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Introduction

Semistable reduction of pencils of curves has been studied by many authors in
various ways. (cf. [AW], [De], [DM], [X3]). In this part of the series, we shall
investigate semistable reduction from the point of view of numerical invariants.
As an application, we obtain two numerical criterions for a base change to be
stablizing, and for a fibration to be isotrivial. We also obtain a canonical class
inequality for any fibrations. Some other applications are presented.

Let f : § — C be a fibration of a smooth complex projective surface S over a
curve C, and denote by g the genus of a general fiber of f. We assume that ¢ > 0
and S is relatively minimal with respect to f, i.e., S has no (—1)-curves contained
in a fiber of f. The basic relative numerical invariants of f are defined as follows,

X = X(0s) = (g — 1)(9(C) 1),
K? = K% —8(9 — 1)(9(C) - 1),
e = Xiop(S) — 4(g — 1)(g(C) — 1),

These invariants are nonnegative integers satisfying the Noether equality 12y, =
K} + es. We denote by wg/c = ws ® f*wc the relative canonical sheaf of f, and
Ks/¢ the relative canonical divisor corresponding to ws;c. Then xy = deg fows/c
and K} = K%/C. If ¢ > 1 and f is not locally trivial, then y,; and K? are positive
([Ar), [Be2], [Pa], or [BPV], Theorem 18.2), in this case, we define the slope of f

as
)\f = -K_?'/Xf-

ef =Y. per = p(Xtop(F) — (2 — 2g)) is zero iff f is smooth.
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A fiber of f is called semistable if it consists of simple components meeting
normally. f is said to be semistable if every fiber of it is semistable.

Let 7 : C — C be a base change of degree d. Then the pull-back fibration
f:8 — C of f with respect to 7 is defined as the relative minimal model of the
desingularization of S x¢ € — €. (cf. Sect. 1.3). Since ¢ > 0, so the relative
minimal model is unique, hence f is determined uniquely by f and #. Due to
Kodaira's classification of singular fibers, the semistable reduction of an elliptic

fibration is quite clear, so we always assume that g > 2.
We define

1 0 2 1.4 1
Xe = Xf— Exf, K =K; - Ehf’ ex = €5 — Ee
as the basic numerical invariants of m with respect to f. Obviously, they are
rational numbers satisfying 12x, = K2 + e,. Xiao [X4] and I [Ta] proved that
these invariants are nonnegative, and one of them vanishes if and only if 7 is an
invariant base change. (See Definition 1.7).

Definition I. We shall call = a stablizing (resp. trivial) base change if all of the

fibers of f (resp. f) over the ramification locus Ry (resp. the branch locus B,) of
7 are semistable. We shall also call 7 the semistable reduction of the fibers over

B.

The well-known semistable reduction theorem says that for any fibration f,
there exists a base change m such that f is semistable. In particular, let = be a
base change totally ramified over F (i.e., over f(F')) and some other semistable
fibers, and let F’ be the minimal embedded resolution of F. If the degree of = is
exactly the greatest common divisor of the multiplicities of the components in F,
then it is well-known that 7 is stablizing. We shall call 7 the canonical semistable
reduction of F, and denote it by ¢F.

Definition II. For any fiber F of f, we define its basic invariants to be the basic
ivariants of ¢ = ¢, and denote them respectively by

a(F)=Kg olF)=e, xr=yxy

We shall show that these invariants are independent of the choice of the base
changes (Lemma 2.3). They are nonnegative rational numbers satisfying the
Noether equality

12xF = ¢{(F) + co(F).

We can see also that one of them vanishes iff F is semistable. In fact, these in-
variants can be computed directly from the embedded resolution of F (see Propo-
sition 3.1 for the fonnulds) For simplicity, if B = F} 4 -+ 4 F, then we define
3(B) =ci(F1)+ - + cE(F,). Similarly, we can define cz(B ) and xB

Definition III. A fibration f : § — C' is trivial if S is isomorphic to F' x C over
C'. 1t is 1sotrivial if it becomes trivial after a finite base change.

If f 1s a semistable model of f under a semistable reduction 7, then a natural
problem is:
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What 1s the effect of a non-semaistable fiber on the invariants of)? ¢

([X2], Problem 7). In this paper the effect is completely determined.

In what follows, we denote by By = f*(B) the locus of branched fibers, and
by Rr = f“(R,) the locus of ramified fibers.

The main results of this paper are the following.

Theorem A. Let f: S — C be a fibration, and let 7 : C — C be a base change
of degree d. Then

. 1 1
I‘ﬁ = C%(Bfr) - ch('Rﬂ), er = c2(Br) — 5c2(Rn), Xx = X8, — EX'R,,-

Corollary. For any fibration f: S — C and any base change 7 : C — C, we
have

1)

I\’?r S cf(Bﬂ')’ er < CQ(BTT)7 X7 S XBrs

and one of the equalities holds iff m 1s stablizing.

2)
> &(F) < K, Zws,w, Y exF) < ey,
Ia

F

where F' runs over all of the non-semistable fibers of f. Furthermore, one of
the first two equalities holds iff f 13 1sotrivial, and the last equality holds iff the
semastable model of f 1s smooth.

8) If f 13 non-isotrivial, then we have

Ixf—cl(B )

/\"Z
f x5-xs,

Hence the slope of f is completely determined by the branched non-semistable fibers.

Due to this theorem, the study of the invariants of stablizing base changes can
be reduced to the local study of ¢?(F) and cz(F). First of all, from definition, it
is trivial to see that

co(F) < er (=i xwop(F) — (2~ 29)),
with equality iff the semistable model of F' is a smooth fiber. In Sect. 3.3, we
obtain
Theorem B.
¢} (F) < 2ca(F),

with equality iff F = nFieq and Fieq has at worst ordinary double points as its
singularities. Hence for any stablizing base change m, we have

K2 <8

We show that ¢?(F) is in fact bounded by the genus g, i.e.,
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Theorem C.
c(F) < 49 - 4.

As an application of this inequality, we obtain the following canonical class
inequality.

Theorem D. If f is a fibration of genus g > 2, then
K% < (29 - 2)(29(C) = 2+ 35),

where s 1s the number of singular fibers of f.

Note that other canonical class inequalities are already known for semistable
fibrations: "
K§/c < (29 —2)(29(C) — 2+ s);

K¢ < 49(g — 1)(29(C) — 2+ s);
K% <8(g—1)*(29(C) -2+ 9).

These inequalities are due respectively to Vojta [Vo], Szpiro [Sz] and Esnault and
Viehweg [EV]. In a later paper, by using the results of this paper we shall give
a linear (in ¢g) and effective height inequality for algebraic points on a curve over
functional fields.

As another application, we find some new phenomena for fibrations. (Sect. 4.1).
For example, from the corollary above, we can see that every stable model fof f
has the same slope A determined by

K} —Axy = Zc?(F)— )\pr,
F F

where F' runs over all of the non-semistable fibers of f. From Theorem B we
know that if Ay > 8, then any non-trivial stablizing base change m makes the slope
increase. We have also found some relationships between non-semistable fibers
and the slope of a fibration.

Finally, in Sect. 4.3, we consider the computation of the Horikawa number of
a genus 3 non-semistable fiber F' through semistable reductions. We reduce it to
the computation for its semistable models F.

Acknowledgement. I'd like to thank Prof. Xiao for encouraging me to find the
best inequalities between the invariants of base changes.

Notations. If D is alocal curve and p € D, then we denote by v, the multiplicity
of D at p, and denote respectively by jip, d,, k;, the Milnor number, geometric genus
and the number of local branches of (Dreq, p). Hence p, =26, — &k, + 1. If Fisa
curve on a smooth surface, then we denote by pp the total Milnor number of the
singularities of F.

If a,b are two natural numbers, then we denote by (a,b) the greatest common

2
divisor of @ and b, and let [a,b] = %%L. [z] is the greatest integer < z
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1 Preliminaries and technical lemmas
1.1 Embedded resolution of curve singularities

Let (B,p) C C* be a local curve (not necessarily reduced) in a neighborhood
Ug of p = (0,0). Assume that (Byeq,p) is a singular point, we say also that p is a
singular point of B.

Definition 1.1. The embedded resolution of curve singularity (B, p) = (Bo, po)
1s a sequence

(Uo,Bo) & (U, B)) & ... & (U, By)

satisfying the following conditions.
(1) o; is the blowing-up of U;_; at a singular point p;—; € B;_; with p,,_, > 1.
(2) By red has at worst ordinary double points as its singularities.
(3) B is the total transformation of B;_;.

It is well-known that embedded resolution exists and is unique for any curve
singularity (B, p) C C%.
We denote by m; the the multiplicity of (B red, pi). Let

ap = Z(m,- —2)%, (1)

1=0

If ¢ € B, is a double point, and a4, b, are the multiplicities of the two components
of (B,,q), then we let

Bp =) lag,by]. (2)
yEB,
Lemma 1.2.

r—1

Hp = Z(m,- —1)(m; —2) 4+ kp, — 1, (3)

r—1

8p = % Z(T?l,‘ —1)(m; —2)+ kp — 1. (4)

=0

Proof. In the embedded resolution, we let £y N (B, — E|) = p1,--+ ,ps. Then by
([Ta], Lemma 1.3) we have

pp = (my —1)(mp —2) =1+ Zﬂpe- (5)
i=1

On the other hand, it is obvious that

8

kp = Z(km —1), (6)

i=1

hence (3) can be obtained easily by using induction on r, and (4) follows from (3)
and p, = 26, — (kp, — 1). Q.E.D.
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Lemma 1.3. For any singular point (B, p), we have

ap+ Bp < pp- (7)

Proof. First we prove (7) for the case m, = 2, i.e., (Bred,p) is a double point.
Assume that (B, p) is defined by f(z,y) = 0 at 0.

Iff=2a2%z+y*) and k = 1, then o, = 0, pp = 1 and B, = [a,d], (7) is
obvious. If £ > 1, then by the computation of the embedded resolution, we have

1
ap=k—1, pp,=2k-1, 8, = 1—E+[a,k(a-}—b)]+[b,k(a+b)] <1,

hence (7) holds strictly.
If f=(2%+y***1)", then

3 1
o =Ky it =2k, By = 50— 50

)’

thus we can see that a, + £, < p,.

Now we assume that m, > 3. In this case, we shall prove (7) by using induction
on jin. From (5) we know pp, < ptp, by induction hypothesis, we have oy, + 8,; <
ttp;- On the other hand, we know

Z'@P" ap = (mp — +Za,,,,

from (5), (7) follows immediately. Q.E.D.

1.2 On the resolution of the singularity of z¢ = f(z,y)

Now we assume that (B, p) is defined by f(z,y) =0 at p = (0,0). Let & c C?
be a local surface defined by z? = f(z,y), and let ¥4 be the normalization of Z.
Then, Vo is a d-cyclic cover 7 : Vo — Uj, the singular points of V5 (lying over
p) can be resolved by the embedded resolution of { B, p), it goes as follows.

Let V; be the normalization of U, xy, Vo, and let : M — V; be the minimal
resolution of the singularities of V.

| ~| [ 7o

Uy «— U, Us

Then m, is a cyclic covering branched along B,. If near ¢ € B,, B, is defined by
z®y® = 0, then V, is locally the normalization of z% = z°y®, which are cyclic quo-
tient singularities, hence can be resolved by June-Hirzebruch method (cf. [BPV],
p-83). Hence ¢ = 7 : M — 1} is the resolution of V,, we shall call ¢ the
embedded resolution of V.
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Denote by E, = 3 .i_, E; the exceptional curves of ¢, and let Ky =3 |_, i E;
be the rational canonical divisor of E,, which is determined uniquely by the adjunc-
tion formula Ny B; + E? = 2p,(E;)—2. Then I\¢, is an invariant of the resolution ¢.
If ¢ is minimal, then K2 s =K 3 < 0 1s an invariant of the singularities of Vy, which
is independent of the resolution. I&’;‘,’ = 0 iff V5 has at worst rational double points
as its singularities. We denote by by(E,) the number of components of E,. The
following Lemma can be obtained by a direct computation of the normalization.

(cf. Sect. 5 or [X3])

Lemma 1.4. If (B,p) is defined by z°y® = 0, and d is divided by « and b, then
E, is d, = (a,b) curves of type A, where

dyn = by(E,) = [a,b]d — (a,b). (8)

Lemma 1.5. Assume that d 1s divided by all of the multiplictties of the compo-
nents in the embedded resolution B,. Then

1
Kt 9)

The proof of this lemma will be given in Sect. 5.
Now we recall the normalization of £. (cf. [Ta], Lemnma 2.1).

Lemma 1.6. For any point p € B, ny'(p) consists of d, = ged(d,ny, -+ ,ng)
pownts if there are ezactly s components ['y,--- |y passing through p.

1.8 The construction of base changes

In this section, we recall the construction of the pullback fibration fof f:85—
C under a base change.

Let 7 : € — C be a base change of degree d. Then the pull-back fibration
f S — C of f with respect to 7 is defined as the relative minimal model of the
desingularization of S x¢ C — C. In fact, the pull-back fibration Ff:5-—C
can be constructed as follows.

Let p; : S — S ¢ C be the normalization of S X 5, let py : Sy — 54
be the minimal desingularization of S;. Then we have a fibration f, : S3 — C.
Let 5: S — § be the contraction of (—1)-curves such that f : § — C is a
relative minimal model. Since we have assumed that g > 1, so p is unique. Hence
f: S —3 C is determined uniquely by f and =.

P jond i
P 5, 22, Ly SxgC —— S

N A N

C C C — C

71'

Let I, =" 0o py 0 pg : So — S.
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Definition 1.7. If 7 : C — C is a base change satisfying
E‘I\'g/a = H;I"S/CH
then we shall call it an invariant base change.

In fact if ¢ > 2, then f is invariant iff the fibers F' in the branch locus are reduced
and F has at worst dp-simple singularities, where dr is the greatest ramification
index of w over f(F). A d-simple singularity is a simple curve singularity f(z,y) =
0 such that z¢ = f(z,y) is a simple surface singularity. Hence 2-simple is ADE,
3-simple is Ay, -+ -, A4, 4 and 5-simple are Ay, Ay, d-simpleis A, if d > 5.

Let F' be a singular fiber. We always denote by F’ the embedded resolution
of F, and denote by Mg the greatest common divisor of the multiplicities of the
components in F”.

2 On the invariants of a base change
2.1 Local computations of K2

In this section, we first consider the computation of the invariant Ii'2 for a base

change = : C — C. Without loss of generality, we assume that 7 is totally
ramified over p;,--- ,ps. Let pa be the embedded resolution of singularities, let
Fy,--+ , F, be the fibers of f corresponding to p1,-+- ,ps, andlet B, =3 /| Fi =
Y. rnrl. From Lemma 1.6, it is easy to see that

Ks, =10} (I{s + Y (1 - (d—;“—)) r) + 1Ky, (10)
rcs,

where I{,, i1s the rational canonical divisor of the exceptional set of p;. On the
other hand, we have

Kg=r" (Kc -+ ,Z:T (1 - é) p,-) . (11)

Note that f#* = II] f*, hence from (10) and (11) we can obtain

'[{52/5 = H; (I{S/’C — ZHF‘) + I(Pm

1=1
where H; = ZFCF.- hyl' hp =np — 1 — %(nr — (d,nr)). Hence

8
dK} — K}, =dY (2HpKs— H},) - K7

P2’
i=1

If we let K2(f2) = K} - ﬁK;?, then

K2 =KX(f) - %#{ (—1)-curves contracted by p'}.
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Proposition 2.1. With the notations above, we have

L

K2(f2) =Y (2Hp,Ks — HE,) Z > 11’2 (12)

=1 =1 pEF;

In the case when 7 is the base change of Fy,--- , F,, if d is divided by Mg,
i=1,---s, we can see that Hp, = F; — F; (eq. Note that we have (cf. [Ta], (7))

ep = XtOp(F) —(2~-2g9)=2Np + ur,

where Np = g — po(Fred) = %((F Frea)Ks — F2
Lemma 1.5 we have

Proposition 2.2. If d is dwvided by Mg, for alli, then

} Is an invariant of F. From

Ki(fy) = Z(4NF + Flreq) + Z Y ap (13)

i=1 pEF;

Note that the right hand side of (13) is independent of d.

2.2 Proof of Theorem A

We consider first the composition of base changes.

Let 7y : C; — C and 7, : C — C be two base changes, let f; be the pullback
fibration of f under 7y, and let fy be that of f; under m. By the universal property
of fiber product and the uniqueness of the relative canonical model (when ¢ > 0},
we know f; 1s nothing but the pullback fibration fof f under 7w = m; o my. Hence
we have the basic equalities:

1
K? = K2 (2
T ™ degmy ™
€r = €n —€n,, 14
1 +-degﬁl 2 ( )
Xe =NXm T ——Xmsp-

Lemma 2.3. Let f : S — C be a fibration, and let Fy,--- | F, be fibers of f.
Considering all of the semistable reduction n of Fy,--- , F,, we have that K%, ¢
and v are independent of w.

™

Proof. Let my : C; — C and m : C; — C be two semistable reduction of
F,.-- [ Fy, let degm; =d;, 1 = 1,2, and let f; be the pullback fibration of f under
;. We shall prove that

K2 =K

st w2

For this, we consider the pullback of 7; and m,

T=m xc;-rr2:6'201 Xch——)C.
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Note that if necessary, we can choose C to be the normalization of a component of
Cy x¢ Cs. Let p; : C —> C; be the i-th projection, it is obvious that degp; = ds,
degps = dy. Then we have ™ = p; o 7 = p; 0 72 (composition of base changes).
Since 7, and 7y are semistable reductions, so the fibers of f; over Fy,. -, F, are
semistable, and thus p; is an invariant base change. It implies that K;‘:’. = 0 for
¢ = 1,2. Then by using the basic equalities (14), we have

S22 g2
K=K =K,
hence, we have KZ = K2 .
The proof for x, er is the same as above. Q.E.D.

Lemma 2.4. In the situation of Lemma 2.5, we have

3 8 g

I&'TZF = ZC%(F.‘), er = ZCZ(Fi)a Xm = ZXF.'-

i=1 1=1 =1

Proof. By Lemma 2.3, we can assume that = is the pullback of the canonical
semistable reductions #; = ¢p, : C; — C, i = 1,--- ,s. We can assume that 7; is
unramified over the fibers Fj for 7 # . Without loss of generality, we assume also
that s = 2. As in the proof of Lemma 2.3, we have

I-'Q _ I-'2 + l1~'2

V=R, a [
Since p; is totally ramified semistable reduction, hence K;fz can be computed

locally from the branched non-semistable fibers, which are the pullback of F;

under 7;. Hence we know

2 -
I\.‘Pl = d]I\ﬂz.

By definition, K2, = c}(F;). Hence we have obtained the desired equality.
Note that the local property used above holds for e, and x. Q.E.D.

Proof of Theorem A. Let #: C — C be the semistable reduction of the ramified
fibers R. Then we know that mo7 is also the semistable reduction of the branched
fibers B,. By Lemma 2.4 and the basic equalities we can obtain the equalities in

this theorem. Q.E.D.
3 On the invariants of non-semistable fibers

8.1 The computations of the invariants c3 ¢, and x

In what follows, we shall consider the computation of the invariants c(F),
c2(F) and xr. By Noether equality, we only need to compute ¢? and c,.

First note that if we use embedded resolution to resolve the singularities of F
then the number

1
c-1(F) = —é#{(—l)-curves in F' contracted by p}

is also independent of the stablizing base change if d is divided by Mp.
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Theorem 3.1.
A(F) =4Np+ Flg+ > ap = ca(F),
peF

c2(F)=2Np +pup— Y Bp+ca(F).
pEF

(15)

Proof. The first formula has been proved in Proposition 2.2. In order to prove
the second formula, we consider the stablizing base change 7 of F' whose degree
is divided by AMp. By definition, if F and F, are respectively the pullback fibers
of Fin S and Sa2, (note that S, is the embedded resolution, not the minimal
resolution), then we have

1 1
Ex = E(dep - eﬁ) —ep — Eep2 + c1(F).
Since Fj is semistable, so e, is the number of singular points of F;, which is exactly
the number d}° ¢ B, (Lemma 1.4). We have known that e = 2N+, hence
the second formula has been obtained. Q.E.D.

Remark. From the formulas above and the Noether formula, we can see that yr
is independent of ¢_|(F'), hence it can be computed directly from embedded res-
olution. In fact, if we consider the canocnical semistable reduction of F', then we
can prove that

C—I(F) = Z Bq’a

q.feFl

where F' is the embedded resolution of F, and ¢’ runs over the singular points
of F' such that the (—2)-curves coming from p’ are contracted to points of the
semistable model of F.

Ezample. Note that the discussion above holds for elliptic fibrations. In this case,
K2 = 0 for all base changes, so we have c}(F) = 0. By a direct computation we
have

0, 1if Fisof type 1,

co(F)=12xp =< 6, if Fisof type I} (b > 0),

er, otherwise,

The result above shows the well-known fact that the semistable model of an
elliptic fiber is smooth except for type Iy (6 > 0) and type I} (b > 0).

3.2 Proof of Theorem C

Lemma 3.2.

Z ap < 2pa(Fred)7 (16)
peEF

the equality holds iff pa(Fred) = 0, hence F is a tree of nonsingular rational curves.
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Proof. We shall use the notations of Sect. 1.1. By (1) and (4), we have

r-—1
= 26, — i—2)—=2(k,—1
Qp » ;(m ) = 2(kp — 1) (17)
<28, — 2(kp —1).
On the other hand, if Fieq = :2 1 T'i, then we have
red Zpa +Zé‘p_lF+1 (18)
pEF

Hence we only need to prove that

S (kp—1)21p—1. (19)

pEF

But this inequality is an immediate consequence of the connectedness of F. So
(16) holds.

If the equality in (16) holds, then from (17) we know that o, = 0 for any p € F,
hence py(Fred) = 0. Then from (18) and (19), we can see F is a tree of smooth
rational curves. Q.E.D.

Theorem 3.3.
cHF) < 4g—4. (20)

Proof. From Lemma 3.2 we have
¢i(F) <4Np + FLy + 2pa(Frea) — c—1(F),

and the equality holds iff p,(Frea) = 0. Hence it is easy to prove that ¢(F) <
4g ~ 3 — c_1(F), and the equality holds iff F' satisfies

Pa(Frcd) =0, Freg K = 1. (21)

So it is enough to prove that for the fibers F' satisfying (21) we have c_;(F) > 1.

Now we consider the canonical semistable reduction ¢r of F, we know the
degree of ¢ = Mp. We can see that the fiber F' satisfying (21) is a tree of a
(—=3)-curve I' and some (—2)-curves E. We note first that if F contains a (—2)-
curve E such that Fl.q has only one singular point p on FE, then p is an ordinary
double point of [ type (n,2n), where n is the multiplicity of E in F. Since the
pullback fiber F of F is semistable, so for any component I' in F, —T? is the
intersection number of T' with the other components. Thus we can sec easily that
the inverse image of E in the minimal resolution surface consists of n (—1)-curves,
hence the exceptional curves of p can be contracted to a point. That is to say
we contracted n + [n,2n]d — (n,2n) = 1d (—1)-curves. Thus the contribution of
(E,p) to c—1(F) is ;. On the other hand, we know easily that there are at least
two such (—2)-curves in F, hence c_;{F) > 1. This completes the proof. Q.E.D.

8.8 Proof of Theorem B
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Theorem 3.4. For any singular fiber F, we have
cHF) < 2¢o(F), (22)

with equality iff F = nFieq and F has at worst ordinary double points as its
singularities.

Proof. From (15), we have
2e5(F) = ¢}(F) = 3c_1(F) = Fioy + Z(gﬁ‘p — 2B — o).
p

Then by Lemma 1.3, pt — 8p > @;, hence we have

2c(F) = E(F)> —F%, + Z ap 2 0.
peEF

If ¢2(F) = 2co(F), then F%, = 0, and «, = 0 for all p € F. By the well-known
Zariski’s lemma ([BPV], p.90), we have F = nF,eq. Since o, = 0 implies p is an

ordinary double point, so Freq has at worst nodes as its singularities. The converse

is obvious. Q.E.D.

Proposition 3.5. If all of the multiple components of F' are (—2)-curves, then
E(F) < calF). (23)

Proof. The proof is similar to that of Theorem 3.4. Q.E.D.

4 Applications
4.1 On the slopes of fibrations

From the corollary to Theorem A, Theorem 3.4 and the Noether equality, we
have

Theorem 4.1. For any stablizing base change w, we have
I{12r < 8xx. (24)
As in the case of fibrations, we have the following definition of slopes.

Definition 4.2. If F' is a non-semistable fiber, yp # 0, and so we can define the
slope of F as

2
Ar = ci(F)/xr.
From Theorem 3.4, we know 0 < Ap < 8.
If 7 is a non-invariant base change, then we define the slope of 7 as

M= K2/xn.

Note that a non-trivial stablizing base change 7 satisfies xr > 0, so Theorem
4.1 says that its slope A, < 8.
We have known in the Introduction that for a stablizing base change =,

Kf—Mexs = cl(Bx) — Azxs, - (25)
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Corollary 4.3. If f : § — C ts a non-semistable fibration with Ay > 8, then
through any non-triial stablizing base change, we have

/\;; > Af. (26)

In what follows, we shall consider a set of fibrations & which is invariant under
base changes, i.e., if f € X, then f € Z.
Corollary 4.4. Let f (resp. f') be a fibration in £ with mazimal (resp. minimal)
slope.
“ I;) For any non-semastable fiber F of f (resp. f'), we have

Arp 2 Ag, (resp. Arp < Ap).
2) If Ay > 8, then f is semistable.

8) If Ay > 6, then any non-semistable fiber of f has at least one multiple com-
ponent which is not a (—2)-curve.

Proof. Constdering the canonical stablizing base change of F' and using (25), we
can prove 1). 2) and 3) are immediate consequences of (22)—(25) and the assump-
tion. , Q.E.D.

Remark. This corollary can be used to classify singular fibers of a fibration with
minimal slope in the sense above. For example,

I) Xiao ([X1], [X4]) has proved that for any relatively minimal fibration f of
genus g,

Ap>4—4/g.

Furthermore, if f is a hyperelliptic fibration, then
49 + 2
[g2/2]

IT) If f is non-hyperelliptic, then the lower bounds A, of the slope are A3 = 3,
A =24/7, A5 = 40/11. (cf. [Ch], [Ho], [Koj, [Re]).

If we consider fibrations over P!, and we only consider base changes with two
ramification points, then the above results can also be used.

Ap<12—

4.2 Canonical class inequality for general fibrations

First we recall Miyaoka’s inequality and refer to [Hi] for the details.

Lemma 4.5. [Mi] If S is a smooth surface of general type, and E,, ---, E, are
disjoint ADE curves on S, then we have

n

Z”T-(Ei) < 3cp(S) — €3(9),

i=1
where m(E) i3 defined as follows,
3 3
— . _ . , _ . _ - > 4
m(4,)=3(r +1) Mt m(D;) =3(r +1) A —2) forr > 4
(E)—21—l' (E)—24—i' (E)—"'?’—i
m(Eg) = g mEr) = 5 "Es) =2T— 4.

The condition “of general type” can be replaced by some other conditions. (cf.

[Mi]).
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Theorem 4.6. If f is a fibration of genus ¢ > 1 over a curve C of genus b, then

K%,c <3 &%+ (29— 2) max(2b — 2,0), (27)
yeEC
where 5# =ep, — %ZEcF, m(E) < 4g — 3, and the sum 1s taken over all of the
disjoint ADE curves E in Fy,.

Proof. The inequality (27) is an immediate consequence of Miyaoka-Yau inequality
(cf. [Vo], Vojta’s proof). So we only need to prove that 5# <dg—3.

We denote by Ip the number of components of a curve D. Let Freq = D +
Y. ecr E be the reduced part of a fiber F. Then

Xiop(F) = xtop(D) + ) (xtop(E) = #(D N E))
ECF
= xewp(D) = D (kao(D) = 1)+ 3 (g +1) = #(DN ) E)
peD ECcr ECF
<2p+ Y (g+1)— Y (k(D)=1)= > #(DNE).
ECF peD ECF

From the definition of m(E), we know
m(E) > 3(lg + 1) —
hence
§F =29 -2+ xwp(F) — Y m(E)

ECF
<2 -2+42p-Y (h(D)-1)—#(DN Y E)+ Y 1.
pED ECF ECF
So it is enough to prove that
Y (kp(D)—1)+ Y (#DNE)~1)21p-1. (28)
peED ECF

Indeed, if D is connected, then we have

Y k(D)= 1) > 1p -1,

peD
hence (28) holds. If D has r connected components Dy, -+ ,D,, then
S k(D)= 1) 2 Y lp, - 1) =lp— .
peD =1

On the other hand, from the connectedness of F', we can prove easily that

Y (#DNE)-1)2r-1.

ECF
Hence (28) also holds. Q.E.D.

In [Vo], Vojta proved that if f is a semistable fibration with s singular fibers,
then

IxS/C (29 — 2)(2b — 2 + s).

By using base changes, we can obtain a similar inequality for general fibrations.
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Theorem 4.7. If f has s singular fibers, then

Proof. If b > 0, by Kodaira-Parshin’s construction, modulo an étale base change,
there exists a stablizing base change totally ramified over the singular fibers. Note
that (29) is unchanged under an étale base change. If 7 is stablizing base change,
then from Theorem A, we have

1
-2 __ 2 22

Combining Theorem 3.3 and Vojta’s canonical class inequality for semistable fi-
brations, we can obtain immediately (29).

If C = P!, then s > 3 ([Bel]), hence there exist base changes 7 : ¢ — C
totally lamlﬁed over the s singular fibers, whose degrees can be ar bltrauly large.

Note that g(C ) > 0, hence (29) holds for f. By Lemma 2.6 and and Theorem 3.3,
we have

1 -2 1 -2 : 2

Ixf = EI\I + K < EI\!?-E-ZICI(F
1=

< 4(g — 1)(g(C) = 1)/d + (6g — 6)s/d + (4g — 4)s

:4(9_1)(b—1)+d;

then let d = co, we obtain (29). Q.E.D.

1
2s + (49 — 4)s + (69 — 6)s/d,

4.8 On Horikawa number of a non-semaistable fiber of genus 3

Let f: S — C be a relatively minimal non-hyperelliptic fibration of genus 3,
and let F be a fiber of f. The Horikawa number of F is defined as (cf. [Re])

Hp = length coker (Szf*wsm = S (“’g/zc )) SRY

The global invariants of f depend on this number. In fact, Reid [Re] shows that
K} -3y, =) Hp. (30)
F

In general, it is quite difficult to compute Hp. The aim here is to try to reduce
the computation of a non-semistable fiber to the computation of its semistable
models, by using semistable reduction.

Theorem 4.8. Let F be the semistable model of F under a stablizing base change
of degree d. Then

“Hp = Hp + 3((F) - 3(F). (31)
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Proof. We can assume that the branch locus of the base change consists of generic
smooth fibers and F, hence

(2(F) = 3xr) = K% = 3xx

. 1 ..
= (K7 = 3xs) = (K7 = 3xp)

d
1
By using Noether formula, we can obtain (31). Q.E.D.

Ezamples. If F is a genus 2 curve with an ordinary cusp, then we can take d = 6.
Then the semistable model F consists of a nonsingular elliptic curve E and a
nonsingular curve C of genus 2, with EC = 1. Since ¢}(F) = § and ¢;(F) = &,
hence we have

HﬁZﬁHp-{-?.

If F =2C, C is a smooth curve of genus 2, then we can take d = 2, hence F
is a nonsingular hyperelliptic curve of genus 3. We have c(F) = 4, c(F) = 2.
Hence

ﬁ=2HF—5.

So we can compute directly the Horikawa numbers of some special singular fibers,
e.g., if their semistable models are non-hyperelliptic curves of genus 3.

5 The proof of Lemma 1.5

In this section, we shall use freely the notations of Sect. 1.2. Note first that
Lemma 1.5 is a special case of the following theorem.

Theorem 5.1. For the embedded resolution given in Sect. 1.2, we have

r—1 2

- 1 . ]

_Ix'g = dz (m;‘ -2+ p ((m},d)— m,-(d))) — Z I;(f
1=0

qur

where mi, m;,mi(d) are the multiplicities of Bjeq, Bi, Bi(d) respectively, and
Bi(d) = p(d,np)T if Bi => nrl.

Proof. Since we only need to find I, = I3, without loss of generality, we may
assume that Uy 1s a compact smooth surface, and the reduced curve of B =
By = ) nrl has only one singular point p, (otherwise we can resolve the other
singularities of B by using embedded resolution). So we have a formula similar to

(11):

- *_* - (([,TLI") -
Ny = ¢ o (I\U0+ Z(l— d )F -{-I&,;g,

rcs

le.,

- * * % " 1 Gl
I&M =nnao (Ion + BO,red - EBO((Z)) + I\¢.. (32)
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On the other hand, 7, is determined by B, = ¢*(B), hence we have also
- *_x - 1 -
Ky =n'n; (I\ U, + By red — EB,-(d)) + I, (33)

From Definition 1.1 it is easy to prove that

; 1 e 1
Ky, + Bired — (—iBi(d) =0, (f&U.-_, + Bi_1red — EBi—l(d))

- (ma--l ~ 24 2((mi_y,d) - mf-](d))) E:. o

If we denote by & the total inverse image of E; in U,., then from (32)-(34), we
have
Kg=—n*n: (; (m;_l -2+ é((mf_l,d) — m,-_l(d))) 5,-) + K.

Hence we obtain the desired equality. Q.E.D.

Remark. In order to resolve the singularities of V5, we can used the d-resolution
of (B,p), i.e., replace the condition (3) in Definition 1.1 by
(3') If E; = 07 ' (pi-1) is the exceptional curve, then we have

d

Then we have also the formula in Theorem 5.1.

Bi = 0! (Biy) - d [’"‘"—1} E..

Finally, we consider the computation of I\",?. If (B,,q) is defined by z%y® = 0,
then —I\f can be computed as follows.

I. If (d,a) = (d,b) = (a,b) = 1, then we let ¢, ¢' be two integers with 0 < ¢, ¢ <
d, aqg+b=0 (mod d), ¢g¢ =1 (mod d). If

d [ | 1
q — el) 36‘!‘ = €] 1
€y —

then
- zr qg+q +2
—I\:'z: (6,—2)+T—2

=1
II. If (d,a,b) = 1, then the singularity of V,. over g is isomorphic to the nor-
malization of z¢ = & y*, where a = «'(d,a), b = V/(d,b) and d = d'(d,a)(d,b),
hence the computation is reduced to (I).
II1. If dy = (d,a,b) > 1, then we have

do

| (zdftlo — gt/ doybldo oy (97 /_—1/dg)) _

=1

Hence the singularity decomposes into dg singularities of type II.
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