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ON THE GEOMETRY OF SCHUBERT VARIETIES ATTACHED

TO KAC-MOODY LIE ALGEBRAS

Peter Slodowy

ABSTRACT: Let G be a group attached to a Kac~Moody Lie algebra with
not necessarily symmetrizable Cartan matrix. We define Schubert varie~
ties for G by means of a Demazure~Hansen resolution and we prove

that these varieties are nonsingular in codimension one. We also deter-
mine the restriction of homogeneous line bundles on generalized flag
manifolds to Schubert subvarieties.

0. INTRODUCTION: In this paper we study generalized Schubert varieties at-

tached to Xac-Moody groups G with arbitrary Cartan matrix. Such groups con-
tain a Tits system (B,N}) providing a Bruhat decomposition

¢ = \U sws

wew
and a classification of parabolic subgroups P , i.e. of subgroups of G con-
taining a conjugate of B . Set~theoretically a Schubert variety is a subset
i; of a homogeneous space G/P , BC P <G , of the form

X = U (BwP)/P ,

v v<w
where v < w denotes the Bruhat ordering on the Weyl group W . The homogeneous
space G/P may be eubedded into the projective space P{w) of an irreducible
highest weight module L{w} of G . We endow E; with the structure of a com~
plex algebraic variety by identifying it with the closure in 2 (v} »of
xw = (BwP)/P (cf, 2.2 -~ 2.4). Our procedure here agrees essentially with the
one scetched by Tits in [25] in that we use a “Demazure-Hansen resolution® of
i; . On the technical level we exploit heavily the fact that several subgroups
of G stabilize finite-dimensional subspaces in the modules L{w) , on which
they act regularly by algebraic quotient groups {cf. 1.11). Though we are not

able to show that the algebraic geometric structure on §Q is independent of
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2 PETER SLODOWY

the module L(w) (for symmetrizable Cartan matrices at least, this is ascer-
tained in {[25]) we prove (2.5) that the topological structure is uniquely
defined. This is sufficient for topological applications as described in [i1].
As further results we show that all Schubert varieties are nonsingular in co-
dimension one and we determine the restrictions of homogeneous line bundles on
G/P to Schubert varieties (2.8). The last result is important for extending
part of the Schubert calculus to the framework of Xac-Moody groups as anpounced
in our jeint note [11] with E. Gutkin. Whereas this paper provides detailed
proofs for the gecmetric results stated there, a separate paper by E. Gutkin
will be occupied with the homological and cohomclogical applications.

We finally want to point out the technical character of -this paper. Most
of the objects we deal with are easily defined on a set-theoretical level by
exploiting the analogy with the finite-dimensional situation. The main problen
therefore consists in defining correctly the underlying algebraic geometric or
topological structures and in justifying classical arguments in the infinite-
dimensional context.

Our thanks go to J. Tits who coomunicated to us the idea for the con-
struction of the Schubert varieties long ago (March 1981) and to E. Gutkin wha
started the collaboration with us on these topics and who urged us to write
down the details in this paper.

1. KAC-MOODY LIE ALGEBRAS AND ASSOCIATED GROUPS. The puxpose of this part is
to recollect the necessary definitions and results needed in the second part.
Thus we review pxoéerties of Weyl groups, Kac-Moody Lie algebras, associated
groups and representations. We also add some simple lemmas of a more technical

nature.

1.1 ROQT BASES. Let X be a finite set. A (generalized) Cartan matrix on I

is a matrix

A = ((Aij)}i,j €1

satisfying
Aijerz ¢ A2,

Aij <0 for all i=je1 ’

13-. O <um> Aji = Q0 for all 1,3¢1 .

A Z-rxealization of such a matrix or a root base for A is a triplet
(H,V,4) consisting of a free Z-module H & z¥ for some re N , & subset
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v = {hili € I} of H-, and a subset A = {ui{i € I} of the dual lattice
H* = Hom;z (H,Z) such that

ai(hj) = Aji for all i,je X .

We call A (resp. V ) the set of simple or fundamental roots (resp.
coroots) of (H,V,A) .

Let a = ui € A . Then we also write ha instead of hi .

Let T (resp. L ) be the free Z-module generated by & (resp. V }:

I = GEE) Za , L = GEE) Zh .

oae A heV

We call T (resp. L ) the formal root lattice (resp. formal coroot lattice).

Corresponding to the natural maps I - H* , L - H we have obvious pairings
IT*XH-+2Z , L XH">7Z,
Note that the map I + H* (resp. L + H ) 1is injective if and only if A

{(resp. V )} is linearly free,

1.2 WEYL GROUPS. Let (H,V,A) be a root base for a generalized Cartan matrix

A= ((A,.))
iy 'i1,3 e
(H,V,A) 1is the subgroup of Aut(l') generated by the fundamental reflections

and T its formal root lattice. The Weyl group W of

s, ¢ r+1r , aoaed , sa(y) =y - y(ha)a .

It is known (cf. [13]) that the system (W,S) , § = {sala e A} , is a

Coxeter system, i.e. that W has a presentation of the form

52 = 1 - all aed ,

SySgSy +o = SgSySg o v all a =B ed, (maB factors on each side)
where the numbers Tod are given by the following table (we write Aas = Aij
if a = a; + B = oy )

AGBABu ‘ 0 } 1 l 2 ‘ 3 ! 24 ‘ ‘

AUSE RPE IR IPR P

The action of W on T extends to an action on H* by the prescription

i

sa(w) w -~ m(hu)a ‘ w & H* P

for the generators s, € S (this action is faithful if V or A are linearly

free). The contragredient action of Sy on H is now given by

sa(h) = h - a(h)ha
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for all heH.
Let w = Syt---S. be an expression of an element we W as a product
of elements s, € S . This expression is called reduced if n is the least

3
number for which such an equality holds. In that case n is called the length

L{w) of w (cf. [5] 1IV).

1.3 WEYL ROOTS. We consider the same situation as in § 1.2. The union of
orbits of {aja € A} € T under W is the set XR of real or Weyl roots. The

bijection A+ V , a + ha . can be extended to a W-equivariant bijection
V.. R 5 win laed 1
o

given by vy #r— yv = hY - i

If ve XR and Y = w{a) for some €A , we W, then BY = \'F.smwr-'1 is
called the reflection belonging to the xroot Y . We have SY(h) =h - 'f(h)hY
for all he&€H (hY interpreted as its image in H )}, and aY(w) = 0 - m(hY)Y
for all w €Tl (or w €H* , the element Y being interpreted as its image
in H* ). v

Any element vy ¢ ZR lies in ZR'+ = iRt\ NA or in ZR'f = -XR'+ .
Correspondingly y is called a positive or a negative real root.

1.4 BRUHAT ORDER. The definitions and statements of 1.3 make sense for

arbitrary Coxeter groups. This is also true for the following proposition, a
proof of which may be either found, in full generality, in [7], [8] or obtained
by mimicking the proof for the finite-type situation (see for example [1] § 2).
Let w, , w, €W and Y& ER'* . When the conditions
stl =W, and L(wz) = L(wl) + 1

hold we write

If there is a chain
w = W +> W + L. T W = w'

we write w < w' and say that w is smaller than w' .

For any w € W we let z(w) denote the intersection

XR'*CW W(ZR,—) - {ye XR,+ ‘w~1(Y) € 2R.~} .
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PROPOSITION: Let w g W and let w = Syt S, be any reduced decompo-

sition of w . Let uieA be such that Si=sa for i=1,...,n .
- i

(i) 2(") = {al,sl(az),...,sl-.,.-sn_l(an)} .
in particular 2{(w) = n = card X(w)

(ii) Let Y & ER'+ . Then
L w) > 8w <=> y ¢ J(w)
!.(st) < w) <=> yg& ):(w) .

Y
(iil) Let w' e W be such that w'—= w . Then there is a unique index

i}

i,1 £ i £ n , such that vy sl-...-si_l(ai) ., and

w! = s
1

*ede 'S,

*8, ,*...'S_ .
i-1

i+l n
(iv) Let w'g W . Then w' < w if and only if there exists a subseqguence

1 €1, <

1 12<...<i f£r , k <n , such that

The order "<" on W is called the Bruhat order. We write w' g w if
w'=w or w'<w.

As an immediate consequence of (i) above we obtain the following result.

COROLLARY: Let w =w, » w, be a product in W such that

1 2
2(w) = Z(wl) + R(w

2) . Then

Lo = Yo w ey .

1.5 KAC-MOODY LIE ALGEBRAS. Let (H,V,A) be a root base as in § 1.1. A Xac-

Moody algebra g associated with (H,V,4) is a complex Lie algebra generated

as a complex Lie algebra by
1) the vector space h = H ®,C
2) elements e, « fa , flaed)

with the following relations which hold for any h , h' € h and a , B€ & .

[h,ht] = 0
[he ]l = ae
(R) [h,£] = -ath)f,
[.eu,fu}. = h eHch
(ad ea)l_anateﬁ) =0 , a*8 ,
(ad fu)lﬂéés€f8) -0 , a=B .
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We also require that h u{e .f [a € 4} injects into g .

Note that when A is symmetrizable, i.e. when there exists a diagonal
matrix D€ MI(Z) such that DA is symmetric, then there is a unique Lie
algebra g with the properties above (cf. [13]). It is conjectured that the
result is true for non-symmetrizable A as well.

1.6 PROPERTIES OF THE ROOT SYSTEM. We recall the root decomposition

g = g
vyeJufoy Y

where z denotes the system of all roots in the root lattice I . When A is
linearly free in H* we may consider z ag a subset of H*C h* .

Then we have g = {xe€ g| [h,x] = y(h)X for all h € h} for all
ye]l u{o}, and g, =h . Also g, 1is finite-dimensional for all yeJulo}.

The set 2 is stable under t.he action of the Weyl group and A c:z , thus
XRC ): . The complement EI = X\ER is called the set of imaginary roots. We
have dimg = 1 for all YeXR

Let 2 = I n NA denote the set of positive roots and }: = —-E the
set of negative roots. Then Z = ): v X . Aczoxding to this decomposition we

have subalgebras of ¢
u g9y

ve it
and the direct sum g =u @h e u .
The action of W stabilizes ZI N r . Therefore, we also have
S = (yelt|wlttn e} forall wew (ef. 1.4).
For any subset S'C S = {sa |a € A} we define the S' - height ht, ()

of a root y = X c,® by
a€h

he  (y) = ) c )

For the # - height we set

he(y) = ht (v) = I e .
a €& A

1.7 XAC-MOODY LIE GROUPS. Let (H,V,A) be a root base as in 1.1. To avoid

unnecessary complications we assume that V or A is linearly free. Let g
be a Kac-Moody algebra associated to (H,V,4) . In this situation one can
define a group G with subgroups B and N satisfying the following proper-
ties:
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1) The pair (B,N) is a Tits system in G , i.e.

i) G is generated by B and N

ii} the intersection T =B N N is normal in N

iii) the quotient W = N/T is generated by a set S of

involutions such that
SBWw <C BwB vwBswB
and
sBs # B

forall s €8, weWwW.
2} The group T is isomorphic to H @ch* .

3) The system (W = N/T,8) is isomorphic to the Coxeter system associa-
ted with (H,V,A) in 1.2. Under this isomorphism the action of W on T is
induced by the action of W on H .

+
4) The group T acts naturally on the subalgebra u of g as well as
on the completionfuéf of gf with respect to the filtration (g?)i ew '
ui = 6}9 g, . Thus-there is a natural action of T on the prounipotent
— . 'Y
ht({y) > i
proalgebraic group

U = limU,
e L

corresponding to gf . Here Ui is the unipotent algebraic group with Lie

algebra gf[g% . The group B is now the semidirect product B =T X U .

REMARKS: 1) By exploiting the Tits system in G it is easily seen that
the above properties characterize the group G up to isomorphism. For a con-
struction of G cof. [23], [24], or [20].

2) similar groups associated to g have been constructed and investigated
by Garland, Kac, Peterson, Marcuson, Moody, and Teo (cf. [91, [18], (14}, [i5],
[16], [17]). In some cases these groups differ from ocurs in a "smaller" sub-
group U . Instead of U as above one might use the subgroup Umin of ©
generated by the additive one-parameter subgroups UY corresponding to the
positive real roots vy & z+,R {essentially this group is the one studied by Kac
and Peterson) .

4) Our later results on the structure of the homogeneous space G/B  will
not depend on the particular choice of the group G we are dealing with. For

reasons of technical convenience one may (and is allowed to) prefer different



8 PETER SLODOWY

versions of these groups depending on circumstances. We will stick to our
definition.

One property of the group G is that for any real root Y € ):R {not
only Y’R ) there is a unique additive one-parameter subgroup UY and a

homomoxphism

such that

and such that

1

tuY(c)t- = uY(T(t)c)

R
for all te€ T, c € € . Furthermore, for all n € N and T&): we have

-1
n UYn U"(ﬂ ’

where W denotes the imaga of n in W .

We let U denote the subgroup of G generated by the subgroups UY for
Y e Y’R . From the i'epresentation theory of G one easily sees (cf. 2.1)

U AB = {1} .

Note that U is not isomoxrphic to U . In fact it is only isomorphic to the
subgroup ut of U generated by the U\" rYE }:+'R .

1.8 BRUHAT DECOMPOSITION. We now recall some consequences of the existence
of the Tits system (B,N} in G . First we have the Bruhat decomposition, i.e.
G is the disjoint union of the double classes C(w) = BwB {(cf. [5] 1v, § 2)

¢ = \UJ cwm .

weEW

For any positive real rcot vy g ER'+ let UY < U denote the additive

one-parameter group corresponding to y . Let w & W . Then the product

u = U s+ U ... °0

v Ty Y2 Tk
(taken in U with respect to any fixed ordering Yyeeooo¥y of the roots in
Z(w) sk = 2({w} ) is a closed subgroup of U , isomorphic as an algebraic variety
to the product UY x ... XUT . hence to the affine space a¥ of dimension

1 k

k = £(w) (note that U is a proalgebraic group). Moreover, U decomposes as
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- - 0—1
a product U = Uw U where =Unwiw (for any representative w

U
(w) (w)
of w in N ). any element x in the double class C(w) admits a represen-

tation x = unu' with uniquely determined elements u ¢ Uw , n € N (such

that n maps to we W), u' € U, i.e. for any fixed representative W of

w in N the product map

->
wa B C{w)

(u,b) > uwb

induces a bijection (for details cf. [20] Ch. 5).
For the multiplication of double classes we have {(cf. [5] 1v § 2)

C{sw} Lisw) = £{w) + 1
Ci{s) » C{w) = if and only if
C(w) v C{sw) L(sw) = L(w) - 1
for all s €S , w e W . For a decomposition w = LIRS wq of an element
WeEW with w.eW,i=1,...,q and LW = §=1 2(w;) this gives (cf. loc.
cit.)
C(wl) * L. * C(wq) = C(w} .

Let < denote the Bruhat order on W (cf. 1.4), and define

Cw) = U c(w')

w! s w
for any we W . For s € S we then have C(s) = C(s) U B .

The multiplication formulae above and the characterization of < in terms

of reduced expressions yield the following result.

PROPOSITION: Let w= 5, ¢ ... *s_ be a reduced expression of an element

1 k

W eW . Then

C(Sl) * .. e C(sk) = C(w) .

1.9 PARABOLYC SUBGROUPS. Let G be a group as in 1.7 and let S be the

generating set for the Weyl group W . For any subset S5'< S we let W' = WS,
denote the subgroup of W generated by S' . Let PS‘ denote the subgroup

of G generated by B and by the representatives of s € S' in the group N.
Then the map

S'— P,

induces an isomorphism from the lattice of subsets of 5 to the lattice of

subgroups of G containing B . Moreover (cf. (5] 1v § 2),
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p = k_) C(w) and P_, n Fs“ = Ps,r\ 5" ’

S vew S
and, of course, P¢ =B and P, = G . The conjugates of the groups Poi .
S'C 5, in G are called parabolic subgroups. The conjugates of B = P¢ are

also called Borel subgroups.

For any subgroup PS‘ there is a Levi decomposition

Psl = le K U(sl} [

where L is a Kac-Moody Lie qroup attached to the root base (H,V',A') with

Sl

8 = {aebl|s,es} , v = (hevV|iaea}) ,
and where U(S,) is a suitable proalgebraic subgroup of U (cf. [20] 5.9 for
details).
A subset S' ¢ S , the corresponding Weyl subgroup Hs,c: W , and the
associated parabolic subgroup PS,<: G are called of finite type if ws, is
carries the structure of a pro-

, S*'c S .

a finite group. In this case the group PS'

algebraic group which is compatible with inclusions PS"‘= PS'
More precisely, the Levi factor Ly, 1s now a finite-dimensional reductive

group, and the radical U is the projective limit of the finite-

(s*)
dimensional algebraic quotients

i
Uisy/Uigy « 1eWN

where U%S') is the normal subgroup of U(S‘) generated topologically as a
normal subgroup of P_., by the root subgroups UY with htg,(y) > 1 (cf. {201
5.7 for details).

Let S'c S be of finite type. Then the quotient Ps./B inherits a
natural structure of a projective algebraic variety. In the xank 1 case

s' = {s} , s € S, where the semisimple part of Lg, is SL, or PGL, the

SI

quotient PS,/B is the projective line.

Let P be an arbitrary proalgebraic group and let P X Y + Y be an
action of P on an algebraic variety Y . We say that this action is regular
if it factorizes over an algebraic action of an algebraic qguotient group P'
of P, i.e.

P X Y =y ¥

N

P’ x ¥

Let now Pc G be a parabolic subgroup of finite type containing B , and
let B XY + Y be a regular action of the proalgebraic group B on an al-
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gebraic variety Y . We denote by P xB Yy the bundle associated to the prin-

cipal fibration P - P/B and the actionof B on Y .

LEMMA: The bundle P xB Y carries a natural structure of an algebraic

variety and the natural left action of P on P KB Y is regular.

PROOF: Since the proalgebraic structures on P and B coincide, thexre
is a normal subgroup U'< P such that U'« B , P/U' (hence B/U' ) is al-
gebraic, and B X Y + Y factors over an algebraic action (B/U') x Y + Y .

Thus

(B/U*)

PXx Y = (P/U') x Y

which equips P xB Y with the structure of an algebraic variety (cbviously
independent of the choice of U' ) and shows that the natural left action of P

factors over an algebraic left action of P/U' .

1.10 PARABOLIC BRUHAT DECOMPOSITION. We fix a subset S' of S8 , the

corresponding Weyl subgroup W' = W,,< W , and the parabeolic subgroup

Sl

p=r, = U cwy = U wu,ws .

w'e W w' e W'

The following lemma is well known (cf. [5] IV § 1, Ex. 3).

LEMMA 1: Any coset of W by WS, contains a. unique element & of

minimal length, and for any element w' € We, we have R(Ww') = L(W) + L(w') .

. s'
We shall denote the set of elements #®' defined in ILemma 1 by W .

Sl

Thus W is a system of representatives of w/ws, in. W .

LEMMA 2: Let w =W%W-w' be a product in W such that £&(w) =

2(W) + 2(w') , and let @ be a representative of % in N < G . Then the map

{u,u'}) — u & u é—l

induces an isomorphigm of varieties

U, xU,—>U
w w

w
PROOF: From the Corollary in § 1.4 we get 2(w)==2(ﬁ)u @ Z(w‘).The claim
follows now from the structure of the groups Uﬁ ' Uw‘ ‘ Uw {(cf. 1.8) and the
- . R
property W UYW 1 _ UW(Y) for all Yy € Z (cf. 1.7).
In what follows we fix a system {Ww|w e W} of representatives in N Of

the elements of W .
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L]
PROPOSITION: Let g ¢ G . Then there is a unique element @ ¢ ws and

there are unique elements u € ui’: , p€ P, such that g = u @ P .

PROOF: Let g g C(w) = Uwﬁ B , and let @ be the element of minimal
length in the coset wW' . By Lemma i, we have w =~ W-w' with w'g W' and
£(w) = 2(W) + L(w') . Thus we have C(w) = C(W) - C(w') (cf. 1.8). Because of
C(w') C P we get

€
g

g € Clw) «P = U

E ]

To prove uniqueness let

g = u.éip.

i i ! uieuﬁ ' PiGP . 1 =1,2,

i

be two decompositions of the desired kind. Let

P, = u'i&;_bi , Wi €W , u ey, , bjeB ,
i

be the Bruhat decomposition of Py i =1,2. Then

f.(ﬁ'ziwj'.) L(ﬁi} + L(wi) i=1,2,

and by Liemma 2, we have

o - nl - -
- ' . oL - g .
g (uiﬂiuiwi ) (\'kiwi) bi € uﬁi ;. wiwiB s 1=1,2

From the uniqueness assertions in the usual Bruhat decomposition of g we now

get
wlwi = Wow,
thus
w1 = Wz (ﬁi ‘is of minimal length in ﬁiw')
and
u,w u'é-l = u,W u'&ﬁl in U .
171717t 217271 ﬁlw;

Lemma 2 implies u, =

1 u, - From this we finally obtain Py =Py which proves

our assertion.
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1.11 REPRESENTATIONS. Let {H,V,A) be a root base. We define

HY = {we H* |w(h) > 0 for all h eV} ,
H:+ := {wen*|wh >0 for all hevV}l |,

and we call H: (resp. HL_ } the set of dominant (resp. regular dominant)

weights of the root base. Let g be a Kac-Moody Lie algebra associated to
(#,V,4) (cf. 1.5) and G the corresponding group (cf. 1.7). For any element
w e H: one can construct a unique irreducible g-module L{w) which can be
integrated to a module of G such that the following properties hold (for
details cf. [13] ch. 3, or [20] 5.10, 5.11):

1) With respect to the torus T the module L{w) decomposes as a direct

sum of finite-dimensional eigenspaces

Li{w) = @ In‘Ius)"1 '

¥ & H*
where

L(M)u = {veLw |tev = u(t)v for all t €T} .

The elements u € H* with L(m)y # 0 are called the weights of L(w) ,
and :C.(m)u is called the weight space of weight u .
2) Any weight of L(w) is of the form

B = w - }: c o for suitable ¢ € N .
: o Qo
a el

3) The dimension of the highest weight space Liw) © is one.

The modules L{w) have other properties which can be deduced from the

above, For example, for all n € N we have
\

n L(mu = L(m)w(p)

where w is the image of n in W . With respect to the Levi part L of a

S'

parabolic subgroup P of finite type the module L{w) decomposes as a

Sl
direct sum of finite-dimensional modules. Also, any element p € PS‘ , S' of

finite type, acts locally finitely on Li{w) . More precisely, let

ds.(u) = X c, for any weight 3 = w ~ 2 c.o of L{w) and put
) 54 € S\S! ‘ a & A
rw, = P rw,
ds' (1) =n

for any n € N, Then
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LEMMA 1: I.(m)n is finite-dimensional for all n € N.

PROOF: Note that any L(m)n is stable under the Levi. group LS, and
thus decomposes into a direct sum of finite-dimensional Ls,—modules. Now
L(m)0 is generated as an Ls,-module by L(w)w ., and for n > 0 , L(m)n is
generated as an LS,~module by the spaces fa . L(m)n__1 , 0 € A, such that
satﬁ §* . Hence, by induction on n , we see that L(w)n is finite~dimensional.

Let L(w) <n denote the direct sum
@ L(w)i .
i<n
Then L(w) <n is finjite~dimensional by the Lemma,
L{w) = U Llw)
n &N

and P, stabilizes each L(w)Sn .

LEMMA 2: The action of P
lar in the sense of 1.9.

g+ ©On any subspace L{w) <n ' n € N, is regu-

'PROOF: . It suffices to look at the factors of PS' = Lo, ¥ U(S') sepa-
g is regular since it is the integral of a finite-
dimensional representation of its Lie algebra. Similarly, the action of U (s")

is the integral of a linear representation of its Lie algebxa u (s*) - The
kermel of this representation contains the finite-codimensional ideal of E(S.)

rately. The action of L

generated topologically by the root spaces 9‘( with hts, {Y) > n . According
to the definition of the proalgebraic structure on U (s") < U , the action of
U (s") factors over an algebraic quotient.

1.12 LIMIT TOPOLOGIES ON REPRESENTATION SPACES. Let L be a &-vector space
{in the applications, L will be an irreducible highest weight module L{w} as

introduced in 1.11). We equip any finite-dimensional complex vector space E
with the usual Hausdorff topology which we also call the analytical topology.
on L , which will be infinite~dimensional in general, we define the analytical
limit topoleogy as the finest topology rendering continuous all embeddings of

finite~dimensicnal vector spaces

E &+ L

Almost by definition, the following properties hold:
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LEMMA i: (i)- A subset U C L is open {resp. closed) <==> For all
finite-dimensional subspaces E < L the intersection U n E is open (resp.
closed) in E .

(ii) BAny linear subspace L'c I, is closed.

(iii) Let X be a topological space. Then f : L + X is continuous <=>

For all finite-dimensional subspaces E < I the restriction f‘ E-+X is

E :
continuocus.

LEMMA 2: Let (Ei)i c be any system of finite-~dimensional subspaces

I
of L which is cofinal with the system of all finite-dimensional subspaces of

L . Then, as topological spaces, we have

L = lim E, .
—— 3
ier
In particular, we have
L = lim B .
s o

ECL,dimE<®
LEMMA 3: The analytical limit topology on L 1is Hausdorff.

LEMMA 4: Let ¢ : L -+ M be a linear map of complex vector spaces. Then
¢ 1is continuous with respect to the analytical limit topologies.

To any @-vector space L we can associate its projective space
P(L) = (L\N{0})/€* and equip it with the corresponding quotient topology. It
is easy to check that this topology is the finest topology on ®{(L} which
renders continuous all linear embeddings of f£inite-dimensional projective

spaces
P(E)} &+ w(L) .

We thus call this topology the analytical limit topology, too. It is obvious

now, that analogues, Lemma 1' and Lemma 2', of Lemma 1 and 2 ho;d. He alsoc

note that the natural projection p : L\{0} + P(L) is open, thus we cbtain
LEMMA 3': The analytical limit topology on P{L) is Hausdorff.

LEMMA 4': Let ¢ : L -+ M be a linear map of complex vector spaces and
K = ¢"1(0) its kernel. Then the induced map

®($) = PL)N\ B(K) -+ P(M)

is continuous with respect to the analytical limit topologies.
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PROOF: This follows from the definition of quotient topology and the

commutative diagram

L\K - -

M
p [p'
»{¢)

P (L) \ B(KX) » I (M)

in which p , p*' , and ¢ are continuocus.

Instead of starting from the usual topcology on finite-dimensional vector
spaces we could have based our definitions on the Zariski topology on finite-
dimensional vector spaces. We call the corresponding limit topologies on L
and (L) the Zariski limit topologies. We have cbvious analogues of Lemma 1,

1', 2, 2', 4, and 4' (of course Lemma 3 and 3' are no longer true).

However, vhen speaking of the Zariski topology we should also emphasize
the algebraic geometric structure on the finite-dimensional spaces E and
P(E}. This leads us to consider L resp. ¥»P(L) as inductive limit of the
algebraic varieties E resp. P(E). The ring of regulaxr functions on L will
consist of all functions L + € whose-restriction to a finite-dimensional sub-
space E 'is regular in the usual sense. The structure sheaf on P(L) is
defined analogously.

Let now L = L{w) be a representation space of a Kac-Moody group G as
considered in 1.11. Then any g € ¢ acts on L(Q) and P»P{L{w)) as an auto-
moxphism of the topological as well as the algebraic geometric structures.

For later applications we now want to prove an auxiliary result about
products of projective spaces. Let L and M be complex vector spaces. The
product map ® : L XM 4L'0 M, (v,w)l-—-; v & w , induces a map
(LN {(0}) x (M\{0}) » L ® M\ {0} , and by passing to quotients, a map

P((s) : w(L}) x ®(M) 3 P(L 8 M) .

In the following we consider the analytical limit topologiec on ®(L) , W(M) ,
(L & M) , and we equip W(L) x P(M) with the product topology.

PROPOSITION: P(®) induces a homecmorphism of W{(L) @ ®P{M) onto a
closed subset of P(L & M) .

PROOF: The result is well known (and trivial) in case L and M are
finite-dimensional. To extend it to the general situation ws nbhserve that

1) (L) x (M) is homeomorphic to the direct limit lim W(E) x W(F) ,
e



ON THE GEOMETRY OF SCHUBERT VARIETIES 17

taken over all finite-dimensional subspaces E <L and FaM,

2) the system of the E® F , E,F as in 1), is cofinal with the sytem of all

finite-dimensional subspaces of L & M ,

3) ®(e)(lPP(L)x (M) n P(ER® F) = XP(@)(P(E)xP(F)) for all E,F as

in 1).

Because of 1) and 2) the closed immersions
P(E) x P(F) “— IP(E ® F)
induce a continuocus injection of the corresponding direct limits
P(8) : P(L) x P(M) “— P(L 8 M)
Property 3} now implies that 1P (®) is a closed map. This proves our claim.

REMARK: To get an analogue of the above proposition in the Zariski
topology one has to take 1) as the definition of the Zariski product topology
on P(L) x P(M) (since, in general, the Zariskil topology on a product of
varieties differs from the product of the Zariski topologies). With this de-
finition and using the corresponding finite-dimensional result (cf. [19] I § 5),
the proof above shows that P (8) embeds IP(L) x (M)} as a Zariski-limit-~
closed sui)set of ®{(L &M .

2. FLAG MANIFOLDS AND SCHUBERT VARIETIES

2.1 EMBEDDINGS OF THE HOMOGENEOUS SPACES G/P . Let G be a Kac-Moody Lie

group as ‘in 1.7 and P = PS' , S'c S , a parabolic subgroup. In this chapter

we study the homogeneous space G/P . Since the torus T is contained in B

we may choose T arbitrarily large, i.e. we may assume that the set A of
simple roots and the set V of simple coroots are linearly free. In this case

the sets H: and BY + of dominant and regular dominant weights are nontrivial.

LEMMA 1: Let w € H: . Then the stabilizer of w in W equals Ws,

[ o=
where S {sa& S[w(hu) 0} .

PROOF: The statement follows for example from the properties of the
W-action on the Tits cone in H* @ R {(cf. {[13] ¢Ch. 3, or [20] 6.1).

For ® € H: let P {w) denote the projective space of the module Llw) .
Let 51 € P(w) be the point corresponding to the line L(m)w in L(w) and

X(w) <« ®(w) the G~Orbit of f1 under the natural action of ¢ ¢n Piw) .
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LEMMA 2: Let w € H} and S' = (sae S|w(hu) = 0} . Then the map

€ : G -+ P , elgy = Q'fl .

induces a bijection G/P, + X(w) .

PROQF: By Lemma 1, the stabilizer in N of the point fl consists of

g under the projection N + W . On the other hand f1 is

also stabilized by B . Since the subgroups of G containing B are exactly

of the form Pew = <B WS,.> , S"C S , we see that the stabilizer of £, is

st

the preimage of W

the group P

Let &' ={a € 4| s, € S'} and let U(é?) denote the subgroup of G

generated by the one-parameter subgroups UY where vy ¢ Y'R\iz «4' .

LEMMA 3: We have U, = {1} .

(S)

PROOF: For X € H: and nE€N let L(X} denote the direct sum of
the weight spaces L(Mu with dg,(u) =n (ct. 1.11). Then for all g e Pg.

we have
gLy < @ Ly,

m<n

whereas for all u € U(éﬂ) we have

(xa- q){L(K) } C@ LO«) .
m>n

Applying this to a direct sum V of wodules L{A}) such that G acts faith-

fully on V we get our assertion.

COROLLARY : 'me rastriction of ¢ to U, induces an injection into

X(w) .

(8)

REMARK: The group U, need not be normalized by Lg, . This is tx:ue

(S‘)
only for the larger group U, (s') generated by all Lg , - conjugates of U ( g ) .
Then U(s 9 is also normalized by U := U(&;t . S.L';ce Ls' presexves the

L(A) , the proof of Lemma 3 still shows U = {1} .

(s " Pse ™
We now deal with an "infinitesimal® analogue of the corollary above. Let
vy be a non-zero element in tl = L(u)“ and let

de : g + Lw/ev,

be defined by de(x) = xev, wod € v, . We put

1



ON THE GEOMETRY OF SCHUBERT VARIETIES 19

Bigy ° - g
(s*) ye Ry z.ar Y

LEMMA 4: The restriction of de to lx_;é,) is injective.

PROOF: Since the infinitesimal stabilizer p

{xeg}x-vlcmvl} of

the line € vy is normalized by T (and h = Lie T ) we have a decomposition

p=@ g9, 0B -

o aéZU{O}

Thus the lemma follows if we can show that g

]

yO R {0} for all
Ye 2*'R\ Z+A' . However, for all x e gY\{O} we have exp(x) € UY\{l} - By
Lemma 3 we know v, NP = {1} . Thus for all x e 9‘{\{0} » x & p f{one may

argue in a finite-dimensional Uy—stable subspace of L{w} containing v, 1}.

1

2.2 SCHUBERT VARIETIES. Let us fix a dominant weight w e H: and the

corresponding parabolic subgroup P = PS‘ of G , where

S' = {sa € s| w(h,) = 0} . By restriction, the analytical (resp. Zariski) limit
topology on P(w) (cf. 1.12) induces a topology on X(w) which we simply
call the analytical (resp. Zariski) topology on X{(w) . With respect to both
topologies G acts as a group of homeomorphism of X(w) . In particular,

x(u;) is homogeneous as a topological space.

Let % : N+ W be the natural projection. Since n(Llw) ) = Liw) for

win)
all negeN, and dim L(m)m = 1 the point n-f1 € X{w)y ¢ P{w) depends only
on w(n) . We therefore define for all weW

fw = n~f1 if 7{n} = w .

We denote by X(w)  the B-orbit of f  and by 'f(w)w its closure in the
Zariski limit topology on P(w) . By 1.11, Lemma 2 we can find a finite-
dimensional B-invariant subspace ' < P({w) on which B acts regularly. Then
Y(w)w equals the Zariski closure of x(m)W in P'. As the orbit of an
algebraic quotient of B acting on ', X(m)w is Zariski open in its closure
f(w)w (cf. [2] 1, 1.8). By [19] viz, § 2, Lemma 1, it follows that ”f(w)w
coincides with the closure of ):(uu}w in the analytical topology on P' . Hence
x(m)w a_‘lso agrees with the closure of x(w)w in the analytical limit topology
on ®P(w) .

Since the point f1 ¢ P(w) 1is stabilized by P , and since fw = wkfl

for any % € W such that w{W) = w , we have

and the map
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e .
Uw X(m)w
S T fw .

is bijective if and only if w is of minimal length in its ws, -coset W~ ws, .
In this case, this map is in fact an isomorphism of algebraic varieties since
it is a bijective morphism of an algebraic group U, onto an orbit X{w) ~ and
since we are in a characteristic zero situation. We call X (m)w a Schubert
variety and x(m)w its open cell.

By the parabolic Bruhat decomposition {(cf. 1.10) we have

xw = ) xw, .
wews'

Since we do not know yet whether X{w) is closed in P{(w) , we cannot
decide whether the Schubert varieties are contained in X{w) . In 2.4 we will
first prove this last fact and then derive the closedness of X(w) in P(w) .

2.3 ~BOTT-SAMELSON-DEMAZURE-BANSEN VARIETIES. Let (81,..;,8)() be a sequence
of elements §; €S W, let a i € A Dbe the root corresponding to s, and
P, = Pre } = c(si) u B ‘the rank-i parabolic subgroup of G generated by B
and a representative $ g Of s, . We denote by Z(si""’sk) the iterated
associated bundle

B B B
pl x (Pz (... X (Pk/B))...}

which may also be considered as the .quotient of I'1 x P2 X, ..X Pk by the right

B - a.CtiOn
(p1t°"lpk) (bll"‘lbl:) (plb] lbl :!bzf""lzk._!gk k}

We denote the projection of P, X...Xx P onto E(BI""’SX) by q(si""'sk)
or simply by q if there is no danger of confusion.

According to 1.9., Lemma, E(sl,... ,sk) iz a smooth comple;:e algebrain
variety of dimension k . In fact, it is an iteration of Xk I -bundles with
section (starting over a point base):

which decomposes

o

The homogeneous space Pi‘/B is a projective line
undexr the left B-action into two orbits

1 o
B, = U0 v { i} .

vhere
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"

. - . -
Ui(O) B 5, B/B Ua 5, B/B ‘

i

"

B/B € pi/a

From the above we get a decomposition of E}Sl,...,sk)n into affine

spaces. Let J denote a subsequence (il""’ij) of (1,...,k) . We put

Z2; = qlCy xC, x...x Q) = q{ﬁ1 X, % ﬁk) .
where
C(si) U“i si ied
c, = and g, = if .
i i
B e i ¢ J
Then
= x x
ZJ 01 . Uk
vwhere
U, (0) ie€edJ
1 .
Ui = lf I}
o : J
i i¢

and gq induces an :isomorphism

i x 0 3 ®,,.X .
U1 Xewe Uk U1 . Uk

In particular, Z_ is a locally closed algebraic submanifold of Eksi,...,sk)

) .
isomorphic to the affine space al , 3 = card(J) .

The Zariski closure E& of Z_ in 'E(sl,...,sk) is the image of

J
61 X...%X G, under g , where

k
C(s,) = C(s,) uB ieyg
G, = * * if .
* B idya
We note that E& is isomorphic to the iterated associated bundle
B B
Gy X6, X...x Gk/B P

which itself is isomorphic to ‘E(si TR
1 J
We call 'E(si,...,sk) the Bott-Samelson-Demazure-Hansen variety associ-

ated to the sequence (sl,...,sk) . They were first introduced in a diffexen-
tial geometric and topological cortext by Bott and Samelson ([4]). Demazure and
Hansen adapted the construction to the algebraic geometric situation to use it
for the desingularization of Schubert varieties of finite~dimensional algenraic
groups G as well as for the determination of the Chow ring of the correspond-
ing homogeneous space G/B (cf. (6], [121). In the present situation, the
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varieties E(sl,...,sk) were first considered by Tits ({25]) using a slightly
different formulation ( his formulation, in terms of galleries, is however
intimately related to the original construction of Bott and Samelson in terms
of piecewise geodesic paths, cf. [4}, I, 5).

2.4 A DESINGULARISATION OF SCHUBERT VARIETIES. We fix a dominant weight

w € HY and §' = (sue Slm(hu) =0} . Let we ws. be an element of minimal
length in its W_, - coset, w = S, *-.." 8 a reduced decomposition of w , and
zZ = Z(sl,... ,sk) the Bott-Samelson-Demazure-Hansen variety associated to the

sequence (sl,...,sk) . Let
m : Pl X,,. X P + G

denote the multiplication map, m(Pl"”‘Pk) S A Then the composi-
tion of m with € : G + X(w) € ®(w) obviously factors over the quotient

map g :

P, X,..X P ®(v) .

Z

LEMMA: The image of € e m is contained in a finite-dimensional sub-
space ' of P(w) , and themap € * m : Pl X,..X Pk + ' factors over an
algebraic moxrphism u : P' + IP' of an algebraic guotient P' of P1 X,..X Pk‘

PROOF: Using 1.11, Lemma 2, we see inductively that there is a sequence

= - '
{fl}-—:!P C P c ... CP, © P, »

k+1

of finite-dimensional linear 'subspaces Pi < ®P({(w) such that P i is
Pi—stable and the action of Pi on I, is regular in the s:nse of 1.9. Our
claim follows from that.

THEOREM (compare {25] 8.1, 8.2):
(i) The map & : Z + P(w) 4induces a birational morphism of Z onto the
Schubert variety Y(m)wc o) .
{ii) The Schubert variety X{uw) y Gecomposes as a digjoint union

Xlw), = U Xtw,, .

w cw
w' e wS'



ON THE GEOMETRY OF SCHUBERT VARIETIES 23

In particular,_)'(_(w)w is contained-in X{w) .

PROOF: By Lemma 1, the definition of the algebraic structure on 2 (cf.
2.3, 1.9), and the definition of proalgebraic group (cf. {20] 5.2), we obtain
that € e m and gq factor over a common algebraic quotient P' of

P, X,..X P

i k

< Plw)

pi

EO'M /
Fp e X E -_‘_——h_-4>P"\\\\\\\\A {
E

where q' : P' + Z is the quotient of P' by the algebraic action of a
suitable algebraic quotient of Bk . Thus & is also a morphism of algebraic
varieties. Since 2 is complete and irreducible its image 6(Z) under § is
an irreducible and closed subvariety of IP'. Since §(2) =€ o m(P1 X, .. % Pk)

and m(P1 X...X Pk) B'E(si)'...-E(s = C(w) (cf. 1.8, Proposition) we obtain

%)

5@ = e€w = ) xw,

Thus 'i(&)w c 6(z) < X(d) . On the other hand, by dimensional reasons, x(w)w
is open in 6{(Z) . Because of the irreducibility of 5(2Z) 'we thus get
Efw)w = §(Z) . It remains to be shown that & : E'*-Elm)w is birational, For

that we cbserve that m induces an_isomorphism (U §,) x...x (U &) = LR

1 k
(where w = & 5 , cf. also 1.10, Lemma 2), & induces an isomorphism

] 1 -'.. k
U *'X(@)w , and g induces an isomorphism from (Uaisi) XeooX (Uaksk) onto
the open subset 2(1 X) of Z (in the notations of 2.3). Thus 6 induces
goeneoy —
an isomorphism of z(l,...,k) onto x(m)w . Since Z(i,...,k) is dense in Z

this proves the birationality of § .

REMARKS: 1) The open subset Z(I %) of % is in fact the precise
R sre s

Preimage of x(m)w under ¢ . This follows from the fact that € o m maps
the complement of q~1(Z

X(w) in E(w)w .

(1:---,k)) = C(Sl) X,,.% C(sk) onto the complement of

2) Part (1) of the theorem generalizes a result of Demazure and Hansen
for finite-dimensional algebraic groups ({61, [12]). Part (ii) in that case is
due to Chevalley (unpublished, ~ 1958). Proofs may be found in [22] Th. 23,
{3) T™h. 3.13, [1) Th. 2.11. The generalization to the present situation was
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first made by Tits following a suggestion of Deligne ( {24}, [25]). Apart from
a difference on the technical level oux proof follows the ideas in [25]. part
{(ii) was also proved by Peterson and Kac in case the underlying Cartan matrix
is symmetrizable ([18]).

Let us add the following consequence which we pointed ocut already in 2.2:

COROLLARY: X(w) is a closed subspace of W(w) with respect to the
Zariski and analytical limit topology.

PROOF: We have to show that the intersection of X{(w) with an arbitrary
finite-dimensional linear subspace ' C P(w) is Zariski closed in B°'.
By 1.11, Lemma 1, we may assume without loss of generality that P' |is v
B-stable. Then X(w) N IP' dJecomposes as a finite union of B-orbits x(w)w ‘
w € W(IP') (the cardinality of W(P'} is limited by the number of we&e W
with £(w) < dim P'). d)yiously, their closures 3(-((:&)‘"r are contained in IP'.

By the theorem, these -f(m)w are contained in X(w) :ell. Therefore
' i3 s
o) n P' < U Xw), © X(w) AP
weE W'}

which shows what we claimed.

REMARK: In case the underlying Cartan matrix is symmetrizable this result
also follows from the fact that x(ai) can be described in P(w) by means of
“strongly regular® equations in the sense of [14] 3A (cf. [18]). Conversely,
the corollary is equivalent only to the weaker statement that X(w) can be
defined by reqular equations in the sense of loc. cit. and of. 1.12.

2.5 INDEPENDENCE OF THE TOPOLOGY. Let us call two domip&nt weights w,A g H:
parabolically equivalent if for all h € ¥V : w(h) = 0 <==> X(h} = 0 . In this
section we want to show that the topology on x(a&) and the Schubert varieties
'f(w)w depends only on the equivalence class of @ . All subsequent statements

concern the analytical as well as the Zariski topology.
Note that for all w' < w we have natural embeddings "f(w}w,:"'* ?f(m)w
(2.4, Theorem).

LEMMA: X(w) is homeomorphic to the direct limit 1lim X(w) .
s w

wew
PROOF: We have to prove that the natural continucus bijection
}__5;3’_ Y(w)w + X{w) 1is closed. For that, let A < X{w) be a subset such that for
all we W the intersection A O X(w)w is closed. We have to show that
AP is closed in ' for any finite-dimensional subspace »P' ¢ Pl{w) .
Without loss of generality we may assume I?' to be B~ctable (1.11, Lemma 2).
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Then the intersection X(w} ~n P’ 1is a finite union of Schubert varieties
—f(m)w , we WP') € W, card(W(P')) < = . Since A n?(m)w is closed in
f(m)w and hence in ', the finite union A n P' = u A~ 'i(w)w is
closed in ®'., w e Wip')
PROPOSITION: Let w,XA € H: be parabolically equivalent. Then there is
a G-~equivariant homeomorphism X{w) -+ X{A) . In particular, for any w & W

there is a B-equivariant homeomorphism -i(m)w + —fw(k) .

PROOF: We will first deal with the case that the Cartan matrix of G is
symmetrizable (1). Then we will ex‘plain the necessary modifications needed in
the non-symmetrizable case (2).

~ 1} By 1.12 Proposition {(cf. also the remarks appended for the case of
the Zariski topology} we obtain a G-equivariant embedding P (8) of
X{w) x X(X) < P(w) x P(X) onto a closed subset of IP(L(w) ® L(X)) . On the
other hand, the module L(w+d) embeds into the tensor product L{w) & LX)} ,
a highest weight vector v(u;-l-)\) of L{w+l) being mapped to the product
viw) @ v(A) of highest weight vectors v(u;) € L{w) , v{A) & L{A) {cf. [13]
§ 10.8). Thus we get a G-equivariant embedding
1 : X(u#d) + Ip (w+d) + TP (L{w) ® L(A)) . Since the image of 1 is contained in
the image of IP(8) we may now consider X(w+l) as a G-stable closed subset
of X{w) x X()\) giving rise to two G-equivariant continuous projections-

pPry Px,
X{w) €—— X{w+d) ———> X(A) .

Since ® , wtk , A are parabolically equivalent, pry and pr, are bijective.
When restricted to the compact (resp. complete) Schubert varieties, these pro-

jections become closed. Hence we get homecmorphisms
'i(m)w<-—-—"=--—~ -i(mﬂ)w——':’———? i(l)w

for all w e W which are compatible with the natural inclusions existing for
W' < w , Using the lemma we see that pry and pr, are homeomorphisms, too.
2) In case of a non-symmetrizable Cartan matrix one does not know whether
the integrable highest weight submodule L'{w+i) < L{w)} € L{\A) generated by
v{uw) ® v{(A} is irreducible, i.e. isomorphic to Liw+d) . Héwever, redoing the
theory of sections 2.1 to 2.4 for L'(m@k) is no problem. We thus get an
embedding of G/P (P = PS'
set X' (w+d) < P(L'(w+l)} with Schubert subvarieties x‘(wﬂ)w . In the proof
above we only have to replace X{w+d} by X'{wt+ti} and XCwﬂ)w by X! (wﬂ)w

, 8 = {su € 5| (wed) (h)) = 0}) onto a closed sub-

to end up with the same result.
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REMARKS: 1) As a result of the arguments in part 2) of the proof above
one gets that X(w) " is G-homeomorphic to X'{w) for any integrable highest
weight module L'(w) . This can also be seen by directly investigating the
natural map L'(w) + L{w)

2) In the case of a symmetrizable Cartan matrix, Tits has announced that
the algebraic-geometric structure of the Schubert varieties f(m)w depends
only on the equivalence class of w ({(cf. [25] 8}. In case T('(m)w and ;{(Mw
are normal (e.g. smooth) varieties this can also be deduced from our proof.
However, normality of the Schubert varieties is still an open problem in the
context of Kac-Moody groups. For non-singulaxity in codimension one, cf. 2.6 .

Since the topology on X{(w) = G/P , P = P_, , does not depend on the

'
weight ® inside the equivalence class detemined by P , we have egquipped
G/P with a well defined topology (analytical or Zariski). We call this topo-
logical space the flag manifold of G of type P (or of type S' , or of
type 4' ). If Pc< Q are parabolic subgroups of G , then the proof above

shows that the natural map G/P + G/Q is continuous.

2.6. ON THE SINGULAR 1OCUS OF scmmm VARIETIES. In this section we fix

we HY , A' = (Gebiw(ha) =0}, § = {sae sla e A'} , and we simply write
X for the flag manifold X(w) < ®(w) of type A' . Similarly we write X
resp. X _  for X(w)w rasp. _f(m)"f . Our main objecti.v? will be to show that
the singular locus of any Schubert variety Yw ¢ WE W . has codimension 2> 2
in xw . Since ii«r can be embedded in a finite-dimensional B~stable subspace
' < P(w) on which B acts regularly (cf. 1.11) we see that the singular
locus of Ew consists of a union of B-orbits, i.e. of xv for some VvV € WS'
such that v < w . Thus we will show

THEOREM: For all v,w € W' with v-—¥+ w for some real positive root
Y . the points of X are nonsingular points of '1?" .

We will achieve the proof of this result by a series of auxiliary results.
The main idea is the same as the one in [1] Proposition 4.3, where the same
result is proved for the flag manifolds G/B in the finite-dimensional case.
However, by the .generalization to arbitrary parabolic P and by using neither
a topological nor an algebraic-geometric structure on the group G we have to
deal with some extra technical difficulties.

From now on, we shall also fix v,we ﬂs‘ such that v ~¥+ w for some
real positive root vy & Y'R . Then we have

v s and yelow , ie. wimel .
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LEMMA 1l: For all x € WS we have
-1 -
x (Jxn e TR\ zear

or, equivalently

-1 ~.R
<
X Uxx U(S')

PROOF: This follows for example from the uniqueness of the refined Bruhat
decomposition (1.10 Proposition) since for B € J(x) with x () € Z-A' we

would get Uei c iPS, .

Let now Vv € N be a representative of v . Consider the map

K : U xU + G P K(ul,uz) = ¥ u

-

s s . . . . . . ~:R
LEMMA 2: The map K 1is injective and its image is contained in U ’,)

(s
PROOF: Since Un U'Y = {1} (cf. 2.1, Lemma 3) and U,c U the product

map (ul,u2)+—+ u,u, injects Uv x U’Y into G . Lemma 1, applied to x = v ,
gives ﬂrluﬁ& c;U;é§) - The similar statement for U_ ~ follows from Lemma 1,
applied to x = w :

v~1(~7) = vime w'lcx(w)) c X”'R\za-t\' .

In the following we let P' & IP{w)} denote the finite-dimensional sub-

space which corresponds to the linear subspace

L{w) L (1)

a(w < a{wlw)) s
of L(w) . Hare d{p) denotes the depth of u , i. e.

< atwi{w)

d(u) = 2 c for u = w - z c o .
’ o € A o€ A
Let GY denote the runk-i-semisimple subgroup of G generated by the one-
parameter groups UY and U_Y . We denote T N GY by TY and we put

: & i et
BiY z= T& ® Ut . Let SY ] NGY(TY} be a representative of SY and 1

- i i = § . Note
IP < X denote the G’Y oxrbit of fw . Since fv syfw , we have fv e

that fw = fv (by 2.1 Lemma 2 and v,w € ws' ).
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LEMMA 3: Let d = v(w) (hy) .

(i) The line fw (resp. fv) is of lowest-weight -d (resp. of highest
weight d ) in the smallest Gy—submodule of L{w) containing fw {or,
equivalently, £, | I

(ii) 4>0 ,

(iii) ‘P is contained in P' ,

{(iv) I is isomorphic to the projective line »t .

(v} I is embedded in P' (and thus in P(w) ) as a subvariety of
degree d (i.e. any hyperplane of ¥' (or ®(w) ) not containing ¥ cuts
I in 4 peoints, counted with multiplicity).

PROOF: Since wﬁl(y) € )" and since w is the highest weight in L(w)
we get that w(w) - ¥ is not a weight of L{w) . Thus f“ = L(w)w is a
lowest weight space for (GY'BY) of weight wi{uw) (hY) = —y(w) (hy) . Since
fv = éyfw . the line fv is a highest weight space in the (irreducible)
Gy-—module of L(u) generated by fw and G’Y . Thus (i). Assertion (ii) fol-
lows from the fact that fw * fv . Statement (iii) i:‘olloi:: from (ii. For (iv)
we note that f_  is fixed by T and'by U"‘f . since w (—Yi) E.z . Since
dim ® > 0 we get GY/B"Y 8P , gt gfw , and GY/B"Y % P, Fi;tally, {v)
follows from a classical result about the embgdding of Gylﬁy = P into
® (V) , where V is the (d+1)-dimensional irreducible module of G {cf. {1]

Lemma 2.10 and proof of Proposition 4.4, for example).

Since the finite-dimensional subspace ®*' < ¥{w) is stable under the
action of U (by construction) and since ® is contained in »P', the image
of the map

s:uvxm—*x e E{u,z} = wz

is contained in ‘. Thus £ induces a Uv—equivariant worphism of algebraic

varieties

U XxXP + B'n X
v

which we shall also denote by & .

LEMMA 4: The following properties hold:
(1) E(vafv) = Xv P
(1) g x(P\{f e x,
(iii) the restriction of § to uv x (P\(fw}) is injective,

(iv)  there is a Zariski open neighborhood ® of £, in ®\(f ]} such that
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£ is of maximal rank £(w) at all points of U, x® .

(v} E(va? } is open in X,

PROOF: Assertion (i) follows immediately from the definitions. To see
{ii) note that P\{fv} = UY * £, by the "translated" Bruhat decomposition

GY = éYB"YU UYB“Y of GY with respect to B"Y . Thus

fwc Ufw = X .

E(UVX(IP\{EV})) = U .

Y

For the remaining assertions we consider the composition

n = vref u,x® * x .
Since \'1.1 is linear, it is sufficient to prove statements (iii) and (iv) for
. From the Bruhat decomposition G_ = B U 5B we see that U
" Bo y T Py YV Uyt ~y
bijects onto IP\{fw} : ub> uf . Thus

~1 -1 . _
no X (PAE D) = ¥ (U £) = (VUL NE = e e k(U X0 )

where Kk : Uv x U"Y + G is as in Lemma 2 and where € : G + X is the oxbit
map g M-gf1 . By Lemma 2 we know that k is injective with image contained
_‘R T
In Uigny :
tive, too. Hence € ° k and thus n are injective.

To prove (iv) it suffices to show that the differential of € ¢ Kk at the

. By 2.1, Corollary, the restriction of & to this group is injec—~

neutral element (e,e) € u, x U"’Y is injective (semicontinuity of rank and

Uv—equivariance) . This follows from 2.1, Lemma 4 and the following factoriza-

tion of 4 € o K :
{e,e) -
GB ad v1 g G ,
( g,) 8 g_  =——————>{ B ‘ g) = un ) —3>L{u)/f,.
BEZ(V) 8 Y ue}: 'R\Z-A’ ¢ s1) !

We finally prove (v). By (ii) and (iv), the restriction of £ to

u, * (3\ {fv}) is an etale morphism into X . Thus the image

E(u_x(3 \{¢ v})) is zariski open in X_ . We have to show that the complement
A= xw\E(va ('P\(fv})) is closed in X v X . Note that A is Zariski
closed in X, and thus of dimension < dim xw = L{w)} . Assume that A is not
closed in qu xv . Then there is an irreducible component AO of A such
that the Zariski closure Ao of Al in xw meets xv . By the Uvnstability
of A, and thus of Xo ., we get X < Ko . Thus 2(v) = dm X_ < dim Ko < 2(w)
and dim 30 = f(v) . Since Xo is irreducible, xv is Zariski dense in —A'O .
in particular X = A . But this implies A N X <A n X = ¢ , a contra-

diction.
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To prove our theorem, let us consider the germ (_)Ew,x) of "fw at a point
X € X, (in the analytical or etale topology) and decompose it into its irre- -
ducible components

n

X% = ik;)l vex) .

From Lemma 4{iv) we know thiat at least one component, say Vl , is smooth. To
prove that (xw,x) is smooth we have to show that n = | . This can be derived
from the following Lemma 5 whose proof will be given later.

By a neighborhood of xv éﬂ xw we will underxstand the intersection of
X, with a neighborhood {(in the analytical or etale topology) of X, in X, -

LEMMA 5: Any Uv- stable neighborhood of xv in xw contains a connected
such neighborhood.

Let us now deduce the irreducibility of wa,x) . Because of the transi-
tive Uv— action on xv « the procedure of attaching to any v & xv the set
Cy of irreducible gomponents of (xw,y) defines a uv-aquivariant unramified
n-fold covering C + xv of xv . Since xv is simply connected, this covering
is trivial. On the other hand, the smoothness of xw implies that different
irreducible components’ (Vi,x} of (xw,x) intersect only along xv . Thus
(xw\xv,x) decomposes into n connectec.! components {Vi\xv,x) fi=1,...,n .
From the triviality of the covering C + x‘., we now deduce that any sufficiently
small Uv- stable neighborhood of xv in X, decomposes into n  connected
components. Now Lemma S forces n = 1 which had to be shown.

We now have to furnish a proof of Lemma 5. Let L{w}* be the dual space
of L{(w) on which G acts by the contragredient representation. For any
X € WS‘ we choose ¢x € L(d}* with the properties

$ E 0 if y=x(w) , and ¢ 2 0 .

*| 1 () ot

B x{w)

Then d’x is well determined up to a non—zero scalar, in particular ’x and
x ¢ 1 are proportional. Let U  denote the subgroup of G generated by all

u .oe §eR

1
LEMMA 6: For any xews we have

(1) ¢x is invariant undex Ux .

(ii) the restriction of *x to Liw) is invariant under U .

< dlx(w)

PROOF: One easily checks that ¢, is invariant under U~ . Thus ¢, 1s

invariant under xu"x' . Now x N(J(x)) €] implies u L R, thus (1),
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For the second assertion note that U acts trivially on the guotient

L {w) /L (w)

< d(x(w)) < d{x(w)) ~

Let us now consider the specific situation studied before.

LEMMA 7: The quotient ¢w/¢v defines a Uv—invariant meromorphic function

1 - —
¢ : xwu xv-*JP . We have ¢ Loy = Xv . The restriction ¢ : '*»:!P1 of ¢

to P is a map of degree d(= viw) (hY))

PROOF: Note that <$>w {resp. ¢v) vanishes nowhere on Xw {resp. xv ).
Moreover ¢w vanishes on xv . Thus ¢w/¢v defines a meromorphic function
¢ : X, U X + 191 which vanishes exactly on X, . The U - invariance of ¢
follows from Lemma 6, (i) applied to ¢v . and (ii) applied to ¢w . The map
; has degree d since the fiber —5—1 {a} consists of the 4 peoints {coun-
ted with multiplicity) in the intersection of P with the hyperplane

¢w - a¢v =0 of P(w) (cf. Lemma 3(v)).

Now we have collected the means to prove Lemma 5: We consider the re-
striction of the meromorphic function ¢ to the open subset
Q= Elu x ®T)e X,V X (cf. Lemma 4). Because of its U - invariance, the

composition ¢ o £. factors as ¢ o pr, :

£
U x%® >
v
pr, 1*#
[ > m?

Now let Q' be an arbitrary Uv— stable open neighborhcod of xv in ;{w .

-%

After intersecting with f we may assume Q'< Q . Then £y is of the
form U, ¥ ®' for some open neighborhood *®' of £, in ‘® . Since

;—1 ) =x n @ = (fv} we may find a connected opén neighborhood 3" of
fv in ®' such that % " = 7{-1 (¢(® ")) . Since E is open, the image
$(®?") is an open neighborhood of 0 & 1?1 . Thus d;-l(:f(?")} = E(va P

is an open neighborhood of X, in 'fw . Because 7% "\{fv} is connected, the
image E(Uv" (?"\{fv})) = ¢~ 1P A X, is connected, too. Thus Lemma 5

and the Theorem are proved.

REMARK: The proof above could be simplified a lo% if we had available a
good theory providing an algebraic geometric structure of G compatible with
the corresponding structures on X{w) . Some results in that direction are

found or announced in [14].
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2.7. HOMOGENEOUS LINE BUNDLES ON FLAG MANIFOLDS. In this section we want to

define topological homogeneous 1ine.bundles on the flag manifolds X{w) .
Everything can be interpreted in the analytical or Zariski topology.
First we have to study téutological line bundles on projective spaces. For
‘ei)i c1 and dual linear
forms ¢, € L* , ¢i(ej) = 61j for all i,j € 1 . By [v] we shall denote the
equivalence class in (L) = (IN{0}}/¢* of an element v € L\{0} . The fol-

that let I be a complex vector space with basis

lowing result is immediate:

LEMMA 1: For any i &€ I the map

L Ce, ———> B(L) .
j e 1\{i})

v o > [e,+v] '
induces a homeomorphism of L(l) onto the open subset

(L), ={[x]em@ |¢,(x) =0}.
4',_ i

Consider now
L@ = {(e,v)e PL) xL|iverl .
Then £ (L) is a closed subset, and the projection
pry : £(L) + P(L)
realizes X(L) as a set-theoretic line bundle on (L) .

LEMMA 2:

(1) £(L) 1is a topological line bundle,

(11) any linear automoxphism of L induces a continuous automorphism of
Ly ,

(iii) for any subspace L'cC L , the restriction f'(L)‘P(L') is isomorphic
to L (L") ., '

{iv} for any finite-dimensional subspace E € L , the restriction
£() p(E) = L(E) is algebraic.

PROOF: We only have to show (i), the other claims are {then) obvious. It
is clear that the projection £ (L) + (L), the addition
(L) x]P(L)'f' (L) + £ (L) , and the scalar miltiplication € x £ (L) + 2.(L)
are continuous. It remains to show that X (L) is locally trivial. This results
from the existence of the following continuous sections

(1)
o, qu.)'*i = V "‘"""""""lmu.) ,

%
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Oi(v) = ([ei+v],ei+v) , VE v(l) ., which are nowhere vanishing on V(n . Note

that U ®»@) 6
ierx i
We call £ (L) the tautological line bundle on (L)

= P (L}

Let us fix &'c 4, V' ={h € V]aea'},h s = {s, € slo €'} . we
pat H*(A') = {w €H' w(h) =0 for h €V'} and HY(A') = H*(A') N HE .
Then H*{A'} is the Z~dual of H(A'} = H/f(Hn @-V') . Let P = Ps, and DP
its derived subgroup; then P/DP & H{A") sz* {cf. [201 7.7).

For any o € H:(A') we have a continuous map

6(0 H G/P -+ P (m) z G(ﬂ (gP) = g * L(m) W .

This map induces a bijection onto its image X(w) only when ® € HI+(A‘) =

{w e H*(A') |w(h) >0 for all h € V\V'} . We let
:(.G/P(w) = 5;(1’_(1‘..(3:)))

denote the pull back to G/P of the tautological line bundle on P{w) . Since
G acts on £ {(L{w)) and G/P by continuous automorphisms we get a natural

action of G on XL {w) by continuous automorphisms. In particular, we can

G/p
write .f.G/P(m) as an associated bundle
b &l (w0} = G «F c {as G-sets)
G/p © !

where G xF @ @ is the guotient of G X € by the P-~action
plg,z) = (g?ﬁl,m(p)z) +PEP,gEG, z&C . Here w EHA') is lifted to

a character of P
w
P =+ P/DP = H(A') @z T* s K .

We may thus view our definition of &£ S /P(m) as providing G P Ew with a
G-invariant topology. To extend this procedure to more general bundles we first
have to prove a compatibility property {(which is trivial on the G-set-theoretical
level).

LEMMA 3: Let w,X € H:(A') . Then ﬁG/P(d+l) is G~line-bundle-~homeomor-

phic to the tensor product iG/P(w) ® I‘G/P(M .
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PROOF: This is a corollary of 1.12 Proposition, the proof of 2.5 Proposi-
tion, and the following cartesian diagramgs:

L (w+d) > L(L(w+d)) < > £(L(w) & L{X))
6&4-1 1
G/p > ®latd) > P (L(w) 8 L(A))

Sw)e £y & pt'l’ {2 (w) Gpr; £ () — pr;at(mmn 0pr;£(L(l))c-? L(L{w) 8L())
diag. Jr Gmxak J’
G/P oy G/P X G/P ey P} X P (L) 5 P(L{a) ® L(A)).
Note that Im((dmxﬁl) ¢ diag.) = X{wtd) < X{w) *x X(X) , cf£. 2.5 .

For any ® € H¥(A') let ‘tc;/p""” denote the dual bundle of £G/P(m) .
Since any X € H*(A') can be written as ®-w' for suitable w,u' € HY(A')
we define

£G/Pm - ia/p(m) ° .CG/P(-«»') .
Because of Lemma 3, this definition is free from ambiquities, and we have
Loptmm = Lo,00 0 £,

for all A,u € H*(A')

2.8. 'HOMOGENEOUS LINE BUNDLES ON SCRUBERT VARIETIES. Let A'c A , V'c V ,

S' , P be as in 2.7. We first want to study the homology and cohomology of the
o ]

Schubert varieties x(u)w for all w ews and w € HL(A') . From 2.5 we

know that the topology on -i(m)“ is independent of the choice of @ in

HY (8%) .

PROPOSITION 1: For any wée€ ws' and ® € H:+(A') we have

H2q+1 s

(x(m)w,z) = 0 = (X(m)w,u)

32q+ 1

zn (w rQ)

qu(x(u)w,u) 2 s H (x(u)w.ﬂl ’

for all g € N. Here n(vw,q) is the number of w' € “s' such that w' < w
and t(w') = q . Moreover, a basis of -l:zq(-i(u)w,Z) is g;w.nn by the fundamen-
tal classes of the Schubert varieties x(u)w . for w'e W
R(w') = q .

with w' < w and
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PROOF: Let X, e ')'('(w)w ‘be the union of all Schubert cells X(m)W , with
w'E wS‘ W' < w, and L{w*) < i . Then xi is closed in E(m)w and
xi\xi—1 is the disjoint union of those X{(w) , for which L&(w') =i . We
shall prove analogous claims for the )(i by induction on i , the start i =20
being trivial. By [10] I 5.4.2 it is sufficient to prove the claim for cohomo-
logy. For that we use the long exact sequence for cohomology with compact

support and integral coefficients {(cf. [10] 1I. 4.10.1):

e > ESAX, ) > ESR) B ) ST Nx ) .

Using that H:(Xi\ xi-—l) is nonzeroc only for k = 2i , where it is freely

g 1
spanned by the "duals" of the fundamental classes {x(m}w,] , W' e W,
w' <w , &(w) = i, and by the induction hypothesis we arrive at the desired

;ésult.
Since X(w) is the inductive limit of the ')E(w)w , we directly obtain:

COROLLARY 1: For all g € W we have

H2q+ 1

X(w),z) = 0 = (X(w) ,22)

H2q+1
Hy (X(),Z) = z*P ¢ Yy ,z)

t
where n{{g) is the number of w € WS with &(w) = q . Moreover, Hz q(x(w) 122
is freely spanned by the fundamental classes of the Schubert varieties "Z(m)w v
0
wews ¢ 2wW) =g .

The following conclusion is also well known (cf. [26] 19.1.11). For a

complex variety Y let A_(Y) = @ Ak(Y) denote the graded group of alge-
’ ke mw
braic cycles on Y modulo rational equivalence (k denoting the dimension).

14
COROLLARY 2: For any w € WS and u € H:+(A‘) we have

Aq("f(w)w) = @ AN [Sc'(w)vl .

where the direct sum extends over all v & W . vV £w , such that 2i{v)y =g ,

and where [.f(w)v,] denotes the cycle class of the variety '}?(m}v .

Recall that on an irreducible variety Y any algebraic line bundle
is {somorphic to a line bundle of the form O'Y(D) for a locally principal
divisor D on Y . In fact, the association D&+ O'Y(D) passes to an isomor-

Phism

<y Pic (Y}
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between the group (L(Y) of classes of Cartier divisors on Y and the group
Pic(¥) of isomorphism classes of line bundles on Y (cf. [19] VI .§ 1.4).

]
PROPOSITION 2: Let @ € H* (A') and w & W> . Then

{(«-p }

£ (w) = Tl -
G/P wa)w X(w) " w,w
where Dm,w equals the cycle
y v (h ) (X(w) ] .

sl
vEW ,v—¥+w

PROOF: Recall the functional *w : Liw) ¢ from 2.6, Lemma 6 and 7 .
The composition

éw ¢ Pr,
— e
iG/P(w){x(m)c’"-" Pw) x Liw T

defines a regular section s, € B° (x(ox) £G /Pc-ﬁ')) which vanishes nowhere on

X(m) (cf. 2.6, Lenwa 7). To prove our assert.ton, wa have to show that s,
vanishes with multiplicity v(w) (h ) along X(w)_, v—¥rw. This follows from

the second assertion of 2. 6, Lemma 7

In the following, we consider x(m) as a topological space. Thus we can
restrict all line bundles t’G /P(“ to x(m) as topological bundles. Using
that any weight X € B*(A') can be written as a difference w-u' of weights
w,s' € HY (A') and exploiting the homeomorphisms ‘i(m)w % X(u') , we obtain
(c£. [1] rLemma 4.2, [26] 19.1.2):

COROLLARY 3: Let A E H (A') and let cltk} € Hzi-f(w)w,%) be the first
Chern class of xG/P(M ‘—i(m)w.. Then

ey A B ] = - N vi) () - K )
vVEW ,v¥rw

in “um—z (E(w)w,z) . {Here [¥] denotes the fundamental class of a variety

Y , and nn denotes the cap product.)

REMARKS: 1)} The equivalent of Corollary 3 (for 4' = ¢ } in the Chow
ring A(G/B) for finite-dimensional groups G was first established by
Chevalley ( ~ 1958, unpublished, cf. [6] 4.4 for a proof). The homological form
is also proved in [1] § 4, Proposition 3, Lemwa 4.2, by which we were guided.

2) xn [1] and [6], Corollary 3 or its algebraic equivalent are used to
evaluate arbitrary polynomials in the Chern classes cltk} e A& H* , on the
Schubert cycles [Yw} of G/B . This can alsc be done in the present context,
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cf. [11] Theoréme 3. A detalled elaboration of that point will be published

by E._ Gutkin (for part of it cf. [27]).
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