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o. Let D C f'2 be an algebraic curve and let D = D 1 n... nDn be the decomposition
of D into the irreducible components. Let L oo C p2 be a straight line and define

2 2 --- 2 .C = Ir' \ Loo , D i = D i n C . By fi(X, y) = 0 denote an equatlon of D i , where
!i(X, y) E C[x, y] is an irreducible polynomial.

Let m = (mI, , m n ) E Nn be a vector with positive integer coordinates. Put
mo = GCD(ml, , m n ) and mi = mi/mO'

The vector mprim = (m~, ... , m~) is called primitive.
By

(1) Fm : X = C2
\ D ~ C· = C \ {O}

denote the morphism defined by the equation

n

Z = II fimi(X, y)
i=l

We shall assurne that the following condition is satisfied:

(*) A generic fiber F';;l(Z) = Y z is connected.

If D is connected in C2
, then Fm satisfies the condition (*).

In the paper [K3J, some properties of the m-Alexander polynomial of a curve D
(see the definition of the m-Alexander polynomial in n.1.2) were described in the
case of m = (1, .. ,,1). Also in [1(3], the irregularity q(X k) of a nonsingular surface
X k, which is birationally isomorphie to the surface defined by the equation

n

zk = II !i(X, y),
i=l

was calculated in the case of transversal interseetions of curves D i .

The purpose of this paper is to extend the results of [K3] to the case of general
m.

The basic references for this subject are [Zl], [Z2], [MI], [8-8], [Lib].

Acknowledgement. I would like to thank Max-Planck-Institut für Mathematik
(Bonn) for hospitalily and support during the preparation of this paper.

1. It is weil known that there exists a finite subset

such that

2



is a locally trivial fibering of dass Coo. As in [1(3], let Bi be a disk of center Zi

and radius ri <t: 1 , and let aBi be its boundary. Choose two distinct points Zi,l )

Zi,2 belonging to aBi. The points Zi,l , Zi,2 divide aBi into two arcs Ti,l and 1'i,2.

Choose non-interseeting paths 1'i eonneeting the points Zi,l and Zi+I,2 (Zn+I,2 = zl,2
), and let Ti,l be the are of aBi such that lin = (U1'i,l) U (U1'd is the boundary
of a restricted set V containing the origin 0 E Cl ) and such that Zi t/. V for all
i, 1 :s; i :s; n . Let lex be the boundary of the set V U (uBd. Put T = (UBd U(U1'd
. The set Z = F.,;l (T) is called an m-necklace of D .

Since T is a retract of C· and the fibering F;n : X \ Z -+ C· \ T is a locally
trivial of dass Coo) we have the following

Proposition 1. H D and m satisfy the conditioll (*), then X = «::2 \ D and the
necklace Z of D are bomotopic.

Thus 1t"1(C2 \ D) ~ 1t"1(Z) and moreover we have the following commutative
diagrarn

1t"1 (C2 \ D) t-l--

Fm ·1

where 1FI is a free group, rgfl = 1.
If m is a primitive veetor, then Fm. is an epimorphism.
Let Zo E l' C TU lin U lex be a point and let Y = F~I(ZO) be the fiber over Zo •

The embedding Y C Z induces the homomorphism 7j.J : 1t"l(Y) -+ ?TI(Z), Obviously,
Im'ljJ C K erFin • . As in [1(3], it is easy to show, that the following theorem is true.

Theorem 1. Jf D C (;2 and a vectorm satisfy the condition (*), t]len tbe following
sequence

---tl 1

is exact.

Corollary 1. H D C C2 and a vector m satisfy tJle condition (*), then

N = [(erFnu

is a nnitely generated group.

1.2. The inclusions Y C Zin(ex) C Z and the morphism Fm give the following
COffilDutative diagrarn

(2)

1

1

1

I ?Tl (Y)
O'i ...

I 7ft(Zin)
Fm.

I 1FI

1~ !ßi... 1J

N
0'

7ft (Z) Fm.
I 1FtI

j~ jßft~ jJ
I 7f] (Y) O'e~

I ?T](Zex) Fm.
I ~\
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The maps Fm : Zin -+ lin and Fm : Zex -+ lex are locally trivial fiberings. Thus all
rows in this diagrarn are exact.

Let N' = [N, N] be the commutator subgroup of N , (N/N')Tor the sub­
group of N/N' consisting of all eleluents of finite order, and let (N/N')Free =
(N/N')/(N/N')Tor be the factor group.

The middle row of (2) determines the action of a generator T E IF\ on N / N' ,
and, consequently, determines the action of T on (N/N')Free. We shall denote this
automorphism by hm. .

Similarly, the upper and lower rows in (2) define the action of T E IF\ on H 1(Y).
We shall denote these automorphisms by hm,in and hm,ex , respectively.

Definition. The polynomial ~m(t) = det( h - tId) is called the m-Alexander poly­
nomial oE a curve D. The polynomials Ö:in,in = det(hm,in - tld) and ~m,ex =
det( hm,ex - tId) are called the internal and external polynomials oE a Cllrve D ,
respectively.

Theorem 2. Tlle polynomial ßm,D(t) is a divisor 01 GCD(ßm,in(t), ßm,ex(t)).

Proof. The same as the proof of Theorem 4 in [K3].

1.3. The morphism F"rll defines a rational map

Let u : 1P'2 --+ p2 be a composition of a-processes such that the following condi­
tions are satisfied:

(i) Fm = Fm . U : p2 -+ pI is a morphisffij
- - -] - - -1

(ii) the reduced fibers YO,red = Fm (O)red, Y oo,red = Fm (00 )red are divisors
with normal crossingsj

(iii) the divisor u- 1(L oo )red is a divisor with normal crossings.
Let u-1 (Loo)red = Loo UR be a decomposition such that for each component R i

of R the image FmCRd is a point and Fm(Loo,i) = p] for each component Loo,i of
L oo •

- -1 - - -1 -
Let Yo = Fm (0) \ Loo and Y00 = Fm (00) \ Loo be the fibers of the morphism

- -2 - 1
Fm : r \ L oo --+ P ,and let

No

Yo = LmiDi,
i=]

Noo

Yoo = LriRi
i=1

be the decompositions into irreducible components. Pllt

D~ = Di \ (Uj~i(Di n Dj)),

R~ = Ri \ (Uj~i(Ri n Rj)).

Evidently, hin;m and hex,rn are the monodromy operators induced by circuits
BIound the fibers Yo and Y00, respectively.
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It is weil known (see, for instance, [A 'CD, that

(3)

(4)

No

ßm,in(t) = (t - 1) rr(t mi
- l)-X(D?),

i=1

N(>:I

ßm,ex(t) = (t - 1) rr (tri - l)-X(R~),

i=l

where X(M) is Euler characteristic of aspace M.

Corollary 2. The roots of the polynomial ßm,D(t) are roots of umty.

Remark 1. H D = D 1 U ... U D n intersects transversally with L oo , tben

wbere di = degDi .

2. In this section we shall describe a purely algebraic approach to the definition
of T1l-Alexander polynomials. This approach coincides with the geometrie one de­
scribed above.

Let I q = {1, 2, .", q} be a seglnent of N, M C I; = I q x I q x I q a subset and
IMI = #M the cardinality of M.

Definition. A group G is called a C-group of type M, if G possesses the following
corepresentation

(5)

where for ° = (01,02, (3) tbe relation

is a conjugation (the letter "C" in "C-group" is the nrst letter of tbe word "conju­
gation").

2.1. Example~ of C-groups:
(1) The free group IFn'

(2) The free abelian group Abn .

(3) The braid group B n .

(4) Groups of knots and links (with the Wirtinger corepresentation).
(5) The fundamental groups 7rl «:2 \ D) of complements of plane algebraic curves

D (with the corepresentation from [1(1]).

2.2. To any C-corepresentation of type M we can assodate an oriented graph r M

with verteces VI, ... , V q , and with edges eo , 0:' E M. The edge eo connects the vertex
V02 with VOa ,where a = (0:'1,0:'2,0:'3),

It is easy to prove the following
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Lemma 1. (cf. (K3J) Let G he a C-group oE type M , and G' = [G, G]. Tben
G / G' = zn, where n is the number oE COllnected components oE the graph r M .

A C-group G of type M is called an irreducible C-group if its graph r M IS

connected.
Let r M = r 1 U... Urn be a decomposition into connected components. For each

rj, let l(j) = {i E Iqlvi f!, r j }. The group

is called an irreducible component of a C-group G of type M, and we shall say that
the C-group G is composed of n irreducible components Gj .

Let G be a C-group composed of n irreducible components. Then for m =
(mI, ... , m n ), let

(6) Fm. : G -. m\ =< r I 0 >

be the homomorphism such that

for each generator Xj of G, where m(j) = mi for j E lq \ lei). Obviously, Fm. is
an epimorphism if and only if mo = GCD(mll"" ffi n ) = 1. In general

where (mo) : F1 -. F1 is defined by (mo)(r) = r mo . Put N = KerF"nul the kernel
of Fm •.

Remark 2. HG = 7rl (C2 \ D) and the corepresentation of G comcides with the
corepresentation from {Kl}, then the homomorphism (6) coincides with the homo­
morpmsm induced by the morphism (1) in the case m = mprim'

2.3. Following [M2], to each C-group G we associate a two-dimentional finite con­
nected simplicial complex K with a single vertex X o and I-skeleton of which is a
union of q oriented loops Si. The loops Si are in one to one correspondence with
the generators Xi of G. The complement

is a disjoint union of open disks. For Q = (0'1l 0'2) 0'3) the disk So is glued to the
I-skeleton along the path SOl S02S;11 s;;. Evidently, 7rI (K, xo) ~ G.

The homomorphism Fm. : G ---+ F1 defines an infinite cyclic covering f : K -. K
such that 7rl(.K) = N and HI(K, Z) = N/N' (here we are assuming that m is a
primitive vector).
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Let Ko = f-l{x o ) and K1 be the I-skeleton of K. We have the following exact
sequences:
(7)
H2 {K,K1) Il I H1{K},Ko) &I I H1{K,Ko) 0

o

11

NIN'

11

--+1 H]{K,Ko) ---+1 Ho{Ko)
a

The action of F] on K defines the structure of a Z[t, t-] ]-module on each term of
these sequences.

We shall describe these actions. For this we fix Po, which is one of vertices of
K. Let Pi = t iPo be the image of the action of Ti E IF] at the point Po. Then
Vj, j = 1, '00' q, are the generators of a free Z[t, t-] ]-module H] (K], Ko), where Sj
is an edge starting at the point po, ending at the point Pm(j) and covering the loop
S j. The image tiSj of the action of Ti at Sj is the edge starting at the point Pi and
covering S j .

The description of the action of F] on H] (K) is the same as the description of
the action on H] (K], Ko).

Remark 3. It is easy to see that the action oE 1E\ on H] (K) ~ N IN', described
above, is the same as the action on N IN' induced by tbe exact sequence

1 ---+l NIN' GIN' Fm. TI<'---+1 • 1['] ---+1 1

The generators of the free Z[t, t-l]-module H 2 {K, K]) are disks Sn glued to the
I-skeleton along the paths S U tm(nl)s U tm(n:;Z)s-l Us-]nl o:;z 01 03 °

It is easy to see that p(So) E H I (KI , Ko), in the basis SI, ... ,Sq, is equal to either

(8) An = (0, ... ,0,1 - tm(o:;z), 0, ... ,0, tm(ot} - 1,0, ... ,0)

(9) Aa = (O, ... , 0, 1 - tm(a:;z), 0, ... ,0, tm(nt}, 0, ... ,0, -1,0, ... ,0)

for 0'1 =j:. 0'2 =j:. 0'3 =j:. 0'1' Moreover in the first case 1 - tm(o:;z) is in the O'l-st place,
tm(at} is in the 0'2-nd place; and in the second case 1 - tm(o:;z) is in the O']-st place,
tm(ot} is in the O'2-nd place and -1 is in the Q'3-rd place. Denote by Am,o{t) the
matrix formed by the rows An, 0' E M.

From (7) we have
ß(V(Sj)) = (tm(j) -l)po

and moreover Imß is a free Z[t, t-1 ]-module generatecl by (t - 1)po (here we are
assuming that mo = 1).
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Let s E H1(K1 ,Ko) be an element such that 8(v(s)) - (t - l)po. Then
H I ( KI , K0) is decomposed into the direct sum

It follows from (8) and (9) that

Imf-L C ](er(8 . v),

and we obtain from (7) that

and
rgAm(G) ~ q - 1.

Definition. A C-group G of type M C 1q is ca11ed m-connected, if

rgAm(G) = q - 1.

By Em,G,i(t), 0 ~ i ~ q, denote the ideals of Z[t, t-1
], where

{

(0), if q - i > IMI,
Em,G,i(t) = Z[t, t- I], if q - i < 0,

is generated by all (q - i)-minors of Am,G(t), if 0 ::; q - i ::; IMI .

Let ßm,G,i(t) be a generator of the minimal principal ideal which contains
Em,G,i(t). If ßm,G,i(t) ~ 0, then after multiplying ~m,G,i(t) by an invertible
element in Z[t, t- I ], we can assume that

and

Remark 4. These ideals Em,G,i(t) and polynomials ßm,G,i(t) can be obtained
using Fox's free calculus (see fe-FD.

If we apply the proof of Theorem 5 from [L, chapter XV] to the finitely generated
submodules Imf-L~Q and](er(8·v)®Q of the free Q[t, t-I]-module H I (K, Ko)~Q,
then we obtain that there exist a basis g), ... ,gq of HI(K,Ko) 0 Q and non-zero
elements AI(t), ... , Ar(t) E Q(t, t- I ), where 0 ~ r ~ q - 1, such that:

(i) g}, ... ,9q-l form a basis of Ker(8· v) 0 Q over Q[t, t-I];
(ii) AI(t)gl, ... ,Ar(t)gr form a basis of ImJl@Q over Q[t,t-1];

(iii) AilAi+1 for i = 1, ... , r - 1;
(iiii) the module

(N/N') 0 Q = HI(K,Q) ~

(10) ~ Q[t, t_ 1 ]/(Al(t)) EB ... EB Q[t, t-I]/(AI(t)) EB (Q[t, t_1])q-r-l
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and moreover we have that the generators ßm,i,G,Q(t) of the minimal principal
ideals, containing Em,G,i(t) ® Q, are

{
0 , if i < q - r;

ß- G . Q(t) -m, ,I, - ..A) (t) ..... Aq-i(t), If t ~ q - r.

After multiplying Ai(t) by invertible elements in Q[t, t-I] we can assume that

ßm,G,i,Q(t) = ~m,G,i(t).

It is easy to see from (10) that (NIN') 0 Q is a finitely generated Q-module if
and only if ~m,G,i(t) ~ O.

Let G be m-connected. From (10) we have that ßmj),G(t) coincides with the
characteristic polynomial of the automorphism h E Aut[(NIN') ® Q], which is
defined by the action of the generator T E ~\ on H) (R, Q). By virtue of stated
above this action is reduced to the multiplication by t in (10).

Now let us consider the field Zp instead of Q. As above we obtain that the
coefficients of ßm,G,)(t) are relatively prime for a finitely generated group NIN'.

On the other hand, if NIN' is a finitely generated group, then any choice of basis
of (NIN')Free determines a basis of (NIN')Free ®Q. The matrix of hin the choosen
basis is integral and det h = 1, because h is an automorphism of (NIN' )F re e' Thus,
in this case ~m,G,)(t) coincides up to a sign with the characteristic polynomial of
h , because the coefficients of ßm,G,1 (t) are relatively prime.

Let us gather the previous consideratians inta the following

Proposition 2. Let G be C -group and N = K erFm•. Tben:
Ci) (NIN') 0 Q is a fini tely generated Q-module jf and only if G is m-connected.

In tbis case ~mprim,G,)(t) comcides (up to a constant multiplier) witb the ebarac­
teristic polynomial of h E Aut[(NIN') 0 Q], wbieb is induced by tlle action of the
generator T E IF) on (NIN') 0 Q;

(ii) H N IN' is a finitely generated group, then

~m . G let) = ±det(h - tId).pr.m, ,

In particular, Ißm,G,l (0)1 = 1.

Corollary. If a curve D C C2 and m satisfy the condition (*), then

where G = 1t'l(C2
\ D).

From Lemma 1 and !rom the exact sequence ([M2])

we obtain the following

9
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Proposition 3. Let G be an m-connected C-group. Then

where n is the nUlnber oE irreducible components oE G and .6.'(t) is a polynomial
such tbat ß' (1) f 0.

2.4.

Proposition 4. Let G = GI X ... X Gn be the direct product oE irreducible C­
groups, n > 1, aIld m = (mI, ... , m n ) be a vector such that each coordinate ffii is
equaI to p~i, where Pi is prime and ri E N. Thell

.6.- -(t) = (t mo _ l)n-irn,G,.

for 1 ~ i ::; n , wllere mo = GCD(m] , ... , m n ).

Remark 5. In tlle statement ofProposition 4 we do not assume tbat the Alexander
matrix Am,G(t) satisfies the condition mo = 1.

Proof. By induction over n.
First, note that

.6.- G -(t) - .6.- G ·(tmo )m J ,. - rnprim,,· •

In the CaBe n = 2, for 1 ~ i ~ q], let the edges Vi E r M correspond to the
generators xi of GI, and for q] < i ~ q] + q2 = q, let the edges Vi correspond to
the generators of G2 • Numerate the relations Ra such that the first S] relations
are the relations of the C-group GI, the relations with index i, S] < i ::; SI + S2,

are the relations of the C-group G2 and the laBt qI . q2 relations are the relations
of commutation.

Put

It is easy to see that the Alexander matrix Am,c(t) is of order (s] + S2 + qI q2) x
(qI + q2) and haB the form

where A] ,Ci ( t) is the Alexander lnatrix of Gi, the matrices Ei (t) are of order (ql q2) X

Si and are composed of the rows of the form

(0, ... ,0, ±(t - 1),0, ... ,0).

Add the first qI - 1 columns to the column qI and add columns with index i,
qI +1 ~ i::; q] +q2 -1, to the column (qI +q2)' We get amatrix Äm,c(t) which
is equivalent to Am,a(t). The columns ql and (ql + q2) of Am,a(t) are of the form

(0, ... ,0, ±(tmi
- 1), ... , ±(tmi

- 1»,
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where "0" stand in the first SI + 82 places.
Consider the (ql +q2 -l)-minors of Am,G(t) formed by rows taken from the first

(SI + 82 + 1) rows of Am,G(t). These minors have the following form:

where <Pi(t) are some (qi - l)-minors of the matrix Al,Gi(t).
Note that by Lemma 6 in [K3] the polynomials ßl ,Gi,1 (t) satisfy the following

condition:

Thus the greatest common divisor of the minors of Am,o(t) considered above is
equal to

(11 )

On the other hand, it is easy to show that the greatest common divisor of the
(ql + q2 - 1)-minors, which are formed by rows taken from the last ql q2 rows of
Am,o(t), is equal to

(12)

From [K3] it follows that the pr-th root of unity is not a root of the polynomial
ßl,Gj,l(t). Thus, combining (11) and (12) we obtain that

Obviously,
ßm,Ol X02,2(t) =1.

The general ca3e. Suppose the proposition is true for n ~ 1. Consider a group
G = GI X ... X G

'
+1 and a vector m = (mll ... ,m'+l)' Fix the number j, j ~ 1+1,

and introduce the following notation

Let qi be the nUluber of generators and Si be the number of relations of the C-group
Gi, i = 1, 2. Denote by A-. 0- xo- (t) the matrix with the same properties (with

m J , 1 2

respect to GI and ( 2 ) as in the case n = 2.
First let us show that each (ql + q2 - i)-minor of A-. 0- xo- (t) is divisible bym J , 1 2

(tm~ - l)'+I- i . Note for this that each (ql + q2 - i)-rninor M can be decomposed
ioto the surn of products:

11



where M 1 a are (ql -i1 )-minors of A . G- (t), M 2 ß are (q2 -i2 )-minors of A-. G- (t), rnJ , l' rnJ , 2

and M a,')' are minors of order i 1+i2-i generated by some rows with indices> SI +S2'
It is easy to see that M a,..,. is divisible by (trn o _1)i 1 +i:;l-i.

If i 2 > 1, then M 3, ..,. is divisible by (t mo - l)'+l-i.
If i 2 ::; 1, then M 2 ,p is divisible by (t mo _l)'-i:;l by the inductive assumption. In

this case M 2 ,pMa,..,. is divisible by (trn o _l)'+i t -i. If i] = 0, then M l ,a =O. Thus
in all cases M l ,aM2 ,pMa,..,. are divisible by (trn o - l)'+l-i.

Now, on the one hand, by induction assumptions we cau choose a (q2 -l)-minor
j .- - j

M 2 of A-. G- (t) such that M 2 = (trn o - 1)'-'M2 , where M 2 and (trn o - 1) arem J , :;I

relatively prime.
We cau choose a (q] - 1)-minor MI of A . G- (t) such that MI and (tm

j

- 1)rnJ , 1

are relatively prime. Moreover by [K3] the pr-th roots of unity are not the roots of
the polynomial MI (t) for each prilne number p.

Add one more row with index> SI + S2 and oue more column with index> ql
which not contained M 2 to the rows and columns contained in M 1 and M 2 • We
find a (ql + q2 - i)-minor M of the matrix Am,G(t) such that

It is easy to see that the greatest common divisor of all these minors is equal to

(13)

where M'(t) has no pr-th roots of unity in its roots.
On the other hand, there exists a (ql + q2 - i)-lninor M(t) of Am,G(t), which is

fonned by rows with indexes> Sl + S2 (these rows correspond to the relations of
commutation). The roots of M(t) are the roots of urnty of orders mi = p? From

this and (13) it follows that ~m,G,i(t) divides (tmt - 1)'+1-i.
Finally, ~m,G,i(t) divides

GCD((tm~ _l)'+l-i, ... ,(tm~+l _l)'+l-i) = (t mo _l)'+l-i.

Combining trus with the fact that ~m,G,i(t) is divisible by (trn o - l)'+l-i, we that
Proposition 4 is proven.

Proposition 5. Let G = GI X ... X Gn , n > 1, be a clirect product of irreducible
C-groups such tbat ~1,Gi,l(t) = 1 for a11 i. Tben for any m = (m], ... , m n )

~m,G,i = (t rn'o - l)n-i.

Proof. The same a.s the proof of Proposition 4.

Corollary. Let G = zn be a free abelian group. Tben

~- .(t) = (t rno _ l)n-irn,G,1

for 1 ::; i ::; n and for eacb m E Nn.
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Example. Let Gl and G2 be two copies oE

(G is the group oE a c1over-leaf knot). Then direct caleulations give that

ß(6,l),G1 xG2 ,l (t) = (t - 1)(t2
- t +1).

3. In trus section we shall apply the results obtained above to calculation of the
ilTegularity of cyclic coverings of p2.

3.1. In notations of n.l denote by XZ,-m the surface in C3 defined by equation

(14)

Let 4>' : XZ m ~ C2 be the restrietion of the projection C3 onto C2 defined by
(x, y, z)~ '(x, y).

FrOfi now we shall assume that GeD(m 1, ... , ffi n , k) = 1 (this is nothing but the
condition that XZ,m is irreducible). Let Xk,m be a projective closure of X2,m' and

iT : X 1,m ~ Xk,m be a desingularisation. We cau assume that 4> = 4>' . 7r : X 1,m ~
p2 is a regular morphism.

The irregularity q1,m = q(X k,m) on X k,m has three equivalent expressions:

. 1- . 0- 1 1. l- 1-
qk,m = dtmH (Xk,m,O) = dtmH (Xk,m,n ) = 2d'lmH (Xk,m, IR) = 2b1 (Xk,m).

Remark 6. The surfaees X k,m, X k,mretp X k,m+k are birationally isomorpbie,

wbere m + k = (ml + k, ... , m n + k). Thus these surfaces bave one and tbe same
irregularity qk ,m.

Put Uk,m = X k,m \ fj>-l(D U L oo ).

From now we shall assurne that k does not divide mi far all i. This is nothing
but the condition that 4> is ramified along each component D i of D.

The inclusion Q' : Uk,m ~ X 1,m defines an epirnorphism

Thus

(15)

Lemma 3. (cE.[S})

dim K ern. ~ n = #{ tbe irreducible eomponents oE the curve D}

Proof. The homomorphism 4>. : H 1(Uk,m,Q) ~ Hl (C2
\ D,Q) is an epimorphism.

Indeed, H 1 (C2 \ D, Z) is generated by ,i, which are simple circuits around D i . It is
easy to see that (kjGCD(mi, k)),i cau be lifted up to Hl(Uk,m, Z) and this cycle
1i is a simple circuit around ane of irreducible components of 4>-l(D i ). The cycles
11 , ... , 1 n are lineary independent in H1(Uk ,m, Z), because ,1, ... ,, n form a basis of
H} (C2 \ D, Z).

Obviously, 11, ... ,1'n E K erG•.

13



3.2. Put

N(k, m) = L #{distinct k-th roots of unity which are roots of Aj(t)},

where Aj(t) are the elementary divisors of ~mprim,G,l(t) defined by (10) for
G = trI (C2

\ D ).

Theorem 3. ([Lib},[SJ) Let D C C2 and m satisfy tbe condition (*). Tben

3.3. Combining this theorem, Propositions 4 and 5 with [K2] we abtain the fol­
lowing theorems:

Theorem 4. Let a curve D = D 1 U... UD n , n > 1, satisfy the following conditions:
(i) for a11 i, j, i t= j, the intersectiolls (Di n D j ) n Loo = 0j

(ii) loca11y the divisor D = D 1 + ... +D n is a divisor with normal crossings at

eacb point x E Ui:#=j(Di n Dj).
Then

for m = (mI, ... , m n ) with mi = pii, wbere Pi are primes and Ti E N.

Theorem 5. Let D be as in Tlleorem 4 and let ~m.D(t) =1 for a1l i, where
Gi = 71"1 (C2 \ Dd· Then for any m = (mI, ... , m n )

In particular, if trI (C2 \ Dd ~ ~\ for all i and if D = D 1 U ... U D n satisfies the
assumptions of Theorem 4, then for auy m the irregularity q(Xk,m) = O.

Theorem 6. Let D be as in Tbeorenl 4, and let tbe following conditions be satis­
fied:

(i) D meets L oo transversally;
(ii) z::: dimi = pr , wllere p is prime, rEN and di = deg Di.
Then q(X k,m) = O.

Proof. From Theorem 2 and Remark 1 it follows that the roots af ~m,D(t) are the
pr-th roots of unity.

On the ather hand, it follows from the praof of Proposition 4 that

~m,D(t) = (t - 1)n-l ~/(t),

where ~'(t) is a divisor of the polynolllial

n

6.= rr6.1,Di(tm~).
i=1

By Theorem 7 in [1(3] the roots of ~(t) are not the pr-th roots of unity. Thus
~'(t) =const and Theorem 6 follows from (15) and {rom Theorem 3.

14



3.4. Recall ([ND that 7r) (C2 \ Dd = FI , if the proper pre-image u-1(Dd has

positive index of self·intersectioll, where (j : p2 ~ p2 is a composition of u-processes
such that u*( D i U Loo ) is a divisor with normal crossings.

There exists another criterion for commutativity of the fundamental group of
the complement of an algebraic curve in C2

•

Theorem 7. Let {Cb} bEB be a Eamily oE plcule afflne algebraic curves such that
(i) Co = D 1+ ... +Dn is a reduced divisor and satisnes the conditions oE Theorem

4·,
(ii) a generic member Cb oE tbis Eamily is irreducible.
Then 7r1 (C2

, Cb) = IF1 .

Proof. According to the well-known "semicontinuity" principle there exists an epi­
morphism of C-groups

7r1 «(;2 , Co) --H 7r1 (<(:2 , Cb).

Denote it by v. Moreover, if Xi is a generator of the C-group 7r1(C2 'Co), then
v(xd is a generator of the C-group 7r] (C2 , Cb).

From [K2] we have that 7r1 (<(:2 , Co) s:: 71"1 (C2 , D]) x ... X 7r] (C2 'Dn ). Let
X] and x2 be two generators of 7r) (C2 , Co) which belong to different subgroups
7r1 (C2 \ Dd. We can assume without loss of generality that Xl is a generator of
7r1 (C2 \ D1) and X2 is a generator of 7r] (C2 , D2).

We have that V(X1) and V(X2) are conjugated to each other, because Cb is ir­
reducible. Let V(X2) = V(X3)V(X1 )V(X3 )-1, where X3 is a generator of one of the
subgroups 1r1 (C2 , Dd.

If X3 f/. 7r1 (<(:2 'D]), then V(X2) = V(X1), beeause in this ease Xl and X3 eommute.
If X3 E 1rI (C2 , D I ), then V(X1) = V(X3)-I V(X2)V(X3) = V(X2). Thus in all cases

v (x I) = V( X2) for all generators x I of the C-grouP 1rI (<:2 , D1) and for alI generators
X2 of the C-group 1rI (C2 'D2). This means that Im v ~ ~\. Theorem 7 is proven.

3.5. We say that a vector m = (mI, ... m n ) is k-admissible, if k is not a divisor
of mi for all i. Two veetors ml = (mb ...m n) and m2 = (mI, ... ,mn) are ealled
k-equivalent, if it is possible to transform ml into m2 by a sequenee of the following
transformations:

1) m~m±k;
2) m ~ pm = (pmI' ... , pmn ), if the vector pm is k-admissible;
3) m ~ mprim.

Example. The veetors ml = (1, 3) and m2 = (3, 4) are 5-equivalent, because

ml = (1, 3)~ (6, 8)~ (3, 4) = m2.

Proposition 6. Let D and ml satisEy tbe condition (*), and let ml and m2 be
k-equvialent. Then

# (Uj { distinct k-th roots oE unity wbicb are roots oE the elementary divisor

Aj(t) oE ~mlPl'im,D (t)}) =
= # (Uj { mstinct k-th roots oE ullity wbicb are roots oE tbe elementary divisor

).j(t) oE ~m2prim,D (t)}).

Proof. The surfaees Uk,mt and Uk,m2 are isomorphie. Proposition 6 follows from
this and from Theorem 3.
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