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Abstract

In our previous paper [GPS2] the Cayley-Hamilton identity for the GL(m|n) type quan-
tum matrix algebra was obtained. Here we continue investigation of that identity. We derive
it in three alternative forms and, most importantly, we obtain it in a factorized form. The
factorization leads to a separation of the spectra of the quantum supermatrix into the ”even”
and ”odd” parts. The latter, in turn, allows us to parameterize the characteristic subalgebra
(which can also be called the subalgebra of spectral invariants) in terms of the supersymmet-
ric polynomials in the eigenvalues of the quantum supermatrix. For our derivation we use
two auxiliary results which may be of independent interest. First, we calculate the multipli-
cation rule for the linear basis of the Schur functions sλ(M) for the characteristic subalgebra
of the Hecke type quantum matrix algebra. The structure constants in this basis are the
Littlewood-Richardson coefficients. Second, we derive a series of bilinear relations in the
graded ring Λ of Schur symmetric functions in countably many variables (see [Mac]).
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1 Introduction

In the present paper, we continue the investigation of the supersymmetric GL(m|n) type quan-
tum matrix (QM) algebras initiated in [GPS2]. Let us recall briefly the history of the subject.

The first examples of the QM algebras were considered in the seminal papers of V. Drinfel’d
[D] and L. Faddeev, N. Reshetikhin and L. Takhtajan [RTF]. There, a particular family of
QM algebras — the algebras of quantized functions on the groups, shortly called the RTT al-
gebras, were defined. Soon after, another important subclass of QM algebras — the reflection
equation (RE ) algebras, were introduced into consideration (see, e.g., [KS, KSas]). The general
definition of the QM algebras was found by L.Hlavaty who aimed at giving a unified description
for RTT and RE algebras [Hl]. This idea might seem quite strange at first glance (the repre-
sentation theories of the RTT and the RE algebras are very different). At the same time, the
structure investigations carried out separately for the RTT [EOW, Zh, IOPS] and the RE alge-
bras [NT, PS, GPS1] reveal a remarkable similarity of both the algebras to the classical matrix
algebra. Namely, it turns out that the RE and the RTT families admit a noncommutative
generalization of the Cayley-Hamilton theorem and for the matrices of generators in both the
cases a noncommutative analogue of their spectra can be constructed. Having this in mind,
the general definition of the QM algebras was independently reproduced in [IOP2] and the non-
commutative version of the Cayley-Hamilton theorem was derived for the QM algebras of the
general linear type (see [IOP1, IOP2, IOP3]).

The family of GL(m) type QM algebras was a good case to start with. An investigation
of the other classical series of the QM algebras falls into two cases — the case of the Hecke
type QM algebras and the case of the Birman-Murakami-Wenzl (BMW) type QM algebras.
The difference is in the choice of a quotient of the group algebra of the braid group which
enters (through its R-matrix representation) into the QM algebra definition. The Hecke case
contains the general linear type and its supersymmetric generalization — the GL(m|n) type
QM algebras. The BMW case includes orthogonal- and symplectic- type QM algebras and their
supersymmetric analogues. An investigation of the BMW case was started in [OP2], where the
Cayley-Hamilton identity and the spectra of the orthogonal- and symplectic- type QM algebras
were identified.
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The supersymmetric GL(m|n) type QM algebra was studied in our previous paper [GPS2].
In that paper, we gave a proper definition of the family of the GL(m|n) type QM algebras and
proved the Cayley-Hamilton identity for them. Our work may be viewed as a generalization of
both the results by I. Kantor and I. Trishin on the Cayley-Hamilton equation for the superma-
trices [KT1, KT2] (the invariant Cayley-Hamilton equation in their terminology), and by P.D.
Jarvis and H.S. Green on the characteristic identities for the general linear Lie superalgebras
[JG].

Still lacking in the GL(m|n) case is the identification of the spectrum of the quantum su-
permatrices.1 Alternatively, one can ask for a proper parameterization of the characteristic
subalgebra of the GL(m|n) type QM algebra (the abelian subalgebra of the QM algebra which
the coefficients of the Cayley-Hamilton identity belong to). This problem is addressed in the
present work. First, we investigate in detail the structure of the characteristic subalgebra in the
Hecke case. Then, we derive a series of bilinear relations in the graded ring Λ of Schur symmet-
ric functions in countably many variables (for the definition see [Mac]). These combinatorial
relations may be of independent interest.

The structure of the paper is as follows. In the next section, subsection 2.1, we derive
the multiplication rule for the set of linear basic elements of the Hecke type characteristic
subalgebra — the so-called Schur functions sλ(M) (the notation is explained below). The
structure constants in this basis are just the Littlewood-Richardson coefficients. In other words,
we define the homomorphic map from the ring of symmetric functions Λ to the characteristic
subalgebra of the Hecke type QM algebra. To efficiently apply this map in the GL(m|n) case, we
need a series of bilinear relations for the Schur symmetric functions sλ ∈ Λ.2 They are proved
in subsection 2.2. For derivation we use the Jacobi-Trudi formulas for the Schur functions sλ

and apply the Plücker relations. The same method was used in [LWZ, Kl] for the derivation of
different bilinear relations for the Schur functions. We also remark that our bilinear relations
certainly have common roots with the factorization formula for the supersymmetric functions
[BR, PrT].

In section 3, we derive three alternative expressions for the Cayley-Hamilton identity for
the GL(m|n) type QM algebra. In subsection 3.1, the bilinear identities of subsection 2.2 are
used to factorize the GL(m|n) type characteristic identity into a product of two terms. Let us
stress that the factorization is achieved without extending the algebra by the eigenvalues of the
quantum supermatrix. To the best of our knowledge, this fact has not been observed before
even in the classical supermatrix case. The factorization allows us to separate ”even” and ”odd”
eigenvalues of the quantum supermatrix in a covariant manner. That is, we do not specify
explicitly the Z2-grading for the components of the quantum supermatrix. Instead, we observe
the ”manifestation of even and odd variables” in the factorization property of the characteristic
polynomial. Two more versions of the Cayley-Hamilton theorem are presented in subsection
3.2. They are given in terms of the (skew-)symmetric powers of the quantum matrices3 and
generalize the corresponding results of [KT2, T] to the case q 6= 1. Yet another series of bilinear
relations for the Schur symmetric functions sλ is used here for derivations (see lemma 6). These
relations are also applied in the last section for parameterization of the Schur functions sλ(M).

Finally, in section 4, we compute expressions for the coefficients of the GL(m|n) type Cayley-

1Here we put the problem for the generic QM algebra. For the subfamily of RE algebras and at the level of
finite dimensional representations it was considered in [GL].

2There should be no confusion between the elements sλ ∈ Λ and their homomorphic images sλ(M) in the
characteristic subalgebra. The argument in the latter notation is used for distinguishing purposes. It refers to
the matrix of generators of the QM algebra.

3The notion of the skew-symmetric power of the matrix was suggested by A.M. Lopshits (see [GGB], p.342.)
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Hamilton identity in terms of the quantum matrix eigenvalues. The resulting parameterization is
given in terms of the supersymmetric polynomials [Stem] (see also [Mac], section 1.3, exercises 23
and 24). It is worth mentioning that the supersymmetric polynomials were originally introduced
by F. Berezin [Ber] for a description of invariant polynomials on the Lie superalgebra gl(m|n)
(see also [Ser] and references therein).

Some auxiliary q-combinatorial formulae which we need for derivations in section 2.1 are
proved in the appendix.

Throughout this text we keep the notation of the paper [GPS2]. When referring to formulae
from that paper we use the shorthand quotation, e.g., symbol (I-3.21) refers to formula (21)
from section 3 of [GPS2]. For reader’s convenience in the rest of the introduction we collect a
list of notation, definitions and results mainly from [GPS2].

Let V be a finite dimensional C-linear space, dimV = N . Consider a pair of elements
R,F ∈ Aut(V ⊗2). Fixing some basis {vi}

N
i=1 in the space V we identify operators R and F with

their matrices in that basis. We use the shorthand matrix notation of [RTF]. I.e., we write Ri

(or, sometimes, more explicitly Ri i+1) for the matrix of the operator Id⊗(i−1) ⊗ R ⊗ Id⊗(k−i−1)

acting in the space V ⊗k. Here Id ∈ Aut(V) denotes the identity operator. The integer k is
not shown in the matrix notation. In each particular formula the actual value of k can be
easily reconstructed. Few more conventions: I is the identity matrix; P ∈ Aut(V ⊗2) is the
permutation automorphism (P (u ⊗ v) = v ⊗ u).

The pair of operators R and F can be used as an initial data set for the QM algebra, provided
they satisfy the following conditions

i) The matrices of both operators R and F are strict skew invertible. The skew invertibility
means, say for R, the existence of an operator ΨR ∈ End(V ⊗2) such that Tr(2)R12Ψ

R
23 =

P13 , where the subscript in the notation of the trace shows the number of the space V ,
where the trace is evaluated (here we adopt labelling V ⊗k := V1 ⊗ V2 ⊗ . . . ⊗ Vk). The
strictness condition implies invertibility of an element DR

1 := Tr(2)Ψ
R
12: DR ∈ Aut(V ).

With the matrix DR one then defines the R-trace operation TrR : MatN (W ) → W

TrR(X) :=
N∑

i,j=1

DRj
iX

i
j , X ∈ MatN (W ),

where W is any linear space (in considerations below W is the space of the QM algebra).

ii) The operators R and F are the R-matrices, that means they satisfy the Yang-Baxter
equations

R1R2R1 = R2R1R2 , F1F2F1 = F2F1F2 .

iii) The operators R and F form a compatible pair {R,F} (the order of operators in this
notation is essential)

R1F2F1 = F2F1R2 , F1F2R1 = R2F1F2 .

Given the pair {R,F} satisfying conditions i)–iii) the quantum matrix algebra M(R,F ) is
defined as a unital associative algebra which is generated by N 2 components of the matrix
‖M i

j‖
N
i=1 subject to the relations4

R1M1M2 = M1M2R1 . (1.1)

4In [GPS2] we also demand skew invertibility of an operator Rf := F−1R−1F in the definition of the QM al-
gebra. As is proved in [OP2] (see lemma 3.6), the latter condition is a consequence of i)–iii).
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Here we used the iterative procedure

M1 = M, Mk+1 = FkMkF
−1
k (1.2)

for the production of copies Mk of the matrix M . The defining relations (1.2) then imply the
same type relations for any consecutive pair of the copies of M (see lemma I-4)

Rk MkMk+1 = MkMk+1 Rk. (1.3)

Imposing additional conditions on the R-matrix R we then extract specific series of the
QM algebras.

iv) Demanding R to be the Hecke type R-matrix, that means its minimal polynomial to be of
the second order

(R + q−1I)(R − qI) = 0 , q ∈ {C \ 0} , (1.4)

we specify to the Hecke type QM algebra. The C-number q becomes the parameter of the
algebra.

v) Given a Hecke type R-matrix (1.4), one can construct a series of R-matrix representations
of the Hecke algebras5 Hp(q)

ρR : Hp(q) → End(V ⊗p), p = 2, 3, . . . . (1.5)

Let us impose an additional restriction on the parameter q

q2k 6= 1, k = 2, 3, . . . , (1.6)

which ensures the algebras Hp(q), p = 2, 3, . . . , to be semisimple. Then we can further
specify to a series of the GL(m|n) type QM algebras. For their definition we use a set of the

primitive idempotents Eλ
α ∈ Hp(q) labelled by the standard Young tableaux

{
λ
α

}

, where
λ ` p is a partition of p, and index α enumerates different standard tableaux corresponding
to the partition λ (see section I-2). The GL(m|n) type QM algebra is characterized by the
following conditions

a) the representations ρR (1.5) are faithful for all p < (m + 1)(n + 1);

b) for p ≥ (m + 1)(n + 1) the kernel of ρR is generated by (any one of) the primitive

idempotents E
((n+1)(m+1))
α corresponding to the rectangular Young diagram ((n +

1)(m+1));

c) the Schur function s(nm)(M) (see definition below) corresponding to the rectangular
Young diagram (nm) is an invertible element of the QM algebra.6

Note that relation m + n = N(= dimV ) between the algebra parameters m, n and N is
not assumed in the above definition. Although it is indeed satisfied in standard examples
(say, for the QM algebras constructed by the Drinfel’d-Jimbo R-matrix R). there exist
exceptions from this rule. A series of counter-examples was constructed in [Gur].

5A brief description of the Hecke algebras, their R-matrix representations, the primitive idempotents and the
basis of matrix units is given in [GPS2], sections 2 and 3. For a more detailed exposition of the subject the reader
is referred to [R, OP1] and to references therein.

6This condition was not imposed in [GPS2]. We will need it now for the spectral parameterization of the
characteristic subalgebra (see eqs.(3.5), (3.6)).
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¿From now on we restrict ourselves to considering the Hecke type QM algebras with the
parameter q satisfying condition (1.6).

The characteristic subalgebra Char(R,F ) of the QM algebra M(R,F ) is a linear span of the
set of Schur functions sλ(M)

s0(M) := 1, sλ(M) := Tr
R(1 . . . k)(M1 . . . Mk ρR(Eλ

α)) λ ` k, k = 1, 2, . . . , (1.7)

where Eλ
α is any one of the primitive idempotents corresponding to the partition λ (the expression

in (1.7) does not depend on α). As was shown in [IOP1], Char(R,F ) is an abelian algebra with
respect to the multiplication in M(R,F ).

Consider a subspace Pow(R,F ) ⊂ MatN (M(R,F )) which is spanned linearly by the elements

I ch(M) , ∀ ch(M) ∈ Char(R,F ) , and (1.8)

M (x(k)) := Tr
R(2 . . . k)(M1 . . . Mk ρR(x(k))) , ∀ x(k) ∈ Hk(q) , k = 1, 2, . . . . (1.9)

In what follows elements of the space Pow(R,F ) will be shortly called the quantum matrices. In
[GPS2] it was shown that the space of the quantum matrices carries the structure of the right
Char(R,F )-module and as a Char(R,F )-module it is spanned by a series of quantum matrix
powers of M

M0 := I, M1 := M, Mk := Tr
R(2 . . . k)(M1 . . . Mk Rk−1 . . . R1), k = 2, 3, . . . . (1.10)

In section 4.4 of [OP2] an analogue of the matrix multiplication was introduced for the space
Pow(R,F ). It was shown there that the quantum matrix multiplication agrees with the right
Char(R,F )-module structure; it is associative (see proposition 4.12) and, moreover it is commu-
tative (see propositions 4.13, 4.14). The latter result should not be surprising as all the elements
of Pow(R,F ) are descendants of the only quantum matrix M .7 For our purposes in this paper
it is enough knowing formulae

Mk = M ∗ M ∗ . . . ∗ M
︸ ︷︷ ︸

k times

, (I ch(M)) ∗ Mk = Mk ∗ (I ch(M)) , ∀ ch(M) ∈ Char(R,F ) ,

(1.11)
where by symbol ”∗” we denote the quantum matrix product. We also notice that for the
family of the RE algebras the product ∗ reduces to the usual matrix product. For the detailed
description of the quantum matrix multiplication the reader is referred to [OP2].

The main result of our previous paper [GPS2] is the Cayley-Hamilton theorem for the
GL(m|n) type QM algebras (see theorem I-10). For its compact formulation and for later
convenience we introduce a shorthand notation for the following Young diagrams (partitions)

r boxes

{

p boxes
︷ ︸︸ ︷

. . .
...

. . .
︸ ︷︷ ︸

k boxes

}

l boxes

=
(

(p + 1)l, p(r−l), k
)

=: [r|p]lk . (1.12)

Here the indices k and l take values l = 0, . . . , r, k = 0, . . . , p. If one of the indices k or l takes
zero value, we will omit it in the notation, e.g., [r|p]0k = [r|p]k.

7There should be no confusion between the quantum matrix product and the multiplication in M(R, F ). The
latter one is the product of the matrix components, while the first one is the product of the quantum matrices.
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Theorem 1 (Cayley-Hamilton identity) In the setting i)–iv) and v)–a,b) the quantum
matrix M composed of the generators of the GL(m|n) type QM algebra M(R,F ) fulfills the
characteristic identity

n+m∑

i=0

Mm+n−i
min{i,m}
∑

k=max{0,i−n}

(−1)k q2k−i s[m|n]k
i−k

(M) ≡ 0 . (1.13)
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2 Structure of the characteristic subalgebra

Consider the graded ring Λ of symmetric functions in countably many variables. A Z-basis of
Λ is given by the Schur symmetric functions sλ, λ ` n, for n ≥ 0 (we adopt definitions and
notation of ref.[Mac], sections 1.2 and 1.3).

It is not accidental that the similar notation sλ(M) is assigned to the elements (1.7) of the
characteristic subalgebra of the Hecke type quantum matrix algebra M(R,F ). Indeed, consider
the additive map map

Λ 3 sλ 7→ sλ(M) ∈ Char(R,F ) ⊂ M(R,F ) (Hecke type) . (2.1)

Our first main result is as follows.

Theorem 2 In the setting i)–iv) and (1.6) the additive map (2.1) defines the homomorphism
of rings.

A proof of the theorem is given in the subsection 2.1.
In the subsection 2.2 we derive some bilinear relations for the Schur symmetric functions

sλ ∈ Λ. These relations are necessary for the derivations in section 3.

2.1 Littlewood-Richardson multiplication formula for sλ(M)

We will prove the theorem 2 by a direct calculation. To this end we adopt its alternative
formulation

Theorem 2 Let M(R,F ) be a Hecke type QM algebra generated by the components of matrix
M . Assume that condition (1.6) on the algebra parameter q is satisfied. Then, the multiplication
in the corresponding characteristic subalgebra Char(R,F ) is described by the relations

sλ(M)sµ(M) =
∑

ν`(k+n)

c ν
λµsν(M), (2.2)

where sλ(M), sµ(M) ∈ Char(R,F ) are the Schur functions (1.7), and c ν
λµ are the Littlewood-

Richardson coefficients (see, e.g., [Mac], section 1.9).
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Proof. Since the cases m = 0 or k = 0 in (2.2) are trivial, we assume m ≥ 1 and k ≥ 1.
Let us first prove the relation (2.2) for the case µ = (1k) is a single column diagram. In that

case it reads

sλ(M)s(1k)(M) =
∑

ν⊃λ
ν`(k+n)

′

sν(M). (2.3)

Here ⊃ denotes the inclusion relation on the set of standard Young tableaux (see section I.2.1)
and the summation

∑′ is taken only over those diagrams ν whose set theoretical difference with
λ is a vertical strip (for terminology see [Mac], section 1.1).

For single column diagrams (1k), k = 2, 3, . . . , their corresponding primitive idempotents

E(1k) satisfy the well known iterative relations (see, e.g. [TW], lemma 7.2, or [GPS1], section 2.3)

E(1) = 1, E(1k) =
(k − 1)q

kq
E(1k−1)

( qk−1

(k − 1)q
1 − σk−1

)

E(1k−1), (2.4)

where we use notation of the section I.2.2. We shall apply these relations for a derivation of
eq.(2.3). Consider the following chain of transformations

sλ(M)s(1k)(M) = Tr
R(1 . . . n + k)

[

ρR(Eλ
α) ρR(E(1k)↑n)M1 . . . Mn+k

]

=
(k − 1)q

kq
Tr

R(1 . . . n + k)

[

ρR(Eλ
α E(1k−1)↑n)

( qk−1

(k − 1)q
I − Rn+k−1

)

ρR(E(1k−1)↑n)M1 . . . Mn+k

]

=
(k − 1)q

kq
Tr

R(1 . . . n + k)

[

ρR(Eλ
α E(1k−1)↑n)

( qk−1

(k − 1)q
I − Rn+k−1

)

M1 . . . Mn+k

]

= . . .

=
1

kq
Tr

R(1 . . . n + k)

[

ρR(Eλ
α)
(

qI − Rn+1

)

. . .
( qk−1

(k − 1)q
I − Rn+k−1

)

M1 . . . Mn+k

]

. (2.5)

Here in the first line we substitute definition (1.7) for the Schur functions and use eq.(I.3.19)

for s(1k)(M) (the notation Eµ↑n
β is described in lemma I.6). We remind that this expression is

independent of the choice of index α labelling the primitive idempotents Eλ
α ∈ Hn(q). In the

second line we apply formula (2.4) (recall that Ri = ρR(σi)). In the third line we use relations

(1.3) to permute the term ρR(E(1k−1)↑n) with the product of matrices M , then apply cyclic

property of the R-trace to move ρR(E(1k−1)↑n) to the leftmost position, and take into account

the commutativity of the idempotents E(1k−1)↑n and Eλ
α. Repeating these transformations (k−1)

times we eventually obtain the last line expression.

Let us denote the argument of the R-traces in (2.5) as

Q(R) := ρR(Eλ
α)Xn+1 , (2.6)

where
Xi :=

( qi−n

(i − n)q
I − Ri

)( qi−n+1

(i − n + 1)q
I − Ri+1

)

. . .
( qk−1

(k − 1)q
I − Rn+k−1

)

.(2.7)

We notice that in view of relations (1.3) and the cyclic property of the R-trace one can perform
cyclic permutations of factors in Q(R) without altering the expression (2.5). We shall use this
cyclic invariance in order to transform Q(R) to a suitable form.

The strategy of the transformation is as follows. We use a sequence of resolutions of the
idempotent Eλ

α ∈ Hn(q) (λ ` n) in terms of idempotents Eν
β ∈ Hn+i(q) (ν ` (n + i), i ≥ 1)

described in (I.2.21)
Eλ

α =
∑

ν⊃λ
ν`(n+i)

∑

β:
β⊃α

Eν
β . (2.8)
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We successively increase i in (2.8) from 2 to k and evaluate the factors (q i−1/(i−1)qI −Rn+i−1)
in Q(R) on the idempotents ρR(Eν

β)

ρR(Eν
β)
( qi−1

(i − 1)q
I − Rn+i−1

)
�
=

(`n+i−1 + i − 1)q

(i − 1)q (`n+i−1)q
ρR(Eν

β). (2.9)

Here `j := c(j) − c(j + 1) denotes the difference of the contents of boxes with numbers j and

(j + 1) in the standard tableau
{

ν
β

}

(for definitions see section I.2.1); the symbol ”
�
=” means

equality modulo cyclic permutation of factors.
The evaluation rule can be argued as follows. Observe that the relations

Eν
β σj ≡ Eν

β

(

σj +
q−`j

(`j)q
1
)

−
q−`j

(`j)q
Eν

β =
(`j + 1)q

(`j)q
Eν

β πj(β) −
q−`j

(`j)q
Eν

β , 1 ≤ j ≤ n+ i− 1, (2.10)

are satisfied in the algebra Hn+i(q) (see (I.2.16)). Here the symbol Eν
β πj(β) stands for the off-

diagonal matrix unit labelled by the pair of standard Young tableaux
{

ν
β

}

and
{

ν
πj(β)

}

, where

the tableau
{

ν
πj(β)

}

is obtained from the tableau
{

ν
β

}

by the permutation πj of boxes j and

(j + 1). If
{

ν
πj(β)

}

is non-standard the term with Eν
β πj(β) is absent in (2.10).

Now, transform the expression ρR(Eν
β)Rn+i−1 = ρR(Eν

βσn+i−1) in the left hand side of (2.9)
with the use of eq.(2.10). In Q(R) the contribution of the off-diagonal matrix unit ρR(Eν

β πj(β))

vanishes by virtue of the cyclic invariance. Indeed,

ρR(Eν
β πj(β))Xn+i = ρR(Eν′

β′Eν
β πj(β))Xn+i

�
= ρR(Eν

β πj(β))Xn+i ρR(Eν′

β′ )

= ρR(Eν
β πj(β)E

ν′

β′)Xn+i = 0. (2.11)

Here the idempotent Eν′

β′ corresponds to the standard tableau
{

ν′

β′

}

obtained from the tableau
{

ν
β

}

by removing the box with the number (n + i). The first and the last equalities in (2.11)
are consequences of eq.(2.8) and the multiplication table for the matrix units (I.2.7). In the
second equality we made the cyclic permutation of terms which is allowed in Q(R). The factors
ρR(Eν′

β′) and Xn+i are built of the mutually commuting R-matrices wherefrom the third equality
in (2.11) follows.

Eventually, collecting the coefficients at the diagonal matrix unit ρR(Eν
β) in Q(R) results in

the right hand side of eq.(2.9).

So, we begin the transformation of Q(R). Setting i = 2 in (2.8) we come to the expression

Q(R) =
∑

ν⊃λ
ν`(n+2)

∑

β:
β⊃α

ρR(Eν
β)
(

qI − Rn+1

)

Xn+2. (2.12)

For our calculation we have to specify an explicit way of enumeration of the Young tableaux.

For a given tableau
{

λ
α

}

, λ ` n, we take the index α := {a1, a2, . . . an} to be an ordered set of
pairs of integers ai := {xi, yi}, where xi and yi are, respectively, the number of column and row
where the i-th box stands. Recall that the content of the i-th box is c(i) = xi−yi (see sec.I.2.1).

In the summation index β in eq.(2.12) only the last two components vary. We shortly denote
them as a and b, that is β = {. . . , a, b}. For a and b in the summation (2.12) we have following
three possibilities.

i) a = {x, y}, b = {x + 1, y}. In this case `n+1 = c(n + 1) − c(n + 2) = −1. Hence, due to
relation (2.9) such tableaux do not contribute to Q(R).
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ii) a = {x, y}, b = {x, y+1}. In this case `n+1 = c(n+1)− c(n+2) = 1. Hence, due to relation
(2.9) the contributions of such tableaux in (2.12) equal

2q ρR(Eν
{...,a,b})Xn+2. (2.13)

iii) a = {x, y}, b = {x̄, ȳ}, such that x 6= x̄ and y 6= ȳ. In this case we combine contributions
coming from two tableaux of the same shape with indices β = {. . . a, b} and πn+1(β) = {. . . b, a}.
Taking into account eq.(2.9) we get

(

ρR(Eν
{...,a,b})

(`n+1 + 1)q
(`n+1)q

+ ρR(Eν
{...,b,a})

(`n+1 − 1)q
(`n+1)q

)

Xn+2 (2.14)

for the corresponding summands in (2.12).
Noticing that the term (2.13) fits the form (2.14) with `n+1 = 1 we can rewrite (2.12) as

Q(R)
�
=
∑

ν⊃λ
ν`(n+2)

(a,b)

′(

ρR(Eν
{...,a,b})

(`n+1 + 1)q
(`n+1)q

+ ρR(Eν
{...,b,a})

(`n+1 − 1)q
(`n+1)q

)

Xn+2 , (2.15)

where the summation goes over different shape diagrams ν ` (n + 2) which are counted by
unordered pairs (a, b), a = {x, y} and b = {x̄, ȳ}. There is an additional condition y 6= ȳ which
means that in the diagram ν the boxes with numbers (n + 1) and (n + 2) can not appear in the
same row. It is this restriction which the summation symbol

∑′ refers to (c.f. (2.3)).
For what follows it is suitable to change our notation for `n+1. We substitute

`n+1 = c(n + 1) − c(n + 2) −→ `ab = (x − y) − (x̄ − ȳ)

to manifest clearly the dependence on the summation variables a and b.

We now proceed to the next step of the transformation. Substituting (2.8) for i = 3 into
eq.(2.15) and noticing `ab = −`ba we obtain

Q(R)
�
=
∑

τ⊃λ
τ`(n+2)

(a,b)

′ ∑

ν`(n+3):
c=ν\τ

(

ρR(Eν
{...,a,b,c})

(`ab+1)q

(`ab)q

+ ρR(Eν
{...,b,a,c})

(`ba+1)q

(`ba)q

)(q2

2q
I−Rn+2

)

Xn+3, (2.16)

where c labels all possible complements of the diagram τ ` (n + 2) by the (n + 3)-th box.
Applying relation (2.9) we reduce this expression to the form

Q(R)
�
=
∑

τ⊃λ
τ`(n+2)

(a,b)

′ ∑

ν`(n+3):
c=ν\τ

(

ρR(Eν
{...,a,b,c})

(`ab+1)q

(`ab)q

(`bc+2)q

2q(`bc)q

+ ρR(Eν
{...,b,a,c})

(`ba+1)q

(`ba)q

(`ac+2)q

2q(`ac)q

)

Xn+3,

(2.17)
Next, we observe that the idempotents ρR(Eν

{...,a,b,c}) and ρR(Eν
{...,b,a,c}) in the expression above

can be identified. Indeed, denoting σi(`) := (σi − q`/`q 1) we have

ρR(Eν
{...,b,a,c})Xn+3

�
= ρR

(

σn+1(`ab)E
ν
{...,b,a,c}

)

Xn+3 ρR

(

σn+1(`ab)
)−1

= ρR

(

Eν
{...,a,b,c}σn+1(−`ab)(σn+1(`ab))

−1
)

Xn+3
�
= ρR(Eν

{...,a,b,c})Xn+3, (2.18)
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where the cyclic invariance together with relations (I.2.13), (I.2.10) and (2.11) were taken into
account. Thus, from now on the order of labels a and b makes no difference in the notation
Eν

{...,a,b,c} and we simplify it to Eν
{...,c}. Then, the expression (2.17) reduces to

Q(R)
�
=
∑

τ⊃λ
τ`(n+2)

(a,b)

′ ∑

ν`(n+3):
c=ν\τ

ρR(Eν
{...,c})

(`ac + 1)q
(`ac)q

(`bc + 1)q
(`bc)q

Xn+3. (2.19)

Here, noticing that `ab = `ac − `bc, we have transformed the coefficients at ρR(Eν
{...,c}) using the

q-combinatorial formula (A.3) for k = 2 and b1 = `ac, b2 = `bc (see Appendix). The double
summation is carried out with the restriction that boxes (n + 1), (n + 2) and (n + 3) which are
labelled by a, b and c must be placed in different rows of the diagram ν.

Finally, we prepare the expression (2.19) for the next step calculation by collecting the
summands which correspond to tableaux of the same shape

Q(R)
�
=
∑

ν⊃λ
ν`(n+3)
(a,b,c)

′(

ρR(Eν
{...,a,b,c})

(`ac+1)q

(`ac)q

(`bc+1)q

(`bc)q

+ ρR(Eν
{...,b,c,a})

(`ba+1)q

(`ba)q

(`ca+1)q

(`ca)q

+ ρR(Eν
{...,c,a,b})

(`cb+1)q

(`cb)q

(`ab+1)q

(`ab)q

)

Xn+3. (2.20)

where the summation goes over different shape diagrams ν ` (n+3) counted by unordered triples
(a, b, c) such that neither pair of boxes a, b and c is placed at the same row of ν.

Repeating the transformations described in eqs.(2.16)–(2.20) successively for i = 4, . . . , k
and using q-combinatorial relations (A.3), we eventually obtain

Q(R)
�
=

∑

τ⊃λ
τ`(n+k−1)

(a1,...,ak−1)

′ ∑

ν`(n+k)
ak=ν\τ

ρR(Eν
{...,ak}

)
k−1∏

i=1

(`aiak
+ 1)q

(`aiak
)q

. (2.21)

Here the unordered (k−1)-tuples (a1, . . . ak−1) counting different shape diagrams τ ` (n+k−1)
are subject to restriction that τ \ λ is a vertical strip. The summation variable ak labels all
possible complements of the diagram τ ` (n + k − 1) by the (n + k)-th box.

Formula (2.21) is the i = k step analogue of the relation (2.19). An important difference is
the absence of the X-term in the right hand side of the expression (one can say that Xn+k =
1). Therefore, in the final expression for Q(R) we have no need to distinguish between the
different idempotents ρR(Eν

{...,ak,...}) (ak taking various positions) corresponding to the same

shape diagram ν ` (n + k). Thus, the analogue of eq.(2.20) reads

Q(R)
�
=
∑

ν⊃λ
ν`(n+k)

(a1,...,ak)

′

ρR(Eν
{...})

k∑

j=1

k∏

i=1
i6=j

(`aiaj
+ 1)q

(`aiaj
)q

= kq

∑

ν⊃λ
ν`(n+k)

′

ρR(Eν
{...}) . (2.22)

Here by Eν
{...} an arbitrary primitive idempotent corresponding to Young diagram ν is under-

stood, the summation
∑′ goes over all diagrams ν ` (n + k) such that ν \ λ is a vertical strip,

and in the last equality we used q-combinatorial formula (A.2) setting `aiaj
= bi − bj .

Substituting expression (2.22) for Q(R) in eq.(2.5) we derive formula (2.3), which is a par-
ticular example of the Littlewood-Richardson rule.
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Now we are ready to prove the general case. To this end, let us argue that elements s(1k)(M),
k = 0, 1, . . . , form a Z-basis of generators for the set of Schur functions. Indeed, with the help
of eqs.(2.3) it is easy to see that

s(2k1m)(M) = s(1(k+m))(M)s(1k)(M) − s(1(k+m+1))(M)s(1(k−1))(M), ∀ k ≥ 1,m ≥ 0 .

Then, using eqs.(2.3), elements s(3k,2m,1n)(M) can be expressed as linear combinations of mono-
mials of the type s(2l1p)(M)s(1r)(M). Etc. Repeating this procedure finitely many times one
can express any Schur function sλ(M) as a polynomial in generators s(1k)(M), k = 0, 1, . . . .
The explicit expressions are given by famous Jacobi-Trudi identities (see [Mac], section 1.3).

At last, since the product of generators s(1k)(M) is described by the specification (2.3) of the
Littlewood-Richardson formula, the product of two arbitrary Schur functions sλ(M) and sµ(M)
is to be given by eq.(2.2).

2.2 Bilinear relations

In this subsection we derive a series of bilinear relations for the Schur symmetric functions
sλ ∈ Λ. By the homomorphic map (2.1) one can translate them to the characteristic subalgebra
of the Hecke type quantum matrix algebra. These relations are used in section 3.1 to split the
characteristic identity in the GL(m|n) case into the product of two factors and, thereby, to
separate ”even” and ”odd” parts of the spectra of quantum matrices.

Our derivation is based on the use of the Plücker relations and we start from their short
reminding (for details see [Sturm]).

Consider a pair of n×n matrices A = ‖aij‖
n
1 and B = ‖bij‖

n
1 . We denote the i-th row of the

matrix A as ai∗ and introduce notation

det A := [A] , A :=

(

a1∗ . . . ai∗ . . . an∗

1 . . . i . . . n

)

, (2.23)

where the latter symbol contains a detailed information on the row content of A. Namely, it
says that the row ai∗ appears in the matrix A at the i-th place (counting downwards).

Let us fix a set of integer data {k, r1, r2, . . . , rk} such that 1 ≤ k ≤ n and 1 ≤ r1 < . . . <
rk ≤ n. Given these data the Plücker relation reads

[A][B] =
∑

1≤s1<...<sk≤n

[

a1∗ . . . bs1∗ . . . bs2∗ . . . bsk∗ . . . an∗

1 . . . r1 . . . r2 . . . rk . . . n

]

×

[

b1∗ . . . ar1∗ . . . ar2∗ . . . ark∗ . . . bn∗

1 . . . s1 . . . s2 . . . sk . . . n

]

, (2.24)

where the sum is taken over all possible sets {k, s1, . . . , sk}. We now apply the Plücker relations
for the proof of

Proposition 3 Let us fix four integers r, p, l and k, such that 1 ≤ l ≤ r and 1 ≤ k ≤ p.
Then in the ring Λ of symmetric functions the following bilinear relations are satisfied (for the
notation see (1.12))

s
[r|p]l

k

s
[r|p]

= s
[r−1|p−1]

(l−1)

(k−1)

s
[r+1|p+1]

+ s
[r|p]k

s
[r|p]l

. (2.25)
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Proof. For the Schur symmetric function sλ corresponding to a partition λ = (λ1, . . . , λp), the
Jacobi-Trudi relation reads (see [Mac], section 1.3, eq.(3.4))

sλ = det ‖hλi−i+j‖
m
i,j=1, (2.26)

where m ≥ p and the components of the matrix in the right hand side are the complete symmetric
functions (that is, the single row Schur symmetric functions) hi := s(i). By convention, hi := 0
if i < 0.

Substituting expressions (2.26) into the left hand side of relation (2.25) and using notation
(2.23) we have

s
[r|p]l

k

s
[r|p]

=

[

hp+1∗ hp∗ . . . hp−l+2∗ hp−l∗ . . . hp−r+1∗ hk−r∗

1 2 . . . l l + 1 . . . r r + 1

]

×

[

hp∗ hp−1∗ . . . hp−l+1∗ hp−l∗ . . . hp−r+1∗ h−r∗

1 2 . . . l l + 1 . . . r r + 1

]

, (2.27)

where the symbol hi∗ := (hi, hi+1, hi+2, . . .) is used for the rows of the matrices appearing in the
Jacobi-Trudi formula (2.26).

Now, we transform the right hand side of eq.(2.27) using the Plücker relation for the set of
data {k = 1, r1 = r + 1}. In this case most of the summands in formula (2.24) vanish, since
they contain determinants of matrices with coinciding pairs of rows. The only two contributing
terms correspond to s1 = l and s1 = r + 1. So, we get

s
[r|p]l

k

s
[r|p]

=

[

hp+1∗ . . . hp−l+2∗ hp−l∗ . . . hp−r+1∗ hp−l+1∗

1 . . . l l + 1 . . . r r + 1

]

×

[

hp∗ . . . hk−r∗ hp−l∗ . . . hp−r+1∗ h−r∗

1 . . . l l + 1 . . . r r + 1

]

+

[

hp+1∗ . . . hp−l+2∗ hp−l∗ . . . hp−r+1∗ h−r∗

1 . . . l l + 1 . . . r r + 1

]

×

[

hp∗ . . . hp−l+1∗ hp−l∗ . . . hp−r+1∗ hk−r∗

1 . . . l l + 1 . . . r r + 1

]

(2.28)

which, by the Jacobi-Trudi relations, is exactly the right hand side of the eq.(2.25) (to represent
the first summand in the right hand side of (2.28) as a product of two Schur functions one has
to move (r + 1)-th row in its first factor up to the (l + 1)-th place, and l-th row in its second
factor down to the r-th place).

3 Various presentations of the Cayley-Hamilton identity

In this section we derive three alternative expressions for the characteristic identity (1.13).
In subsection 3.1 we use the results of section 2 to present the characteristic identity for the

GL(m|n) type QM algebra as a product of two factors of orders m and n. The factorization
allows us to introduce separately the sets of ”even” and ”odd” eigenvalues for the quantum
matrix M of generators of the algebra.

In the subsection 3.2 we derive two other forms of the Cayley-Hamilton identity. They are
written in terms of symmetric and skew-symmetric powers of the quantum matrix M , respec-
tively. The coefficients of these identities are elements of the characteristic subalgebra and we
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find their expressions in terms of the Schur functions sλ(M), and in terms of the eigenvalues of
M . For the case of supermatrices these two expressions for the characteristic identity were first
derived in [KT2, T].

3.1 Separation of ”even” and ”odd” spectral values

¿From the condition v) in the definition of the GL(m|n) type QM algebra it follows immediately
that for all Young diagrams λ containing the diagram ((n + 1)m+1) = [m + 1|n + 1] their
corresponding Schur functions sλ belong to the kernel of the homomorphism (2.1)

sλ 7→ sλ(M) = 0, ∀ λ : ((n + 1)m+1) ⊂ λ . (3.1)

Therefore, the image of bilinear relations (2.25) with r = m, p = n in the characteristic subal-
gebra of the GL(m|n) type QM algebra reduces to

s[m|n]l
k
(M) s[m|n](M) = s[m|n]k(M) s[m|n]l(M) , ∀ k, l : 0 ≤ k ≤ n, 0 ≤ l ≤ m. (3.2)

We shall use these relations to factorize the characteristic polynomial (1.13). To this end we
multiply the identity (1.13) by the Schur function s

[m|n]
(M) from the right and apply eqs.(3.2).

The resulting expression reads

m+n∑

i=0

Mm+n−i
min(i,m)
∑

k=max(0,i−n)

(−q)ks
[m|n]k

(M) qk−is
[m|n](i−k)

(M) ≡ 0 . (3.3)

With the use of relations (1.11) it can be immediately turned into the quantum matrix product
of two factors.

Theorem 4 (Cayley-Hamilton identity in a factorized form) In the assumptions of
theorem 1 the identity (1.13) implies

( m∑

k=0

(−q)k Mm−ks
[m|n]k

(M)
)

∗
( n∑

r=0

q−r Mn−rs
[m|n]r

(M)
)

≡ 0 . (3.4)

The identities (1.13) and (3.4) are equivalent iff the Schur function s[m|n](M) is invertible (i.e.,
in case if all conditions i)–v) are satisfied).

The factorization suggests a natural parameterization for the characteristic subalgebra.
Namely, assuming that the conditions i)–v) on the GL(m|n) type QM algebra M(R,F ) are
satisfied we consider a homomorphic map from the characteristic subalgebra Char(R,F ) into
the algebra C[µ, ν] of polynomials in two sets of (mutually commuting) variables µ := {µi}1≤i≤m

and ν := {νj}1≤j≤n. The map Char(R,F ) → C[µ, ν] : sλ(M) 7→ sλ(µ, ν) called the parameteri-
zation map is given by relations8

s[m|n]k (M)

s[m|n] (M) 7→
s[m|n]k (µ,ν)

s[m|n] (µ,ν) :=
∑

1≤i1<...<im≤m

q−kµi1 . . . µik = ek(q
−1µ) , 1 ≤ k ≤ m, (3.5)

s[m|n]r
(M)

s[m|n] (M) 7→
s[m|n]r

(µ,ν)

s[m|n] (µ,ν) :=
∑

1≤j1<...<jr≤n

(−q)rνj1 . . . νjr = er(−qν) , 1 ≤ r ≤ n . (3.6)

8Here we implicitly assume the algebraic independence of the elements
s
[m|n]k

(M)

s[m|n] (M)
, 1 ≤ k ≤ m, and

s[m|n]r
(M)

s[m|n] (M)
,

1 ≤ r ≤ n.

14



Here ek(·) denotes the specialization of the elementary symmetric function ek ∈ Λ to the ele-
mentary symmetric polynomial in finitely many variables — the arguments of ek(·). The powers
of the parameter q are introduced in order to get the simple form of the identity (3.7) below.

Note that for the above parameterization we need assuming an invertibility of the Schur
function s[m|n](M) (see condition v)-c)). As we shall see in section 4, relations (3.5), (3.6) define
consistently the homomorphism of the characteristic subalgebra Char(R,F ) to a subalgebra of
the supersymmetric polynomials in variables {q−1µi} and {−qνj} (see the definition in section
4) 9.

Now, it is straightforward to derive a completely factorized formula for the characteristic
polynomial (1.13). Namely, the parameterization map defines naturally a left Char(R,F )-
module structure on the algebra C[µ, ν]. We shall use this structure to construct completion
of the space of quantum matrices:

Pow(R,F ) := Pow(R,F )
⊗

Char(R,F )
C[µ, ν] .

The quantum matrix product for the completed space Pow(R,F ) is given by formula

(N
⊗

Char(R,F )
x) ∗ (K

⊗

Char(R,F )
y) := (N ∗ K)

⊗

Char(R,F )
(xy) , ∀N,K ∈ Pow(R,F ) , ∀x, y ∈ C[µ, ν] .

It is associative as well as commutative (see discussion below eq.(1.10)).
Finally, notice that the characteristic identities (1.13) and (3.4) are written in the algebra

Pow(R,F ). When passing to the completed algebra Pow(R,F ) we can apply substitutions (3.5)
and (3.6) in the characteristic polynomial (3.4) and, thus, we turn it to a completely factorized
form

(s
[m|n]

(M) I)∗2 ∗
m∏

i=1

(M − µiI) ∗
n∏

j=1

(M − νjI) ≡ 0 . (3.7)

Here all products are understood as the quantum matrix products.
The above totally factorized form of the Cayley-Hamilton theorem confirms interpretation of

the indeterminates {µi} and {νj} as, respectively, ”even” and ”odd” eigenvalues of the quantum
supermatrix M .

Let us stress that the parameterization formulae (3.5)–(3.7) are obtained here at a formal
algebraic level. A different approach based on the representation theory of the algebras was
adopted in papers [JG, GL] (see also references therein and ref.[Mudr]). The latter approach is
well applicable for the family of RE algebras, in which case the characteristic subalgebra belongs
to the center of the algebra (see, e.g., [I], section 3.2, proposition 5). However, it seems hardly
possible to apply this approach for the QM algebras in general.

3.2 Cayley-Hamilton identities for skew-symmetric and symmetric matrix

powers

We have already mentioned in the introduction that for the Hecke type QM algebras the corre-

sponding Char(R,F )-module Pow(R,F ) is spanned linearly by the set M k, k = 0, 1, 2, . . . . The
Cayley-Hamilton identity (1.13) then states that Pow(R,F ) is not a free span of the quantum
matrix powers of M . In this subsection we consider two other spanning sets for the space of

9The characteristic subalgebra augmented by the inverse Schur function (s[m|n](M))−1 is parameterized by
rational functions in µi and νj which are symmetric (separately) with respect to variables in the subsets µ and ν

(see eqs.(3.5), (3.6) and proposition 13).
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quantum matrices Pow(R,F ) and derive equivalent forms of the Cayley-Hamilton identity in
their terms.

Consider quantum matrices (c.f., with eq.(1.9))

M [k|1] := Tr
R(2 . . . k)

(

M1 . . . Mk ρR(E[k|1])
)

, (3.8)

M [1|k] := Tr
R(2 . . . k)

(

M1 . . . Mk ρR(E[1|k])
)

, (recall [r|p] := (pr)) . (3.9)

Following to A.M. Lopshits (see [GGB], p.342, or [KT2, T]) we introduce series of skew-
symmetric and symmetric quantum matrix powers of the quantum matrix M , respectively,

M∧0 := I , M∧k := (−1)k−1kqM
[k|1] + (−q)ks[k|1](M) I, k = 1, 2, . . . , (3.10)

and
MS0 := I , MSk := kqM

[1|k] + q−ks[1|k](M) I, k = 1, 2, . . . . (3.11)

In [IOP2] (see the Cayley-Hamilton-Newton theorem there) expressions for M [k|1] and M [1|k] in
terms of the quantum matrix powers of M were derived. Therefrom we calculate

M∧k =
k∑

r=0

(−q)rMk−rs[r|1](M) , MSk =
k∑

r=0

q−rMk−rs[1|r](M) . (3.12)

These relations can be inverted with the use of the inverse Cayley-Hamilton-Newton theorem
[IOP2] and the Wronski relations (see, e.g., [Mac], eq.(2.6’))10

k∑

r=0

(−1)rs[r|1] s[1|k−r] = δ(k) , (3.13)

where δ(i) := 1 if i = 0, and δ(i) := 0 otherwise. The inverse relations read

Mk =
k∑

r=0

qrM∧(k−r)s[1|r](M) =
k∑

r=0

(−q)−rMS(k−r)s[r|1](M) . (3.14)

Formulae (3.14) show that the space of quantum matrices Pow(R,F ) is a Char(R,F )-span of
each one of the sets {M∧k}k≥0 , {MSk}k≥0. We shall use them also for rewriting the Cayley-
Hamilton identity (1.13) in terms of the (skew-)symmetric matrix powers. To simplify formula-
tion we introduce one more notation for the Young diagrams of a particular shape. It is easier
to explain it on the picture

〈µ|λ〉 :=

λ
[m|n]

µ

that is, the Young diagram 〈µ|λ〉 is a composition of the rectangular diagram [m|n] and the two
diagrams λ and µ, such that the length of λ does not exceed m, and the length of µT is less or
equal to n (we use the standard notation from [Mac]).

10For the elements of the characteristic subalgebra the Wronski relation was proved in [IOP2].
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Theorem 5 (Cayley-Hamilton identity for the (skew-)symmetric matrix powers) In
the assumptions of theorem 1 the identity (1.13) can be written in the following equivalent forms

min{2n,m+n}
∑

k=0

M∧(m+n−k)dk(M) ≡ 0 , or

min{2m,m+n}
∑

k=0

MS(m+n−k)fk(M) ≡ 0 , (3.15)

where we denote

dk(M) :=
∑[ k

2 ]
r=max{0,k−n}(k − 2r + 1)q s〈(k−r,r)|0〉(M) , (3.16)

fk(M) :=
∑[ k

2 ]
r=max{0,k−m}(−1)k−2r(k − 2r + 1)q s〈0|(2r ,1k−2r)〉(M) . (3.17)

Here the symbol
[

k
2

]

stands for the integral part of the fraction k
2 .

Proof. The proof of the theorem is a straightforward calculation on the base of relations
(3.14). We shall carry it out for the left identity in (3.15). Checking the right identity is a
similar calculation.

Substitute the expressions (3.14) for the quantum matrix powers M m+n−i in terms of the
skew-symmetric powers into the Cayley-Hamilton identity (1.13). Evidently, the identity takes
the form

m+n∑

k=0

M∧(m+n−k)dk(M) ≡ 0 , (3.18)

where the coefficients dk(M) ∈ Char(R,F ) are to be specified. We shall verify the explicit
expressions (3.16) for dk(M) and refine the limits of the summation over k.

First of all, collecting the contributions to dk(M) from the expressions for the matrix powers

Mm+n−i, 0 ≤ i ≤ k, we have

dk(M) =
k∑

i=0

qk−is(k−i)(M)

min{i,m}
∑

j=max{0,i−n}

(−1)j q2j−i s
[m|n]j

i−j

(M) .

Then, introducing a new summation variable r = i − j and changing the order of summation
over i and r we get

dk(M) =

min{k,n}
∑

r=0

(−1)rqk−2r
min{k,r+m}

∑

i=r

(−1)i s(k−i)(M)s[m|n]i−r
r

(M) . (3.19)

Let us separately calculate the second sum in the expression above.

Lemma 6 For any fixed pair of integers m and n, and for all integers r and k satisfying
conditions 0 ≤ r ≤ n, r ≤ k ≤ m + n, the following equalities

min{k,r+m}
∑

i=r

(−1)is(k−i)s[m|n]i−r
r

=







0 , k ≥ n + r + 1 ,

(−1)r ∑ min{r,k−r}
i=max{0,k−n} s〈(k−i,i)|0〉 , k ≤ n + r ,

(3.20)

take place in the ring Λ of the symmetric functions.
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Proof. Denote ωk,r the expression in the left hand side of eq.(3.20).
Consider the case k ≤ r + m. Introducing a new summation variable j = k − i and denoting

p := k − r, 0 ≤ p ≤ m, we rewrite the sum ωk,r as

(−1)kωk,r =
p
∑

j=0

(−1)js(j)s[m|n]p−j
r

= (−1)ps(p)s[m|n]r +
p−1
∑

j=0

(−1)js(j)s[m|n]p−j
r

.

Applying the Littlewood-Richardson rule to the products s(j)s[m|n]p−j
r

we can gather terms in

the latter expression into two separate sums

(−1)kωk,r = (−1)ps(p)s[m|n]r +
p−1
∑

j=0

(−1)j
min{j,n}
∑

t=0

min{r,t}
∑

i=max{0,r+t−n}

s〈(r+t−i, i)|(j−t+1, 1p−j−1)〉

+
p−1
∑

j=1

(−1)j
min{j−1,n}
∑

t=0

min{r,t}
∑

i=max{0,r+t−n}

s〈(r+t−i, i)|(j−t, 1p−j )〉 .

As can be easily checked, the two triple sums in the expression above cancel each other except
for the term j = p − 1 in the first sum. So, we obtain

(−1)kωk,r = (−1)ps(p)s[m|n]r + (−1)p−1
min{p−1,n}
∑

t=0

min{r,t}
∑

i=max{0,r+t−n}

s〈(r+t−i,i)|(p−t)〉. (3.21)

Consider now expansion of the product s(p)s[m|n]r into the sum of Schur symmetric functions

(−1)ps(p)s[m|n]r = (−1)p
min{p,n}
∑

t=0

min{r,t}
∑

i=max{0, t+r−n}

s〈(r+t−i, i)|(p−t)〉 . (3.22)

Comparing the double sums in the right hand sides of eqs.(3.21) and (3.22) we observe that they
are exactly opposite in the sign in case k ≥ r + n + 1 ⇔ p ≥ n + 1, and they differ by the term
with t = p in case k ≤ n + r ⇔ p ≤ n. Therefore, substitution of the expression (3.22) into
eq.(3.21) results in formula (3.20).

The case k ≥ r + m + 1 is treated in complete analogy with the above consideration.

Return to the proof of the theorem. By the homomorphism (2.1) the statement of lemma 6
translates to the ring of Schur functions sλ(M). So, formula (3.19) for dk(M) can be equivalently
written as

dk(M) = 0, if k > 2n; dk(M) =

min{k,n}
∑

r=max{0,k−n}

qk−2r
min{r,k−r}
∑

i=max{0,k−n}

s〈(k−i, i)|0〉, for 0 ≤ k ≤ 2n.

(3.23)
The latter expression can be further simplified. In case 0 ≤ k ≤ n we have

dk(M) =
k∑

r=0

qk−2r
min{r,k−r}
∑

i=0

s〈(k−i, i)|0〉 =

[k/2]
∑

i=0

s〈(k−i, i)|0〉

k−i∑

r=i

qk−2r =

[k/2]
∑

i=0

(k − 2i + 1)q s〈(k−i, i)|0〉 ,

(3.24)
where in the second equality we changed the order of summation. In case n < k ≤ 2n the similar
calculation gives

dk(M) =
n∑

r=k−n

qk−2r
min{r,k−r}
∑

i=k−n

s〈(k−i, i)|0〉 =

[k/2]
∑

i=k−n

(k − 2i + 1)q s〈(k−i, i)|0〉. (3.25)
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Combining together the results (3.18), (3.23), (3.24) and (3.25) we get formulae (3.15), (3.16).

Assuming additionally the Schur function s[m|n](M) = d0(M) = f0(M) to be invertible we
will now express the ratios dk(M)/d0(M) and fk(M)/f0(M) in terms of the eigenvalues of the
quantum supermatrix M .

Proposition 7 Let M(R,F ) be a QM algebra of the GL(m|n) type, that is the algebra defined
by the set of conditions i)–v) (see introduction). Then, under the parameterization map (3.5),
(3.6) we have

dk(M)

d0(M)
7→ (−1)k

min{k,n}
∑

r=max{0,k−n}

q2rer(ν) ek−r(ν) , (3.26)

fk(M)

f0(M)
7→ (−1)k

min{k,m}
∑

r=max{0,k−m}

(−q)−2rer(µ) ek−r(µ) . (3.27)

Proof. We shall prove the equality (3.26). The relation (3.27) can be checked in a similar way.
Multiplying eq.(3.19) by d0(M) we obtain

dk(M)d0(M) =

min{k,n}
∑

l=0

(−1)lqk−2l
min{k,l+m}

∑

j=l

(−1)j s(k−j)(M) s
[m|n]

(j−l)
l

(M) s
[m|n]

(M)

=

min{k,n}
∑

l=0

qk−2ls
[m|n]l

(M)

min{k−l,m}
∑

j=0

(−1)j s(k−l−j)(M) s
[m|n]j

(M),

where in passing to the second line we apply the bilinear relations (3.2) and shift the summation
index j → j− l. The last sum in the second line can be calculated with the use of relation (3.20)
(take there r = 0 and substitute k → k − l). The result is

dk(M)d0(M) =

min{k,n}
∑

l=max{0,k−n}

qk−2ls
[m|n]l

(M) s
[m|n](k−l)

(M). (3.28)

The parameterization formula (3.26) follows immediately from the relations (3.6) and (3.28). .

4 Spectral parameterization of the characteristic subalgebra

In this section we complete the parameterization of the characteristic subalgebra in terms of the
eigenvalues of quantum supermatrix M . To this end, in the subsection 4.1 we derive parametric
expressions for the generators s(1k)(M) = s[k|1](M) and s(k)(M) = s[1|k](M) and prove that
the characteristic subalgebra is parameterized by the supersymmetric polynomials. This, in
principle, solves the parameterization problem.

In the last subsection 4.2 we derive parameterization formula (4.12) for the Schur function
s
[m|n]

(M). The latter result allows translating the condition of invertibility of s [m|n](M) into

conditions on the spectral variables {µi}1≤i≤m and {νj}1≤j≤n. We shall prove formula (4.12)
using yet another series of bilinear relations in the ring Λ of symmetric functions (see lemma 12).
Note that relation (4.12) is a particular case of the factorization formula known in the theory of
the supersymmetric polynomials [BR, PrT].
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4.1 Parameterization of the single column and the single row Schur functions

Proposition 8 Let M(R,F ) be the GL(m|n) type QM algebra satisfying the conditions i)–v)
(see introduction). Then, the parameterization map (3.5), (3.6) assigns the following expressions
to the generators {s[k|1](M)}k≥0 and {s[1|k](M)}k≥0 of the characteristic subalgebra Char(R,F )

s[k|1](M) 7→ s[k|1](µ, ν) =
k∑

r=0

er(q
−1µ)hk−r(−qν) , (4.1)

s[1|k](M) 7→ s[1|k](µ, ν) =
k∑

r=0

er(−qν)hk−r(q
−1µ) . (4.2)

Here er(q
−1µ) :=

∑

1≤i1<...<ir≤m

q−rµi1µi2 . . . µir and hr(−qν) :=
∑

1≤i1≤...≤ir≤n

(−q)rνi1νi2 . . . νir

are the elementary symmetric and complete symmetric polynomials in m and n variables, re-
spectively ([Mac], section 1.2).

Proof. We apply induction on k. By the Littlewood-Richardson rule (2.2)

s
[m|n]

(M) s(1)(M) = s
[m|n]1

(M) + s
[m|n]1

(M).

Dividing both sides of this equality by s
[m|n]

(M) and using relations (3.5), (3.6) we get the

parameterization formula for s(1)(M)

s(1)(µ, ν) = s[1|1](µ, ν) = e1(q
−1µ) + e1(−qν) ,

which can be equivalently written as

s[1|1](µ, ν) = e1(q
−1µ) + h1(−qν) , or as s[1|1](µ, ν) = e1(−qν) + h1(q

−1µ) .

These formulae are nothing but the eqs. (4.1) and (4.2) in case k = 1.
Now, assuming the relations (4.1) and (4.2) are valid for all values of the index 1 ≤ k < p

we shall prove them for k = p. For definiteness, we check the eq.(4.2). The eq.(4.2) is worked
out similarly.

Let us write down the image of the relation (3.20) in the characteristic subalgebra, the case
r = 0, k = p :

min{p,m}
∑

i=0

(−1)is(p−i)(M) s[m|n]i(M) = θ(n − p) s[m|n]p(M) . (4.3)

Here θ(i) := 0 if i < 0, and θ(i) := 1 otherwise. Substituting the parametric expressions (3.5)
and (3.6) for s[m|n]i(M)/s[m|n](M) and s[m|n]p(M)/s[m|n](M) into (4.3) we find

s[1|p](µ, ν) = ep(−qν) −
p
∑

i=1

(−1)is[1|p−i](µ, ν) ei(q
−1µ). (4.4)

Now, using the induction assumption we substitute expressions (4.2) for the elements
s[1|p−i](µ, ν), 1 ≤ i ≤ p, into (4.4) and calculate

s[1|p](µ, ν) = ep(−qν) −
p−1
∑

j=0

ej(−qν)
p−j
∑

i=1

(

(−1)ihp−j−i(q
−1µ) ei(q

−1µ)
)

= ep(−qν) +
p−1
∑

j=0

ej(−qν)hp−j(q
−1µ) =

p
∑

j=0

ej(−qν)hp−j(q
−1µ) , (4.5)
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where in passing to the second line we used the Wronski relations (3.13) for the substitution

p−j
∑

i=1

(−1)ihp−j−i(q
−1µ) ei(q

−1µ) = −hp−j(q
−1µ) .

Calculation (4.5) completes the inductive proof of the eq.(4.2).

Let us recall the definition of the supersymmetric polynomials (see, e.g., [Stem]).

Definition 9 Let x = {xi}1≤i≤m and y = {yj}1≤j≤n be two sets of independent commutative
variables. A polynomial p ∈ C[x, y] is said to be supersymmetric if

a) p is invariant under permutations of x1, . . . , xm;

b) p is invariant under permutations of y1, . . . , yn;

c) upon substituting x1 = y1 = t in p, the resulting polynomial does not depend on t.

An algebra of the supersymmetric polynomials is further denoted as T [x, y].

Obviously, the polynomials s[k|1](µ, ν) and s[1|k](µ, ν) given by eqs.(4.1), (4.2) satisfy the
conditions a) and b) of the above definition with respect to variables xi = q−1µi and yj = −qνj.
Validity of the property c) for them results from the following statement.

Lemma 10 Denote {µ′} := {µ} \ {µ1} = {µi}2≤i≤m , {ν ′} := {ν} \ {ν1} = {νi}2≤j≤n. Then
the polynomials s[1|k](µ, ν) and s[k|1](µ, ν) satisfy expansions

s[1|k](µ, ν) = s[1|k](µ
′, ν ′) + (q−1µ1 − qν1)

k−1∑

r=0

(

q−1µ1

)k−r−1
s[1|r](µ

′, ν ′) , (4.6)

s[k|1](µ, ν) = s[k|1](µ
′, ν ′) + (q−1µ1 − qν1)

k−1∑

r=0

(−qν1)
k−r−1 s[r|1](µ

′, ν ′). (4.7)

Proof. For the elementary and complete symmetric functions one has

ek(µ) = ek(µ
′) + µ1 ek−1(µ

′) , hk(µ) =
k∑

r=0

(µ1)
r hk−r(µ

′) .

Substituting these formulae into eqs.(4.1) and (4.2) it is easy to derive formulae (4.6), (4.7).

We have checked that the polynomials s[k|1](µ, ν) and s[1|k](µ, ν) are supersymmetric. More-
over, as was proved in [PrT] (see theorem (3.1) and proposition (2.3) there) the algebra of su-
persymmetric polynomials T [q−1µ,−qν] can be generated by any one of the sets {s[1|k](µ, ν)}k≥0

or {s[k|1](µ, ν)}k≥0. Therefore, as a direct consequence of the proposition 8 we get

Corollary 11 In the conditions of the proposition 8 an image of the characteristic subalge-
bra Char(R,F ) under the parameterization map (3.5), (3.6) is the algebra T [q−1µ,−qν] of the
supersymmetric polynomials in the variables {q−1µi}1≤i≤m and {−qνj}1≤j≤n.
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4.2 Parameterization of the Schur function s[m|n](M)

In a derivation of the parameterization formula for s[m|n](M) we will use A. Kirillov’s bilinear
relations on the Schur functions (see [Kir, KR, Kl])

s[m|n] s[m|n] = s[m+1|n] s[m−1|n] + s[m|n+1] s[m|n−1] , ∀ m,n = 1, 2, . . . . (4.8)

To keep our presentation self-contained let us briefly describe how one can prove them using the
Plücker relations and the Jacobi-Trudi formulae. Actually, one can derive a more extensive set
of relations.

Lemma 12 For any integers a, b, m, n : 1 ≤ a ≤ m, 1 ≤ b ≤ n, the equalities

s[a|b] s[m|n] =
a∑

k=max{1,a+b−n}

(−1)a−ks[m|n]a+b−k
s[a−1|b−1]k−1

+
b∑

k=max{1,a+b−m}

(−1)b−ks[m|n]a+b−k s[a−1|b−1]k−1
(4.9)

are satisfied in the ring of symmetric functions Λ.
Formulae (4.8) correspond to the choice a = m, b = n in eqs.(4.9).

Proof. Applying the Jacobi-Trudi relation (2.26) and using elementary properties of determi-
nants we can write down determinantal presentations for the Schur functions s [m|n] and s[a|b]

s[m|n] =

[

hn∗ hn−1∗ . . . hn−m+1∗ δm+1∗

1 2 . . . m m + 1

]

, (4.10)

s[a|b] =

[

δ1∗ δ2∗ . . . δm+1−a∗ hb−m+a−1∗ . . . hb−m+1∗ hb−m∗

1 2 . . . m + 1 − a m + 2 − a . . . m m + 1

]

. (4.11)

Here we use the matrix notation introduced in (2.23) and the symbols hi∗ and δi∗ denote the
following matrix rows

hi∗ := (hi, hi+1, hi+2, . . .) , δi∗ := (0, . . . , 0, 1
↓i-th place

, 0, . . .) .

Relations (4.9) result from an application of the Plücker relations (2.24) for the set of data
{k = 1, r1 = m + 1} to the product of determinants (4.10) and (4.11).

Now we are ready to prove the main result of this subsection.

Proposition 13 Let M(R,F ) be the GL(m|n) type QM algebra satisfying the conditions i)–v)
(see introduction). Then, the image of the Schur function s

[m|n]
(M) under the parameterization

map (3.5), (3.6) is given by formula

s
[m|n]

(M) 7→ s[m|n](µ, ν) =
m∏

i=1

n∏

j=1

(

q−1µi − qνj

)

. (4.12)

Therefore, the invertibility of the Schur function s[m|n](M) implies invertibility of all factors
(
q−1µi − qνj

)
in the product (4.12) for 1 ≤ i ≤ m and 1 ≤ j ≤ n.
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Proof. Let us first multiply the image of the relation (4.8) in the characteristic subalge-
bra Char(R,F ) by (s[m|n](M))−1 and then apply the parameterization map. By virtue of the
relations (3.5), (3.6) the resulting formula reads

s
[m|n]

(µ, ν) = en(−qν) s
[m−1|n]

(µ, ν) + em(q−1µ) s
[m|n−1]

(µ, ν). (4.13)

Noticing that

em(q−1µ)|µi=0 = 0 , ∀i = 1, . . . ,m, en(−qν)|νj=0 = 0 , ∀j = 1, . . . , n,

we obtain for the supersymmetric polynomial s[m|n](µ, ν)

s
[m|n]

(µ, ν)|q−1µi=qνj
= s[m|n](µ, ν)|µi=νj=0 = 0 , ∀i, j : 1 ≤ i ≤ m, 1 ≤ j ≤ n. (4.14)

As immediately follows from the Jacobi-Trudi relation (2.26), the Schur function s
[m|n]

(µ, ν) is

a homogeneous polynomial in the variables {q−1µi}1≤i≤m and {qνj}1≤j≤n of the order (m + n).
Together with eq.(4.14) this implies

s
[m|n]

(µ, ν) = α
m∏

i=1

n∏

j=1

(

q−1µi − qνj

)

, (4.15)

where α is a numeric factor. To define α, observe the following consequence of (4.2)

s(k)(µ, ν)|µ1=...=µm=0 = ek(−qν).

Therefore

s
[m|n]

(µ, ν)|µ1=...=µm=0
= det

(

en−i+j(−qν)
)m

i,j=1
=
(

en(−qν)
)m

=
( n∏

i=1

(−qνi)
)m

.

Comparing this result with eq.(4.15) at the point µ1 = . . . = µm = 0, we find α = 1 thereby
ending the proof.

Appendix

Here we derive the q-combinatorial relations which are used in the proof of theorem 2.
For an arbitrary set of pairwise different nonvanishing integers bi, i = 1, 2, . . . , k, we shall

prove following relations

qk −
k∏

i=1

(bi + 1)q
(bi)q

= −
k∑

j=1

q−bj

(bj)q

k∏

i=1
i6=j

(bi − bj + 1)q
(bi − bj)q

, (A.1)

kq =
k∑

j=1

k∏

i=1
i6=j

(bi − bj + 1)q
(bi − bj)q

, (A.2)

k∏

i=1

(bi + 1)q
(bi)q

=
k∑

j=1

(bj + k)q
kq(bj)q

k∏

i=1
i6=j

(bi − bj + 1)q
(bi − bj)q

(A.3)
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A proof is by induction on k. Checking the case k = 1 in relations (A.1)–(A.3) is an easy exercise.
Now, assuming relations (A.1) are valid for all k ≤ m let us transform the expression in the left
hand side of eq.(A.1) for k = m + 1

qm+1 −
m+1∏

i=1

(bi + 1)q
(bi)q

=

(

qm+1 − qm (bm+1 + 1)q
(bm+1)q

)

+

(

qm −
m∏

i=1

(bi + 1)q
(bi)q

)

(bm+1 + 1)q
(bm+1)q

= −
qm−bm+1

(bm+1)q
−







m∑

j=1

q−bj

(bj)q

m∏

i=1
i6=j

(bi − bj + 1)q
(bi − bj)q







(bm+1 + 1)q
(bm+1)q

. (A.4)

Here we used formula (A.1), case k = m, for the transformation of the last term in the first line.
For further transformation we use the formula

(bm+1 + 1)q
(bm+1)q

=
(bm+1 − b + 1)q

(bm+1 − b)q
−

(b)q
(bm+1)q(b − bm+1)q

. (A.5)

Substituting bj, j = 1, 2, . . . m, for b in eq.(A.5) we continue the calculation

(A.4) = −
m∑

j=1

q−bj

(bj)q

m+1∏

i=1
i6=j

(bi − bj + 1)q
(bi − bj)q

−
q−bm+1

(bm+1)q







qm +
m∑

j=1

q−bj+bm+1

(bj − bm+1)q

m∏

i=1
i6=j

(bi − bj + 1)q
(bi − bj)q







,

and then, applying relation (A.1) with the shifted set of integers bi → (bi−bm+1), i = 1, 2, . . . ,m,
for the transformation of the last term we obtain

= −
m∑

j=1

q−bj

(bj)q

m+1∏

i=1
i6=j

(bi − bj + 1)q
(bi − bj)q

−
q−bm+1

(bm+1)q

(
m∏

i=1

(bi − bm+1 + 1)q
(bi − bm+1)q

)

= −
m+1∑

j=1

q−bj

(bj)q

m+1∏

i=1
i6=j

(bi − bj + 1)q
(bi − bj)q

which proves formula (A.1) in the case k = m + 1.
In order to prove eqs.(A.2), (A.3) we rewrite eq.(A.1), inverting the parameter q → q−1

q−k −
k∏

i=1

(bi + 1)q
(bi)q

= −
k∑

j=1

qbj

(bj)q

k∏

i=1
i6=j

(bi − bj + 1)q
(bi − bj)q

, (A.6)

and form a linear combination ((A.1) · qx − (A.6) · q−x) /(q − q−1), where x takes on integer
values. The resulting equality reads

(k + x)q − (x)q

k∏

i=1

(bi + 1)q
(bi)q

=
k∑

j=1

(bj − x)q
(bj)q

k∏

i=1
i6=j

(bi − bj + 1)q
(bi − bj)q

. (A.7)

The relations (A.2) and (A.3) are particular cases of the relation (A.7) for x = 0 and x = −k,
respectively.
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