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Abstract. We express the signature modulo 4 of a closed, oriented, 4k-
dimensional PL manifold as a linear combination of its Euler characteristic
and the new absolute torsion invariant defined in Korzeniewski [11]. Let
F → E → B be a PL fibre bundle, where F , E and B are closed, connected,
and compatibly oriented PL manifolds. We give a formula for the absolute
torsion of the total space E in terms of the absolute torsion of the base and
fibre, and then combine these two results to prove that the signature of E

is congruent modulo 4 to the product of the signatures of F and B.

The signature sign(M) ∈ Z of a closed, oriented n-manifold Mn is the in-
dex of its cup product form when n ≡ 0 mod 4, and zero otherwise. For an
orientable differentiable fibre bundle, Chern, Hirzebruch and Serre [4] proved
that sign(E) = sign(F ) · sign(B) provided that the fundamental group π1(B)
acts trivially on the real cohomology H∗(F ; R) of the fibre. In general, the sig-
nature is not multiplicative for differentiable fibre bundles: the first examples
were constructed by Kodaira [10], Atiyah [2], and Hirzebruch [7]. These ex-
amples occur in the lowest possible dimension where dimB = dimF = 2. The
total space E of the bundle in these examples has dimension 4 and non-zero
signature, but sign(B) = sign(F ) = 0 by convention. Surface bundles over
surfaces were studied in detail by W. Meyer [16] and H. Endo [5]. For such
bundles, the signature of the total space was shown to be divisible by 4.

The non-multiplicative behaviour of the signature in fibre bundles is ex-
plained by the characteristic class formula for sign(E) due to Atiyah [2], which
contains a contribution from the action of π1(B) on the cohomology of the
fibre. On the other hand, W. Neumann [19] showed that the signature is mul-
tiplicative in many cases where the structural group of the bundle is discrete,
and gave a Witt group interpretation of the obstruction to multiplicativity
under this assumption.

Stephan Klaus and Peter Teichner [9] have conjectured that the signature
is multiplicative modulo 8, provided that π1(B) acts trivially on the mod 2
cohomology H∗(F ;Z/2) of the fibre. This suggests studying the conditions
under which the signature is multiplicative modulo other powers of 2. The
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first case is easy since sign(E) ≡ χ(E) mod 2, and the Euler characteristic
χ(E) = χ(F ) · χ(B) is multiplicative. The following is our main result.

Theorem A. Let F
q
−→ E

p
−→ B be a PL fibre bundle of closed, connected,

compatibly oriented PL manifolds. Then

sign(E) ≡ sign(F ) · sign(B) mod 4 .

We will use the new absolute torsion invariant τNEW (E) ∈ K1(Z[π1(E)])
defined and investigated in [11]. The new invariant is defined more generally,
and has better properties than the “round torsion” invariant introduced in [24].
We show in Theorem 3.3 that the value of sign(E) mod 4 can be expressed in
terms of τNEW (E) and χ(E). Our main result follows from this fact, and a
general formula for τNEW (E) in terms of τNEW (F ) and τNEW (B).

Theorem B. Let F
q
−→ E

p
−→ B be a PL fibre bundle of closed, connected,

compatibly oriented PL manifolds. Then, if n = dimE,

τNEW (E) = p!(τNEW (B)) + χ(B)q∗(τ
NEW (F )) ∈ Ĥn(Z/2;K1(Zπ1(E))) .

In this statement the maps p! and q∗ are the transfer and push-forward maps
associated to the fibre bundle (see [12], [13], and [14] for the surgery transfer).

In Section 1 we describe some of the results of [11], including the definition
and main properties of the absolute torsion invariant. In Section 2 we use the
new invariant to correct the definition of the round simple symmetric L-groups
of [6], so they fit in the long exact sequence

· · · → Ln
rs(R) −→ Ln

rh(R)
τNEW

−−−→ Ĥn(Z/2;K1(R)) −→ Ln−1
rs (R) → . . .

Section 3 establishes the relationship between the signature mod 4 and the
new torsion invariant of a 4k-dimensional Poincaré space (see Theorem 3.3).
Sections 4 and 5 study the set S•(X) of pointed torsion structures (PTS) on
manifolds. In Theorem 5.2 we give a formula expressing the absolute torsion
invariant for a closed manifold X in terms of a pairing

Φ: S•(X) × S•(X) → K1(Z[π1(X, x0)])

After this preparation, we turn to the geometric applications of absolute torsion
for fibre bundles. In Section 6 we define the fibre transport and transfer map
p! associated to a fibre bundle, and establish some useful properties. Sections 7
and 8 deal with pointed torsion structures on fibre bundles, and the Φ-pairing
for the total space E. Section 9 uses the results of Section 8 to prove Theorem
B, and then Section 10 uses Theorem B to prove Theorem A. Section 11 is a
brief discussion of fibrations of Poincaré spaces.

The last part of the paper (Section 12) contains the algebra needed to de-
scribe the absolute torsion of signed filtered chain complexes, such as the chain
complexes of the total spaces of fibre bundles. This may be of independent
interest, and this part can be read independently of the rest of the paper. We
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give a purely algebraic treatment of the absolute torsion of filtered chain com-
plexes: the main result is the Invariance Theorem 12.14 identifying the torsion
of a contractible filtered chain complex with the torsion of the contractible
chain complex (in the derived category) of filtration quotients.
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We are indebted to Stephan Klaus and Peter Teichner for informing us
about their results, and pointing out this related question to the first author
in discussions at Oberwolfach in July 2001.

1. Signed K-theory

In this section we recall the algebraic K-groups K0(R), K1(R) of a ring R,
and the algebraic theory of torsion of Ranicki [24], [25], [26] and Korzeniewski
[11]. The absolute torsion invariant τNEW (f) ∈ K1(R) of [11] is based on
the definition of “round torsion” given in [26, 7.20(ii)], but the sign correction
terms are different.

The class group K0(A) of an additive category A is the abelian group with
one generator [M ] for each object M in A, and relations

(i) [M ] = [M ′] if M is isomorphic to M ′,
(ii) [M ⊕N ] = [M ] + [N ] for objects M,N in A.

The isomorphism torsion group K iso
1 (A) is the abelian group with one gen-

erator τ iso(f) for each isomorphism f : M → N in A, and relations

(i) τ iso(gf) = τ iso(f) + τ iso(g) for isomorphisms f : M → N , g : N → P .

(ii) τ iso(

(
f e
0 f ′

)
) = τ iso(f) + τ iso(f ′) for isomorphisms f : M → N ,

f ′ : M ′ → N ′ and any morphism e : M ′ → N .
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The class group K0(R) and the isomorphism torsion group K iso
1 (R) of a ring

R are the class and torsion groups of the additive category A(R) of based f.g.
(= finitely generated) free R-modules. To obtain values in K1(R), we compose
with the split surjection K iso

1 (R) → K1(R) given by [24, Prop. 5.1], and let
τ iso(f) 7→ τ(f) ∈ K1(R). In particular, there are defined isomorphisms

K0(Z)
∼= // Z ; [M ] 7→ rankZM ,

K1(Z)
∼= // Z/2 ; [M, f ] 7→ τ(det(f)) .

The reduced class group K̃0(R) and the reduced torsion group K̃1(R) are defined
by

K̃i(R) = coker(Ki(Z) → Ki(R)) (i = 0, 1) .

We shall assume that R is such that the rank of f.g. free R-modules is well-

defined, so that K0(R) = K0(Z) ⊕ K̃0(R).
We shall consider only finite chain complexes over R, meaning finite dimen-

sional, positive chain complexes of f.g. free R-modules. The Euler character-
istic of a finite R-module chain complex C is the chain homotopy invariant

χ(C) =

∞∑

r=0

(−1)r rankR Cr ∈ Z .

Our assumptions on C mean that Cr = 0 if r < 0 or r > N for some integer
N , so this sum is defined. A finite chain complex C is round if χ(C) = 0 ∈ Z.

The torsion τ(C) ∈ K1(R) of a contractible finite based R-module chain
complex

C : 0 → · · · → Cr+1
d // Cr

d // Cr−1 → · · · → 0

was originally defined by Whitehead [29] to be

τ(C) = τ(d+ Γ) ∈ K1(R) ,

with the isomorphism

d+ Γ: Codd =
∑

r odd

Cr −−→ Ceven =
∑

r even

Cr

defined using any contraction Γ: 1 ' 0: C → C. The value of τ(C) is inde-
pendent of the choice of Γ.

The torsion of a chain equivalence f : C → D of finite based R-module chain
complexes can be defined by

τ(f) = τ(C(f)) ∈ K1(R)

with C(f) the algebraic mapping cone

dC(f) =

(
dD (−)r−1f
0 dC

)
: C(f)r = Dr ⊕ Cr−1 → C(f)r−1 = Dr−1 ⊕ Cr−2 .
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However, as noted in [24], this definition of torsion only has good sum and
composition properties modulo the sign subgroup

im(K1(Z) → K1(R)) = {τ(±1)} ⊆ K1(R) .

The new absolute torsion uses the notion of a signed chain complex [11, Def.
5]. This is a pair (C, ηC), where C is as above and ηC ∈ Im(K1(Z) → K1(R)).
The image of K1(Z) = Z/2 in K1(R) is given by a 7→ a ·τ(−1), but the symbol

τ(−1) := τ(−1: R→ R) ∈ K1(R)

will usually be suppressed to simplify the notation.
If (C, ηC) is a signed chain complex with C contractible, then its absolute

torsion is defined as

τNEW (C, ηC) = τ(C) + ηC .

If (C, ηC) is a signed complex, then the suspension SC of C, where (SC)r =
Cr−1, has the sign ηSC = −ηC . The sum (C⊕D, ηC⊕D) of two signed complexes
involves some more sign terms from K1(Z) = Z/2. Let

ε(M,N) := rankR(M) · rankR(N) mod 2

for any free R-modules M and N , and define [24, p. 213]:

β(C,D) =
∑

i>j

(ε(C2i, D2j) − ε(C2i+1, D2j+1)) ∈ Im(K1(Z) → K1(R)) .

This is just the difference of the torsions of the permutation isomorphisms
(C ⊕D)even → Ceven ⊕Deven and (C ⊕D)odd → Codd ⊕Dodd. We define

ηC⊕D = ηC + ηD − β(C,D) + rank(Codd) · χ(D) .

From now on, we will usually denote a signed chain complex (C, ηC) just by
C, even though all the formulas will involve these signs. It turns out that the
absolute torsion of a Poincaré complex C is independent of the choice of sign
ηC , and this justifies our abbreviated notation (see [11, Prop. 26.6]).

The absolute torsion of a chain equivalence f : C → D of finite based signed
complexes is defined to be

τNEW (f) = τNEW (C(f)) ∈ K1(R) ,

with ηC(f) = ηD⊕SC . The extra sign terms needed (in comparison with the
invariant of [24]) can be seen from the formula

τNEW (f) = τ(C(f)) − β(D,SC) + rankR(Dodd) · χ(SC) + ηD − ηC ∈ K1(R)

given in [11, Lemma 12].
For chain equivalences of signed complexes, the absolute torsion invariant is

a chain homotopy invariant, which is additive under compositions and direct
sums (by an appropriate modification of the proof of [24, Prop. 4.2, 4.4, 4.5]).
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Proposition 1.1 ([11, Prop. 13]). If f : C → D and g : D → E are chain
equivalences of finite based signed chain complexes, then

τNEW (g ◦ f) = τNEW (f) + τNEW (g) ∈ K1(R) .

If f : C → D and f ′ : C ′ → D′ are chain equivalences of finite based signed
chain complexes, then

τNEW (f ⊕ f ′) = τNEW (f) + τNEW (f ′) ∈ K1(R) .

The formula for the absolute torsion is a modification of the definition in
[24, p. 223, 226], which gave an invariant with values in K iso

1 (A) for chain
complexes over an additive category A. In that setting, the signs ηC are in the
image of the skew-symmetric pairing

ε : K0(A) ⊗K0(A) → K iso
1 (A)

defined in [24, Prop. 2.2]: for any two objects M , N of A,

ε([M ], [N ]) = τ iso(M ⊕N → N ⊕M) ∈ K iso
1 (A)

is the torsion of the interchange map. See [11, Lemma 7] for the properties of
this pairing.

This extra generality will be useful in Section 12 where we discuss the ab-
solute torsion of filtered chain complexes. A finite chain complex over A is an
object in the derived category D(A), whose morphisms are the chain homotopy
classes of chain maps.

Definition 1.2. The signed derived category SD(A) of an additive category
A is the additive category with objects signed complexes (C, ηC) in A, and
morphisms the chain homotopy classes of chain maps. An isomorphism in
SD(A) is a chain homotopy class of chain equivalences.

If f : C → D is a morphism in SD(A), then the mapping cone C(f) is an
object in SD(A) under our sign conventions. The absolute torsion gives an
invariant in τNEW (f) ∈ K iso

1 (SD(A)) for an isomorphism f : C → D in SD(A).
We refer to [11] for the definition and properties of the absolute torsion in this
setting, but we note that the map

i∗ : Kiso
1 (SD(A)) → K iso

1 (A)

defined by i∗τ
iso(f) = τNEW (f) is a split surjection. The map i∗ has the

naturality property

i∗ε(C,D) = ε(χ(C), χ(D)) ∈ K iso
1 (A)

for any objects (C, ηC), (D, ηD) in SD(A). We will also use the relation

i∗ε(C, SD) = −i∗ε(C,D) ∈ K iso
1 (A)

and the formula

ηC(f) = ηD⊕SC = ηD − ηC − β(D,SC) + ε(Dodd, χ(SC)) ∈ K iso
1 (SD(A))

for the mapping cone sign in our sign calculations (see Section 12).
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2. Round L-theory

In this section we recall the round L-theory of Hambleton, Ranicki and
Taylor [6]. Note that the round torsion is not a round cobordism invariant,
contrary to the assertion in [26, p. 190], but the new absolute torsion of [11]
does have this important property. Moreover, all the results claimed in [26,
7.22(ii)] and [6, p. 135] do hold after replacing the round torsion with the new
absolute torsion invariant.

A finite, oriented Poincaré duality space X of dimension n, with universal

covering X̃, has an associated symmetric chain complex (C, ϕ), as defined

in [22]. Here C := C(X̃) is a n-dimensional finite chain complex over R =
Z[π1(X)] and ϕ0 : Cn−∗ → C∗ is a chain equivalence. The definition of this
symmetric structure ϕ uses the standard involution g 7→ g−1 on the group
ring. More generally, for any ring R with involution α, and unit ε = ±1,
Ranicki [22] defines ε-symmetric structures on algebraic chain complexes and
the notion of a symmetric (algebraic) Poincaré complex. The cobordism group
of n-dimensional symmetric Poincaré is denoted Ln(R, ε) [22, §3]. The additive
inverse is defined to be −(C, ϕ) := (C,−ϕ). In the rest of the paper we will
assume that ε = +1, and denote these groups just by Ln(R).

If we restrict to round complexes in both objects and bordisms and n > 0,
we get the round symmetric L-groups Ln

r (R). The groups L0
r(R) is the Witt

group of formal differences (M,ψ)− (M ′, ψ′) of non-singular symmetric forms
over (R, α) with rankRM = rankRM

′ [6, Prop. 2.1]. We can compare the
round L-groups to the ordinary ones by a long exact sequence. The anti-
automorphism on R induces a Z/2-action on K0(R) which is the identity on
the subgroup K0(Z) = Z.

Proposition 2.1 ([6, Prop. 3.2]). For any ring with involution (R, α), there
is a long exact sequence

· · · → Ĥn+1(Z/2;K0(Z)) → Ln
r (R) → Ln(R) → Ĥn(Z/2;K0(Z)) → . . .

where the map Ln(R) → Ĥn(Z/2;K0(Z)) is defined by (C, ϕ) 7→ χ(C).

We will also need to compare these L-groups to the cobordism groups Ln
ev(R)

of n-dimensional symmetric Poincaré complexes (C, ϕ) with even Euler char-
acteristic χ(C) ≡ 0 mod 2 for objects and bordisms:

Ĥn+1(Z/2;Z/2)

((QQQQQQQ

((

Ĥn(Z/2;Z)

((QQQQQQ

''

Ln−1
r (R)

Ln
ev(R)

((QQQQQQQQ

66mmmmmmm

Ĥn(Z/2;Z)

((QQQQQQ

66mmmmmmm

Ln
r (R)

66mmmmmmmm

77
Ln(R)

66mmmmmmmm

66
Ĥn(Z/2;Z/2)
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The map Ln
ev(R) → Ĥn(Z/2;Z) is given by (C, ϕ) 7→ χ(C)/2.

In order to define the torsion of a symmetric Poincaré chain complex over
a ring with involution (R, α), we need to work with signed chain complexes,
in which each free chain module Cr has a preferred basis, along with a single
choice of sign ηC . We denote by Ln

rh(R) the corresponding cobordism group
of round, n-dimensional, finite, signed symmetric Poincaré chain complexes of
finitely generated based free R-modules. By forgetting the preferred bases and
signs we can identify Ln

rh(R) = Ln
r (R). Similarly, we can identify the based

and unbased versions of the even L-groups Ln
ev h(R) = Ln

ev(R).
Now let (C, ϕ) denote an n-dimensional signed symmetric Poincaré chain

complex, of finitely generated based free R-modules, over a ring with involution
(R, α). The absolute torsion

τNEW (C, ϕ) := τNEW (ϕ0 : Cn−∗ → C∗) ∈ K1(R)

is now defined, as the absolute torsion of the chain equivalence ϕ0 with respect
to the given bases on C∗ and the dual bases on Cn−∗. Recall that the differential
for Cn−∗ has the sign convention

dCn−∗ = (−1)rd∗C : Cn−r → Cn−r+1 .

The dual signed chain complex (Cn−∗, ηCn−∗) is given the sign

(2.2) ηCn−∗ = ηC + β(C,C) + αn(C) ∈ Im(K1(Z) → K1(R))

where

αn(C) =
∑

r≡n+2,n+3(mod 4)

rankR(Cr) ∈ Im(K1(Z) → K1(R)) .

With this convention, the absolute torsion τNEW (C, ϕ) is independent of the
initial choice of sign ηC (see [11, Prop. 26]). We say that (C, ϕ) is simple if
τNEW (C, ϕ) = 0.

Lemma 2.3 ([11, Lemma 10]). If ϕ0 : Cn−∗ → C is an isomorphism, then

τNEW (C, ϕ) =
n∑

r=0

(−1)rτ(ϕ0 : Cn−r → Cr) + β(C,C) + αn(C) ∈ K1(R) .

Proof. The absolute torsion of a chain isomorphism f : C → D of signed chain
complexes is just

τNEW (f) =
n∑

r=0

(−1)rτ(fr : Cr → Dr) − ηC + ηD

according to [11, Def. 6]. The sign terms for ϕ0 appear above. �
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The absolute torsion has the symmetry property [11, Prop. 26.2] (compare
[26, 7.20(ii)])

τNEW (C, ϕ)∗ = (−1)nτNEW (C, ϕ) +
n(n+ 1)

2
χ(C)

where ∗ : K1(R) → K1(R) denotes the involution on K-theory induced by
“α-conjugate-transpose” of matrices. The sign term vanishes over rings R for
which skew-hermitian forms necessarily have even rank (such as an integral
group ring R = Z[π]). Also

τNEW (C,−ϕ) = τNEW (C, ϕ) + χ(C)

(see [11, Prop. 26.5]). Notice that the extra sign terms in both formulas
vanish for round or even symmetric complexes. Moreover, the absolute tor-
sion is additive under direct sums of symmetric n-complexes. It follows that

τNEW (C, ϕ) defines an additive map into Ĥn(Z/2;K1(R)) for round or even
symmetric complexes.

For our applications, we will need the cobordism groups of simple round or
even Poincaré complexes, and their relation to the L-groups already mentioned.
However, to give a well-defined homomorphism

Ln
ev(R) → Ĥn(Z/2;K1(R))

we need the invariant associated to a null-bordant symmetric complex to be
trivial.

Example 2.4. Let R = Z with trivial involution. A zero-dimensional sym-
metric Poincaré complex over Z is just unimodular, symmetric bilinear form
(L, h) on a finitely-generated free abelian group. In this case,

τNEW (L, h) = τ(det h) ∈ Z/2

by Lemma 2.3. To compare this invariant to the determinant, we map Z/2 →
Z/4 by a 7→ 2a mod4. Then 2τ(det h) ≡ det h− 1 mod 4 and

2τNEW (L, h) ≡ det h− 1 mod 4 .

Note that for any form (L, h) of even rank, the absolute torsion is just τ(det h).
In particular, the absolute torsion of the hyperbolic plane H is non-zero, so H
represents a non-trivial element of L0

ev(Z).

Lemma 2.5 ([11, Prop. 26.4]). If (C, ϕ) is homotopy equivalent to the bound-
ary of an (n+ 1)-dimensional symmetric signed complex (D,Φ), then

τNEW (C, ϕ) = (−1)n+1τNEW (C → ∂D)∗−τNEW (C → ∂D)+
(n+ 1)(n+ 2)

2
χ(D) .

Once again, the extra sign term vanishes for round or even complexes.

Corollary 2.6. The absolute torsion τNEW (C, ϕ) induces a well-defined ho-

momorphism Ln
ev(R) → Ĥn(Z/2;K1(R)).
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The cobordism group of simple round (or even) symmetric Poincaré com-
plexes is denoted Ln

rs(R) or Ln
ev s(R), following [6, p. 135].

Proposition 2.7. There is a commutative braid of exact sequences

Ĥn+1(Z/2;Z)

((RRRRRRR

''

Ln
rh(R)

((RRRRRRRR

((

Ĥn(Z/2;K1(R))

Ln
rs(R)

((RRRRRRRR

66llllllll

Ln
ev h(R)

((RRRRRRR

66lllllll

Ĥn+1(Z/2;K1(R))

66lllllll

77
Ln

ev s(R)

66lllllll

66
Ĥn(Z/2;Z)

where the maps Ln
rh(R) → Ĥn(Z/2;K1(R)) and Ln

ev h(R) → Ĥn(Z/2;K1(R))

are induced by the absolute torsion (C, ϕ) 7→ τNEW (ϕ0) ∈ K1(R). The maps

to Ĥn(Z/2;Z) are given by (C, ϕ) 7→ χ(C)/2.

Lemma 2.8. Let R be a ring with involution, and (C, ϕ) be an even based sym-
metric Poincaré complex over R, with χ(C) ≡ 0 mod 4 and {τNEW (C, ϕ)} =

0 ∈ Ĥn(Z/2;K1(R)). Then (C, ϕ) is even Poincaré bordant to a round simple
based symmetric Poincaré complex (C ′, ϕ′).

Proof. This follows from the comparison braid given in Proposition 2.7 relating
Ln

rh(R) and Ln
ev h(R). �

Example 2.9. For the special case R = Z and n = 0, we can substitute the
calculation L0

rh(Z) = 2Z from [6, 4.2]:

0

((QQQQQQQQQQQQ

&&
2Z

((QQQQQQQQQ

&&
Z/2

4Z

((QQQQQQQQQ

66mmmmmmmmmmmm
L0

ev h(Z)

((QQQQQQQQ

66mmmmmmmm

0

66mmmmmmmmmmmm

77
L0

ev s(Z)

66mmmmmm

88
Z/2

We obtain L0
rs(Z) = 4Z. Since the hyperbolic plane H represents a non-zero

element of L0
ev h(Z) with χ ≡ 2 mod 4 and det(H) = −1, we have L0

ev h(Z) =
2Z⊕Z/2, generated by 〈1〉 ⊥ 〈1〉 and H, and L0

ev s(Z) = 2Z generated by 〈1〉 ⊥
〈1〉. A diagram chase gives L2

ev h(Z) = Z/2 and the fact that {τNEW (C, ϕ)} =

0 ∈ Ĥ0(Z/2;K1(Z)) if dimC ≡ 2 mod 4.

We will need the following calculation in a later section.
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Lemma 2.10. Let C be a symmetric Poincaré complex over R = Z[Z/2].

The absolute torsion {τNEW (C, ϕ)} = 0 ∈ Ĥ0(Z/2;K1(Z[Z/2])) if dimC ≡
2 mod 4.

Proof. Since dimC ≡ 2 mod 4, C is an even symmetric Poincaré complex, so
τNEW (C, ϕ) defines an element of Ĥ0(Z/2;K1(R)). Let Z/2 = 〈T 〉 denote a
generator of the group of order two, and we have an inclusion Z[Z/2] ⊂ Z⊕Z
of rings given by T 7→ ±1. The induced map

Ĥ0(Z/2;K1(Z[Z/2])) → Ĥ0(Z/2;K1(Z ⊕ Z))

is injective, and the absolute torsion map L4k+2
ev h (Z[Z/2]) → Ĥ0(Z/2;K1(Z[Z/2]))

composed with this injection factors through L2
ev h(Z) → Ĥ0(Z/2;K1(Z)),

which we have seen is the zero map. �

3. Absolute torsion and signatures

Let X be a finite, connected CW -complex, and fix a base point x0 ∈ X.
We choose orientations and lifts to the universal covering X̃ for each cell in

X, together with a sign ηX . The cellular chain complex (C(X̃), ηX) is now a
finitely-generated, signed, based chain complex over R = Z[π1(X, x0)]. If X is
an oriented, finite, geometric Poincaré n-complex, then we define

τNEW (X) = τNEW (C(X̃), ϕ0) ∈ Ĥn(Z/2;K1(Z[π1(X, x0)]))

where ϕ0 is the duality map from the symmetric structure on C(X̃) defined by
Ranicki [22, p. 92]. The symmetric structure is a homotopy invariant of X.

Lemma 3.1. Let X be an oriented, finite, Poincaré complex of dimension n.

The absolute torsion τNEW (X) ∈ Ĥn(Z/2;K1(Z[π1(X)])) depends only on the
homotopy type of X. In particular, the absolute torsion is independent of the

choice of preferred base for C(X̃).

Proof. The absolute torsion τNEW (X) is independent of all the choices made
by [11, Prop. 26]. �

The symmetric signature ofX is the element σ∗(X) ∈ Ln(Z[π1(X, x0)]) given

by the bordism class of the symmetric structure (C(X̃), ϕ). If χ(X) ≡ 0 mod 2,
then we get an even symmetric signature σ∗

ev(X) ∈ Ln
ev(Z[π1(X)]). In this

case, τNEW (X) is a bordism invariant: it is the image of σ∗
ev(X) under the

homomorphism Ln
ev(R) → Ĥn(Z/2;K1(R)) from Corollary 2.6. Similarly, if

χ(X) = 0 the image of σ∗
r (X) ∈ Ln

r (Z[π1(X)]) is again the absolute torsion
τNEW (X).

Example 3.2. The manifold X = CP 2 # CP 2 # 2(S1 ×S3) has a round sym-

metric signature, whose absolute torsion invariant in Ĥ0(Z/2, K1(Z)) is non-
zero. Its symmetric signature represents a generator of L4

rh(Z) = 2Z.
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By composing with the augmentation map ε : Z[π1(X)] → Z, setting ε(g) =
1 for all g ∈ π1(X, x0), we get a symmetric signature σ∗(X) ∈ Ln(Z) for any
oriented, finite Poincaré complex of dimension n (e.g. any closed, oriented
n-manifold). We define the reduced absolute torsion, as the image

τ̄NEW (X) := ε∗(τ
NEW (X)) ∈ K1(Z)

of the absolute torsion. This invariant is computed from the chain complex of

X, instead of X̃. Our main result depends on a mod 4 relationship between
the ordinary signature of a manifold and the absolute torsion of its symmetric
signature over Z. This is an algebraic fact.

Theorem 3.3. Let (C, ϕ) be a finite, based, 4k-dimensional algebraic Poincaré
complex over Z. Then

sign(C) ≡ 2τNEW (C, ϕ) + (2k + 1)χ(C) mod 4 .

Proof. The first step is to show that the right-hand side is an algebraic cobor-
dism invariant for Poincaré complexes over Z. Suppose that (C ⊕ C ′ →
D, δϕ, ϕ⊕ ϕ′) is an algebraic cobordism. Since dimC = 4k, we have

τNEW (C, ϕ) + τNEW (C ′,−ϕ′) = (4k + 1)(2k + 1)χ(D) ∈ K1(Z)

by Lemma 2.5. However, χ(D) = 1
2
(χ(C) + χ(C ′)) ∈ Z and τNEW (C ′,−ϕ′) =

τNEW (C ′, ϕ′) + χ(C ′), so that

2τNEW (C, ϕ) + 2τNEW (C ′, ϕ′) ≡ (2k + 1)χ(C) + (2k − 1)χ(C ′) mod 4 .

Therefore

2τNEW (C, ϕ) + (2k + 1)χ(C) ≡ 2τNEW (C ′, ϕ′) + (2k + 1)χ(C ′) mod 4

as required (since 2χ(C) ≡ 2χ(C ′) mod 4). Next, we use the fact that every
4k-dimensional symmetric Poincaré complex over Z is algebraically cobordant
to a complex (C, ϕ) which is concentrated in dimension 2k (see [22, Prop. 4.5]).
In that case ϕ0 is an isomorphism, so

τNEW (C, ϕ) = τ(detϕ0) + β(C,C) + α4k(C)

by Lemma 2.3. But the β-term is zero in this case, and α4k(C) contributes
χ(C) when k is odd and zero otherwise. We may express this as α4k(C) =
kχ(C) ∈ K1(Z). Therefore

τNEW (C, ϕ) = τ(detϕ0) + kχ(C) ∈ K1(Z)

and the right-hand side becomes

2τNEW (C, ϕ)+ (2k+1)χ(C) ≡ 2τ(detϕ0)+χ(C) ≡ detϕ0 +χ(C)− 1 mod 4 .

But there is a classical formula

sign(φ) ≡ rank(φ) + det(φ) − 1 mod 4

relating the signature and the determinant mod 4 (see [8, Theorem 3.5]), for
any unimodular symmetric bilinear form φ over the integers. We can apply
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this to ϕ0, and note that χ(C) = rankϕ0, since C is concentrated in dimension
2k.

�

Corollary 3.4. If (C, ϕ) is a simple, round Poincaré complex over Z, the
signature sign(C) ≡ 0 mod 4.

We now consider the case where X is an even-dimensional manifold. Let π2

denote the subset of πab given by the images of squares from π = π1(X, x0).

Proposition 3.5. Let X be a closed, oriented PL manifold of even dimension.

Then τNEW (X) ∈ Im
(
Ĥ0(Z/2;K1(Z)) ⊕ Ĥ0(Z/2; π2) → Ĥ0(Z/2;K1(Z[π]))

)
.

Proof. Note that Ĥ0(Z/2; π2) = π2 ∩ {ḡ ∈ πab | ḡ2 = 1}. Suppose that
τNEW (X) = τ(±g) for some g ∈ π with image ḡ 6= 1 ∈ πab. Then the duality
property τNEW (X) = τNEW (X)∗ implies that ḡ2 = 1. Suppose that ḡ /∈ π2.
Then there is a projection j : π → Z/2 such that j(g) = T is the generator
of the quotient group Z/2. Let p : X ′ → X denote the 2-fold covering of X
induced by j. If dimX ≡ 2 mod 4, then

j∗{τ
NEW (X)} = {τ(±T )} ∈ Ĥ0(Z/2;K1(Z[Z/2]))

which is non-zero, contrary to Lemma 2.10.
If dimX = 4k, then the transfer p!(τNEW (X)) = τ(−1), since for finite

coverings the fibre bundle transfer is the same as the classical transfer in-
duced by restriction (see [12, p. 108]). However, by Theorem B it follows
that τNEW (X ′) = p!(τNEW (X)), so we have τ̄NEW (X ′) 6= 0 ∈ K1(Z). It fol-
lows that sign(X ′) ≡ 2 + 2χ(X) mod 4, from the relation χ(X ′) = 2χ(X) and
Theorem 3.3. The corresponding formula for X gives

sign(X) ≡ 2τ̄NEW (X) + (2k + 1)χ(X) mod 4

and by the Hirzebruch Signature Theorem we have

sign(X ′) = 2 sign(X) ≡ 2χ(X) mod 4

This is a contradiction, so the covering X ′ → X does not exist and ḡ ∈ π2. �

4. Absolute torsion structures on polyhedra

In this section we will define the notion of a (pointed) torsion structure
on a polyhedron. First we recall some standard definitions (following [3, §1])
A polyhedron is a topological space equipped with a maximal family of PL
related locally finite triangulations. A cell complex K is a collection of cells
PL embedded in a polyhedron P such that

(i) K is a locally finite covering of P ,
(ii) if β, γ ∈ K then ∂β and β ∩ γ are unions of cells of K,
(iii) if β, γ are distinct cells of K, then Int β ∩ Int γ = ∅.
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Let |K| denote the underlying polyhedron of a cell complex, and use β to
denote a cell in K or the subcomplex it determines. A cell complex K ′ is a
subdivision of K if |K ′| = |K| and every cell of K is a union of cells of K ′.
Any two cell complexes K ′, K ′′ with |K ′| = |K ′′| have a common subdivision
K0. A base-point for K is a preferred vertex. A pointed map is one which
preserves given base-points. A cellular map h : K → L between cell complexes
is a PL map h : |K| → |L| such that for any cell β ∈ K, the image h(β) is
contained in a cell of L. Given any continuous map f : |K| → |L|, there is a
subdivision h : K0 → K and a cellular map k : K0 → L such that f ◦ h ' k.
In other words, any map is homotopic to a cellular map after subdividing the
domain. A cellular homeomorphism is a cellular map h : K → L such that
h : |K| → |L| is a homeomorphism. From now on, we will consider only finite
cell complexes (those consisting of only finitely many cells), or coverings of
finite cell complexes.

If K is a cell complex, we will say that a covering space P̃ → P over
P = |K| is subordinate to K if every cell of K is contained in a evenly-covered

neighbourhood of P . In that case, we let K̃ be the cell complex on P̃ induced
by the covering p : P̃ → P . If k0 ∈ K is a base point and π denotes the
structural group of the covering (i.e. there is an identification π = p−1(k0)) ,

then the cellular chain complex C(K̃) is a chain complex of free R-modules,
where R = Z[π]. We need some additional data to get a chain complex of
based modules.

Let (K, p) denote a pointed finite cell complex K, with |K| = P , and a

covering space p : P̃ → P subordinate to K, with structural group π. A
geometric basis for (K, p) consists of the following data:

(i) an ordering for the cells of K compatible with the boundary partial
ordering.

(ii) an orientation on each cell β ∈ K,

(iii) a preferred lift for each cell β ∈ K to K̃,
(iv) a sign ηK ∈ Im(K1(Z) → K1(Z[π])).

We call (K, p) a based cell complex if it is equipped with a geometric basis.

Note that the chain complex C(K̃) of a based cell complex is a signed, based,
finite chain complex of finitely-generated free Z[π]-modules.

Let (X, x0) be a pointed space, and let p : X̃ → X be a covering space with

structural group π. We fix a base-point x̃0 ∈ X̃, corresponding to the identity
element of π, with p(x̃0) = x0.

A pointed torsion structure on (X, p) is a pair (K, c, k0) such that

(i) K is a pointed finite cell complex, with base-point k0 ∈ K,
(ii) c : |K| → X is a pointed homeomorphism, and
(iii) (K, c∗(p)) is a based cell complex, with the lift of k0 mapping to x̃0.
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The notation c∗(p) : |K̃| → |K| means the pull-back covering via c. Usually
we will suppress mentioning the base-points and use the notation (K, c).

Definition 4.1. Two pointed torsion structures (K1, c1) and (K2, c2) on (X, p)
are related by (K0, h, k) if K0 is a pointed cell complex and there exists a
homotopy commutative diagram

K1

f
// K2

K0

h

aaBBBBBBBB k

==||||||||

where h is a pointed cellular homeomorphism, k is a pointed cellular map,
f = c−1

2 ◦ c1, and f ◦ h ' k.

Unless explicitly mentioned, we assume that all homotopies of pointed maps
are base-point preserving. Since f = c−1

2 ◦ c1 is homotopic to a cellular map on
some subdivision K0 of K, any two pointed torsion structures are related as
above. If (K1, c1) and (K2, c2) are related by (K0, h, k), we let (K0, p0) denote
the pull-back covering (c1 ◦ h)

∗(p) ∼= (c2 ◦ k)
∗(p).

Lemma 4.2. Suppose that (K1, c1) and (K2, c2) are related by (K0, h, k), and
that (K0, p0) is a based cell complex. Then the quantity

τNEW ( K1
///o/o/o K2 ) := τNEW (C(K̃0)

k∗−→ C(K̃2)) − τNEW (C(K̃0)
h∗−→ C(K̃1))

in K1(Z[π]) is independent of the choice of (K0, h, k), and independent of the
choice of geometric basis for (K0, p0).

Proof. If we have two choices (K0, h, k) and (K ′
0, h

′, k′), there is a homotopy
commutative diagram

K ′
0

h′

~~||
||

||
|| k′

  B
BB

BB
BB

B

K1

f
// K2

K0

h

aaBBBBBBBB k

==||||||||

and we apply the chain homotopy invariance of the absolute torsion, and the
composition formula of Proposition 1.1, to the composite C(h)−1 ◦ C(h′) '
C(k)−1 ◦ C(k′) of chain equivalences (and chain homotopy inverses). �

Definition 4.3. Two pointed torsion structures (K1, c1), (K2, c2) on (X, p)
are equivalent if they are related by a based cell complex (K0, p0) and

τNEW ( K1
///o/o/o K2 ) = 0 ∈ K1(Z[π]) .
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Lemma 4.4. This definition gives an equivalence relation on the set of pointed
torsion structures on (X, p).

Proof. The given relation is reflexive and symmetric. If (K1, c1), (K2, c2) are
related by (K0, h, k), and (K2, c2), (K3, c3) are related by (K ′

0, h
′, k′), we have

a homotopy commutative diagram

K1
f // K2

f ′

// K3

K0

h

``BBBBBBBB k

==||||||||
K ′

0

h′

aaBBBBBBBB k′

>>||||||||

K ′′
0

h′′

``AAAAAAAA k′′

>>}}}}}}}}

where (K ′′
0 , h

′′, k′′) is the pull-back of K0
k // K2 K ′

0
h′

oo . This is a cell

complex (the common subdivision of K0 and K ′
0), and h′′ : K ′′

0 → K0 is a
cellular homeomorphism, so (K1, c1) and (K3, c3) are related by (K ′′

0 , h◦h
′′, k′◦

k′′). We choose any geometric basis for (K ′′
0 , p

′′
0), where p′′0 is the pull-back of

the covering c∗2(p) by k ◦ h′′ ' k′ ◦ h′′. It follows that

τNEW ( K1
///o/o/o K3 ) = τNEW ( K1

///o/o/o K2 ) + τNEW ( K2
///o/o/o K3 )

by the composition formula for the absolute torsion. Therefore (K1, c1) ∼
(K2, c2) and (K2, c2) ∼ (K3, c3) implies (K1, c1) ∼ (K3, c3). �

Definition 4.5. Let S•(X, p) denote the set of equivalence classes of pointed
torsion structures on (X, p) for any polyhedron X. We will use the notation
[K, c] (or just [K] when the reference map is understood) for the equivalence
class of a torsion structure (K, c). If the covering space p is understood, we
will use the notation S•(X) for short.

The basic idea of the equivalence relation is to identify two pointed torsion
structures whenever the homeomorphism c−1

2 ◦ c1 : K1 → K2 is homotopic
to a cellular homeomorphism with zero absolute torsion. The more general
formulation above will be useful in dealing with subdivisions or amalgamations
of cell complexes. We remark that if K ⊂ L is a subcomplex (containing the
base-point), then a pointed torsion structure on L induces a pointed torsion
structure on K by restriction of the data.

We now define a pairing

Φ: S•(X, p) × S•(X, p) → K1(Z[π])

by the formula
Φ([K], [L]) = τNEW ( K ///o/o/o L )

where (K, cK) and (L, cL) are pointed torsion structures on (X, p) representing
the classes [K] and [L] respectively. This is well-defined, and may be computed
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by taking the absolute torsion of a cellular approximation to f = c−1
L ◦ cK on

a subdivision of K. Here are some basic properties of the pairing.

Lemma 4.6. For any pointed torsion structures [K], [L] and [N ] on (X, p):

(i) Φ([K], [N ]) = Φ([K], [L]) + Φ([L], [N ])
(ii) Φ([K], [L]) = −Φ([L], [K])
(iii) [K] is equivalent to [L] if and only if Φ([K], [L]) = 0.

Proof. The formulas follow directly from the definitions. The details are left
to the reader. �

5. Absolute torsion structures on manifolds

In Theorem 5.2 we give a formula for the absolute torsion of a closed, oriented
manifold in terms of the Φ-pairing. This formula will be used in the proof of
Theorem B. Our starting point is the fact that any closed PL manifold X of
dimension n has a “normal” triangulation (see [27, §68]). More precisely, any
simplicial n-complex K homeomorphic to X has the following properties:

(i) Each k-simplex (k < n) of K is incident with at least one n-simplex
(this is called a pure n-complex).

(ii) Each (n− 1)-simplex of K is incident with exactly two n-simplices.
(iii) Any two n-simplices of K can be connected by a sequence of succes-

sively incident simplices of dimensions n and n− 1.

By subdivision, we can find such a normal triangulation of arbitrarily small
diameter. If X is oriented, we can choose a consistent orientation for each
n-simplex of K. In addition, for any element of S•(X, p) we may find a rep-
resentative [K] such that the underlying triangulation is normal. There is
an analogous cell complex version of this notion, which we call a normal cell
structure on X.

To compute the absolute torsion of X, we will use the classical approach to
Poincaré duality (see [28, Theorem 2.1], [27, § 69]). Let K∗ denote the dual cell
complex associated to K. This is defined in terms of the triangulation, starting
with the first barycentric subdivision K ′ of K. Let ∆r(K) denote the set of
r-simplices of K. The vertices of K ′ are the barycentres σ̂r of the simplices
σr ∈ ∆r(K), and its simplices have the form [σ̂r0 , σ̂r1, . . . , σ̂rs], where σrj is a
face of σrj+1 for each j. Let ∆r(K

′) denote the set of r-simplices of K ′. The
simplex σr of K is the union of the simplices in ∆r(K

′) which terminate with
σ̂r. The cells Dσr of K∗ correspond bijectively to the simplices of K, and Dσr

is the union of the simplices of K ′ which begin with σ̂r. Then dimDσr = n−r
and σr intersects Dσr transversely only at σ̂r. We denote the set of (n−r)-cells
of K∗ by ∆n−r(K

∗).
For a suitable chain approximation to the diagonal in K ×K∗, cap product

with the fundamental cycle takes the cochain on K dual to σr to the chain
Dσr on K∗.
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Definition 5.1. Let (K, c) be a torsion structure on X. We define the dual
torsion structure (DK,Dc) to be the torsion structure on X with underlying
cell-complex DK described above and with geometric basis as follows:

(i) The ordering of the cells on DK is induced from the ordering of the
cells on K: for cells Dσr and Dτ r of the same dimension, Dσr comes
before Dτ r if and only if σ come before τ .

(ii) The lift of each cell of DK is induced by the lift of the corresponding
dual cell.

(iii) The cells of DK are oriented such that cap product with the funda-
mental cycle induces the based identity map

Dϕ0 : C(K)n−r → C(DK)r

With the above choice of geometric basis the chain complex of DK is C(DK) =
C(K)n−∗. We choose the sign ηDK to be ηDK = ηC(K)n−∗. Hence C(DK) =
C(K)n−∗ as signed complexes (identified by Dϕ0).

Theorem 5.2. Let X be a closed, oriented manifold of dimension n. Then

τNEW (X) = Φ([DK], [K]) ∈ Ĥn(Z/2;K1(Z[π1(X, x0)]))

Proof. We first choose a geometric basis for the first barycentric subdivision
K ′ of K. Since X is an oriented manifold we may apply the symmetric con-
struction of Ranicki [22], [23] to find a symmetric Poincaré complex (C(K), ϕ);
in particular, the map ϕ0 : C(K)n−∗ → C(K) is a chain level representative of
the Poincaré duality map on X given by cup-product with the fundamental
class. We have a diagram of signed chain complexes which commutes up to
chain homotopy:

Cn−∗(K)
Dϕ0

ϕ0

��

C(DK)

��

C(K) // C(K ′)

Hence

τNEW (X) = τNEW (ϕ0)

= τNEW (C(DK) → C(K ′)) − τNEW (C(K) → C(K ′))

= Φ([DK], [K ′]) − Φ([K], [K ′])

= Φ([DK], [K]) .

�

6. Fibre transport and transfer

In this section we will describe a suitable algebraic setting for the fibre
transport in a fibre bundle, and establish some useful properties for use in
Section 8. Let A and B be (small) additive categories with involution, and
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recall that SPDn(B) denotes the full sub-category of SD(B) consisting of signed
n-dimensional chain complexes C in B, such that Cn−∗ is chain equivalent to
C, and χ(C) = 0 if n is odd. This sub-category inherits an involution via
C 7→ Cn−∗ (see Definition 12.18).

Definition 6.1. A transfer functor is a set of additive functors JD : A →
SPDn(B), indexed by a set AModB of objects D in SPDn(B) called A-B bimod-
ules, such that

(i) If D∈ AModB and D ∼= D′, then D′∈ AModB.

(ii) For each isomorphism g : D → D′ in SPDn(B) there is a natural trans-
formation g∗ : JD → JD′

, with (id)∗ = id and (h ◦ g)∗ = h∗ ◦ g∗ for any
isomorphism h : D′ → D′′.

(iii) For each object M ∈ A, JD(M)∗ ∼= JDn−∗
(M∗). �

If (C, ηC) is a signed complex in A, then JD(C) is a signed chain complex in
SPDn(B), with ηJD(C) = JD(ηC). This formula gives an allowable sign because

JD(ε(M,N)) = ε(JD(M), JD(N))

since JD is additive and ε(M,N) = τ iso(M ⊕ N → N ⊕M) for any objects
M , N of A. The composition

trfD = i∗ ◦ J
D
∗ : Kiso

1 (A) → K iso
1 (B)

is called the transfer induced by JD.
The main examples for our applications arise from the fibre transport.

Example 6.2 (Fibre Transport). Let R and S be rings with involution, and
let D be an object in SPDn(A(S)). Suppose that

p : R→ [D,D]op

is a homomorphism of rings with involution, where [D,D]op denotes the set
of chain homotopy classes of self-chain maps D → D over S. Then we let

A(R)ModA(S) be the collection of all objects D′ ∼= D . Define

JD : A(R) → SPDn(A(S))

on objects by setting JD(R) = (D, ηD), and extending additively. As a chain
complex, JD(M) = M⊗RD for each object M in A(R), and the sign ηJD(M) is
determined by the usual formula for direct sums. If f : M →M ′ is a morphism
in A(R), then we get an induced morphism

f ⊗ 1: M ⊗R D →M ′ ⊗R D,

where p is used to define a left R-module structure on D. If g : D → D′ is an
isomorphism in SPDn(A(S)), the natural transformation g∗ : JD(C) → JD′

(C)
is defined by

1 ⊗ g : C ⊗R D → C ⊗R D
′ .
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The duality property (iii) follows from the identification M = Rm as a based,
free R-module. The involution M 7→M ∗ maps the given base to the dual base.
Under these identifications

M∗ ⊗R D
n−∗ = ⊕m

i=1D
n−∗ = (⊕m

i=1D)∗ = (M ⊗R D)∗

In this example, the transfer induced by JD is usually denoted p! : K1(R) →
K1(S) (see[12]).

As a special case (when p is trivial) we get a transfer functor

JD : A(R) → SPDn(A(R⊗ S))

for any two rings with involution (tensor product over Z).

Example 6.3 (Tensor products). Let C and D be signed chain complexes over
A(R) and A(S) respectively, and let F∗(C ⊗ D) denote the filtered complex
structure defined in Example 12.4, Section 12. Then the signed tensor product
is the signed filtered complex whose underlying chain complex is C ⊗ D and
whose associated graded complex is JD(C, ηC) = (G∗(C ⊗ D), JD(ηC)). The
‘internal’ sign ηGr(C⊗D) is the sign of the chain complex JD(Cr) over S, as
defined above. In this example, the transfer p! = trfD is just multiplication by
χ(D). �

The functorial properties of JD give two useful formulas.

Lemma 6.4. Let JD : A → SDn(B) be a transfer functor.

(i) For each chain equivalence f : C → C ′ in A,

i∗τ
NEW (JD(f)) = i∗J

D
∗ (τNEW (f)) = trfD(τNEW (f)) ∈ K iso

1 (B) .

(ii) If JD is induced by a fibre transport R
p
−→ [D,D]op, then for each chain

equivalence g : D → D′ in A(S),

i∗τ
NEW (JD(C)

g∗
−→ JD′

(C)) = χ(C) · τNEW (g) ∈ K iso
1 (A(S)) .

Proof. Part (i) follows directly from the definitions. For Part (ii) observe that
g∗ : JD(C) → JD′

(C) is an isomorphism of chain complexes in SD(A(S)) and
hence

i∗τ
NEW (JD(C)

g∗
−→ JD′

(C))

= i∗ (
∑

(−)rτ iso(1 ⊗ g : Cr ⊗R D → Cr ⊗R D
′))

=
∑

(−)rτNEW (
⊕

rankR(Cr)(g : D → D′))

= χ(C)τNEW (g : D → D′) ∈ Kiso
1 (A(S))

�

We now prove the product formula for the absolute torsion of symmetric
Poincaré structures announced in [11].
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Proposition 6.5. Let (C, ϕC) and (D,ϕD) be symmetric Poincaré complexes
over rings with involution R and S respectively. Then

τNEW (C ⊗D,ϕC ⊗ ϕD) = χ(C)τNEW (D,ϕD) + χ(D)τNEW (C, ϕC)

evaluated in K1(R⊗ S).

Proof. Let dimC = k and dimD = n. By definition

τNEW (C ⊗D,ϕC ⊗ ϕD) = τNEW (ϕ0 ⊗ φ0 : (C ⊗D)n+k−∗ → (C ⊗D)) .

The map ϕC
0 ⊗ ϕD

0 is given by the composition:

(C ⊗D)n+k−∗ θC⊗D
−−−→ Ck−∗ ⊗Dn−∗ ϕ0⊗1

−−−→ C ⊗Dn−∗ 1⊗ϕ0
−−−→ C ⊗D

The result now follows from Lemma 6.4 and Lemma 12.28. �

7. Absolute torsion structures on fibre bundles

The notion of pointed torsion structures will now be extended to PL or

smooth fibre bundles F n q
−→ En+k p

−→ Bk (see [1, p. 181] for the definition of
a PL fibre bundle). We assume that F , E and B are compatibly oriented PL
or smooth, closed manifolds (considered as polyhedra via the canonical PL
structure compatible with their smooth structure). In both cases there exists
a triangulation of the fibre bundle compatible with a given triangulation on
the base (see [21] for the smooth case).

Our goal is to define a notion of a pointed fibre bundle torsion structure
(PFBTS) which will have as data a PTS on both the base and fibre, and
which will determine a PTS on the total space E.

Fix a base-point b0 ∈ B and a base-point e0 ∈ E with p(e0) = b0. We will
always assume that B is connected. In the definitions below, the geometric
bases for torsion structures on B or E will use their universal covering spaces
(suppressed in the notation, together with the chosen lifts of the base-points).
In particular, if c : K → B is a pointed torsion structure (PTS), and γ ⊂ ∂β
for some cell β ∈ K, then we have a component of the boundary chain map

∂β,γ : C(β̃) → SC(γ̃)

which can be identified with the module homomorphism

dβ,γ : Z[π1(B, b0)] → Z[π1(B, b0)]

given by multiplication with some element dβ,γ ∈ {±πab}. This is a module
isomorphism. We will use the images

p!(τ(dβ,γ)) ∈ K1(Z[π1(E, e0)])

under the fibre bundle transfer p! in the discussion below.
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Let K → B and L→ E be cell structures on the base and total spaces such
that the induced map L → K is cellular. We call this a cell structure on the

fibre bundle. Then we may regard C(L̃) as a filtered complex by defining:

FrC(L̃) = C(p−1(K〈6r〉))

where K〈6r〉 is the subcomplex of K consisting of the cells of dimension 6 r. If
dimF = n and dimB = k, then we obtain an admissible (n + k)-dimensional
k-filtered chain complex as defined in Section 12. The associated complex of

F∗C(L̃) has the direct sum decomposition:

GrC(L̃) = S−r
⊕

β∈K(r)

C(p−1(β))

indexed over the cells in K of dimension r. We will use the notation C(F̃β) :=
S−rC(p−1(β)) for β ∈ K(r), so we have the identification

GrC(L̃) =
⊕

β∈K(r)

C(F̃β)

Note that the cell structure on E gives a cell structure on F0 := p−1(b0). Let
[F ] denote a pointed torsion structure for F0, with respect to the pull-back
of the universal covering of E by q : F → E. Fibre transport defines a ring
morphism

Z[π1B] → [C(F̃0), C(F̃0)]
op

so we have a transfer functor

JC(fF0) : A(Z[π1B]) → SPDn(A(Z[π1E]))

To shorten the notation, we will let JF := JC(fF0) when the PTS on F is clear
from the context.

We can apply this additive functor to the identification

Cr(K̃) =
⊕

β∈K(r)

C(β̃)

to obtain

JC(fF0)(Cr(K̃)) =
⊕

β∈K(r)

JC(fF0)(C(β̃)) =
⊕

β∈K(r)

C(F̃0)

One of our main goals to construct a chain equivalence

E : G∗(C(L̃)) → JC(fF0)C(K̃)

by constructing chain equivalences

Eβ : C(F̃β) → C(F̃0)

for each β ∈ K, and defining E as the direct sum of the Eβ over all such β.
This can be achieved if we can construct such maps which are compatible with
boundary inclusions γ < β. We will first construct the maps Eβ for a special
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type of PTS on the base B which comes from a normal unfolding (defined
below). This construction will then be extended to any PTS on the base B.

A pointed torsion structure cK : K → B is small with respect to the bundle

E
p
−→ B, if c(β) is contained in a locally trivial bundle neighbourhood for each

β ∈ K.

Definition 7.1. A geometric basis for a pointed fibre bundle (E, p, e0) consists
of the following data:

(i) a pointed torsion structure (K, cK, k0) on B, which is small with re-
spect to the bundle (E, p).

(ii) a cell structure L→ K on E → B, over cK : K → B.
(iii) a geometric basis for Fβ ⊂ L, for each β ∈ K, with respect to the

pull-back of the universal covering of E. �

Notice that a geometric basis for (E, p) and the fixed base-points give a
PTS for the fibre F , represented by (F0, cL|F0). We denote this pointed torsion
structure by [F ] ∈ S•(F ).

Definition 7.2. A pointed fibre bundle torsion structure (PFBTS) on (E, p)
consists of a geometric basis L→ K for (E, p, e0)), such that:

(i) for each β ∈ K, a chain equivalence Eβ : C(F̃β) → C(F̃0) where the

map E b0 : C(F̃0) → C(F̃0) is the identity.

(ii) for each β ∈ K,

τNEW (Eβ : C(F̃β) → C(F̃0)) = 0 ∈ K1(Z[π1(E, e0)])

(iii) the sum

E =
⊕

β∈K

Eβ : G∗(C(L̃)) → JC(fF0)C(K̃)

is a chain isomorphism in SD(A(Z[π1(E, e0)])). �

We will denote a PFBTS for (E, p) by (L → K, E), and the induced PTS
on the fibre by [F ]. We will say that the PFBTS realizes the given structures
on base and fibre.

A PFBTS on E → B determines a PTS on E as follows. The choice of
geometric basis on each fibre Fβ determines lifts and orientations of each of

the cell in L. The associated complex G∗(C(L̃)) may be made into a signed
complex by setting

Gr(C(L̃)) =
⊕

β∈K〈r〉

C(F̃β)

as signed complexes, and setting η
G∗C(eL) = JF

∗ (ηK). We then give C(L̃) the

filtered sign determined by the signs for G∗(C(L̃)) and define ηL = ηF∗C(eL).
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Lemma 7.3. i∗τ
NEW (E∗ : G∗(C(L̃)) → JC(fF0)C(K̃)) = 0 ∈ K1(Z[π1(E, e0)]).

Proof. This follows directly from the sign conventions chosen, and the formula

τNEW (E∗) =
∑

r

(−1)rτ iso(Er : Gr(C(L̃)) → JFCr(K̃)) + η
JF C( eK) − η

G∗(C(eL))

for the absolute torsion of a chain isomorphism. �

8. Absolute torsion of fibre bundles

We will show in Theorem 8.5 that every smooth (or PL) fibre bundle F →
E → B as above admits a pointed fibre bundle pointed torsion structure. First
we define the normal unfolding of a normal triangulation of a closed manifold.
The idea is to cut X open along certain (n− 1)-simplices of the triangulation
K to obtain a contractible complex projecting onto X.

Definition 8.1. Let K =
⋃
{∆n

α |α ∈ JK}, where the ∆n
α are the distinct n-

simplices in the triangulation ofX. Let jα : ∆n
α → K denote the inclusion maps

of the n-simplices. A normal unfolding of K is a pure simplicial n-complex K̂

equipped with a simplicial map f : K̂ → K, such that

(i) K̂ is a union of n-simplices, with index set J bK , and each (n−1)-simplex

of K̂ is incident with one or two n-simplices.
(ii) There is a bijection θ : J bK → JK such that f |∆n

α = jθ(α) for all α ∈ J bK.

(iii) K̂ is contractible.

We again have an analogous notion for normal cell structures.

Lemma 8.2. Let X be a closed smooth manifold of dimension n. Each normal

cell structure K on X admits a normal unfolding (K̂, f).

Proof. We give the proof for the case of triangulations. Consider the set of
barycentres V = {vα |α ∈ JK} of the n-simplices of K. We can join the
barycentres of each pair {∆n

α,∆
n
β} of incident n-simplices with an edge eαβ

through their common (n − 1) face to obtain a connected graph (the dual
1-skeleton of K). Let T = (V,E) denote a maximal tree in this graph, and

note that T has vertex set consisting of all the barycentres. Let K̂ be the
quotient space of the disjoint union of the n-simplices in K, where we identify

two n-simplices ∆n
α, ∆n

β in K̂ along an (n− 1) face if and only if eαβ ∈ E. By

construction, K̂ is a thickening of the tree T , so K̂ is contractible. The other
properties of a normal unfolding are clear. �

A normal unfolding K̂ → K can be used to make consistent choices of lifts
to the universal covering for simplices in K. Any cell β ∈ K is contained in

a unique n-cell of minimal ordering. We can specify a unique lift β̂ ∈ K̂ by
requiring β̂ to be contained in the lift ∆̂ of ∆.
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Definition 8.3. A pointed torsion structure K → B is normal if for some

normal unfolding K̂ → K, the chosen lifts of adjacent cells β, γ ∈ K are

adjacent in the universal covering K̃ whenever their lifts β̂ and γ̂ are adjacent

in K̂.

Remark 8.4. If f : K̂ → K is a normal unfolding, the map f induces an

equivalence relation on the r-simplices of K̂. Two r-simplices are equivalent if

they are identified by f to the same simplex in K. Let ∂K̂ denote the subset
of K consisting of all the simplices whose equivalence class contains more than

one element. This is a sub-complex of K̂ called its boundary.
Let v0 denote the barycentre of one of the n-simplices (chosen as a base

point, so f(v0) = k0), and let vi ∈ τi denote the barycentre of each of the

n-simplices ∆n
i with a face τi ⊂ ∂K̂. Let xi ∈ τi denote the barycentre of each

such face, and ei = [vi, xi] ⊂ ∆n
i the linear path joining vi to xi. Let σi denote

the unique path in the maximal tree joining v0 with the barycentre vi ∈ ∆n
i ,

followed by the path ei to xi. If τi and τj, i < j, are a pair of (n − 1)-faces

identified under f : K̂ → K, then f(ei) ∪ f(ej) = eij is an edge in the dual
1-skeleton of K. The fundamental group π1(K, k0) is generated by loops of the
form uij := f(σi) ∪ eij ∪ f(σj). �

Here is our main result about the existence of pointed fibre bundle torsion
structures.

Theorem 8.5 (Realization). Let E → B be a fibre bundle of compatibly
oriented closed PL manifolds. Given a PTS on K → B, a cell structure
L → K on the fibre bundle, and a geometric basis on F , there exists a PFBTS
(L→ K, E) realizing this data.

The main steps in the proof are contained in the following special case.

Proposition 8.6. There exists a PFBTS (L → K, E) on E → B realizing a
given normal pointed torsion structure K → B on B, a given cell structure
L → K on the fibre bundle, and a given geometric basis for F .

Proof. We are required to construct chain maps Eβ : C(F̃β) → C(F̃0) such that

the direct sum E : G∗(C(L̃)) → JFC(K̃) is a chain equivalence. Once these
maps are constructed, we can choose a geometric basis on each Fβ such that

the maps Eβ : C(F̃β) → C(F̃0) have trivial absolute torsion (this is condition
(ii) for a PFBTS). The condition that E is a chain map is equivalent to the
statement that for a pair of simplices γ < β where γ is an (r− 1)-dimensional
cell in the boundary of an r-dimensional cell β, the diagram

(8.7)

C(F̃β)

��

// JFC(β)

��

C(F̃γ)
// JFC(γ)
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commutes. We will first construct the maps E and then show that this diagram
commutes for all γ < β.

Let f : K̂ → K be the normal unfolding of K, and g : L̂ → L the pull-back

of L → K over K̂. The chain complex G∗(C(L̂)) splits over the cells β̂ ∈ K̂
as:

G∗(C(L̂)) =
⊕

β̂∈ bK

C(F̃β̂)

We assume that the base-point k0 is uniquely covered (f−1(k0) = v0). The

chain complex C(K̂) is a based Z-module chain complex since we have an

orientation for each cell. Since K̂ is contractible the pull-back of the universal

cover of B over the map K̂ → K → B is trivial and hence we have a chain
map

f∗ : C(K̂) ⊗Z Z[π1B] → C(K̃)

of based signed chain complexes over Z[π1B]. On the total space we have a

filtered chain map g∗ : C(L̂) → C(L̃) whose associated map

G∗(g∗) : G∗(C(L̂)) → G∗(C(L̃))

splits over each cell β of K, and lifts β̂ of β giving an isomorphism of chain
complexes:

gβ̂ : C(F̃β̂) → C(F̃β)

Note that
JF (C(K̂) ⊗Z Z[π1B]) = C(K̂) ⊗Z C(F̃0) .

Since K̂ is contractible and the triangulation K → B is small with respect to
the bundle E → B, there is a trivializing homeomorphism

ΨK : |L̂| → |K̂| × F

of the pull-back bundle p̂ : L̂→ K̂ which gives rise to a chain homotopy com-
mutative diagram of chain maps:

C(p̂−1(β̂))

��

// C(β̃) ⊗Z C(F̃0) = C(F̃0)

��

C(L̂) // C(K̂) ⊗Z C(F̃0) = JF (C(K̂) ⊗Z Z[π1B])

for each β̂ ∈ K̂. Let r be the dimension of β. By taking the associated

complexes and maps in this diagram, we construct maps E β̂:

C(Fβ)

��

E β̂
// C(F̃0)

��

Gr(C(L̂)) // JF (Cr(K̂) ⊗Z Z[π1B])
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The sum Ê : G∗(C(L̂)) → JC(fF0)(C(K̂)⊗Z Z[π1B]) is a chain map and each E β̂

is a chain equivalence.
Each cell β in K lies in an n-simplex of minimal ordering so we have a

particular lift β̂ of β. We define the chain equivalence Eβ to be

Eβ = E β̂ ◦ (gβ̂)−1 : C(F̃β) → C(F̃β̂) → C(F̃0)

where gβ̂ is the restriction of g : L̂ → L to β̂. It remains to show that E∗ is a

chain map, in other words that the diagram (8.7) commutes for all pairs β, γ.

This is true if the lifts of the cells β and γ are adjacent in K̂, since we have a
commutative diagram:

C(F̃β)
(g

β̂
)−1

//

��

C(F̃β̂)
E β̂

//

��

C(F̃ ) = JFC(β)

��

C(F̃γ)
(gγ̂)−1

// C(F̃γ̂)
E γ̂

// C(F̃ ) = JFC(γ)

Suppose now that the lift of γ is not adjacent to that of β. Then the

component of the differential in C(K̃) given by C(β) → C(γ) is dβ,γ = ±t for
some non-trivial group element t ∈ π1B, when considered as a map of based
complexes. We will denote by ± the sign in front of t. Let γ̂ ′ be the lift of γ
which is adjacent to the chosen lift of β̂ of β. The two faces γ̂, γ̂ ′ are identified

under K̂ → K. Let fγ̂ , fγ̂′ be paths in K̂ joining the barycentres xγ̂, xγ̂′ with
the base point v0. Then the image of fγ̂ ∪ fγ̂′ in K is a loop representing t.
Hence fibre transport around t is described by the following composition:

F → F × xγ̂

Ψ|xγ̂
−−→ p̂−1(xγ̂) → p−1(xγ) → p̂−1(xγ̂′)

(Ψ|x
γ̂′

)−1

−−−−−→ F × xγ̂′ → F

where xγ is the barycentre of γ in K. Therefore the composition of homotopy
equivalences:

F → F × |γ̂|
ΨK |γ̂
−−−→ Fγ̂

g|γ
−→ Fγ

(g|γ′ )
−1

−−−−→ Fγ̂′

(ΨK |γ̂′ )
−1

−−−−−−→ F × |γ̂ ′| → F

is described up to homotopy by fibre transport around t. Hence the composi-
tion

C(F̃ )
(E γ̂)−1

−−−−→ C(F̃γ̂)
gγ̂
−→ C(F̃γ)

(gγ̂′ )
−1

−−−−→ C(F̃γ̂′)
E γ̂′

−−→ C(F̃ )

is given (up to chain homotopy) by JF (t) : C(F̃ ) → C(F̃ ). From this we
deduce that

Eγ = JF (t) ◦ (E γ̂′

◦ (gγ̂′)−1)
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Since γ̂′ is adjacent to β̂ we know that

C(F̃β)

��

Eβ
// C(F̃ )

JF (±)
��

C(F̃γ)
E γ̂′◦(gγ̂′ )

−1

// C(F̃ )

commutes. It now follows that

C(F̃β)

��

Eβ
// C(F̃ )

JF (±t)
��

C(F̃γ)
Eγ

// C(F̃ )

commutes as required. �

The proof of Theorem 8.5. Let K ′ → B be a normal PTS on B with the same
underlying cell-structure as K. Then we can find a PFBTS (L′ → K ′, E ′)
with L′ having the same underlying cell structure as L and fibre structure F
by the above proposition. For each cell β ∈ K we have a corresponding cell
β ′ ∈ K ′ and an identification of C(Fβ) with C(Fβ′). We use this identification
to choose a geometric basis for F0 such that C(Fk0) → C(Fk′

0
) is the based

identity map. We now define the maps Eβ by

Eβ = JF (C(β ′) → C(β)) ◦ (E ′)β′

: C(F̃β) → C(F̃0)

using the identification of C(Fβ) with C(Fβ′). We again choose a geometric

basis on each Fβ such that the maps Eβ : C(F̃β) → C(F̃0) have trivial absolute
torsion. We claim that (L → K, E) is a PFBTS. The only condition remain-
ing to check is that E is a chain map. However, by construction, E is the
composition

G∗(C(L̃)) → G∗(C(L̃′))
E ′

−→ JFC(K̃ ′)
JF (C(fK′)→C( eK))
−−−−−−−−−−→ JFC(K̃)

of chain maps and hence is itself a chain map. �

9. The Proof of Theorem B

In order to prove Theorem B we will need to show how the absolute torsions
computed from a pointed torsion structure on a fibre bundle vary when we

change the PTS on the base or on the fibre. Let S•(F
q
−→ E) denote the set

of pointed torsion structures on F0 = p−1(b0) with respect to the pull-back of
the universal covering of E. We summarize the results as follows:

Proposition 9.1. Given [B] ∈ S•(B) and [F ] ∈ S•(F
q
−→ E), there exists a

fibre bundle torsion structure (L→ K, E) on F → E → B, such that [K] = [B]
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and the class of the fibre structure is [F ]. Moreover any two such fibre bundle
torsion structures represent the same element in S•(E).

Let E[B][F ] ∈ S•(E) denote the induced torsion structure on the total space.

Proposition 9.2. Let [B1], [B2] ∈ S•(B) be any two torsion structures for the

base, and let [F1], [F2] ∈ S•(F
q
−→ E)) be any two fibre structures. Then

Φ(E[B1][F1],E[B2][F2]) = p!Φ([B1], [B2]) + χ(B)Φ([F1], [F2])

The dual torsion structure DE[B][F ] of E[B][F ] was defined in Definition 5.1.

Proposition 9.3. Let DE[B][F ] denote the dual torsion structure of E[B][F ] in
S•(E). Then

Φ(DE[B][F ],E[DB][DF ]) = 0

These properties will be established in a sequence of lemmas.

Lemma 9.4. Given PTSs on K and F the maps Eβ : C(F̃β) → C(F̃0) are
uniquely determined by the properties:

(i) The map E b0 : C(F̃0) → C(F̃0) is the identity.
(ii) The direct sum E =

⊕
β E

β is a chain equivalence.

Proof. Suppose that {Eβ
1 } and {Eβ

2 } are two sets of chain maps satisfying these
conditions. Since B is connected, any cell β ∈ K can be connected to the base-
point by a sequence of adjacent pairs of cells. If γ ⊂ ∂β, we have a commutative
diagram

C(F̃β)
Eβ
1 //

��

C(F̃0)

C(F̃γ)
Eγ
1 // C(F̃0)

and similarly for E2. We are using the identification JFC(β) = C(F̃0), valid for
every cell. But the horizontal maps are isomorphisms in SPDn(Z[π1(E, e0)]),

so Eβ
1 = Eβ

2 if and only if Eγ
1 = Eγ

2 . However, these two maps agree at the
base-point b0, so they agree over every cell and E1 = E2. �

Lemma 9.5. Suppose that (L1 → K, E1) and (L2 → K, E2) are pointed fibre
bundle torsion structures on E → B with fibre structures F1 and F2 respec-
tively. If h : L1 → L2 is a subdivision over K, then there is a commutative
diagram

G∗(C(L̃1))

G∗(h)
��

E1 // JF1(C(K̃))

h∗

��

G∗(C(L̃2)) E2

// JF2(C(K̃))

in SPDn(Z[π1(E, e0)]).
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Proof. Since any subdivision over K is a filtered map, we can pass to the
associated graded complexes. The composition

E ′
1 : G∗(C(L̃1))

G∗(h)
−−−→ G∗(C(L̃2))

E2−→ JF2C(K̃)
(h∗)−1

−−−−→ JF1C(K̃)

splits over each simplex β ∈ K to the composition:

E ′
1
β
: C(F̃1β)

G∗(h∗|β)
−−−−−→ C(F̃2β)

Eβ
2−→ JF2C(β)

(h∗)−1

−−−−→ JF1C(β)

In particular the map E ′
1
b0 coincides with E1

b0, so the above remark implies
that E ′

1 = E1. Hence the diagram commutes. �

Corollary 9.6. Suppose that (L1 → K, E1) and (L2 → K, E2) are pointed fibre
bundle torsion structures on a fibre bundle F → E → B. The induced pointed
torsion structures [L1] and [L2] on E satisfy

Φ([L1], [L2]) = χ(B)Φ([F1], [F2])

Proof. If L2 is a subdivision of L1, then the commutativity of the diagram
implies that

τNEW (G∗(C(L̃1)) → G∗(C(L̃2))) = τNEW (JF1(C(K̃)) → JF2(C(K̃)))

since the maps E1 and E2 have trivial absolute torsion. By Lemma 6.4

i∗τ
NEW (G∗(C(L̃1)) → G∗(C(L̃2))) = χ(B)τNEW (C(F̃1) → C(F̃2))

= χ(B)Φ([F1], [F2])

From Theorem 12.17 on the torsion of filtered maps we see that:

Φ([L1], [L2]) = τNEW (C(L̃1) → C(L̃2))

= i∗τ
NEW (G∗(C(L̃1)) → G∗(C(L̃2)))

= χ(B)Φ([F1], [F2])

as required. We now consider the general case where L2 is not necessarily a
subdivision of L1; in this case we may find a filtered cellular map L3 → L1

which is a common subdivision (as cell-complexes) of L1 and L2. By Theorem
8.5 we may find a PFBTS whose underlying triangulation is L3, we will also
denote this by L3. It now follows that

Φ([L1], [L2]) = Φ([L2], [L3]) − Φ([L1], [L3])

= χ(B)Φ([F2], [F3]) − χ(B)Φ([F1], [F3])

= χ(B)Φ([F1], [F2])

as required. �

Lemma 9.7. Suppose that (L1 → K1, E1) and (L2 → K2, E2) are pointed
fibre bundle torsion structures on E → B. Let h : L1 → L2, f : K1 → K2 be
cellular homeomorphisms, with pL2 ◦ h = f ◦ pL1 and h inducing the identity
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on F = p−1(b0). If both PFBTS have the same fibre structure under this
identification, then there is a commutative diagram

G∗(C(L̃1))

G∗(h)
��

E1 // JF (C(K̃1))

JF (f)
��

G∗(C(L̃2)) E2

// JF (C(K̃2))

in SDn(Z[π1(E, e0)]).

Proof. We first consider the case where K1 and K2 differ only by the choice of
PTS. Then the composition

G∗(C(L̃1))
G∗(h)
−−−→ G∗(C(L̃2))

E2−→ JFC(K̃2)
JF (f−1

∗ )
−−−−−→ JFC(K̃1)

splits over the cells of K1 = K2 to give maps E ′β
1 : G∗(C(F̃β)) → JFC(K̃1).

However Remark 9.4 shows that these maps must coincide with the Eβ
1 , so the

diagram commutes in this case.
It is now sufficient to consider the case where the map K1 → K2 is an

elementary subdivision of one cell β and where L1 → L2 is a cellular isomor-
phism away from p−1(β). We may also assume the geometric basis for K2 is
the same as that for K1 away from β and that the geometric basis for each

C(F̃1γ) coincides with that for C(F̃2γ) for γ 6= β. We may also assume that
the maps Eγ

1 and Eγ
2 are equal for all γ 6= β so it is sufficient to show that the

diagram commutes on the C(F̃β) factor. Let {βi}i be the components of the
subdivision of β in K2 which have the same dimension as β. Then we must
show that the diagram

C(F̃β)

G∗(h|β)

��

Eβ
// JFC(β)

JF (f |β)

��⊕
i C(F̃βi

)
⊕Eβi

//
⊕

i J
FC(βi)

commutes. The RHS of the diagram splits over the components C(F̃σi
) so it

is sufficient to show that

C(F̃β)

G∗(h|βi
)

��

Eβ
// JFC(β)

JF (f |βi
)

��

C(F̃βi
)

Eβi // JFC(βi)

commutes for each i. Let τ be a boundary component of both βi and β (such
a component can always be found for an elementary subdivision). Then we
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have a diagram of chain equivalences:

C(F̃τ )
//

Eτ

��

C(F̃β)
G∗(h|βi

)
//

Eβ

��

C(F̃βi
) //

Eβi

��

C(F̃τ )

Eτ

��

JFC(τ) // JFC(β)
JF (f |βi

)
// JFC(βi) // JFC(τ)

The outer square commutes since the compositions along the top and bottom
are the identity maps. The left and right squares commute since both E1 and
E2 are chain maps. Hence the middle square commutes as required. �

Corollary 9.8. Let K1 and K2 be cell-decompositions of B; let L1 → K1 and
L2 → K2 be PFBTSs on E → B with fibre class [F ]. Then the induced PTSs
on E, [L1] and [L2] satisfy:

Φ([L1], [L2]) = p!Φ([K1], [K2])

Proof. If L2 and K2 are subdivisions of L1 and K1 respectively, then commu-
tativity of the diagram of the above lemma and Lemma 6.4 give:

i∗τ
NEW (G∗(C(L̃1)) → G∗(C(L̃2))) = τNEW (JFC(K̃1) → JFC(K̃2))

= p!τNEW (C(K̃1) → C(K̃2))

Using Theorem 12.17 on the torsion of filtered maps we see that:

Φ([L1], [L2]) = τNEW (C(L̃1) → C(L̃2)

= τNEW (G∗(C(L̃1)) → G∗(C(L̃2)))

= p!τNEW (C(K̃1) → C(K̃2))

In the general case we choose a common subdivision (L3 → K3, E) with fibre
structure F . Then:

Φ([L1], [L2]) = Φ([L1], [L3]) + Φ([L3], [L2])

= p!Φ([K1], [K3]) + p!Φ([K3], [K2])

= p!Φ([K1], [K2])

�

The proof of Proposition 9.1. We choose a torsion structure K → B represent-
ing [B]. Then by Theorem 8.5 we may find a fibre bundle torsion structure
(L → K, E) with the given fibre class. Let (L′ → K ′, E ′) be another choice of
fibre bundle torsion structure. Then by Proposition 9.8 we have

Φ([L], [L′]) = p!([K], [K ′]) = p!([B], [B]) = 0

Therefore [L] and [L′] are equivalent. �
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The proof of Proposition 9.2. Choose representatives (L1 → K1, E1), (L2 →
K2, E2) and (L3 → K2, E3) for E[B1][F1],E[B2][F1] and E[B2][F2] respectively. Then

Φ(E[B1][F1],E[B2][F2]) = Φ((L1 → K1, E1), (L2 → K2, E2))

+Φ((L2 → K2, E2), (L3 → K2, E3))

= p!Φ([B1], [B2]) + χ(B)Φ([F1], [F2])

by Corollaries 9.6 and 9.8. �

The proof of Proposition 9.3. Let (L→ K, E) be a PFBTS representing E[B][F ].
Then DL → DK is a cellular map and we have a dual PTS for C(DK). We
first construct a PFBTS (DL → DK,DE) representing E[DB][DF ]. We choose
the geometric basis on each fibre of DL such that the composition

(9.9) C(D̃L) → C(L̃)n+k−∗
θ
C(eL)

−−−→ F dual
∗ C(L̃)

is the based identity map of signed filtered complexes. We now have an iden-
tification

G∗(C(D̃L)) → G∗(C(L̃))k−∗

by taking the associated complex of the above composition, and applying

Lemma 12.23 to identify the associated complex of the filtered dual F dual
∗ C(L̃)

with the k-dual G∗(C(L̃))k−∗ of the associated complex. Note that

(G∗(C(L̃)))k−∗
r =

∑

β∈K<k−r>

C(F̃β)k−∗ =
∑

Dβ∈DK<r>

C(F̃Dβ)

We have a chain equivalence

(Ek−∗)−1 : G∗(C(D)) → (JC(fF0)C(K̃))k−∗ = JC(D̃LDk0
)C(K̃)

We now choose a base-point Dk0 in DK, denote its dual k-cell in K by σ0. We
have a chain equivalence

Ek−∗
σ0

: C(D̃FDk0) → C(D̃F0)

and hence a natural transformation

h∗ : JC(D̃LDk0
) → JC( gDL0)

We define the chain map DE by DE = h∗(E
k−∗)−1 with the components given

by DEDβ = Ek−∗
σ0

(Ek−∗
β )−1. It remains to show that

Φ(D(L→ K, E), (DL→ DK,DE) = 0

However,

Φ(D(L→ K, E), (DL→ DK,DE))

= τNEW (C(D̃L) → C(L̃)n+k−∗)

= −τNEW (θ
C(eL) : (C(L̃))n+k−∗ → F dual

∗ C(L̃))

= 0
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using the fact that (9.9) is the based identity map and Proposition 12.26. �

The proof of Theorem B. We can now complete the proof of Theorem B. Let
[B] and [F ] be torsion structures on B and F respectively. We may assume

that [F ] ∈ S•(F
q
−→ E) is induced by a PTS on the universal covering of F ,

and therefore Φ([DF ], [F ]) = q∗(τ
NEW (F )) by Theorem 5.2. Then

τNEW (E) = Φ(DE[B][F ],E[B][F ])

= Φ(E[DB][DF ],E[B][F ])

= Φ(E[DB][F ],E[B][F ]) + Φ(E[DB][DF ],E[DB][F ])

= p!Φ([DB][B]) + χ(B)Φ([DF ][F ])

= p!(τNEW (B)) + χ(B)q∗(τ
NEW (F ))

∈ Ĥn+k(Z/2;K1(Z[π1E]))

as required. �

10. The Proof of Theorem A

Our main result on the multiplicativity of signatures will be deduced from
Theorem 3.3 and the following application of Theorem B, in which we compute
the reduced absolute torsion E. If dimB is odd, the vanishing of sign(E)
follows immediately (as remarked in [2]), so we may assume that dimB is
even.

Theorem 10.1. Let F
q
−→ E

p
−→ B be a PL bundle of compatibly oriented

closed manifolds. If dimB is even, then the reduced absolute torsion

τ̄NEW (E) = χ(F ) · τ̄NEW (B)) + χ(B) · τ̄NEW (F )) .

Proof. The augmentation map induces a direct sum splitting

K1(Z[π1(E, e0)]) ∼= K1(Z) ⊕ K̃1(Z[π1(E, e0)])

and ε∗ restricted to the subgroup K1(Z) is the identity map. We will apply
the augmentation map ε∗ to the formula for τNEW (E) given in Theorem B.
Note that ε∗ ◦ q∗ = ε∗ so the second term

χ(B) · ε∗(q∗τ
NEW (F )) = χ(B) · τ̄NEW (F ))

as required.
To evaluate the first term, we need to compute

ε∗(p
!(τNEW (B))) = ε∗(p∗p

!(τNEW (B))) .

By Proposition 3.5 we know that τNEW (B) = τ(±h2) for some h ∈ π1(B, b0).
But the map φ : π1(B, b0) → K1(Z) defined by φ(g) = ε∗(p

!(τ(g))) is a group
homomorphism. Since K1(Z) = Z/2, φ vanishes on squares of group elements
in π1(B, b0). Therefore

ε∗(p
!(τNEW (B))) = ε∗(p

!(τ(±1))) .
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However, τ(±1) lies in the image of the map i∗ : K1(Z) → K1(Z[π1(B, b0)])

induced by inclusion. By pulling back the bundle E
p
−→ B over the base point

b0 ∈ B, and applying the naturality formula for pullbacks (see [12, Cor. 5.3]),
we obtain the relation

p!(τNEW (B)) = i∗(p
∗
0(τ(±1))) = i∗(p

∗
0(τ(±1)))

by comparison with the trivial bundle F × {b0}
p0
−→ {b0}. But for a trivial

bundle p∗ ◦ p
! is just multiplication by χ(F ), by an easy special case of [13,

Thm. 7.1]. Therefore

ε∗(p
!(τNEW (B))) = ε∗(p∗(p

!(τNEW (B)))) == χ(F ) · τ̄NEW (B)

as required, since ε∗ ◦ i∗ is the identity map. �

Corollary 10.2. If dimB is even, then τ̄NEW (E) = τ̄NEW (F ×B).

Proof. We apply the product formula, Proposition 6.5, and the formula just
proved. �

This result says that the reduced absolute torsion of E is the same as that of
the total space F×B for the trivial bundle, provided dimB is even, We can now
conclude that the signature sign(E) agrees with sign(F×B) = sign(F )·sign(B)
modulo 4.

(i) If dimB = 4j, dimF = 4l, and dimE = 4(j + l) = 4k

sign(E) = 2τ̄NEW (E) + (2k + 1)χ(E)

= 2(τ̄NEW (B)χ(F ) + χ(B)τ̄NEW (F )) + (2k + 1)χ(B)χ(F )

sign(B) sign(F ) =
[
2τ̄NEW (b) + (2j + 1)χ(B)

][
2τ̄NEW (F ) + (2l + 1)χ(F )

]

and these agree modulo 4.

(ii) If dimB = 4j + 2, dimF = 4l − 2, and dimE = 4(j + l) = 4k

sign(E) = 2(τ̄NEW (B)χ(F ) + χ(B)τ̄NEW (F )) + (2k + 1)χ(B)χ(F )

and χ(F ) ≡ χ(B) ≡ 0 mod 2, so sign(E) ≡ 0 mod 4.

(iii) If dimB is even, but dimF is odd, then both sides are zero.

This completes the proof of Theorem A. �

11. Fibrations of PD spaces

The conjecture of [9] is stated in a more general situation: for fibrations of
Poincaré duality spaces. We don’t know yet if the signature is multiplicative
mod 4 for such fibrations, and hope to return to this topic in a future paper. We
will just check that there are no counter-examples arising from finite coverings.
A formula for the Whitehead torsions in a fibration of Poincaré duality spaces
was given in [20].
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Recall that C. T. C. Wall constructed examples of finite coverings of oriented
Poincaré complexes X, with π1(X) = Z/p, p prime, and the property that

sign(X̃) 6= p · sign(X). On the other hand, the algebraic theory of surgery
gives the following congruence.

Lemma 11.1. Let (f, b) : Y → X be a degree one normal map of oriented,
finite Poincaré duality spaces. Then sign(Y ) − sign(X) ≡ 0 mod 8.

Proof. By [23, p. 229] any such degree one normal map has a quadratic signa-
ture σ∗(f, b), with the property that

sign(σ∗(f, b)) = sign(σ∗(Y )) − sign(σ∗(X))

and sign(X) = sign(σ∗(X)) for any Poincaré complex. On the other hand,
sign(σ∗(f, b)) ≡ 0 mod 8 since the signature of an even, unimodular symmetric
bilinear form over Z is divisible by 8 (see [8, 3.11]). �

Corollary 11.2. Let X ′ → X be a finite covering of degree d of oriented,
finite Poincaré complexes. Then sign(X ′) − d · sign(X) ≡ 0 mod 8.

Proof. For any finite covering X ′ → X of oriented, finite Poincaré duality
spaces, we can construct a degree one normal map

(f, b) : X ′ t −(d− 1)X → X .

Then Lemma 11.1 implies that

sign(X ′) − d · sign(X) = sign(X ′ t −(d− 1)X) − sign(X) ≡ 0 mod 8 .

�

12. Filtered chain complexes

In this section, we give a self-contained treatment of the absolute torsion of
signed filtered chain complexes. These results are the algebraic foundation for
the torsion calculations in this paper, but this section can be read indepen-
dently of the previous sections. The main results are the Invariance Theorems
12.14, 12.17, generalizing results previously obtained for the reduced torsion
by Milnor [17], Maumary [15], and Munkholm [18]. These results express the
absolute torsion τNEW (f) ∈ K1(A) of a filtered chain equivalence f : C → D
of signed filtered complexes in terms of the filtration quotients.

§12A. Filtered complexes. We first need some notation and definitions.

Definition 12.1. Let A be an additive category.

(i) A k-filtered object F∗M in A is an object M in A together with a direct
sum decomposition

M = M0 ⊕M1 ⊕ · · · ⊕Mk

which we regard as a length k filtration

F−1M = 0 ⊆ F0M ⊆ F1M ⊆ · · · ⊆ FkM = M
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with
FjM = M0 ⊕M1 ⊕ · · · ⊕Mj (0 6 j 6 k) .

(ii) A filtered morphism f : F∗M → F∗N of k-filtered objects in A is a
morphism in A of the type

f =




f0 f1 f2 . . . fk

0 f0 f1 . . . fk−1

0 0 f0 . . . fk−2
...

...
...

. . .
...

0 0 0 . . . f0




: M =
k⊕

s=0

Ms → N =
k⊕

s=0

Ns

so that
f(FjM) ⊆ FjN (0 6 j 6 k) .

The (u, v)-component of this upper triangular matrix is a morphism
fv−u : Mv → Nu, 0 6 u 6 v 6 k, where fj : M∗ → N∗−j , 0 6 j 6 k,
are graded morphisms in A.

(iii) A k-filtered complex F∗C in A is a finite chain complex C in A with k-

filtered objects Cr =
⊕k

s=0Cr,s such that the differentials d : F∗Cr →
F∗Cr−1 are filtered morphisms. The matrix components of d are maps
dj : Cr,s → Cr−1,s−j.

(iv) A filtered chain map f : F∗C → F∗D is a chain map f : C → D such
that fr : F∗Cr → F∗Dr is a filtered morphism in each degree. The
component maps have the form fj : Cr,s → Dr,s−j.

(v) A filtered chain homotopy g : f ' f ′ : F∗C → F∗D between filtered
chain maps f, f ′ is a collection {g : Cr → Dr+1 | r ∈ Z} of morphisms
in A such that

f − f ′ = dg + gd : Cr → Dr

and

g =




g0 g1 g2 . . . gk

g−1 g0 g1 . . . gk−1

0 g−1 g0 . . . gk−2
...

...
...

. . .
...

0 0 0 . . . g0




has component maps

gj : Cr,s → Dr+1,s−j (−1 6 j 6 k) .

(vi) A filtered contraction of a k-filtered complex F∗C in A is a filtered
chain homotopy

Γ: 1 ' 0: F∗C → F∗C .
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(vii) The filtered mapping cone of a filtered chain map f : C → D of k-
filtered complexes is the (k + 1)-filtered complex F∗C

fil(f) with

Cfil(f)r,s = Dr,s ⊕ Cr−1,s−1 (0 6 s 6 k + 1)

and the differential d Cfil(f) : Cfil(f)r → Cfil(f)r−1 is in upper triangu-
lar block form with 2 × 2 block entries (0 6 j 6 k + 1):

d
Cfil(f)
j =


 dD

j (−)r−1fj−1

0 dC
j


 : Dr,s ⊕ Cr−1,s−1 → Dr−1,s−j ⊕ Cr−2,s−j−1

�

The rearrangement map

Cfil(f)r =
k∑

s=0

(Dr,s ⊕ Cr−1,s−1)
∼=
−→

k∑

s=0

Dr,s ⊕
k∑

s=1

Cr−1,s−1 = C(f)r

define an isomorphism of unfiltered chain complexes ρ : Cfil(f)
∼=
−→ C(f).

Theorem 12.2. A filtered chain map f : F∗C → F∗D of k-filtered chain com-
plexes is a filtered chain equivalence if and only if the filtered mapping cone
F∗C

fil(f) is filtered contractible.

Proof. By definition, f is a filtered chain equivalence if and only if there exist
a filtered chain map g : F∗D → F∗C and filtered chain homotopies

Γ: 1 ' gf : F∗C → F∗C , ∆: 1 ' fg : F∗D → F∗D .

A filtered contraction e : 1 ' 0: F∗C
fil(f) → F∗C

fil(f) is of the type

e =

(
∆ h

(−)rg Γ

)
: Cfil(f)r

∼= Dr ⊕ Cr−1 → Cfil(f)r+1
∼= Dr+1 ⊕ Cr

with g : F∗D → F∗C a filtered chain map and Γ: 1 ' gf , ∆: 1 ' fg filtered
chain homotopies, so that f is a filtered chain equivalence.

Conversely, suppose that f is a filtered chain equivalence. The morphisms
defined by

e′ =

(
∆ 0

(−)rg Γ

)
: Cfil(f)r

∼= Dr ⊕ Cr−1 → Cfil(f)r+1
∼= Dr+1 ⊕ Cr

are such that the morphisms

de′ + e′d =

(
1 (−)r(fΓ − ∆f)
0 1

)
:

Cfil(f)r
∼= Dr ⊕ Cr−1 → Cfil(f)r

∼= Dr ⊕ Cr−1

are automorphisms. The morphisms

e = (de′ + e′d)−1e′ : Cfil(f)r
∼= Dr ⊕ Cr−1 → Cfil(f)r+1

∼= Dr+1 ⊕ Cr

define a filtered contraction e : 1 ' 0: F∗C
fil(f) → F∗C

fil(f). �
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§12B. The associated complex. We now describe how to pass from a fil-
tered complex to its associated graded complex. Notice that the differentials
d : Cr → Cr−1 of a k-filtered complex F∗C the identities

d2 = 0: Cr → Cr−2

lead to a number of recursion formulas among the component maps dj : Cr,s →
Cr−1,s−j by carrying out the multiplication d2 as a product of upper triangular
matrices. In particular, we have the formulas

(d0)
2 = 0: Cr,s → Cr−2,s ,

d0d1 + d1d0 = 0: Cr,s → Cr−2,s−1 ,

(d1)
2 + d0d2 + d2d0 = 0: Cr,s → Cr−2,s−2 .

Definition 12.3. The associated complex of a k-filtered complex F∗C in A is
the k-dimensional chain complex in the derived category D(A)

G∗(C) : Gk(C) → · · · → Gr+1(C)
d∗ // Gr(C)

d∗ // · · · → G0(C)

with differential

d∗ = (−)sd1 : Gr(C)s = Cr+s,r → Gr−1(C)s = Cr+s−1,r−1 .

The individual terms Gr(C) are objects in D(A), with ‘internal’ differential

dGr(C) = d0 : Gr(C)s = Cr+s,r → Gr(C)s−1 = Cr+s−1,r .

�

Example 12.4 (Tensor Products). Let C and D be chain complexes in A(R)
and A(S) respectively, where R and S are rings. If dimC = k, then the
tensor product complex C ⊗ D (over Z) admits a k-filtered structure with
(C ⊗D)r,s = Cs ⊗Dr−s for 0 6 s 6 k. The filtered differential is defined by

d0 = 1 ⊗ dD : Cs ⊗Dr−s → Cs ⊗Dr−s−1

d1 = (−)r−sdC ⊗ 1: Cs−1 ⊗Dr−s → Cs−1 ⊗Dr−s

and dj = 0 for j > 2. The associated complex has Gr(C ⊗D)s = Cr ⊗Ds and
differential d∗ = dC ⊗ 1: Cr ⊗Ds → Cr−1 ⊗Ds. �

When we work with the associated complex, it is useful to translate the
maps dj : Cr,s → Cr−1,s−j into the new notation, so that

dj : Gr(C)s → Gr−j(C)s+j−1 .

The relation d0d1+d1d0 = 0 then implies that d∗ : Gr(C) → Gr−1(C) is a chain
map. The relation (d1)

2 +d0d2 +d2d0 = 0 shows that (d1)
2 is chain homotopic

to zero, and hence (d∗)
2 = 0 in the derived category.

Proposition 12.5.

(i) A filtered chain map f : F∗C → F∗D induces a chain map in D(A)

G∗(f) : G∗(C) → G∗(D) .
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(ii) A filtered chain homotopy g : f ' f ′ : F∗C → F∗D induces a chain
homotopy in D(A)

G∗(g) : G∗(f) ' G∗(f
′) : G∗(C) → G∗(D) .

(iii) A filtered chain equivalence f : F∗C → F∗D induces a chain equiva-
lence G∗(f) : G∗(C) → G∗(D) in D(A).

(iv) A filtered chain contraction Γ: 1 ' 0: F∗C → F∗D induces a chain
equivalence G∗(Γ) : 1 ' 0: G∗(C) → G∗(D) in D(A).

Proof. (i) For a filtered chain map f : F∗C → F∗D the identities

df = fd : Cr → Dr

expressed in upper triangular matrix form lead to relations involving the com-
ponent maps fi and dj. In particular we obtain d0f0 = f0d0 : Cr,s → Dr−1,s

and the map Gr(f) = f0 : Gr(C) → Gr(D) is a chain map. The relation
d1f0 − f0d1 = f1d0 − d0f1 shows that (−)sf1 : Gr(C)s → Gr−1(D)s+1 gives a
chain homotopy d∗f0−f0d∗ ' 0, and so f0 gives a chain map G∗(f) : G∗(C) →
G∗(D) in D(A).

(ii) For a filtered chain homotopy g : f ' f ′ : F∗C → F∗D the identities

f − f ′ = dg + gd : Cr → Dr

expressed in upper triangular matrix form again lead to various relations. In
particular

d0g−1 + g−1d0 = 0: Cr,s → Dr,s+1 ,

f0 − f ′
0 = d0g0 + g0d0 + d1g−1 + g−1d1 : Cr,s → Dr,s .

In the G∗-notation, we have maps

gj : Gr(C)s → Gr−j(D)s+j+1 .

Since g0 : Gr(C)s → Gr(D)s+1 gives a chain null-homotopy d0g0 + g0d0 '
0: Gr(C) → Gr(D), the map

G∗(g) = (−)sg−1 : Gr(C)s → Gr+1(D)s

gives a null-homotopy f0 − f ′
0 ' 0 in the derived category D(A). Parts (iii)

and (iv) follow immediately from parts (i) and (ii). �

Theorem 12.6. (i) A k-filtered complex F∗C in A is filtered contractible if
and only if the associated complex G∗(C) is contractible in D(A).
(ii) A filtered chain map f : F∗C → F∗D of k-filtered chain complexes is a fil-
tered chain equivalence if and only if the associated chain map G∗(f) : G∗(C) →
G∗(D) is a chain equivalence in D(A).
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Proof. (i) A filtered contraction Γ: 1 ' 0: F∗C → F∗C induces a contraction
G∗(Γ) : 1 ' 0: G∗(C) → G∗(C) by Proposition 12.5 (iv).

Conversely, suppose given a contraction of G∗(C) in D(A)

e : 1 ' 0: G∗(C) → G∗(C) ,

as represented by chain maps e : (Gr(C), d0) → (Gr+1(C), d0), for which there
exist chain homotopies

h : 1 ' d∗e+ ed∗ : Gr(C) → Gr(C)

with

(−)s(d1e+ ed1) + d0h+ hd0 = 1: Gr(C)s = Cr+s,r → Gr(C)s = Cr+s,r .

In terms of the filtration on C, the maps h : Gr(C)s → Gr(C)s+1 and e : Gr(C)s →
Gr+1(C)s give maps hs : Cr,s → Cr+1,s and er,s : Cr,s → Cr+1,s+1. The relation
given by h : 1 ' d∗e+ ed∗ gives

(−)r+s(d1e + ed1) + d0h + hd0 = 1: Cr,s → Cr,s

Let êr,s = (−)r−1e, and define morphisms

β =




h 0 0 . . . 0
ê h 0 . . . 0
0 ê h . . . 0
...

...
...

. . .
0 0 0 . . . h




: Cr → Cr+1

The morphisms α : Cr → Cr defined by

α = dβ + βd : Cr → Cr

are in upper triangular form, with the identity on the main diagonal. For the
components in the (s+1, s) positions, note that we get (−)r−1d0e+(−)red0 =
0 since e a chain map. In the diagonal (s, s) positions we get the sum of
composites

Cr,s

(−)sd1
−−−−→ Cr−1,s−1

(−)re
−−−→ Cr,s Cr,s

(−)r−1e
−−−−→ Cr+1,s+1

(−)s+1d1
−−−−−→ Cr,s

Cr,s
d0−→ Cr−1,s

h
−→ Cr,s Cr,s

h
−→ Cr+1,s

d0−→ Cr,s

which equals (−)r+s(d1e + ed1) + d0h + hd0 = 1 by the relation above.
Each α : Cr → Cr is an automorphism, with

dα = dβd = αd : Cr → Cr−1 ,

α−1d = dα−1 : Cr → Cr−1 .

The morphisms

Γ = βα−1 : Cr → Cr+1
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are such that

dΓ + Γd = (dβ + βd)α−1 = 1: Cr → Cr ,

and define a filtered contraction of F∗C

Γ: 1 ' 0: C → C .

(ii) By Theorem 12.2 f is a filtered chain equivalence if and only if F∗C
fil(f)

is filtered contractible. By (i) F∗C
fil(f) is filtered contractible if and only if

G∗(C
fil(f)) = C(G∗(f)) is chain contractible. �

§12C. Splitting and Folding. In an additive category A we don’t neces-
sarily have kernels and cokernels, but we can define split exact sequences. A

direct sum system A oo
Γ

f
//
B oo

∆

g
//
C is a collection of morphisms in A such

that

(∆ f) : C ⊕ A→ B ,

(
g

Γ

)
: B → C ⊕ A

are inverse isomorphisms in A. Then we say that a morphism f : A→ B in A

is a split injection (respectively g : B → C is a split surjection) if the morphism
extends to a direct sum system. Then

0 → A
f

// B
g

// C → 0

is a short exact sequence in A if f and g can be extended to a direct sum
system. A short exact sequence of chain complexes in A is one which is short
exact in each degree.

There is a useful criterion for the existence of a split injection in the derived
category D(A), expressed in terms of any representative chain map f for a
given morphism.

Proposition 12.7. A morphism f : C → D in D(A) is a split injection if and
only if there exists a chain map Γ: D → C and a chain homotopy h : Γf '
1: C → C. If (Γ, h) exists, then there is a direct sum system

C oo
Γ

f
//
D oo

∆

g
//
C(f)

in D(A), with g =
(
1
0

)
: Dr → C(f)r = Dr ⊕ Cr−1 and

∆ = (1 − fΓ (−)r+1fh) : C(f)r = Dr ⊕ Cr−1 → Dr .

Proof. Assuming there exist such Γ, h we define a direct sum system in D(A)
by the given formulas. The chain maps

(∆ f) : C(f) ⊕ C → D ,

(
g

Γ

)
: D → C(f) ⊕ C
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are inverse chain equivalences, and the morphisms

e =




0 0 0
(−)rΓ −h (−)r+1

hΓ (−)r+1h2 h


 : Dr ⊕ Cr−1 ⊕ Cr → Dr+1 ⊕ Cr ⊕ Cr+1

define a chain homotopy

e :

(
g

Γ

)
(∆ f) ' 1: C(f) ⊕ C → C(f) ⊕ C .

The converse is clear. �

Corollary 12.8. Let f : C → D be a split injection in SD(A). Then

i∗τ
NEW (

(
g

Γ

)
) = i∗τ

NEW (∆ f) = 0 ∈ K iso
1 (A) .

Proof. This follows immediately from the last result and the formula in [11,
Prop. 13.6], since τNEW (f) = τNEW (C(f)). �

We will need a variant of the folding construction used by Whitehead [29]
to define the torsion of a contractible complex. Let

C : Ck
d // Ck−1

d // Ck−2 → · · · → C0

be a k-dimensional chain complex in A, such that the boundary map d : Ck →
Ck−1 extends to a direct sum system

Ck oo
Γ

d //
Ck−1 oo

∆

g //
C ′

k−1

We use this direct sum system to define the (k−1)-dimensional chain complex

C ′ : C ′
k−1

d∆ // Ck−2
d // Ck−3

// . . . // C0

in A, called the abelian k-folding of C. An elementary chain complex in A is a
contractible complex with non-zero chain groups only in two adjacent degrees.

Proposition 12.9. Let C ′ be the abelian k-folding of C, and let E be the

elementary chain complexes with Ck
1
−→ Ck in adjacent degrees (k, k−1). Then

there exist an isomorphism
(

i

j

)
: C ∼= C ′ ⊕ E with isomorphism torsion

τ iso(

(
i

j

)
) = (−)k−1τ iso(

(
g

Γ

)
: Ck−1 → C ′

k−1 ⊕ Ck) ∈ Kiso
1 (A) .

Proof. The chain isomorphism
(

i

j

)
: C → C ′ ⊕ E is defined by the diagram

Ck
d // Ck−1

d //

(g
Γ)

��

Ck−2
d // . . . // C0

Ck

(0
1) // C ′

k−1 ⊕ Ck

(d∆ 0)
// Ck−2

d // . . . // C0
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and the relations gd = 0, Γd = 1. �

§12D. The Invariance Theorem for filtered contractible complexes.
We will first establish the sign conventions for filtered complexes.

Definition 12.10. A k-filtered signed complex (F∗C, ηF∗C) in A is a k-filtered
complex C together with signs

ηG∗(C) ∈ im(ε : K0(SD(A)) ⊗K0(SD(A)) → K iso
1 (SD(A))) ,

ηGj(C) ∈ im(ε : K0(A) ⊗K0(A) → K iso
1 (A)) (0 6 j 6 k) .

The sign of F∗C and the sign of C (as an unfiltered complex) are set to be

ηF∗C = ηC = i∗ηG∗(C) + ηG0C⊕S(G1C⊕S(G2C⊕···⊕SGkC)...)

∈ im(ε : K0(A) ⊗K0(A) → K iso
1 (A)) .

The associated chain complex (G∗(C), ηG∗(C)) is a k-dimensional chain complex
in SD(A). We will usually denote this signed complex in D(A) just by G∗(C).

�

The sign conventions have been chosen so that for a filtered contractible
k-filtered signed complex (F∗C, ηF∗C) in A

τNEW (C, ηC) = τNEW (F∗C, ηF∗C) ∈ Kiso
1 (A) .

The underlying (unfiltered) complex of a filtered complex has a useful iter-
ated mapping cone description. Given a k-filtered chain complex F∗C in A, we
define chain complexes T`,r(C) = S−r(F`C/Fr−1C) with chain groups

T`,r(C)s = (F`C/Fr−1C)r+s = Cr+s,r ⊕ Cr+s,r+1 ⊕ · · · ⊕ Cr+s,`

for 1 6 r 6 ` 6 k. The differential on T`,r(C) is the one induced by d : C → C,
and the sign

ηT`,r(C) = ηGrC⊕S(Gr+1C⊕S(Gr+2C⊕···⊕SG`C)...)

Note that the definition Gr(C)s = Cr+s,r gives the formula

T`,r(C)s = Gr(C)s ⊕Gr+1(C)s−1 ⊕ · · · ⊕G`(C)r+s−` .

We use this expression to define maps

∂`,r : T`,r(C)s → Gr−1(C)s (1 6 j 6 k)

by the row matrix

∂`,r = (−)s(d1 d2 . . . d`−r+1)

where dj : Gr(C)s → Gr−j(C)s+j−1 are the entries in the matrix expression for
d. If ` = k we will set ∂r := ∂k,r to simplify the notation. We remark that
Gr(C) = Tr,r(C) and ∂r,r = d∗ : Gr(C) → Gr−1(C).

Proposition 12.11. Let (F∗C, ηF∗C) be a k-filtered signed complex in A.

(i) The maps ∂`,r : T`,r(C) → Gr−1(C) are chain maps.
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(ii) T`,r−1(C) = C(T`,r(C)
∂`,r
−−→ Gr−1(C)), for 1 6 r 6 ` 6 k, as signed

complexes.

(iii) There is a short exact sequence

T`1,r(C) → T`2,r(C) → S`1−r+1T`2,`1+1(C)

in SD(A), for 1 6 r 6 `1 < `2 6 k.

(iv) The signed complex (C, ηC−i∗ηG∗(C)) = Tk,0(C) as an object in SD(A).

Proof. The claim that ∂`,r is a chain map follows immediately from the relation
d2 = 0. Part (ii) follows directly from the definition, and part (iii) can be
checked inductively. Note that, according to our conventions, the sign term

ηC − i∗ηG∗(C) = ηG0C⊕S(G1C⊕S(G2C⊕···⊕SGkC)...)

is just the sign of the iterated mapping cone structure on Tk,0(C). �

Definition 12.12. Let (F∗C, ηF∗C) be a k-filtered signed complex in A. The
(k − 1)-amalgamation of (F∗C, ηF∗C) is the (k − 1)-filtered signed complex
(F∗C

′, ηF∗C′) in A with filtration summands

C ′
r,s = Cr,s, if 0 6 s < k − 1 and C ′

r,k−1 = Cr,k−1 ⊕ Cr,k

in each degree r. The differentials d′j = dj except in filtration degree k − 1,
where

d′j =

(
dj dj+1

0 dj

)
: Cr,k−1 ⊕ Cr,k → Cr−1,k−1−j ⊕ Cr−1,k−j

and

Gr(C
′) =

{
Gr(C) if 0 6 r 6 k − 2

C(Gk(C)
∂k−→ Gk−1(C)) if r = k − 1 .

where ∂k := ∂k,k. The signs are given by the formulas

ηG∗(C′) = ηG∗(C) ,

ηGj(C′) =

{
ηGj(C) if 0 6 j 6 k − 2

ηGk−1(C)⊕SGk(C) if j = k − 1 .

�

Lemma 12.13. Gk−1(C
′) = C(Gk(C)

∂k−→ Gk−1(C)) as objects in SD(A).

Proof. The associated (k−1)-dimensional chain complex G∗(C
′) in SD(A) has

the differential d′∗ : Gr(C
′) → Gr−1(C

′) given by

dG∗(C′) =

{
d∗ : Gj(C) → Gj−1(C) if 0 6 j 6 k − 2

∂k−1 : C(Gk(C)
∂k−→ Gk−1(C)) → Gk−2(C) if j = k − 1 .
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Since Gk−1(C
′) = Gk−1(C) ⊕ SGk(C), the signs on Gk−1(C

′) and C(∂k) agree.
�

Note that ηG0C′⊕S(G1C′⊕S(G2C′⊕···⊕SGk−1C′)...) is the sign of the new iterated
mapping cone structure on C, and so ηF∗C′ = ηF∗C = ηC as required,

Theorem 12.14 (Invariance). For a filtered contractible k-filtered signed
complex (F∗C, ηF∗C) in A

τNEW (C, ηC) = i∗τ
NEW (G∗(C), ηG∗(C)) ∈ Kiso

1 (A) .

Proof. The proof is by induction on k. The result is true for k = 0, since in that
case (G∗(C), ηG∗(C)) is concentrated in degree 0, and ηC = i∗ηG∗(C) + ηG0(C).
Therefore

i∗τ
NEW (G∗(C), ηG∗(C)) = τNEW (G0(C), ηG0(C)) + i∗ηG∗(C) = τNEW (C, ηC) .

So assume that k > 1, and that the result is true for (k−1). Let (F∗C
′, ηF∗C′)

be the (k− 1)-amalgamation of C. ¿From the construction of F∗C
′, it is clear

that

τNEW (F∗C, ηF∗C) = τNEW (F∗C
′, ηF∗C′) ∈ Kiso

1 (A) ,

and by the inductive hypothesis

τNEW (F∗C
′, ηF∗C′) = i∗τ

NEW (G∗(C
′), ηG∗(C′)) ∈ Kiso

1 (A) .

By Proposition 12.5 (iv) a filtered contraction Γ: 1 ' 0: C → C of (F∗C, ηF∗C)
determines a contraction

G∗(Γ) : 1 ' 0: G∗(C) → G∗(C)

of the associated k-dimensional chain complex G∗(C) in the signed derived
category SD(A) with

Gr(Γ) = (−)sΓ−1 : Gr(C)s = Cr+s,r → Gr+1(C)s = Cr+s+1,r+1 .

In particular, the chain maps

∂k = d∗ : Gk(C) → Gk−1(C) , Γ−1 : Gk−1(C) → Gk(C)

are related by a chain homotopy

Γ0 : Γ−1∂k ' 1: Gk(C) → Gk(C) .

Now Proposition 12.7 gives a direct sum system in SD(A)

Gk(C) oo
Γ−1

∂k //
Gk−1(C) oo

∆

g
//
C(∂k) .

This defines a k-splitting of G∗(C), and by Lemma 12.13 the associated amal-
gamated complex G∗(C

′) is the corresponding abelian folding. By Proposition
12.9 there is defined an isomorphism of chain complexes in SD(A)

(
i

j

)
: G∗(C) ∼= G∗(C

′) ⊕ E
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where E is the elementary complex in SD(A) given by Gk(C)
1
−→ Gk(C) in

degrees (k, k − 1). Since ηG∗(C) = ηG∗(C′)⊕E, the formula in Proposition 12.9

for τ iso( i

j
) gives

i∗τ
NEW ( i

j
) = (−)k−1τNEW

((
g

Γ−1

)
: Gk−1(C) → C(∂k) ⊕Gk(C)

)
∈ Kiso

1 (SD(A)) .

By Corollary 12.8 this torsion has image

i∗τ
NEW ( i

j
) = 0 ∈ K iso

1 (A) ,

so that
i∗τ

NEW (G∗(C)) = i∗τ
NEW (G∗(C

′) ⊕ E)

= τNEW (G∗(C
′)) ∈ Kiso

1 (A)

which gives the inductive step

τNEW (F∗C, ηF∗C) = τNEW (F∗C
′, ηF∗C′)

= i∗τ
NEW (G∗(C

′), ηG∗(C′))

= i∗τ
NEW (G∗(C), ηG∗(C)) ∈ Kiso

1 (A) .

�

§12E. The Invariance Theorem for filtered chain equivalences. We
have already defined the filtered mapping cone F∗C

fil(f) of a filtered chain
map (see Definition 12.1 (vii)), with associated complex G∗(C

fil(f)) given by

Gr(C
fil(f))s = Gr(D)s ⊕Gr−1(C)s ,

but now we need the signed version.

Definition 12.15. The filtered signed mapping cone (F∗C
fil(f), ηF∗Cfil(f)) of a

filtered chain map is the (k+1)-filtered signed complex defined by the filtered
mapping cone F∗C

fil(f) with sign terms

ηG∗(Cfil(f)) = ηG∗(D)⊕SG∗(C)

= −β(G∗(D), SG∗(C)) + ε(G∗(D)odd, χ(SG∗(C)) + ηG∗(D) − ηG∗(C)

∈ im(ε : K0(SD(A)) ⊗K0(SD(A)) → K iso
1 (SD(A))) ,

ηGr(Cfil(f)) = ηGr(D)⊕Gr−1(C)

∈ im(ε : K0(A) ⊗K0(A) → K iso
1 (A)) (0 6 r 6 k + 1) .

�

With these sign conventions, the rearrangement map ρ : Cfil(f) → C(f) is a
simple isomorphism.

Lemma 12.16. τNEW
(
(Cfil(f), ηCfil(f))

ρ
−→ (C(f), ηC(f))

)
= 0 ∈ K iso

1 (A).
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Proof. The proof is by induction on k. The result is true for k = 0, since in
that case F∗C

fil(f) = C(f), with Cfil(f)r,0 = Dr and Cfil(f)r,1 = Cr−1, and
ηF∗Cfil(f) = ηC(f).

Assume that k > 1, and that the result is true for (k − 1). Let

f ′ : (F∗C
′, ηF∗C′) → (F∗D

′, ηF∗D′)

be the chain equivalence of the (k − 1)-amalgamations induced by f , with

τNEW ((Cfil(f ′), ηCfil(f ′)) → (C(f), ηC(f))) = 0 ∈ K iso
1 (A)

by the inductive hypothesis. By Proposition 12.11 the unfiltered complex
C(f) = C(f ′) has two iterated mapping cone descriptions: from the signed
filtered complexes F∗E = Cfil(f) and F∗E

′ = Cfil(f ′) respectively, we have
signed complexes Tk,0(E) and Tk,0(E

′), and a commutative diagram

Tk−2,0(E) // Tk+1,0(E) //

��

Sk−1Tk+1,k−1(E)

��

Tk−2,0(E
′) // Tk+1,0(E

′) // Sk−1Tk+1,k−1(E
′)

But ηE = ηE′, so the rearrangement map ρ : E → E ′ has same absolute
torsion as the following composite (distribute S, then interchange)

Sk−1
(
Gk−2(C) ⊕ S

(
Gk(D) ⊕Gk−1(C) ⊕ SGk(C)

))

1⊕S
��

Sk−1
(
Gk−2(C) ⊕ SGk(D) ⊕ S

(
Gk−1(C) ⊕ SGk(C)

))

flip⊕ 1
��

Sk−1
(
SGk(D) ⊕Gk−2(C) ⊕ S

(
Gk−1(C) ⊕ SGk(C)

))

since Tk−2,0(E) = Tk−2(E
′). Therefore

τNEW (E → E ′) = (−)k−1i∗ε(Gk(D), Gk(C)⊕SGk−1(C)⊕Gk−2(C)) ∈ K iso
1 (A)

from the formulas in [11, Lemma 7]. By Proposition 12.11,

τNEW (Cfil(f) → C(f ′)) = τNEW (E → E ′) + i∗ηG∗(E′) − i∗ηG∗(E)

where the sign term from the filtered mapping cones is

ηG∗(E) − ηG∗(E′) = −β(G∗(D), SG∗(C)) + ε(Godd(D), χ(SG∗(C)))

+β(G∗(D
′), SG∗(C

′)) − ε(Godd(D
′), χ(SG∗(C

′)))

We first notice that Godd(D) − Godd(D
′) = Gk(D) and

i∗χ(SG∗(C)) = i∗χ(SG∗(C
′))
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since Gk−1(C
′) = Gk−1(C) ⊕ SGk(C). Therefore

i∗ε(Godd(D), χ(SG∗(C))) − i∗ε(Godd(D
′), χ(SG∗(C

′)))

= i∗ε(Gk(D), χ(SG∗(C))) = −i∗ε(Gk(D), χ(G∗(C))) .

For the β-terms, we observe that β(G∗(D), SG∗(C)) = β(G∗(D), SG∗(C
′)),

and compute

i∗β(G∗(D), SG∗(C
′)) − i∗β(G∗(D

′), SG∗(C
′))

= (−)ki∗

[
ε(Gk(D),

∑
j≥1

Gk−2j−1(C)) − ε(Gk(D),
∑
j≥2

Gk−2j(C))

]
.

It follows that

i∗ηG∗(E) − i∗ηG∗(E′) = (−)k−1i∗ε(Gk(D), Gk(C) ⊕ SGk−1(C) ⊕Gk−2(C))

so the sign terms cancel and τNEW (Cfil(f) → C(f ′)) = 0 as required. �

We proceed now to the statement of the Invariance Theorem. It is imme-
diate from the definitions that the associated complex of the filtered mapping
cone (F∗C

fil(f), ηF∗Cfil(f)) of a chain map f : (F∗C, ηF∗C) → (F∗D, ηF∗D) of k-
filtered signed complexes in A is the mapping cone of the associated chain
map G∗(f) : (G∗(C), ηG∗(C)) → (G∗(D), ηG∗(D)) in the signed derived category
SD(A), so we have

(G∗(C
fil(f)), ηG∗(Cfil(f))) = (C(G∗(f)), ηG∗(D)⊕SG∗(C)) .

By Theorem 12.6, the filtered chain map f is a filtered chain equivalence if
and only if G∗(f) is a chain equivalence, or C(G∗(f)) is contractible.

Theorem 12.17 (Invariance). The torsion of a filtered chain equivalence
f : (F∗C, ηF∗C) → (F∗D, ηF∗D) of k-filtered signed complexes is

τNEW (f) = i∗τ
NEW (G∗(f)) ∈ K iso

1 (A) .

Proof. By definition

τNEW (G∗(f)) = τNEW (C(G∗(f))) ∈ K iso
1 (SD(A))

so we have the formulas

i∗τ
NEW (G∗(f)) = i∗τ

NEW (C(G∗(f)))

= i∗τ
NEW (G∗(C

fil(f)))

= τNEW (Cfil(f), ηCfil(f))

= τNEW (C(f), ηC(f))

= τNEW (f) ∈ K iso
1 (A) .

�
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§12F. The filtered dual complex. Let (A, ∗) be an additive category with
involution (see [26]). We now define an involution on a sub-category of the
additive category SD(A) (following [11, §3]).

Definition 12.18. Given a signed chain complex C in A, the n-dual signed
chain complex is (Cn−∗, ηCn−∗), where

dCn−∗ = (−1)rd∗C : Cn−r = (Cn−r)
∗ → Cn−r+1

and the sign

ηCn−∗ = (−)n(ηC)∗ + β(C,C) + αn(C) ∈ K iso
1 (A)

where
αn(C) =

∑

r≡n+2, n+3 (mod4)

ε(Cr, Cr) ∈ Kiso
1 (A) .

For any integer n ≥ 0, let SPDn(A) denote the full sub-category of SD(A)
whose objects are signed chain complexes (C, ηC) in A with dimC = n, such
that Cn−∗ is chain equivalent to C and χ(C) = 0 for n odd. �

Remark 12.19. The condition that χ(C) = 0 when n is odd is necessary to
ensure that C 7→ Cn−∗ is an additive functor on SPDn(A). This condition
and the requirement that Cn−∗ be chain equivalent to C are both satisfied (by
duality) for symmetric Poincaré n-complexes of R-modules, and these are the
main objects of interest in the rest of the paper.

Example 12.20. Let A = A(R) denote the additive category of finitely
generated based free modules over a ring R with involution. Then A(R)
has an involution ∗ : A(R) → A(R) (see [26]), and we get an involution on
SPDn(R) := SPDn(A(R)) given by

∗ : C 7→ Cn−∗

∗ : (f : C → D) 7→ (fn−∗ : Dn−∗ → Cn−∗)

(see [11]) �

We will now define the filtered dual F dual
∗ C of a k-filtered complex F∗C (un-

der some filtration assumptions to ensure that each Gr(C) is an n-dimensional
chain complex). It will turn out that the associated complex G∗(F

dualC) is the

k-dual of G∗(C). Our main example is the k-filtered chain complex F∗C(Ẽ) of
the total space of a fibre bundle F → E → B, where dimB = k and dimF = n
(see Section 5).

Definition 12.21. Let F∗C be a k-filtered (n+k)-dimensional chain complex
in A(R).

(i) We say that F∗C is n-admissible if
(a) Cr,s = 0 unless 0 6 s 6 k and 0 6 r − s 6 n.
(b) (GrC)n−∗ is chain equivalent to GrC.
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(ii) We define the filtered dual F dual
∗ C of F∗C to be the (n + k)-filtered

complex with modules (F dual
∗ C)r,s = C∗

n+k−r,k−s for 0 6 s 6 k and dif-

ferentials ddual : (F dual
∗ C)r → (F dual

∗ C)r−1 the filtered morphism given
by the upper triangular matrix with components

ddual
j = (−)r+s+j(n+r)d∗j : C∗

n+k−r,k−s → C∗
n+k−r+1,k−s+j .

The associated complex of F dual
∗ C will be denoted G∗(F

dualC).

(iii) We define the signed filtered dual of F∗C as follows: Since F∗C is
n-admissible G∗C may be considered to lie in SPDn(R). This is a
category with involution so the dual sign η(G∗C)k−∗ ∈ Kiso

1 (SPDn(A(R))
is defined. We have an obvious functor SPDn(R) → SD(R) so we may
consider η(G∗C)k−∗ to lie in K iso

1 (SD(R)). We define the signed filtered
dual of F∗C to be the signed filtered complex whose underlying filtered
chain complex is F dual

∗ C and with signs:

ηG∗(F dualC) = η(G∗C)k−∗ ∈ Kiso
1 (SD(R))

ηGr(F dualC) = ηGk−r(C)n−∗ ∈ Kiso
1 (R)

�

Remark 12.22. It follows from the condition (GrC)n−∗ is chain equivalent to
GrC that χ(F∗C) is zero if n is odd.

Lemma 12.23. The associated complex G∗(F
dualC) of the filtered dual of F∗C

is the k-dual of G∗(C) in SPDn(A).

Proof. We have Gr(F
dualC)s = (F dual

∗ C)r+s,r = C∗
n+k−r−s,k−r by definition.

The internal differential d0 : Gr(F
dualC)s → Gr(F

dualC)s−1 on this term is
given by (−)sd∗0. On the other hand, Gk−r(C)n−s = C∗

k−r+n−s,k−r, so the
dual complex has the same chain groups as the associated complex. The
differential on Gk−r(C)n−s is again (−)sd∗0, since dimGk−r(C) = n. The signs
on G∗(F

dualC) were defined to agree with those of the k-dual of G∗(C), and in
particular Gr(F

dualC) = (Gk−rC)n−∗ as signed chain complexes, for 0 6 r 6

k. �

We define the map

(12.24) θF∗C : Cn+k−∗ → F dual
∗ C

as the direct sum of the following sign maps on the (r, s)-summands of the
underlying modules:

(−)s(n+r+1) : C∗
n+k−r,k−s → C∗

n+k−r,k−s

Lemma 12.25. θF∗C is a chain equivalence of (unfiltered) complexes.
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Proof. We have a commutative diagram

C∗
n+k−r,k−s

(−)s(n+r+1)

//

(−)rd∗j
��

C∗
n+k−r,k−s

(−)r+s+j(n+r)d∗j
��

C∗
n+k−r+1,k−s+j

(−)s(n+r)+j(n+r)

// C∗
n+k−r+1,k−s+j

where the vertical maps are the components of the differential on Cn+k−∗ and
F dual
∗ C respectively. �

Proposition 12.26. Let F∗C be an admissible, signed, k-filtered chain complex
over A(R), with dimC = n+ k. Then τNEW (θF∗C : Cn+k−∗ → F dual

∗ C) = 0.

Proof. The proof will be by induction on m(C), defined as the smallest integer
m such that FmC = C. Suppose first that m(C) = 0. Then Cr = Cr,0 and
Gr(C) = 0 unless r = 0. We still allow non-zero signs ηGr(C) ∈ K1(Z) if r > 0.
The map θF∗C : Cn+k−r → Cn+k−r has absolute torsion

τNEW (θ) =
n+k∑
r=0

τ iso((−)k(n+r+1)) + ηF dual
∗ C − ηCn+k−∗

= k · χ(Codd) + k
2
(k + 1)χ(C) + αn+k(C) + αn(C)

=





0
χ(Codd)
0
χ(Codd)

+





0
χ(C)
χ(C)
0

+





0
χ(Ceven)
χ(C)
χ(Codd)

for k ≡





0
1
2
3

mod 4

= 0 ∈ K1(Z) .

We now move on to the inductive step. Let m = M(C) > 0 for F∗C and let
F∗C

′ be the m-amalgamation of F∗C, considered as a k-filtered complex, with

C ′
r,s =




Cr,s s < m− 1
Cr,m−1 ⊕ Cr,m s = m− 1
0 s > m− 1

with signs ηG∗(C′) = ηG∗(C) and

ηGr(C′) =

{
ηGr(C) r 6= m− 1

ηGm−1(C)⊕SGm(C) r = m− 1

Note that M(C ′) = m − 1, and that C = C ′ as unfiltered signed chain com-
plexes. Then we have a commutative diagram:

Cn+k−∗
θF∗C //

θF∗C′ %%K
KKKKKKKKK

F dual
∗ C

F dual
∗ C ′

σ

99ttttttttt
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with the map σ : F dual
∗ C ′ → F dual

∗ C induced by the maps on the underlying
modules: σ = (−)k+1+r : C∗

r,m → C∗
r,, and otherwise σ = 1. By our inductive

assumption, τNEW (θF∗C′) = 0, so it remains to compute τNEW (σ).
We use the k-filtered complexes FC and F∗C

′ to express C and C ′ as an
iterated mapping cones. Then

τNEW (σ) = τ iso(σ) + i∗ηG(F dualC) − i∗ηG(F dualC′) ∈ K1(Z) = Z/2

where τ iso(σ) is the sum of the term

τNEW ((−)k+m+n+s+1 : Gm(C)n−s → S(SGm(C)n−s)) = (1+k+m+n)·χ(Gm(C))

by [11, Lemma 18], plus the torsions of rearrangements of the direct sum

Sk−m(Gm(C)n−∗ ⊕ S(Gm−1(C)n−∗ ⊕ S(Gm−2(C)n−∗ ⊕ . . . ) . . . ))

Note that the chain groups Gm(C)n−s = S(SGm(C)n−s), although these chain
complexes have different signs on their differentials. Let X = SGm(C), Y =
Gm−1(C) and Z = S(Gm−2(C)n−∗ ⊕ . . . ) . . . ). Then we rearrange by

SXn−∗ ⊕ S(Y n−∗ ⊕ Z)
a
−→ S(Xn−∗ ⊕ Y n−∗ ⊕ Z)

b
−→ S((X ⊕ Y )n−∗ ⊕ Z)

c
−→ S((Y ⊕X)n−∗ ⊕ Z)

The formulas of [11, Lemma 7] give

τNEW (a) + τNEW (b) + τNEW (c) = ε(Gm(C), Gm−2(C) ⊕ · · · ⊕G0(C)) .

Now the sign term i∗ηG(F dualC) − i∗ηG(F dualC′) is the sum of two terms

αk(G∗(C)) − αk(G∗(C
′)) = (1 + k +m+ n) · χ(Gm(C))

and

β(G∗(C),G∗(C)) − β(G∗(C
′),G∗(C

′)) = ε(Gm(C), Gm−2(C) ⊕ · · · ⊕G0(C))

so τNEW (σ) = 0. Hence τNEW (θF∗C) = τNEW (θF∗C′) = 0 as required. �

Example 12.27 (Tensor Products). The following special case is used in de-
riving the product formula for the absolute torsion of symmetric Poincaré
spaces (see Proposition 6.5).

Lemma 12.28. Let C and D be chain complexes of dimension over A(R) and
(A(S)) respectively, where R and S are rings with involution. Let dimC = k
and dimD = n. Then we have a chain equivalence

θC⊗D : (C ⊗D)n+k−∗ → Ck−∗ ⊗Dn−∗

given by

θC⊗D = (−)(k+n+r)(s+n) : Ck−r ⊗Dn−s → Ck−r ⊗Dn−s

Moreover

τNEW (θC⊗D) = 0 ∈ K1(R⊗ S)
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Proof. The associated complex of F∗(C
k−∗ ⊗Dn−∗) is given by

G∗(C
k−∗ ⊗Dn−∗) : . . .→ Ck−r ⊗Dn−∗ (−)rd∗

C
⊗1

−−−−−−→ Ck−r+1 ⊗Dn−∗

thus G∗(C
k−∗ ⊗ Dn−∗) = G∗(C ⊗ D)k−∗ considered as the k-dual of a chain

complex in SPDn(A(R⊗S)). Hence F∗(C
k−∗⊗Dn−∗) = F dual

∗ (C⊗D); moreover

θC⊗D = θF∗(C⊗D) : (C ⊗D)n+k−∗ → F∗(C
k−∗ ⊗Dn−∗) = F dual

∗ (C ⊗D)

The result now follows from Proposition 12.26. �
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