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ARemark on Bicanonical Maps of Surlaces of General Type

Lin Weng

Pluricanonical maps ef surfaces ef general type have been studied for quite a long

time. After Bombieri's remarkable werk [2], recently, Reider [4] uses a new method,

Le. non~table rank 2 vecter bundle, to deal with them successfully. Now such problems

only have their meaning on bicanonical maps for small K~(:5 4) , and canonical maps.

In thiB small note, we will study bicanonical maps. As there are no examples and

real methods, in this cue, we have the following:

o jecture: If 5 a nicim sAac wii t »g = 0 an xi = 3 or 4, thci

map C} 12KS I is a merphism, Le. the complete linear system 12KS I has no fixed

points.

For thiB conjecture, we only deal with the fixed part. Using the technique of rank

two vector bundles, we can prove the following:

Theorem. Let S be a minimal surface of general type with p =0 .g

1. 2If KS = 3, 12KS I has no fixed part, except for one case:

12KS I has a decomposition IMI + V with IMI as itB moving part and V as its

fixed part, which has the following properties:
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a) V is an irreducible reduced curve with Pa(V) = 1 j

b) K S • V = 1 ;

c) There is a non-trivial extension of vector bundles:

0--+ 1; --+ 8--+ 1; (KS - V) --+ 0

with K a H-stable bundle, which comes from a nontrivial pu(2)-representation of

11"1 (S) ;

11. If K~ = 4, (- 2) - curve could not be a component of the fixed part of 12KS I .

Remark: Although the exceptional case in 1 is totally unreasonable, I could not throw it

away.

At first, we want to prove the following

Lemma: With the same notation as above, if C is a (- 2) - curve ,then C ia not a

fixed component of 12KS I .

Proof: Otherwise, the exact sequence

implies
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i.e.

ThuB there existB a nontrivial extension

o~ 1; ---t ~~ t!;(KS - C)~ 0 .

which implies that ~ is unstable.

By Bogomolov Lemma [3], there is a sub-line bundle L~ ~ and a cluster e1 on

S , such that

1. there exists a diagram with row and· column exact:
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o
T

Je 1~ tS(KS - C - L)

T
o----+ tS --+ ~ --+ tS(KS - C) --+ 0

tis(L (/'"
T
o

where J{I denotes ideal sheaf of {I .

2. (KS -C-L).L+I{l l =O;

3. (L - (KS - C - L) · H > 0 , for any ample line bundle H.

From 3, it is easy to have

2Le. 2L • KS ~ KS > 0 .

So we have a oblique imbedding.

As (*) is a nontrivial extension, there is areal effective divisor E > 0 , such that

1.
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we have

or

If KSL = 2 J KSE = 1 , we have KS(E + C) = 1 .

By Algebraic Index Theorem,

Note that

2 + Ie1 1 = (C + L) · L = 1 + E(E + C)

we have

which implies EC 2: 2 .

On the other hand,
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- 1 ~ (E + C)2 = E(E + C) + C(E + C) ~ E(E + C) + 2 - 2 = 1 + IeIl .

It is a contradiction:

If KSL = 3, KSE = 0, E is the sum of (- 2~urves . Thus E2 5 - 2 and

(E + C)2 :5 - 2 .

Note that

3 + 1'1 1= (C + L)L = 3 + E(C + E) ,

we have IeIl = E(C + E) .

Thus CE ~ 2 .

On the other hand,

- 2 ~ (E + C)2 = E(E + C) + C(E + C) ~ E(E + C) + 2 - 2 = IeIl .

We also have a contradiction:

ll. 2KS = 4.

With the same method as above, we can deduce a contradiction similarly. We leave

the details to readers.

From above, to prove our theorem, it is sufficient to deal with K~ = 3 .

Q.E.D.
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Let 12KS I = IMI + V be a decomposition with IMI as its moving part and

V as its fixed part. As KSM 2: 1, KSV 2: 1 , it is easy to show MV 2: 3 . In fact, it is

an immediately consequence of Proposition 6.2 of [1], p. 219. On the other hand, as

{> 12KS I (S) is a non-degenerate surface in 11'3, M2 ~ 4 . In fact, otherwise, S is not

of general type.

With tbis,

Thus

2 2KSM = 4, KSV = 2, M = 4, MV = 4, V = 0 ;

or

2 2KSM = 5, KSV = 1, M = 5, MV = 5 , V = - 3 ;

er
2 2KSM = 5, KSV = 1, M = 7, MV = 3, V = - 1 .

If KSM = 4, S is a double covering on a degree 2 surface in 1P3 . More preciseIy, we

have

113
~ 1 2KS

I S --+ IP )( IP e........, IP .
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Hut in this case, K~ =O(mod 2) , contradictionj

If KSM ~ 5 ,and M2 = 5 . We easily find out thai IM I has one and only one

simple base point. In fact, if I M I ia base point free, cI» 12KS
I (S) ia a degree 5

aurfa.ce in !p3 , which is birational to S itself. Hy [5], it ia impossible.

On the other hand, if IM I has one base point p, blowing-up S at p, the
N

reaulting surface S = Bp(S) is a real double covering on !pI x !pI ~ 1P3 . An easy

calculation for this double covering with formulas at p. 183 of [1] implies that it is also

impossible.

KSM = 5, M2 = 7 . As KSV = 1 , by Lemma, V ia an irreducible reduced curve

with Pa(V) = 1 . As V is the fixed part of 12KS I , h1(2K S - V) f 0 . Thus we have

a non-trivial extension

Next, we want to prove that ~ is of stable. otherwise, ihere exists a line bundle

L ~ , such that

here H ia an ample line bundle on S . Thus we have



1)

2)
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KS-V
LKS 2: 2 KS = 1

there exists a diagram with row and column exact

o
T

Je ~ iS(E)

T
o---+ t.S~ 6 --+ t.S(Ks- V) ---+ 0

T
°S(L)

T
o

where e is a cluster on S, E is a line bundle. In fact, it is an easy consequence of the

following facts:

As LKS > 1, L~ KS - V . Note that the horizontal extension is not trivial,

KS - V = L + E

with E > O.

By KS(L + E) =KS(KS - V) =2 , we have
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OI

H KSL = 1, KSE = 1 , by c2( 6) = 0 , we have

o= IeI + LE = IeI + 1 - E(V + E) ,

Le. E(V + E) = 1 + IeI .

Note that KSE = 1 and KS(E + V) = 2 , by Algebraic Index Theorem,

E2 :5 - 1 and (E + V)2 :5 0 .

ThuB IeI + 1 = E(V + E) = (E + V)2 - V(E + V) 5 - V(E + V) = 1 - VE Le.

VE :5 - IeI :5 0 .

So IeI + 1 = E(E + V) = E
2 + EV :5 - 1 - 0 = - 1 , contradiction;

H KSL = 2, KSE = 0 , by 0 = c2( ~) , we have IeI = E(V + E) .

AB KS(E + V) = 1 ,and KSE = 0 , we have

(C + E)2 :5 - 1 and E2 :5 - 2 .

Thus
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- 1 ~ (V + E)2 = V(E + V) + E(E + V) = VE - 1 + I(I ,

i.e. VE ~ - IeI ~ 0 .

So Iel = E(E + V) = E
2 + EV ~ - 2 , contradiction.

Therefore l is of stable.

Remark: In fact, we can prove that KS - V is nef.

Q.E.D.
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