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ON THE GEOMETRY OF SCHUBERT VARIETIES ATTACHED 

TO !CAC-MooDY LIE ALGEBRAS 

Peter Slodowy 

ABSTRACT: Let G be a group attached to a Kac-Moody Lie algebra with 
not necessarily symmetrizable Cartan matrix. We define Schubert varie­
ties for G by means of a Demazure-Hansen resolution and we prove 
that these varieties are nonsingular in codimension one. We also deter­
mine the restriction of homogeneous line bundles on generalized flag 
manifolds to Schubert subvarieties. 

O. INTRODUCTION: In this paper we study generalized Schubert varieties at­

tached to Kac-Moody groups G with arbitrary Cartan matrix. Such groups con­

tain a Tits system (B,N) providing a Bruhat decomposition 

G = U BwB 
wEW 

and a classification of parabolic subgroups P, i.e. of subgroups of G con-

taining a conjugate of B. Set-theoretically a Schubert variety is a subset 

Xw of a homogeneous space G/p I Be P CG , of the form 

= u (B wP)/p 
v < w 

where v < w denotes the Bruhat ordering on the Weyl group W. The homogeneous 

space G/p may be embedded into the projective space lP (til) of an irreducible 

highest weight module L(tIl) of G. We endow Xw with the structure of a com­

plex algebraic variety by identifying it with the closure in lP (til) ':If 

Xw '" (B w P) /F (cf. 2.2 - 2.4). OUr procedure here agrees essentially with the 

one scetched by Tits in [25] in that we use a "Demazure-Hansen resolution" of 

X . On the technical level we exploit heavily the fact that several subgroups w 
of G stabilize finite-dimensional subspaces in the modules L(tIl) , on which 

they act regularly by algebraic quotient groups (cf. 1.11). Though we are not 

able to show that the algebraiC geometric structure on x 
w 
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is independent of 
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the module L(w) (for symmetrizable Cartan matrices at least, this is ascer­

tained in (2SI) we prove (2.5) that the topoloqical st .... uc_ture is uniquely 

defined. This is sufficient for topoloqical applications as described in [II). 

As further results we show that all Schubert varieties are nonsinqular in co­

dimension one and we determine the restrictions of hOlllOCjeneous line bundles on 

G/p to Schubert varieties (2.8). The last result is important for extending 

part of the Schubert calculus to the fra_work of bc-Moody groups as announced 

in our jQint note [111 with E. Gutkin. Whereas this paper provides detailed 

proofs for the geometric results stated there, a separate paper by E. Gutkin 

will be occupied with the homoloqical and cohomoloqical applications. 

We finally want to point out the technical character of··this paper. Most 

of the objects we deal with are easily defined ona set-theoretical level by 

exploiting the analogy with the finite-dimensional situation. The main problem 

therefore consists in defining correctly the underlying algebraic geometric or 

topological structures and in justifying classical arguments in the infinite­

dimensional context. 

Our thanks go to J. 'rits who communicated to us the idea for the con­

struction of the Schubert varieties lonq aqo (March 1981) and to E. Gutkin who 

started the collaboration with us on these topics and who urqed us to write 

down the details in this paper. 

1. KAC-MOODY . LIE ALGEBRAS .AND ASSOCIATED GROOPS. The purpose of this part is 

to recollect the necessary definitions and results needed in the second part. 

Thus we review properties of wayl groups, bc-Moody Lie algebras, associated 

groups and representations. We also add some simple le_8 of a more technical 

nature. 

1.1 ROOT BASES. Let I be a finite set. A (generalized) cartan matrix on I 

is a matrix 

A • 

satisfying 

for all , 

for all 1,::1 E I 

A Z-real1zat1on of INCh a _trix or a root ba.. for A 1. a tdplet 

(H,9,A) con.1at1ng of a free a-lIIOdule H. zr for: 801M r: 6 :If , •• \d).et 
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V={h.li~r} 
1. 

of ~, and a subset b={a.liE:I} 
1. 

of the dual lattice 

H* .. Hom~ (H,~) such that 

We call 6 (resp. 

coroots) of (H,V,6) • 

Let a = a
i 

e 6 

Let r (resp. L 

r 

.. for all i,j € I 

v ) the set of simple or fundamental roots (resp. 

Then we also write ha instead of hi' 

be the free ZZ-module generated by 6 (resp. V) : 

.. EB Zla L .. E9 Zlh 
a E 6 he.V 

3 

We call r Crespo L) the formal root lattice (resp. formal coroot lattice). 

Corresponding to the natural maps r + H* , L + H we have obvious pairings 

r x H + Zl , L x H* + Zl • 

Note that the map r + H* (resp. L + H) is injective if and only if 6 

(resp. V) is linearly free. 

1.2 WEYL GROUPS. Let (H,V,6) be a root base for a generalized Cartan matrix 

A • «Aij»i,j e I and r 
(H,V,6) is the subgroup of 

its formal root lattice. The Weyl group W of 

Aut(r) generated by the fundamental reflections 

s a 

....... 

r + r a 6 6 s (y) a 
.. 

It is known (cf. [13]) that the system (W,S) , S = {s la E 6} , is a 
a 

Coxeter system, i.e. that W has a presentation of the form 

2 
s "" 1 a all a E: 6 

where the numbers mae are given by the following table (we write AaG = Aij 

if D) a = a i ' p = a j 

o 2 3 

2 4 6 

The action of W on r extends to an action on H* by the prescription 

s (w) = w - w(h )a 
a a 

w e H* 

for the generators sa E. S (this action is faithful if V or 6 are linearly 

free). The contragredient action of s on H 
a 

s (h) .. h - a(h)h a a 

is now given by 
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for all h CO:. H . 

Let w = sl· •.. ·sn. be an expression of an element we W as a product 

of elements Sj t S • This expression is called reduced if n is the least 

number for which such an equality holds. In that case n is called the length 

l(w) of w (cf. [5] IV). 

1.3 WEYL ROOTS. We con sider the same situation as in § 1.2. The union of 

orbits of {ala e: 6} c r under W is the set IR of ~ or weyl roots. The 

bijection 6 + V I a r+ h I can be extended to a W-equivariant bijection 
a 

given by 

v 

V yl-+y =h 

+ W{h I a e 6} 
a 

C L 

If 
R Y 

Y ELand y = w{a) 
-1 

for some a E 6 , w e W , then s = ws w is y a 
called the reflection belonging to the root y. we have sy(h). h - Y{h)hy 
for all h EH (hy interpreted as its image in H), and Sy(~) • ~ - ~(hy)Y 

for all ~ e r (or ~ e H* I the element y being interpreted as its image 

in H*). 

Any element y E. IR lies in IR,+ - IR {'\ :If 6 or in i.R,-. .. -IR,+ • 

COrrespondingly y is called a positive or a negative real root. 

1.4 BRUBAT ORDER. The definitions and statements of 1.3 make sense for 

arbitrary Coxeter groups. This is also true for the following proposition, a 

proof of which may be either found, in full generality, in [7], [8] or obtained 

by mimicking the proof for the finite-type situation (see for example [1] § 2). 

Let w1 ' w2 E. W and y E IR
,+ • When the conditions 

and 

hold we write 

y 
or 

If there is a chain 

w = .. w' 

we write w < w· and say that w is smaller than w' • 

For any w E W we let rCw) denote the intersection 
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PROPOS~TION: Let WE Wand let w = St· ... ·sn be any reduced decompo-

sition of w. Let a. E 6 be such that s. = s for 1 = 1, •.• ,n . 
~ ~ a. 

~ 

(1) L(w) = {a 1 's1(a
2
), ... 'sl· .•. ·sn_l(a

n
)} , 

in particular few) = n = card ~(w) . 

(ii) Let Y E IR ,+ . Then 

t(syw) > 9. (w) <=> y4:L(w) 

t (s w) < 1(w) <=> Y E I (w) 
Y 

(iii) Let Wi E W be such that 
Y 

w' ---+ W • Then there is a unique index 

i,l $ 1 $ n I such that y = s1····· s . l(a.) I and 
1- ~ 

(iv) Let Wi E W . Then w' < w if and only if there exists a subsequence 

< i k $ r , k < n I such that 

Wi = s. 
11 

The order "<" on W is called the Bruhat·order. We write Wi S w if 

Wi ~ w or w· < w . 

As an immediate consequence of (i) above we obtain the following result. 

COROLLARY: Let w'= w
1 

• w
2 

be a product in W such that 

t(w) = t(w
1

) + t(w
2

) • Then 

1.5 KAC-MOODY LIE ALGEBRAS. Let (H,V,6) be a root base as in § 1.1. A~­

Moody algebra ~ associated with (H,V,6) is a complex Lie algebra generated 

as a complex Lie algebra by 

1) the vector space !! = H 022; C 

2) elements e , f I (a E 6} a a 

with the following relations which hold for any h I h t E h and a , f3 EA. 

(R) 

[h,h' ] 

[h,e ] 
a 

[h,f ] 
a 

= 

= 

o 

a(h)e a 

= -a{h)f a 

[e , f J. = h E;HCh 
a -a a 

I-A 
(ad as 

0 ea) (ee) '"' 
I-A 

(ad f) af3 (f ) = 0 
a f3 

a ;;J! B 

, a ~ f3 
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We also require that h v {e If IQ E tl.} injects into 0 • 
- Q Q .z. 

Note that when A is symmetri~le, i.e. when there exists a diagonal 

matrix DE M1(ZO such that DA is sYllllDetric, then there is a unique Lie 

algebra .2. with the properties above (cf. (13]). It is conjectured that the 

result is true. for non-symmetrizable A as well. 

1 .6 PROPERTIES OF THE ROOT SYSTEM. we recall the root decomposition 

EI1 
Y E I V to) 

where L denotes the system of all roots in the root lattice r. When A is 

linearly free in H* we may consider I as A subset of H* C h* • 

Then we have 2y " {xE.2.1 [h,X) .. y(h)X for all hE h} for all 

y e. L U {oJ , and 20"!l. Also 2y is finite-dimensional for all y E. L v to} • 

The set r is stable under the action of the Weyl group and A c r I thus 

IR C I . The complement II .. I \ rR 
is called the Get of i.ma51ina.ry roots. We 

have dim 2y .. 1 f'or all y E tR 
• 

Let t II: i n :N A denote the set of e?sltive roots and r- .. -t the 

set of negAtive roots. Then i .. i+ v r . Ac~ordin9 to this decomposition we 

have subalgebras of .2. 

u± III EI1 2y 

y € I± 
+ -and the direct sum .2. '" u • h • u • 

\,1,.. \"+ The action of W stabilizes L .0 L • Therefore, we also have 

Iew) :: {YE. t I w-1Cy) E. t} for all wE W (cf. 1.4). 

For any subset 

of a root y =: r 
QeA 

S' C S "" {s I Q E A} 
Q 

C Q by 
Q 

For the sI- height we set 

ht(y) 

we define the S I - heiqht hts' (y) 

1. 7 KAC-MOODY LIE GROUPS. Let (H, V ,A) be a root base as in 1.1. To avoid 

unnecessary complications we assume that V or A is linearly free. Let !l 

be a Kac-Moody algebra associated to (H,'l,b) • In this situation one can 

define a group G with subgroups 8 and N satisfying the following proper­

ties: 
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1 ) The pair (B,N) is a Tits system in G , Lo. 

i) G is generated by B and N 

ii) the intersection T ::: Bn N is normal in N 

iii) the quotient W ::: NIT is generated by a set S of 

involutions such that 

s B weB w B v B sw B 

and 

sBs ;I! B 

for all s E S , w E. W 

2) The group T is isomorphic to H @zz; (;* • 

3) The system (W = NIT,S) is isomorphic to the Coxeter system associa­

ted with (H,V,A) in 1.2. Under this isomorphism the action of W on T is 

induced by the action of W on H. 

on 
i 

u 

4) 'lbe group T acts naturally on the subalgebra + u of ~ as well 
i 

with respect to the filtration (~) i E:N I 

is a natural action of T on the prounipotent 

-+ + the completion u of u 

= EB 9' :-' Thus- there 
ht (y) > i y 

proalgebraic group 

u = lim U. 
1- ~ 

-+ 
correspondin9. to u Here U

i 
is the unipotent algebraic group with Lie 

B is now the semidirect product B = T ~ U • + i algebra ~ lu . The group 

as 

REMARKS: 1) By exploiting the Tits system in G it is easily seen that 

the above properties characterize the group G up to isomorphism. For a con­

struction of G cf. {23], (24], or [20J. 

2) Similar groups associated to ~ have been constructed and lllvestigated 

by Garland, Kac, Peterson, Marcuson, Moody, and Teo (cf. [91~ [18], [14}, [lS}, 

[16], (17). In some cases these groups differ from ours in a "smaller" sub­

group U. Instead of U as above one 'might use the subgroup umin of U 

generated by the additive one-parameter subgroups Uy corresponding to the 

positive real roots y € r+,R (essentially this group is the one studied by Kac 

and Peterson). 

4) OUr later results on the structure of the homogeneous space G/B will 

not depend on the particular choice of the group G we are dealing with. For 

reasons of technical convenience one may (and is allowed to) prefer different 
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versions of these groups depending on circumstances. We will stick to our 

definition. 

One property of the group G is that for any real root Y £ rR (not 

only r+,R) there is a unique additive one-parameter subqroup U and a 
y 

homomorphism 

a: ..... G 

such that 

and such that 

for all t E T , c E C • Furthermore, for all n E N and y £ iR 
we have 

where w denotes the image of n in W. 

We let U- denote the subgroup of G generated by the subgroups Uy for 

y e t,R • From the representation theory of G one easily sees (cf. 2.1) 

Note that U- is not isomorphic to U. In fact it is only isomorphic to the 

.. n~ + f d t+,R s.......,.."roup U 0 U generate by the Ur ' y e L • 

1.8 BRUBA'!' DECOMPOS!TION. We now recall some consequences of the existence 

of the Tits system (B,N) in G. First we have the Druhat decomposition, i.e. 

G is the disjoint union of the double classes C(w) - B w B (cf. [5] IV, § 2) 

G .. \J C(w) 
wEW 

For any positive real root YE. 

one-parameter group corresponding to 

I:R,+ let 

y • Let 

U C U denote the additive 
y 

w Go W • Then the product 

(taken in U 

L<w),k II t(w) 

with respect to any fixed ordertnv Y l' ••• I Y
k 

of the .toots in 

is a closed subgroup of U , iscqorph£c .s an a19ebra1c variety 

to the product U )( ••• )( U , hence to the afflne space Ak of dLMn.ion 
Y1 Yk 

k • f. (w) (note that U 1s. proa19ebra1c 9rouP). MOreover, U clecompo .. s •• 
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a product U - U U - w' (w) where U ('\ wuw- 1 
u(w) = (for any representative w 

of w in N): Any element x in the double class C(w) admits a represen-

ta t ion x = u nul with uniquely determined elements UEU ,nEON w (such 

that n maps to WE W), u l € U , i.e. for any fixed representative w of 

w in N the product map 

U X B + C(w) w 

(u,b) t-+ u wb 

induces a bijection (for details cf. [20] Ch. 5). 

For the mUltiplication of double classes we have (cf. [5} IV § 2) 

C(s) • C(w) 
{ 

C(sw) 

C(w) u C(sw) 
if and only if 

{ 

2. (sw) = 

2. (sw) = 

R.{w) + 1 

2.(w) - 1 

9 

for all 

wew 
cit. ) 

s E S , w E W • For a decomposition w = w1 ••• Wq of an element 

with wi E W , i = 1, •.• ,q and 1(w) = r1=1 2. (wi) this gives (cf. loco 

• C(w) = C(w) 
q 

Let S denote the Bruhat order on W (cf. 1.4), and define 

C(w) := U C(w') 
Wi S W 

for any w e. W • For 5 E S we then have C(s) = C(s) vB. 

The multiplication formulae above and the characterization of S in terms 

of reduced expressions yield the following result. 

PROPOSITION: Let w = s1 •••• • sk be a reduced expression of an element: 

w E. W • Then 

1.9 PARABOLIC SUBGROUPS. Let G be a group as in 1.7 and let S be the 

generating set for the Weyl group W. For <iny subset S· C S we let W· = WS' 

denote the subgroup of W generated by S· • Let PSI denote the subgroup 

of G generated by B and by the representatives of s E S' in the group N. 

Then the map 

S • t---+- P S' 

induces an isomorphism from the lattice of subsets of S to the lattice of 

subgroups of G containing B. Moreover (cf. (5] IV § 2), 
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'" U C(w) and .. 
we W' 

-and, of course, P x Band 
~ 

Ps • G . The conjuqates of the groups 

S'C S , in G are called Pl!':rabolic s"!h9roups. The conjugates of are 

also called Borel subgroups. 

For any subgroup there is a Levi decomposition 

= 

where LS ' is a xac-Moodv Lie aroup attached to the root base (H,V' ,A') with 

A' :: {a E. A I s E S I} 
a 

V'"" {ha E. V I Cl e. A') 

and where is a suitable proalgebraic subgroup of U (cf. [201 5.9 for 

details) • 

A subset S' C. S , the corresponding wayl subqroup "S. C W , and the 

associated parabolic subgroup PS' C. G are called of finite type if "S' is 

a finite group. In this case the group PSI carries the structure of a pro­

algebraic group which is compatible with -inclusions PS" c: Psr , S" c S' • 

More precisely, the Levi factor Ls' is now a finite-dimensional reductive 

group, and the radical U(S') is the projective limit of the finite­

dimensional algebraic quotients 

where is the normal subgroup of U (S') generated topologically as a 

normal subgroup of 

5.7 for details). 

PS ' by the root subgroups uy with hts'(Y) > i (cf. [201 

Let S' C S be of finite type. 'l'hen the quotient Pst/B inherits a 

natural structure of a projective algebraic variety. xn the rank 1 case 

S· = {s} I S E. S I where the selldsimple part of Ls' is SL2 or PGL2 the 

quotient ps./B is the projective line. 

Let P be an arbitrary oroalgebraic group and let P x Y .... Y be an 

action of p on an algebraic variety Y. we say that this action is regular 

if it factorizes over an algebraic action of an algebraic quotient group pI 

of P, Le. 

Pxy !!roy 

~/ 
pI )( y 

Let now PeG be a parabolic aub9roup of finite type contain1n9 B, and 

let B)( Y .... Y be a regular action of the proa19ebraic 9roUP B on an a1-
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gebraic variety Y We denote by P x
E 

Y the bundle associated to the prin-

cipal fibration P 4 piE and the action of B on Y. 

LEMMA: The bundle P x
B 

Y carries a natural structure of an algebraic 

variety and the natural left action of P on P xB Y is regular. 

PROOF: Since the proalgebraic structures on P and B coincide, there 

is a normal subgroup U' C P such that U' C B ,p/u' (hence B/U' ) is al­

gebraic, and B x Y 4 Y factors over an algebraic action (B/U') x Y 4 Y . 

Thus 

(p/U') x(B/U') Y 

which equips P x
B Y with the structure of an algebraic variety (obviously 

independent of the choice of U' ) and shows that the natural left action of P 

factors over an algebraic left action of p/u' . 

1.10 PARABOLIC BRUHAT DECOMPOSITION. We fix a subset S' of S , the 

corresponding Weyl subgroup W' = WSIC W , and the parabolic subgroup 

P = PS '. = U C(w l ) = U U wlB 
Wi E WI Wi E W' 

Wi 

The following lemma is well known (af. [5] IV § 1, Ex. 3). 

LEMMA 1: Any coset of W by Ws I contains a. unique element w of 

minimal length, and for any element w' E. WSI we have R.(Ww') = l(w) + ·R.(w') • 

'!'hus 

We shall denote the set of elements Wi defined in Lemma. 1 by 
SI 

W is a system of representatives of w/WS ' in. W • 

LEMMA 2: Let w = w • W f be a product in W such that R. (w) = 

SI 
W . 

l(w) + l(w') , and let ~ be a representative of w in NeG. Then the map 

(u,u') t----t- u ~ u' 

induces an isomorphi~m of varieties 

u_ XU, ' U w w w 

• -1 
W 

PROOF: From the Corollary in § 1.4 we get L(w) =L(w)v W L<w·).The claim 

follows now from the structure of the groups Uw 
(cf. 

{w I w e. W} 

t ~ U w.: -1 = U for all y c: ~R proper y y w(y) ~ ~ 

In what follows we fix a system 

the elements of W. 

, Uw' , Uw (cf. 1.8) and the 

1.7) . 

of representatives in N of 
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PROPOSITION: Let 9 E. G • Then there is a Wlique element w £. wS
' and 

there are unique elements u £. U_ , PEP , such that 9· u ~ P . w _ 

PROOF: Let 9 E C(w) '" U " B I and let ~ be the element of Ilinimal 
- w 

length in the coset wW' • By Lemma 1, we have w a: w· w' with w' E. WI and 

1(10') :: l(w) + l(w') • Thus we have C(w) I: C(w) • C(w') (cf. 1.8). Because of 

C(w') C P we get 

9 E C(w) • P I: Uw ~ p 

To prove uniqueness let 

g ,.. 

be two decompositions of the desired kind. Let 

:: w· E; W· 
i u i E U • 

Wi 

be the Bruhat decomposition of Pi ' i I: 1,2. Then 

.. i • 1,2, 

and by Lemma 2, we have 

i ... 1,2, 

• • -1 • 
(uiwiuiwi ) • (Wiwi) • b i € U

wiwi 
wiwiB , g III i I: 1,2 

From the Wliqueness assertions in the usual Bruhat decomposition of g we now 

get 

thus 

W1 

and 

(Wi -is of minimal length in wiW') 

.. in u_ , 
w

1
w

1 

Lemma 2 implies u 1 = u 2 • From this we finally obtain Pl - P2 which proves 

our assertion. 
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1.11 RE~RESENTATIONS. Let (H,9,fi) be a root base. We define 

H* 
+ 

H* 
++ 

:= {w E H* I w(h) > 0 

:= {w E. H* I w (h) > 0 

for all h E V} 

for all h E: V} 

and we call H* (resp. H* the set of dominant (resp. regular dominant) 
+ ++ 

weights of the root base. Let ~ be a Kac-Moody Lie algebra associated to 

13 

(H,V,fi) (cf. 1.5) and G the corresponding group (cf. 1.7). For any element 

WE": one can construct a unique irreducible ~-module L(w) which can be 

integrated to a module of G such that the following properties hold (for 

details cf. [13] Ch. 3, or [20J 5.10, S.lI): 

1) With respect to the torus T the module L(w) decomposes as a direct 

sum of finite-dimensional eigenspaces 

where 

L(W) = ffi 
\l E: H* 

L(w) 
\l 

L{w) = {v e. L(w) I t·v = }.!(t)v for all t E Tl 
}.! 

The elements }.! e. H* with L(w} ~ 0 
J.I 

are called the "weights of L(w) t 

and L(W>}.! is called the weight space of weight 

2) Any weight of L(w) is of the form 

}.! = w - L 
tl E. A 

c a 
tl 

for suitable 

}.! • 

3) The dimension of the highest weight space L(W)w is one. 

The-modules L(w) have other properties which can be deduced from the 

above. For example," for all n E N we have 

= 

where w is the image of n in W. With respect to the Levi part LS' of a 

parabolic subgroup PS" of finite type the module L{w} decomposes as a 

direct sum of finite-dimensional modules. Also, any element p € Pst , S· of 

finite type, acts locally finitely on 

for any weight 

L(w) n := EB 
for any n e. :N. Then 

L(w) . More precisely, let 

}.! = w - I c~a of L(w) 
aeA 

L(W)\l 

and put 
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LEMMA 1: L (14) is finite-dimensional for all n E. :N • 
n 

PROOF: Note that any L{(4) n is stable under the Levi group Ls' and 

thus decomposes into a direct sum of finite-dimensional Ls,-modules. Now 

L(I4)O is generated as an Ls,-module by L(I4)14 ' and for n > 0 I L(I4)n is 

generated as an LS.-module by the spaces f • L(I4) l' a E. fl , such that a n-
s fI: S' • Bence, by induction on n , we see that L(I4) is finite-dimensional. a n 

Let L(w) 
:Sn 

denote the direct sum 

ffi L(w) i 

i ~ n 

Then L(I4) < j"s finite-dimensional by the LeJIIM., _n 

L(w) == U 
nE:N 

stabilizes each L(I4) < • _n 

LEMMA 2: The action of P S. 

lar in the sense of 1.9. 

on any subspace L (14) , n E:N, is regu-.s.n 

. . 

~: . It suffices to look at the factors of PSI· LSI K U(SI) sepa-

rately. The action of LSI is regular since it is the integ'ral of It finite­

dimensional representation of its Lie algebra.. Similarly, the action of U (s' ) 

is the integral of a linear representation of its Lie algebra. !!(S') • The_ 

kernel of this representation contains the finite-codimensional ideal of ~ (S') 

generated topologically by the root spaces 2y with htSI(Y) > n • According 

to the definition of the proalgebraic structure on U
CS

.) c: U , the action of 

U(S') factors over an algebraic quotient. 

1 ~ 12 LIMIT TOPOLOGIES ON REPRESENTATION SPACES. Let L be a a:-vector space 

(in the applications, L will be an irreducible highest weight module L(W~ as 

introduced in 1.11). We equip any finite-dimensional complex vector space E 

with the usual Hausdorff topoloqy which we also call the analytical topolosY' 

On L, which will be infinite-dimensional in general, we define the analytical 

limit topology as the finest topology rendering continuous all embeddings of 

finite-dimensional vector spaces 

E «=---+ L 

Almost by definition, the follOWing properties hold: 
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LEMMA 1: (i)- A subset U C L is open (resp_ closed) <==> For all 

finite-dimensional subspaces EeL the intersection U ~ E is open (resp. 

closed) in E. 

(ii) Any linear subspace L' c L is closed. 

15 

(iii) Let X be a topological space. Then f: L + X is continuous <==> 

For all finite-dimensional subspaces E CL t~e restriction fiE: E + X 

continuous. 

is 

LEMMA 2: Let (Ei)i t I be any system of finite-dimensional subspaces 

of L which is cofinal with the system of all finite-dimensional subspaces of 

L . Then, as topological spaces, we have 

L 

In particular, we have 

L ~ lim E 
-+-
E c:. L , dim E < co 

LEMMA 3: The analytical limit topology on L is Hausdorff. 

LEMMA 4: Let , : L + M be a linear map of complex vector spaces. Then 

, is continuous with respect to the analytical limit topologies. 

TO any ~~vector space L we can associate its projective space 

peL) = (L \ {o})/~* and equip it with the corresponding quotient topology. It 

is easy to check that this topology is the finest topology on lP (L) which 

renders continuous all linear embeddings of finite-dimensional projective 

spaces 

peE) ~ P (L) 

We thus call this topology the analytical limit topology, too. It is obvious 

now, that analogues, Lemma l' and Lemma 2', of Lemma 1 and 2 hold. We also 

note that the natural proj ection p: L' {O} + P (L) is open, thus we obtain 

LEMMA 3': The analytical limit topology on JP (L) is Hausdorff. 

LEMMA 4 I : Let ,: L + M be a linear map of complex vector spaces and 

K = ,-1(0) its kernel. Then the induced map 

P (,) lP (L)" P(K) + JP (M) 

1s continuous with respect to the analytical limit topologies. 
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PROOF: This follows from the definition of quotient topology and the 

commutative diagram 

• ----------------~> M 

P( .) 
1 p' 

lP(L) \ lP(lt) -----~> lP (M) 

in which p, p' , and •. are continuous. 

Instead of starting from the usual topology on finite-dimensional vector 

spaces we could have based our definitions on the Zariski topology on finite­

dimensional vector spaces. we call the corresponding limit topologies on L 

and ]I? (L) the Zariski limit toeologies. we have obvious analogues of Lemma 1, 

1',2,2',4, and 4' (of course Lemma 3 and 3' are no longer true). 

However, when speaking of the Zariski topolO<JY we should also emphasize 

the algebraic geometric structure on the finite-dimensional spaces E and 

P(E). This leads us to consider L resp_ P(L) as inductiV$ limit of the 

algebraic varieties E resp. lP(E). The ring of regular functions on L will 

consist of all functions L + ~ whose-restriction to a finite-dimensional sub­

space E is regular in the usual sense. 'l'he structw:e sheaf on lP(L) is 

defined analogously. 

Let now L· L(W) be a representation space of a Kac-Moody group G as 

considered in 1.11. 'ltlen any g E G acts on Lew) and P(L{W» as an auto-

morphism of the topological as well as the alqebraic geometric str\Jctures. 

For later applications we now want to prove an auxiliary result about 

products of projective spaces. Let L and M be complex vector spaces. The 

product map &: LX M + L & M I (v,w) t-+- v e w , induces a map 

(L' (al) x (M' (al) + L e M \ {a} , and by passing to quotients, a map 

lP (8) P (L ) x lP (M) c""'-___ --+ P(L e M) 

In the following we consider the analytical limit topoloqiet:. on peL) , lP(M) , 

]I? (L e M) , and we equip P (L) x lP {M} with the product topology. 

PROPOSITION: P(8) induces a hOllltlomorphism of P (L) 8 P (M) onto a. 

closed subset of P (L e M) • 

PROOF: 'Ihe result is well known (and trivial) in case L and Mare 

finite-dimensional. To extend it to the general situation VA nbserve that 

1) P(L»)( lP(M) is homeomorphic to the d1.rect liad.t 11m ]PtE) x ]P(F) , -
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taken o~er all finite-dimensional subspaces EeL and F eM, 

2) the system of the E ® F I E,F as in i), is cofinal with the sytem of all 

finite-dimensional subspaces of L ® M 

3) lP(6) (lP(L)x lP(M» n lP(E ® F) 

in 1). 

= JP (e) (lP (E) x lP (F» for all E,F as 

Because of 1) and 2) the closed immersions 

lP(E) x JP(F) c:.-.. IP(E ® F) 

induce a continuous injection of the corresponding direct limits 

lP (~) IP(L) x lP{M) ~ IP(L ~ M) 

Property 3) now implies that IP (0) is a closed map. This proves our claim. 

REMARK: To get an analogue of the above proposition in the Zariski 

topology one has to take 1) as the definition of the Zariski product topology 

on P(L) x IP(M) (since, in general, the Zariski topology on a product of 

varieties differs from the product of the Zariski topologies). With this de­

finition and using the corresponding finite-dimensional result (cf. [19] I § 5) , 

the proof above shows that lP (0) embeds JP (L) x P (M) as a Zariski-limit­

closed subset of P (L 0 M) • 

2. FLAG MANIFOLDS AND SCHUBERT VARIETIES 

2.1 EMBEDDINGS OF THE HOMOGENEOUS SPACES G/P. Let G be a Kac-Moody Lie 

group as in 1.7 and P = P S' I SiC S , a parabolic subgroup. In this chapter 

we study the homogeneous space G/P. Since the torus T is contained in B 

we may choose T arbitrarily large, i.e. we may assume that the set 6 of 

simple roots and the set V of simple coroots are linearly free. In this case 

the sets H* 
+ 

of dominant and regular dominant weights are nontrivial. 

LEMMA 1: Let ~ E H: . Then the stabilizer of w in W equals WS ' 

where S· = {s E '> I w (h ) = O} • 
ex ex 

PROOF: The statement follows for example from the properties of the 

W-action on the Tits cone in H* ~ lR (cf. [13J Ch. 3, or [20] G.l). 

For W E Hir let JP (w) 
+ 

denote the projective space of the module 

f1 e pew) be the point corresponding to the line L{w)w in L(w) 

L(w) • 

and Let 

X(w) c: lP (00) the G-Orbit of f 1 under the natural action of G cn J? (w) • 
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LEMMA 2: Let III «Co H* and S· • h E. S \1II(h ) .. O} • "lben the map 
+ a a 

£ G .... lP(lII) £(g) '" gof 
1 

induces a bijection G/Ps • ~ X(III) • 

PROOF: By Lemma 1, the stabilizer in N of the point f 1 consists of 

the pre image of W
S

' under the projection N"" W • en the other hand f 1 is 

also stabilized by B. Since the subqroups of G containing B are exactly 

of the form P S.. ... <B, WS" > , Sft C S , we see that the stabilizer of f 1 is 

the group PS' • 

Let A I .. {a E A I s E S'} and let 
ex 

generated by the one-parameter subgroups 

LEMMA 3: 

-,a 
U(S.) denote the subgroup of 

U where Y E r,a,7Z • A' . 
Y 

G 

PROOF: For A e B* and n E ::H + 
let L(A) denote the direct sum of 

n 
the weight spaces L(A)~ with dS'(~) ... n (cf. 1.11). !ben for all 9 E Ps , 
we have 

whereas for all -,a 
u 'EU(S') we have 

(Xd - q){L(A) ) C E9 
n m > n 

Applying this to a direct sum V of modules L(A) such that G acts faith­

fully on V we get our assertion. 

COROLI.ARY: The. restriction of £ induces an injection into 

X(w) • 

- a i REMARK.: The group U (~. ) need not be normalized by LS I • This s true 

only for the larger group U(S') generated by all LSI - conjugates of U(~~) • 
- - -,a th 'l1len U (S ' ) is also normal ized by U :... U (~) • S.L"lCe LS' preserves e 

L(A)n ' the pcoof of Lemma 3 stUl shows U(SI) f'\ PS" ... {t} • 

We now deal with an "infinitesimal" analO9\1e of the corollary abOve. Let 

v t be a non-zero element in fl· LeW>. and let 
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_- ,R 
~(s· ) : = 

The restriction of dE -,R 
to ~(S') is injective. 

19 

PROOF: Since the infinitesimal stabilizer .E. = {x E. .2.1 x·v 1 c: a: v l} of 

the line· a: v 1 is normalized by T (and h:- Lie T ) we have a decomposition 

R = EB 
a E r v to} 

Thus the lemma follows if we can show that gnp = to} 
-y -

for all 

YEt IR\ 14· A I • However, for all x€: 2" \ to} we have 
y exp(x) E U :"dll . By 

Y 
Lemma 3 we know Uy n Pst = il} • Thus for all x t 2y'{O} , x $.E. (one may 

argue in a finite-dimensional U -stable subspace of 
y L(w) containing VI 1). 

2.2 SCHUBERT VARIETIES. Let us fix a dominant weight w € H: and the 

corresponding parabolic subgroup p::: PSI of G , where 

S' '" {s e s I w(h ) == O} • By restriction, the analytical (resp. Zariski) limit a. a 
topology on JPew} (cf. 1.12) induces a topology on X(w) which we simply 

call the analytical (resp. Zariski) topology On X(w} • With respect to both 

topologies G acts as a qroup of homeomorphism of X(w) • In particular, 

X(w) is homogeneous as a topological space. 

Let w : N + W be the natural projection. Since n(L(w}w) == L{w)w(n) for­

all n e N I and dim L(w)w .. 1 the point n'f
1 

E X(w) C. li?(w) depends only 

on wen) • We therefore define for all w e W 

f w := if 'II"(n) == w 

We denote by X(w)w the B-orbit of fw and by X(W)w its closure in the 

Zariski limit topology on JP (w) • By 1.11, Lemma 2 we can find a finite­

dimensional B-invariant subspace piC pew) on which B acts regularly. Then 

X(w)w equals the Zariski closure of X(w)w in p'. As the orbit of an 

algebraic quotient of B acting on lI?' I X (w) w is Zariski open in its closure 

X(oo)w (cf. [21 I, 1.8). By [19] VII, § 2, Lemma 1, it follows that X(w>w 

COincides with the closure of in the ~alytical topology on pI • Hence 

X(w) also agrees with the closure of X(w) in the analytical limit topology w w 
on lP (00) • 

Since the point f1 E ]p(w) is stabilized by P I and since fw == wf 1 
for any w e W such that w(w) = w , we have 

= 

and the map 

= U • f 
w w 
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1------)0). u • f 
w 

is bijective if and only if w is of minimal lenqth in its WS' - coset w· WSI • 

In this case, this map is in fact an isomorphism of algebraic varieties since 

it is a bijective morphism of an algebraic group U onto an orbit X(~) and w w 
since we are in a characteristic zero situation. we call X(~) a SChubert w 
variety and X (~) wits open cell. 

By the parabolic Bruhat decomposition (cf. 1.10) we have 

x(w) • ~ x<w)w 
S' 

w€.W 

Since we do not know yet whether X (w) is closed in ]p (~), , we cannot 

decide whether the Schubert varieties are contained in X{~) • In 2.4 we will 

first prove this last fact and then derive the closedness of X(w) in P (1.11) • 

2. 3 "l3O'l"l'-SAMELSO~DEMAZURE-BANSEH VARIETIES. Let (sl' ••• ,~) be a sequence 

of elements ~ i esc:. W , let a i E: A be tht! root corresponding to s i and 

Pi ... Phi} = C(si) U B- "the rank-l parabolic subqroup of G generated by B 

and a representative si of si' we denote by Z(Sl""'~) the iterated 

associated bundle 

which may also be considered as the "quotient of PI x P2 X ••• X P
k 

by the right 

Bk - action 

... 

We denote the projection of PI x ••• x P
k 

onto Z(sl",.,sk) by Q(sl, ••• ,sk) 

or simply by q if there is no danger of confusion. 

According to 1. 9., Lemma I Z ( s 1 ' ••• , sk) is a smooth complete algebraiC'! 

variety of dimension k • In fact, it is an iteratit')n of k ]pI-bundles with 

section (starting over a point balie) : 

The homogeneous space P i/B 1s a projective linu lP! which decomposes 

under the left B-action into two orbits 

• 

where 
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= B S. -BIB 
1. 

= U s. B/B 
a. 1. 

1. 

From the above we get a decomposition of Z(sl, ••. ,Sk) into affine 

(i1, .•• ,i
j

) of (l, •.• ,k) • We put spaces. Let J denote a subsequence 

= = 

where 

= 
{ 

C(s.) 

B ' 
and if 

{ 

i E J 

i 4 J 

Then 

ZJ = U
1 

x x U 
k 

where 

{ 
u. (0) 

1 
i E J 

U
i 

~ 
if = 

co i$J i 

and q induces an:isomorphism 

.:;. U1 X ••• X Uk 

21 

In particular, ZJ is a locally closed algebraic submanifold of Z{sl, ••• ,sk) 

isomorphic to the affine space A j 
, j = card{J) 

The Zariski closure ZJ of ZJ in Z(sl, ••• ,sk) is the image of 

G1 X ••• X G
k 

under q I where 

We note that 

= C(s.) v B 
l. if { 

i E J 

i ~ J 

is isomorphic to the iterated associated bundle 

which itself is isomorphic to Z(si , ••• ,s. ) 
1 l.j 

We call the Bott-Samelson-Demazure-Hansen variety associ-

ated to the sequence (sl"",Sk) • They were first introducp.d in a differen­

tial geometric and topological cortext by Bott and Samelson «(4}). Demazcre and 

Hansen adapted the construction to the algebraic geometric situation to use it 

for the desingularization of SChubert varieties of finite-dimensional algeoraic 

groups G as well as for the determination of the Chow ring of the correspond­

ing homogeneous space G/B {cf. (6], (121). In the present situation, the 
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varieties Z(Sl"",Sk) were first considered by Tits ([2S}) using a slightly 

different formulation ( his formulotion, in terms of galleries, is however 

intimately related to the original construction of aott and Samelson in terms 

of piecewise geodesic paths, cf. [4], I, 5). 

2.4 A DESINGULARISATION OF SCHUBERT VARIETIES. We fix a dominant weight 

I S' 
lIS E H! and S' .. {sa E S lIS (ha ) .. oj • Let w E. W be an element of minimal 

length in its WS' -coset, w = 51 •.••• sk a reduced decomposition of w, and 

Z = Z{S1, ••• ,Sk) the Bott-Samelson-Demazure-Hansen variety associated to the 

sequence (s1"",sk) • Let 

denote the multiplication map, m(Pl, ••• ,Pk) • PI· ... • Pk . Then the composi­

tion of m with E:: G ... X (lIS) C ]I? (lIS ) obviously factors over the quotient 

map q: 

LEMMA: The image of E: 0 m is contained in a finite-dimensional sub­

space JP • of JP (lIS) , and the map E:. Dl : P 1 x ••• x P k ... P' factors over an 

algebraic morphism \.l p'''' JPI of an algebraic quotient P' of PI X ••• X Pk • 

PROOF: Using 1.11, Lemma 2, we see inductively that there is a sequence 

= .. p' 

of finite-dimensional linear subspaces PiC: lP (lIS) such that Pi is 

Pi-stable and the action of Pi on Pi is regular in the s.mse of 1.9. Our 

claim follows from that. 

THEOREM (compare [25] 8.1,8.2): 

(1) The map 6: Z ... P (lIS) induces a birational morphism of Z onto the 

Schubert variety X(IIS) Co JP (lIS) • 
w 

(1i) The Schubert variety X(w) decompos.s.s & diSjoint union w 

w' ~ w 
w' " WS' 
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In particular, X(w) is contained-in X(w) . 
w 

PROOF: By Lemma 1, the definition of the algebraic structure on Z (cf. 

2.3, 1.9), and the definition of proalgebraic group {cf. (20] 5.2). we obtain 

that £ 0 m and q factor over a common algebraic quotient pi of 

P
1 

X ••• X P
k 

Where q' : P' + Z is the quotient of pi 

suitable algebraic quotient of Bk. Thus 

JP I c: JP (w) 

z 

by the algebraic action of a 

o is also a morphism of algebraic 

varieties. Since Z is complete and irreducible its image o(Z) under 0 is 

an irreducible and closed subvariety of JP ' • Since o(Z) = £ 0 m(P
1 

X ••• X Pk) 

and m(P1 X ••• X P
k

) a C(Sl)· ••• ·C(Sk) = C(w) (cf. 1.8, Proposition) we obtain 

w' < W 

- S' 
w' E W 

X(w)w' 

Thus X(w)w c C(Z) c:: X(w) • On the other hand, by dimenSional reasons, X(w)w 

is open in o(Z) . Because of the irreducibility of 6(Z) 'we thus get 

x(w) 0:: o(Z' . It remains to be shown that 6 : Z + X(w) is birational. For w w 
that we observe that m induces an_~somorphism (U 51) X ••• X (U sk) + U w , 

at ak W 

(where W 0:: 51 5k ' cf. also 1.10, Lemma 2), £ induces an isomorphism 

U W + X(w) , and rt w . W ..", induces an isomorphism from (u 5t ) X •• oX (Ua sk' onto 
a 1 k 

the open subset Z 
(l, ••• ,k) 

of Z (in the notations of 2.3). Thus 6 induces 

an isomorphism of z(l, ••• ,k) 
this proves the birationality 

onto 

of 6 • 

X(w) w • Since z 
(1, ••• ,k) 

is dense in 

REMARKS: 1) The open subset Z of Z is in fact the preCise 
(1, ••. ,k) 

6 . This follows from the fact that £ 0 m maps 

Z 

pre image of X(w) under 
w -1 

the complement of q (z(l, ••. ,k» = C{sl) X".X C(sk) onto the complement of 

X(w) in X(W) • w w 

2) Part (~) of th~ theorem generalizes a resuLt of Demazure anJ Hansen 

for finite-dimensional algebraic groups «(6], [12}). Part (ii) in that case is 

due to Chevalley (unpublished, - 1958). proofs may be found in [22] Th. 23, 

(3) Th. 3.13, [1] Th. 2.11. The generalization to the present situation was 
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first made by Tits following a suggestion of Dellgne ( (24), (25)). Apart from 

a difference on the technical level our proof follows t~e ideas in [251. Part 

(ii) was also proved by Peterson and Kac in case the underlying Carum matrix 

is symmetrizable ([Ia]). 

Let us add the following consequence which we pointed out already in 2.2: 

COROLLARY: X{CIl) is a closed subspace of lP(w) with respect to the 

Zariski and analytical limit topology. 

PROOF: We have to show that the intersection. of X(Cd) with an arbitrary 

finite-dimensional linear subspace lP' C ]P (w) is Zariski closed in lP·. 

By 1. 11, Lemma 1, we may assume without loss of generality that lP' is 

B-stable. 'lhen X(w) (\]P' decomposes as a finite union of B-omits X(w)w' 

w E WOP') (the cardinality of WelP') is limited by the number of WE. W 

with l(w) ~ dim PI). Cbviously, their closures X(lII)W are contained in lP'. 

By the theorem, these X(w) are contained in X(w) cell. Therefore 
w 

X(w) f'\ ]P' c: U 
we W(]P'} 

X(w) c x(ra) n :I?' 
w 

which shows what we claimed. 

REMARK: In case the underlyinq Cartan matrix is symnetrizable this result 

also follows from the fact that X (Cd) can be described iIi lP( CI)} by means of 

"strongly regular" equations in the sense of (14) 3A (cf. [tal). COnversely, 

the corollary is equivalent only to the weaker statement that X(lII) can be 

defined by regular equations in the sense of loco cit. and of. 1.12. 

2.5 INPEPENDENCE"OF"TBE"'l'OPOLOGY. Let us ca~l two ~t weights CI),A e a: 
parabolically equivalent if for all h E V : w(h) .. 0 <-> l. (h) .. 0 • In this 

section we want to show that the topology on X(CI» and the Schubert varieties 

X(CI»w depends only on the equivalence class of CI). All subsequent statements 

concern the analytical as well as the Zariski topology. 

Note that for all 

(2.4, Theorem). 

w' < w we have natural embeddings X(Cd} :=-- X(IlI) w w 

LEMMA: X (Ill) is homeolllOrphic to the direct limit ~ "X(IlI)w • 

weW 

PROOF: We have to prove that the natural continuous bijection 

lim i (Ill) + X (III) is closed. For that, let A c. x (Ill) be a subset such that for _ w 

all we. W the intersection A n X(IlI) ia closed. We have to show that w 
A f'\ lP' ia closed in .P' for any finite-dimensional subspace ;p' c: lP' w) • 

Without loss of generality we may a.sume ]P' to be 8-£table (1.11, Lemma 2). 
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Then the intersection X (Ill) ("\ lP' is a finite union of Schubert varieties 

X(w) , wE. W{lP') C W, card(W(lP'» < ... w 
X (w) wand hence in lP I , the finite union 

closed in lP I • 

Since A f\ X (w) 
w is closed in 

An JP' = U 
WE wOp') 

PROPOSITION: Let W,A E H: be parabolically equivalent. Then there is 

a G-equivariant homeomorphism X(w) + X(A) • In particular, for any w € W 

there is a B-equivariant homeomorphism X (Ill) + X (A) • w w 

is 

PROOF: We will first deal with the case that the Cartan matrix of G is 

symmetrizable (1). Then we will explain the necessary modifications needed in . 
the non-symmetrizable case (2). 

1) By 1.12 proposition (cf. also the remarks appended for the case of 

the Zariski topology) we obtain a G-equivariant embedding lP (&) of 

X(w) )( X(A) C F(W) x peA} onto a closed subset of lP(L(tIl) & L(>.,» • On the 

other hand, the module L(tIl+A) embeds into the tensor product L(w) ~ L'(A) , 

a highest weight vector v(w+A) of L(W+A) being mapped to the product 

v(w) e v(A) of highest weight vectors v(tIl) e L(oo) , veAl e L(A) (cf. [13] 

§ 10.8). Thus we get a G-equivariant embedding 

\ X(oo+A) + lP(w+~)"~ JP(L(oo) 0 L(A» • Since the image of \ is contained in 

the image of lP (0) we may now consider X(oo+A) as a G-stable closed subset 

of X{oo) x xO.) giving rise to two G-equivariant continuous proj"ections 

pr1 
X(oo) ~<--- x(oo+A) 

pr2 
--~> X(A) 

Since til , oo+A I A are parabolically equivalent, pr1 and pr2 are bijective. 

When restricted to the compact (resp. complete) Schubert varieties, these pro­

jections become closed. Hence we get homeomorphisms 

for all w £ W which are compatible with the natural inclusions existing for 

w' < w • Using the lemma we see that pr
1 

and pr2 are homeomorphisms, too. 

2) In case of a non-symmetrizable cartan matrix one does not know whether 

the integrable highest weight submodule L'(oo+A) C L(oo} 0 L(A) generated by 

v(tIl) e V(A) is irreducible, i.e. isomorphic to L(oo+A) • However, redoing the 

theory of sections 2.1 to 2.4 for L'(W+A) is no problem. We thus get an 

embeddinq of G/p (p - Pst , S' = {s € S I (oo+A)(h ) = a}) onto a closed sub-a a 
set X, (W+A: c:::. JP (L' (00+).) with Schubert subvarieties X· (W+A) • In the proof 

w 
above we only have to replace 

to end up with the same result. 

x (00+).) by x· (00+).) and X(oo+).) by Xl (00+).) w w 



26 PETER SI,.OOOWY 

REMARKS: 1) As a result of the arguments in part 2) of the proof above 

one gets that X(w) . is G-homeomorphic to X'(w) for any integrable highest 

weight module L'(w) . This can also be seen by directly investigating the 

natural map L'(w) + L(w) 

2) In the case of a symmetrizable Cilrtan matrix, Tits has announced that 

the algebraic-geometric structure of the Schubert varieties X(w) depends w 
only on the equivalence class of w (cf. [25] 8). In case X(W) and X(A} w w 
are normal (e.g. smooth) varieties this can also be deduced from our proof. 

However, normality of the Schubert varieties is still an open problem in the 

context of KaC-Moody groups. For non-singularity in codimension one, cf. 2.6 • 

Since the topolOgy on X (w) "G/p , P '" P S' , does not depend on the 

weight w inside the equivalence class determined by p, we have equipped 

G/p with a well defined topology (analytical or Zariski). we call this topo­

logical space the flag lDanifold of G of type P (or of ~ S' , or of 

~ A' ). If P C Q are parabolic subgroups of G , then the proof above 

shows that the natural map G/p + GIg is continuous. 

2.6. ON THE SINGULAR LOalS OF SCHUBERT VlUUETI.ES. In this section we fix 

w E H* , A' = {a E A I W (h ) - 0 }, S' • {s E S I a EA'} , and we simply write 
+ a a 

X for the flag manifold X (w) c:. lP (w) of type A I .. Similarly we write Xw 

resp. X for X(w) resp. X(w) • our main objective will be to show that 
w w w • 

the singular locus of any Schubert variety Xv' w e",s , has codimension ~ 2 

in X • Since X' can be embedded in a finite-dimensional B-stable subspace w w 
]I? , c: lP ew) on which B acts reqularly ecf. 1.11) we see that the singular 

locus of X consists of a union of B-orbits, i.e. of X for some v € ¥fa w v 
such that v < w • Thus we will show 

THEOREM: For all v,w E ~' with· v --¥+. w for some real positive root 

y , the points of Xv are non singular points of Xw' 

We will achieve the proof of this result by a series of auxiliary results. 

'lbe main idea is the same as the one in [1] Proposition 4.3, where the same 

result is proved for the flag manifolds G/B in the finite-dimensional case. 

However, by the .generalization to arbitrary pa:::abolic P and by using neither 

a topological nor an algebraic-geometric structure on the group G we have to 

deal with some extra technical difticulties. 
S· From now on, we shall also fix v,wE W such that v-* w for SOIDe 

real positive root Y E r+,R • Then we have 

W • s v y and y e I (v) i.e. 



ON THE GEOMETRY OF SCHUBERT VARIETIES 

LEMMA 1: For all s· 
x E. W we have 

or, equl.valently 

-1 \ x (l. (x» 

-1 x U x 
x 
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PROOF: This follows for example from the uniqueness of the refined Bruhat 

decomposition (1.10 Proposition) since for e € Lex) with x-l(a> e: zz;·A' we 

would get Ue* C XPs , . 

Let now vEN be a representative of v . Consider the map 

U x U G K (u l ,u2
) .-1 u 1u 2v K 0+- = V 

V -y 

LEMMA 2: The map K is injective and its image is contained in -,R 
U (S') 

PROOF; Since 

(u
1

,u
2

) t-+ u
1
u

2 

U n U = {1} (cf. 2.1, Lemma 3) and U c. U the product -y v 
map injects U x U into G. Lemma 1, applied to x = V , 

V -y 
.• ' • -1. - I R "...... . il t f g~ves v UVV CUes') .~l~ S1m ar statemnn or u_y follows from Lemma 1, 

applied to x = w 

-1 
v (-y) = -1 -1 \' \'- R \ w (y) E w (L. (w}) c L.' zz;. A I 

In the following we let F' Co F(w} denote the finite-dimensional sub­

space which corresponds to the linear subspace 

= E9 
dell) ~ d(w(w» 

of L(w) • Here dell) denotes the depth of II I i. e. 

= t 
a E. A 

c 
a 

for = w - L 
aeA 

Let G denote the runk-l-semisimple subgroup of G generated by the one­
y 

parameter groups Uy and U . We denote T ."\ G by T and we put 
-y y y 

B+ := T K U+ • Let Fo e NG (T ) be a representative of s and let 
-y y -y y y y y 

lPc:. X denote the G -orbit of f . Since f = 5 f , we have f E lP. 
y w v yw v 

that f ;.: f (by 2. 1 Lemma 2 and v,w e wS ' ) . 
w v 

Note 
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LEMMA 3: Let 

(i) The line 

weight d) in the 

equivalently, f ), 
v 

(H) d > 0 , 

d = v(w) (h ) . 
y 
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f (resp. f ) is of lowest·weight -d w v 
smallest G -submodule of L(w) containing 

y 

(Hi) 'lP is contained in lP' , 

(iv) lP is isomorphic to the projective line pi t 

(resp. of highest 

fw (or, 

(v) lP is embedded in lP' (and thus in P (w) ) as a subvariety of . 

degree d (1. e. any hypeJ!plane of lP • (or ]I? (II) ) not containing P cuts 

lP in d points, counted with multiplicity) • 

PROOF: Since ,,-lCY) E r- and since w is the highest weight in L(w) 

we get that w(wl - y is not a weight of L(w) • Thus fw '" L(W)" is a 

lowest weight space for (Gy,By ) of weight w(w) (hy) - -v(w) (hy) • Since 

f = sf, the line f v y w v is a highest weight space in the (irreducible) 

Gy-module of L(W) generated by f and G • Thus (i). Assertion (ii) f01-w y 
lows from the fact that f ~ f w v 

• statement (iii) follows from (i). For (iv) 

we note that fw is fixed by T and by U t since w -1 (-y) e i+ . Since 
. -y 1 

dim lP > 0 we get G /B ;;. lP I g t-+ gf I and G /B Il lP • Finally, (v) 
y -y w y -y 1 

follows from a classical result about the embedding of G /B • P into • . . y y 
P(V) , where V is the (d+l)-d1mensional irreducible module of Gy {cf. [1] 

Lemma 2.10 and proof of Proposition 4.4, for example). 

Since the finite-dimensional subspace p' C P(~) is stabl.,. under the 

action of U (by construction) and since P is contained in P I I the image 

of the map 

U x lP -+ X 
v 

t(u,z) '" uz , 

is contained in 

varieties 

lP·. Thus t induces a U -equivariant morphism of algebraic 
v 

u x p 
v 

pI n X 

which we shall also denote by t . 

(i) 

(il) 

LEMMA 4: The following properties hold: 

t (U )( f ) v v 

t(U )( (lP\{f }» c: X v v w 

(iii) the restriction of (; to Uv )( (P\(f,,}) is injective, 

(iv) there is a Zariski open neighborhoOd 'S' of tv in .,(tv) such that 
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is of maximal rank 

t (u x"?) 
v 

is open in 

lew) 

x 
w 

at all points of u x 'S> 
v 

PROOF: Assertion (i) follows immediately from the definitions. To see 

(ii) note that p\ {f } = U • f by the "translated" Bruhat decomposition v y w 
Gy = S B U U B of Gy with respect to B Thus y -y Y -y -y 

~(U x (lP,{r h) 
v v UUf cUf = X v y w w w 

For the remaining assertions we consider the composition 

= .-1 C" v .... + X 
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Since 
.-1 
v is linear, it is sufficient to prove statements (iii) and (iv) for 

n • From the Bruhat decomposition Gy=B uU sB -y -y Y -y 
bijects onto lP \ {f } : u ~ uf • Thus w v 

we see that U -y 

= V- 1 (U U f) 
v -y v = (v-1U U v)f 

v -y 1 = £ 0 K (U XU) v -y 

where K: U x U + G is as in Lemma 2 and where €: G + X is the orbit 
v -y 

map :; gf1 • BY,~~ 2 we know that K' is injective with image contained 

in U (~I) • By 2.1, Corollary, t~e restriction of € to this group is injec­

tive, too. Bence € 0 K and thus n are injective. 

TO prove (iv) it suffices to show that the differential of £.. K at the 

neutral element (e,e) e U x U is injective (semicontinuity of rank and , v -y 
Uv -equivariance). This follows from 2.1, Lemma 4 and the following facT.oriza-

tion of de )€ 0 K e,e 

Ad v-1 ffi 
)0 (\J.7 t- R 9'a) 

a. e L ' \22: 0
[\' 

We finally 'prove (v). By (ii) and (iv), the restriction of ~ to 

U x ('.9\ {f}) is an etale n:orphism into X • Thus the image 
v v w 

~ (U
V 

x (S \ {fv}) is Zariski open in Xw' We have to show that the complement 

A"" Xw\t(UvX(")\\{fv}» is closed in Xwv Xv, Note that A is Zariski 

closed in Xw and thus of dimension < dim Xw = 1{w} • Assume that A is not 

closed in X v X • Then there is an irreducible component '!\ of A such w v 0 

that the Zariski closure A of A in Xw meets X • By the U -stability o 0 v v 
of A I and thus of Ao I we get X cA. Thus L(v) = dl.m X < dim A < L(,,) v 0 v- 0-

and cUm.A
o

• L (v) • Since Ao is irredn.:::ible I Xv is Zar iski dE"nse i..n Ao ' 

in particular X = A • But this implies A n X cAn Xw = ~ I a contra-v 0 0 w 0 

diction. 
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To prove our theorem# let us consider the germ (X ,~) of X at a point 
v v 

x E X 
v (in the analytical or etale topoloqy) and decompose it into its irre- . 

ducible components 

(X ,x) 
v 

n 
.. U (Vi,x) 

i == 1 

From Lemma 4 (iv) we know that at least one component, say V
1 

I is smooth. To 

prove that (}'v'x) is smooth we have to shov that n:: 1 • This can be derived 

from the following Lemma 5 vhose proof will be given later. 

X 
v 

By a neighborhood of X in X 
v - v 

we viII understand the intersection of 

with a neighborhood (in the analytical or etale topology) of X 
v 

in X w 

LEMMA 5: Any U - stable neighborhood of X in X... contains a connected 
v v ft 

such neighborhood. 

Let us now deduce the irreducibility of (x ,x) • Because of the transi­
w 

tive U - action on X , the procedure of attaching' to any y E X the set 
v v v 

of irreducible components of (Xw'Y) defines a Uv - equivariant unramified c 
y 

n-fold coverinq C + Xv of Xv' Since Xv is 8imply connected, this covering 

is trivial. on the other hand, the $IIlOOtbnes8 of Xv implies that different 

irreducible c:omponents (V i ,x) of (Xw,x) intersect ~y along Xv. 'rhus 

(x \x ,x) decomposes into n connected components (Vi\X ,x) , i - 1, .•• ,n • v v . v 
From the triviality of the coverinq C + X. we now deduce that any sufficiently v 
small U - stable neighborhood of X in Xv· decompcu.e. into n connected v v 
components. Now LeJllDa. 5 forces n IS 1 which bad to be shown. 

We now have to furnish a proof of Lenma 5. Let L(W)· be the dUAl space 

of L(W) 

x € ¥f' 
on which G acts by the contraqredient representation. For any 

we choose • E Lew}· with the properties x 

o if u ;e x(w) and ;.t 0 

Then is well determined up to a non-zero scalar, in particular + and x 
X '1 are proportional. Let U denote the subqroup of G generated by all 

U
a 

' a E L-,R . 

(1) 

(ii) 

LEMMA 6: For any s' xe.W 

is invariant unde:r: U 
x 

we have 

the restriction of • to L(w) x < d(x(w» is inva:r:i.ant under U 

PROOF: One easily check.s that +1 is invariant under U-. Thus 'x is 

inva:r:1ant under xu-x-1 • NOw x- 1(t(x) c r- impl1 •• uxe xu-x- 1 , thus (L). 
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For the second assertion note that U acts trivially on the quotient 

L(W)~ d(x(w»/L(W)< d(x(w» . 

Let us now consider the specific situation studied before. 
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LEMMA 7: The quotient 
1 

+ 1+ defines a w v U -invariant meromorphic function v 
, : X V X -+ JP • We have w v 

,-1(0) = X • The 
v 

restriction ~: 1I? -+]pl of cP 

to lP is a map of degree d{= v(w) (hy» 

PROOF: Note that t (resp. , ) vanishes nowhere on X (resp. X ). w v w v 
Moreover + vanishes 

w 1 
+:X vX-+JP w v 

on X • Thus $ 1$ defines a meromorphic function 
v w v 

which vanishes exactly on X • The U - invariance of $ v v 
follows from Lemma 6, (i) applied 

has degree d since the fiber 

to + , and (ii) applied to tw' The map 
--1 v + (a) consists of the d points (coun-

ted with multiplicity) in the intersection of lI? with the hyperplane 

q, - a, = 0 of JP(Ill) (cf. Lemma 3{v». w v 

Now we have collected the means to prove Lemma 5: We consider the re­

striction of the meromorphic function , to the open subset 

o I: ~ (U x ~ ) c: X v X (cf. Lemma 4). Because of its U '- invariance, the 
v w v v 

composition ~ 0 ~. factors as ~ o pr2 

U x~ 
~ 

~ 0 

v 1 pr
2 

if 
14 

-':9 >- 1I? 1 

Now let '1' be an arbitrary U - stable open neighborhood of X in X 
v -1 v w 

After intersecting with .0 we may assume O· c:. 0 • Then ~ (0') is of the 

form U x ~, for some open neighborhood ;Y' of fv in ~ since 
--1 v 
• (0) = X fl lP = {f} we may find a connected opeln neighborhood ~.. of 

v v --1 _ 
f 

v 
in ?' such that "? to = $ (+(~ "» Since 

+("9") is an open neighborhood of 0 €: lP 1. Thus 

is an open neighborhood of X in X • Because 
v w 

i is open, the image 

cfl-1 (4)C '9"» = ~ (U x '9 U) 
v 

~ If \ {f} is connected, the 
v 

image ~ (U x ('SI It \ (f })) = +-1 {i" ( ':? ")} () X is connected, too. 'l1lus Lemma 5 
v v w 

and the Theorem are proved. 

REMARK: The proof above could be simplified a lo~ it we had ~vailable a 

good theory providing an algebraic geometric structure of G compatible with 

the corresponding structures on x(w) • Some results in that direction are 

found or announced in [14}. 
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2.7. HOMOGENEOUS LINE BUNDLES ON FLAG MANIFOLDS. In this section we want to 

define topological homogeneous line bundles on the flag manifolds X(w) • 

Everything can be interpreted in the analytical or Zariski topology. 

First we have to study tautological line bundles on projective spaces. For 

that let L be a complex vector space with basis (e
i

) i G. I and dual linear 

forms +i € L* , +1(ej ) = 6ij for all i,j E I • By [v] we shall denote the 

equivalence class in peL) = (L\{O})/~* of an element v E L\{O) • The fol­

lowing result is immediate: 

LEMMA 1: For any i E I the map 

EB 
j e. l\li} 

~j ---~~ peL) 

v 

induces a homeomorphism of L(i) onto the open subset 

P(L), = {(xl E. peL) l'i(X) ~ O} • 
i 

Consider now 

1.. (L) {(.t,v) E peL) x L I v E r.} 

Then !.(L) is a closed subset, and the projection 

.f..(L) .... peL) 

realizes t. (L) as a set-theoretic line bundle on lP (L) • 

LEMMA 2: 

(i) ;l.(L) i-s a topological line bundle, 

(ii) any linear automorphism of L induces a continuous automorphism- of 

L(L) I 

(iii) for any subspace L' eL, the restriction .:t.(L) Ip(L') is isomorphic 

to I.. (LI) , 

(iv) for any finite-dimensional subspace EeL, the restriction 

t. (L) Ill? (E) '" .l.( E) is algebraic. 

PROOF: We only have to show (1), the other claims are (then) obvious. It 

is clear that the projection L (Ll .... lP (L), the addition 

t. (L~ xp (L) --L (L) .... L (L) , and the $Calar IllUltiplication «x t.. (L) .... 1.. (L) 

are continuous. It remains to show that :t.. (L) is locally trivial. This results 

from the existence of the followinV continuous sections 

lP (L) • 
i 
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a. (v) 
1. 

'" ([e.+v],e.+v) , v E v(i) , which are nowhere vanishing on (i) 
V • Note 

that 
1. l. 

i~ I peL) $i :::; 

We call t.. (L) 

P (L) • 

the tautolog ical 1 ine bundle on lP (L) 

Let us fix 6 I C 6 'V I :::; {h E V I ex E 6 1 } S 1 :; {s E. S I a E. 6'} . We 
I ex ' ex 

put H*(6') :::; {II) E. H' \ II) (h) :; 0 for h E V'} and H~(6') :::; H*{6') ('\ H~ • 

Then H*(6') is the 2Z-dual of H(6') :::: H/(H n 1Jl· \1') • Let P == Pst and op 

its derived subgroup; then plop .. H (6') 0
ZZ 

0:* (cf. [20] 7.7). 

For any UI e H*(6') 
+ 

we have a continuous map 

G/p -+ lP (II» = g' L (II)} II) 

This map indu~es a bijection onto its image X (II» only when 

111.1 E H* (6') III) (h) > 0 for all h € V\V I} . We let 

== 15* ( 1. (L(w») 
til 

00 E H* (6') == ++ 

denote the pull back to G/p of the tautological line bundle on lP (w) • Since 

G acts on 'f. (L (w) ) and G/p by continuous automorphisms we get a natural 

action of G on ~G/P(W) by continuous automorphisms. In particular, we can 

write i!. G/p (00) as ~ associated bundle 

where 

G x
P 0: 

til 
(as G-sets) 

G x
P 

0: is the quotient of G x 0: by the p - action 

peg ,z) 
_lw 

~ (gp ,w(p)z) , pEP I 9 E G z Eo 0: . Here 00 e. H* (A') 
+ 

a character of P 

P -+ p/DP = 
00 

H(A '} 0
2Z 

0:* ~ 0:* 

is lif.ted to 

We may thus view our definition of ~ G/p (00) as providing G x
P 

C::w with a 

G-invariant topology. To extend this procedure to more general bundles we first 

have to prove a compatibility property (which is trivial on the G-set-theoretical 

level) • 

LEMMA 3: Let W,A E U:{A ' ) • Then £G/p(tIl+A) is G-line-bundle-homeomor­

phic to the tensor product t.G/P(w) ° .t.G/p(A) • 
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~: This is a corollary of 1.12 PropoSition, the proof of 2.5 Proposi­

tion, and the following cartesian diagra~: 

t (Cal+A) -----41>). ! (L (II)+A» c'---___ ---+> ~ (L (11) • L ().) ) 

1 6 1 1 
___ Cal_+_A __ )j» P (cal+).) ,.;;,C" _____ +) lP (L (Cal) • L ().) ) G/p 

I.( .. ) "1 t (A) :. pri I. (OI) I pri f (1: ~ 6

1 

pr~l (L ( .. )) I pri!(L (1))4 /JL ( .. ) I L (1) ) 

G/p C ) G/p x G/p II) )0 P(Cal»)( peA) ~ P(L(Cal) 8 LeA», 

Note that Im«6
Cal

x 6
A

) • diaq.) ;; X(Cal+).)C X(Cal) x XCA) , cf. 2.5. 

For any Cal E H! (A • ) let t. G/p (-(at) 

Since any A e B* (A') can be written .. s 

we define 

i.G/P(A) • 

denote the dual bundle of f. G/p (Cal) • 

fIJ - Cal' for suitable II),CI)' E B! (A I) , 

Because of Lemma. 3, this definition is free from ambiguities, and we have 

t
G/P 

().+)1) -
for all ).,\1 G 8*(6') • 

2.8." "HOf«)GENEOUS LINE BUNDLES ON SCHUBER'r"VAlUE'l'IES. Let A' c:: A , V' c. V , 

S' , P be as in 2.7. we first want to study the homology and cohomoloqy of the 

Schubert varieties X (Cal) w for all w ~ rJi' and CI) E H!+ (6 .) • From 2.5 we 

know that the topology on X (Cal) is independent of the choice of CI) in 
w 

8* (A I) ++ • 

PROPOSITION 1: For any w E ~' and CI) E H!+ (A') we have 

II 
zn(w,q) 

for all q E :N. Here n (w ,q) 
_.s' 

i. the nusiaber of w' a " .uch that w'! w 
and l(w'). q • Moreover, a bash of 82 (i(w)w'z) is 9iven by the fundaaaen-

- q S· 
tal class •• ot the Schubert varietie. x(w) , for Wi fi W with Wi < w and 

w 
l(w') • q • 
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PROOF: Let X. c x(w) 
~ w -be the union of all Schubert cells x (£Ill , with 

w s· 
w' € W , w' ~ w , and 1(w') < i . Then X. 

l. 
is closed in X(w) 

w 
and 

X.\X. 1 
~ 1.-

is the disjoint union of those X(w) • w for which R.(w') ::; i . We 

shall prove analogous claims for the X. by induction on i, the start i = a 
1. 

being trivial. By [10] I 5.4.2 it is sufficient to prove the claim for cohomo-

logy. For that we use the long exact sequence for cohomology with compact 

support and integral coefficients (cf. (10) II. 4.10.1): 

-.. Hk(Xi\x. 1) c 1.-
+ Hk+l (X,\X. ) + 

c l. 1.-1 

Using that k 
H (X.\X. 1) c 1. 1.-

is nonzero only for k = 2i I where it is freely 
S' l'xew) .J , W'E. W I 

"w 
spanned by the "duals" of the fundamental classes 

w' ~ W I l(w) = i , and by the induction hypothesis we arrive at the desired 

result. 

Since X(w) is the inductive limit of the X(w) , we directly obtain: 
w 

COROLLARY 1: For all q E: IN we have 

H2q+
1 

(X(w) ,21:) = 0 = H2q+1 (XCw) ,21:) 

H2q (X(W) ,21:) 2Zn (q) 

where n(q) is the number of we WS ' with l(w) = q • Moreove~1 H2q (X(W),2Z) 

is freely spanned by the fundamental classes of the Schubert varieties X(w)w' 
S' we w , l(w) = q • 

The following conclusion rs 

complex variety Y let A*(Y) = 
also well known (cf. [26] 19.1.11). For a 

EI1 ~(Y) denote the graded group of alge­
k E :N 

braic cycles on Y modulo rational equivalence (k denoting the dimension). 

COROLLARY 2: For any and w E H* (At) 
++ 

we have 

A {XCw» = ffi 2Z 
q w W 

Where the direct sum extends over all v E. W I V ~ W , such that t(v} = q I 

and where denotes the cycle class of the variety X(w) 
v 

Recall that on an irreducible variety Y any algebraic line bundle 

is isomorphic to a line bundle of the form CYy(O) for a locally principal 

divisor D on Y. In fact, the association o~ ~y(O) passes to an isomor­

phism 

(1 (y) Piety) 
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between the group (l(y) of classes of cartier divisors on Y and the group 

Pic (·Y) of isomorphism classes of line bundles on Y (cf. [19J VI..§ 1.4). 

PROPOSITION 2: Let w ~ H* (A') 
++ 

s· 
and w E W • Then 

i.. Glp (III) Ix (w) 
w 

;; (J - (-D) X (III) . III w 
V ' 

where D equals the cycle 
Cd,W 

5' 
v E W ,V -# w 

PROOF: Recall the functional .v L(Cd) + a: from 2.6, Lemma 6 and 7 • 

'!he composition 

t. G/p (Cd) Ix (Cd) c 
w 

.v 0 pr2 -----+1 a: 

defines a regular section Sw E HOeX{Cd)w l cfG/PC-iIi» which vanishes nowhere on 

X(Cd)W (cf. 2.6, Lemala 7). To prove our Assertion, we have to .how that sw 

vanishes with multiplicity V(Cd) (h) aloruz X (w) , v-¥+.w. This follows from . y v 
the second assertion of 2.6, LelllDll 7. 

In the following, we con~ider X(Cd) as A topoloqical space. Thus we can w . 
restrict all line bundles t.

G/P 
(A) to X(fIl) w AS topological bundles. Using 

that any weight A € B* (A' ) can be written as a difference w - cd' of weights 

111,111' e H:+(A') and exploiting the homeomorphisms X(III)w. X(III')w we obtain 

(cf. [1] Lemma 4.2, [26) 19.1.2): 

COROLLARY be the first 

Chern class of 

in H2f.(W)_2(X(Cd)w'2Z). (Here [Y) denotes the fundamental class of a variety 

Y I and n denotes the cap product.) 

REMARKS: 1) The equivalent of COrollary 3 (for A'. f6 ) in the Chow 

ring A(G/S) for finite-dimensional groups G was first established by 

Chevalley ( '" 1958, unpublished, cf. [6] 4.4 for a proof). The homological form 

is also proved in [1] § 4, Proposition 3, :r..e ... 4.2, by which we were CJUided. 

2) In (1] and [6), COrollary 3 Or it. algebraic equivalent are used to 

evaluate arbitrary polynOlllU18 in the Chern cla.... c 1 (A) , A Ci H* , on the 

Schubert cycle. ['X 1 of GIs. Thb can also be done in the present context, w 
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cf. [111 Theoreme 3. A detailed elaboration of that point will be published 

by E._Gutkin (for part of it cE. (27]). 
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