A finite morphism which does not preserve rational equivalence

O. Jussila

Zwisde crigial!

Department of Mathematics University of Helsinki Hallituskatu 15 00100 Helsinki Max-Planck-Institut für Mathematik Gottfried-Claren-Straße 26 D-5300 Bonn 3

Finland

Germany

MPI/92-75

A finite morphism which does not preserve rational equivalence

O.Jussila: Department of Mathematics, University of Helsinki, Hallituskatu 15, 00100 Helsinki, Finland

Let $f: X \to Y$ be any proper morphism of noetherian schemes and let $f_*: ZX \to ZY$ be the corresponding push-forth homomorphism of groups of cycles. We say that f preserves rational equivalence, if f_* sends cycles rationally equivalent to zero on X to cycles rationally equivalent to zero on Y. This means that f_* induces a homomorphism $f_*: AX \to AY$ of the corresponding groups modulo rational equivalence ('Chow groups'). It is not hard to show that this is so, if Y is universally catenary. When Y is not universally catenary, the situation is not so clear (see for example [FULTON], p 396 and [KLEIMAN], pp 327 -329). With the following example we propose to show that being universally catenary is just about the best condition one can impose on Y in order that all proper morphisms from a noetherian scheme to Y should preserve rational equivalence. We shall construct a finite and birational morphism $f: X \to Y$ of two-dimensional noetherian, integral and catenary schemes such that

i) X is regular, ii) Y is local,

iii) f does not preserve rational equivalence.

We get our f by modifying Example (5.6.11) of [GD] pp 101 - 102, in the following manner:

Choose a field extension $K_0 \subset K_1$ which has a countable transcendence base $x, y, x_0, x_1, x_2, \ldots$. Set

$$K = K_0(x_0, x_1, \ldots), \quad \Lambda = K[x]_{x \in K[x]} \quad \text{and} \quad A = \Lambda[y].$$

Then Λ is a discrete valuation ring with parameter x and A is a polynomial algebra over Λ . In particular dim A = 2. Define K-epimorphisms $\epsilon : A \to K$

and $\epsilon': A \to K(x)$ by

$$\epsilon(x) = \epsilon(y) = 0, \quad \epsilon'(x) = x, \quad \epsilon'(y) = 1/x. \tag{1}$$

The corresponding kernels $\mathbf{m} := Ker(\epsilon)$ and $\mathbf{m}' := Ker(\epsilon')$ are maximal ideals of A. Obviously

$$\mathbf{m} = xA + yA, \quad \mathbf{m}' = (xy - 1)A, \tag{2}$$

$$\mathbf{m}' \cap \mathbf{m} = \mathbf{m}'\mathbf{m}, \quad ht(\mathbf{m}') = 1, \quad ht(\mathbf{m}) = 2.$$

The conditions

$$\epsilon''(x) = x_0^2, \quad \epsilon''(x_i) = x_{i+1} \quad , \quad (i \ge 0), \quad L = Im(\epsilon'')$$

define a K_0 -homomorphism $\epsilon'' : K(x) \to K$ and a subfield L of K such that $K = L \oplus x_0 L$. Put $\phi = \epsilon'' \circ \epsilon' : A \to L$. Then

$$Im(\phi) = L, \quad Ker(\phi) = \mathbf{m}'.$$
 (3)

Set $\mathbf{n} = \mathbf{m'm}$, $B = Ker(\phi - \epsilon)$, and $\psi = \epsilon | B = \phi | B$. Clearly B is a subring of A such that

$$\mathbf{m} \cap B = \mathbf{n} = \mathbf{m}' \cap B, \quad \mathbf{n} = Ker(\psi).$$
 (4)

Lemma 1. i) $Im(\psi) = L$, ii) **n** is a maximal ideal of B.

Proof: Suppose $z \in K(x)$ and $t = \epsilon''(z) \in L$. Since K(x) is the quotient field of Λ and x is a parameter of Λ , we can find n >> 0 such that $x^n z \in \Lambda$. Set $a = t + (z - t)x^n y^n \in K_1$. Then $a \in A$, $\epsilon(a) = t$, and $\phi(a) = \epsilon''(t + (z - t)) = t$. Thus $a \in B$ and $\psi(a) = \phi(a) = t$. This proves *i*). The assertion *ii*) now follows immediately from (4). \Box

Lemma 2. $A = B + (xy - 1)B + x_0(xy - 1)B$.

Proof: Let $a \in A$. Since $\psi = \phi | B$ and $Im(\psi) = L = Im(\phi)$, we can choose $b \in B$ such that $\phi(a) = \psi(b) = \phi(b)$. Then $a - b \in Ker(\phi) = (xy - 1)A$ and a - b = (xy - 1)a' where $a' \in A$. Because $Im(\psi) = L$ and $K = L \oplus x_0L$, $\epsilon(a') = \psi(c) + x_0\psi(d) = \epsilon(c + x_0d)$ for some $c, d \in B$. Set $e = a' - c - x_0d$. Then $e \in Ker(\epsilon) = m$ and $(xy-1)e \in m'm = n \subset B$. Because $b, c, d \in B, (xy-1)e \in B$ and $a = (b + (xy - 1)e) + (xy - 1)c + x_0(xy - 1)d$, the assertion follows. \Box

Now Eakin's theorem and lemma 2 imply immediately:

Lemma 3. The ring B is noetherian and A is a finite extension of B.

 \mathbf{Set}

$$M = B \setminus \mathbf{n}, \quad S = M^{-1}B, \quad J = \mathbf{n}S, \quad Y = SpecS, \tag{5}$$

$$R = M^{-1}A, \quad I = \mathbf{m}R, \quad I' = \mathbf{m}'R, \quad X = SpecR.$$
(6)

Because R and S are noetherian subrings of K_1 , X and Y are integral and noetherian. The inclusion $S \subset R$ defines a finite and dominant morphism $f: X \to Y$. Since **n** is maximal in B, Y is local and X is semilocal. It follows from (2) - (5) and (6) that I and I' are the only closed points of X and that

$$ht(I) = 2, \quad ht(I') = 1.$$
 (7)

Because Λ is a discrete valuation ring, it follows from (6), (7) that X is regular and that

$$\dim Y = \dim X = 2. \tag{8}$$

Being integral and local Y is then catenary.

Lemma 4. The morphism f is birational.

Proof: The field $\mathcal{R}(X)$ of rational functions on X is the common quotient field K(x,y) of the subrings K[x,y], A and R of K_1 . For any $r = a/b \in \mathcal{R}(X)$ $(a,b \in K[x,y])$ we have $x(xy-1)a \in \mathbf{n} \subset B$ and $x(xy-1)b \in B$. Consequently $r = (x(xy-1)a/(x(xy-1)b) \in \mathcal{R}(Y) \text{ and } \mathcal{R}(X) = \mathcal{R}(Y).$

Denote

$$r = xy - 1 \in \mathcal{R}(X)^*$$

and

$$\alpha = f_*[div(r)] \in ZY.$$

To show that f does not preserve rational equivalence it is enough to show that $\alpha \neq 0$ in ZY. The degrees of the residue-field extensions

$$\mathbf{k}(I) \leftarrow \mathbf{k}(J) \to \mathbf{k}(I') \tag{9}$$

are calculated using the natural identifications $\mathbf{k}(I) = A/\mathbf{m}$, $\mathbf{k}(I') = A/\mathbf{m}'$ and $\mathbf{k}(J) = B/\mathbf{n}$. From (2), (3), (4) and lemma 1 we then see that the sequence (9) can be identified with $K \leftarrow L \rightarrow L$. Because $K = L \oplus x_0 L$, it follows that

$$[\mathbf{k}(I) : \mathbf{k}(J)] = 2, \quad [\mathbf{k}(I') : \mathbf{k}(J)] = 1.$$
(10)

Since r = xy - 1 is a parameter of the discrete valuation ring $\mathcal{O}_{X,I'} = A_{\mathbf{m}'}$, it follows that $\operatorname{ord}_{I'}(r) = 1$. By (7) I' is the only point of codimension 1 in X lying over J. It then follows from (10) that the coefficient of [J] in α equals $1 \cdot 1 = 1$. Let \mathbf{q} be any point of dimension 1 in Y. Then $W := \{\mathbf{q}, J\}$ is the closure of $\{\mathbf{q}\}$ in Y. For each $s \in \mathcal{R}(W)^*$ the coefficient of [J] in $[\operatorname{div}(s)]$ is equal to $\operatorname{ord}_{J/\mathbf{q}}(s)$. It is enough to show that this is always even. Since X is regular and J is clearly the conductor of R in S, it follows that f restricts to an isomorphism $X \setminus \{I, I'\} \to Y \setminus \{J\}$. In particular there is exactly one prime \mathbf{p} in X over \mathbf{q} , and $R_{\mathbf{p}} = S_{\mathbf{q}}$ in K(x,y). Since $\mathbf{p} \cap S = \mathbf{q} \neq J$, we see that $(0) \neq \mathbf{p} \notin \{I, I'\}$. Because $\mathbf{q} \neq J$ and $J = I' \cap S$ and ht(I') = 1, it follows that $\mathbf{p} \not\subset I' \not\subset \mathbf{p}$ and $xy - 1 \not\in \mathbf{p}$. Since I and I' are the only maximal ideals of R, it follows that \mathbf{p} is a proper subideal of I. The ring R/\mathbf{p} is then local and onedimensional. Set $U = V(\mathbf{p}) = \operatorname{Spec}(R/\mathbf{p}) \subset X$. The local ring $R_{\mathbf{p}} = S_{\mathbf{q}}$ has the residue field $L := \mathcal{R}(W) = \mathcal{R}(U)$ so that the restriction $g: U \to W$ is birational and bijective. Let E be the common integral closure of S/\mathbf{q} and R/\mathbf{p} in L. Set V = SpecE and look at the morphisms $V \to U \to W$ induced by the imbeddings $S/\mathbf{q} \to R/\mathbf{p} \to E$. Since the local ring R/\mathbf{p} is algebraic, the morphism $V \to U$ is finite and E is semilocal. Let $\mathbf{m}_1, \ldots, \mathbf{m}_e$ be the maximal ideals of E and $\mathbf{k}(\mathbf{m}_i)$ $(i = 1, \ldots, e)$ the corresponding residue fields. Because R/\mathbf{p} is local, it follows that the \mathbf{m}_i lie over its maximal ideal I/\mathbf{p} . Of the residue field extensions

$$\mathbf{k}(J/\mathbf{q}) = \mathbf{k}(J) \rightarrow \mathbf{k}(I) = \mathbf{k}(I/\mathbf{p}) \rightarrow \mathbf{k}(\mathbf{m}_{i})$$

the first is of degree two by (10). Hence the degrees $[\mathbf{k}(\mathbf{m}_i):\mathbf{k}(J/\mathbf{q})]$ are all even. Because the morphisms $V \to U \to W$ are finite, we know that

$$ord_{J/\mathbf{q}}(s) = \sum_{i=1}^{\epsilon} ord_{\mathbf{m}_{i}}(s)[\mathbf{k}(\mathbf{m}_{i}):\mathbf{k}(J/\mathbf{q})]$$

(see [FULTON], A.3.1 p 412, for example). The assertion follows immediately. Acknowledgements: We thank the Department of Mathematics of the University of Köln for hospitality and the German Academic Exchange Service (DAAD) for financial support during the preparation of this paper.

References

FULTON, W. Intersection theory.

Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag (1980).

GD : GROTHENDIECK, A. - DIEUDONNÉ, J. : Elements de Géométrie Algébrique, IV, Étude Locale des Schémas et des

Morphismes de Schémas. Publ. Math. IHES 24 (1965).

KLEIMAN, S . Intersection Theory and Enumerative Geometry:

A Decade in Review.

Proceedings of Symposia in Pure Mathematics, Vol 46. AMS (1987).