldsymbol{\delta})=0$, we have

$$
0=|\xi|+\mathrm{LE}=|\xi|+1-\mathrm{E}(\mathrm{~V}+\mathrm{E}),
$$

i.e. $E(V+E)=1+|\xi|$.

Note that $K_{S} \mathrm{E}=1$ and $\mathrm{K}_{\mathrm{S}}(\mathrm{E}+\mathrm{V})=2$, by Algebraic Index Theorem,

$$
\mathrm{E}^{2} \leq-1 \text { and }(\mathrm{E}+\mathrm{V})^{2} \leq 0
$$

Thus $\quad|\xi|+1=\mathrm{E}(\mathrm{V}+\mathrm{E})=(\mathrm{E}+\mathrm{V})^{2}-\mathrm{V}(\mathrm{E}+\mathrm{V}) \leq-\mathrm{V}(\mathrm{E}+\mathrm{V})=1-\mathrm{VE}$, i.e. $\mathrm{VE} \leq-|\xi| \leq 0$.

So $|\xi|+1=\mathrm{E}(\mathrm{E}+\mathrm{V})=\mathrm{E}^{2}+\mathrm{EV} \leq-1-0=-1$, contradiction;

If $K_{S} L=2, K_{S} \mathrm{E}=0$, by $0=c_{2}(\xi)$, we have $|\xi|=E(V+E)$.

As $\mathrm{K}_{\mathrm{S}}(\mathrm{E}+\mathrm{V})=1$, and $\mathrm{K}_{\mathrm{S}} \mathrm{E}=0$, we have

$$
(\mathrm{C}+\mathrm{E})^{2} \leq-1 \text { and } \mathrm{E}^{2} \leq-2
$$

Thus

$$
-1 \geq(V+E)^{2}=V(E+V)+E(E+V)=V E-1+|\xi|,
$$

i.e. VE $\leq-|\xi| \leq 0$.

So $|\xi|=E(E+V)=E^{2}+E V \leq-2$, contradiction.

Therefore δ is of stable.
Q.E.D.

Remark: In fact, we can prove that $K_{S}-V$ is nef.

Acknowledgment: Thanks Professor W. Barth and Professor F. Hirzebruch for their kindly invitations and offering me a creative circumstance at Erlangen and Max-Planck-Institut für Mathematik, Bonn. Also, I'd like to thank Dr. Zuo for his helpful discussions. Surely, without Professor S. Lang's and Professor J.G. Yang's encouragement, I could not write this paper. Thank them very much.

References

[1] W. Barth, C. Peters \& A. Van de Ven. Compact Complex Surfaces, Springer-Verlag, Berlin, New York, 1984.
[2] E. Bombieri, Canonical Models of Surfaces of General Type, Publ. Math. IHES 42 (1973) 171-219.
[3] M. Reid, Bogomdov's Theorem $c_{1}^{2} \leq 4 c_{2}$, Proc. Intern. Symp. on Alg. Geo., Kyoto (1977), 633-642.
[4] I. Reider, Vector Bundles of Rank 2 and Linear Systems on Algebraic Surfaces. Ann. of Math. 127 (1988), 309-316.
[5] J.G. Yang, On Quintic Surfaces of General Type, Transa. of AMS, 295 (1986), 431-473.

