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1. Introduction

Let Y ⊂ Cn be an open subset which is locally Stein i.e. each point x ∈ Cn has an open
neighborhood V = V (x) such that V ∩ Y is Stein (this, of course, is equivalent to saying
that the inclusion map i : Y ↪→ Cn is a Stein morphism). Then, by the solution of the
Levi problem (Oka [12] and [13], Bremermann [2], Norguet [11]) Y is itself Stein. In fact,
from Oka’s characterization of Stein domains in Cn it follows that in this case − log d is a
plurisubharmonic function on Y (here d denotes the euclidean distance to the boundary
of Y ). More generally, K. Oka considered unbranched Riemann domains p : Y → Cn over
Cn and he proved that Y is Stein if and only if − log d is a plurisubharmonic function on
Y . This implies that Y as above is Stein if p is a Stein morphism (i. e. each point x ∈ Cn

has a neighborhood V = V (x) such that p−1(V ) is Stein). Note that, by an example of J.
E. Fornæss [6], a similar result does not hold any more for a Stein morphism p : Y → Cn

which is a branched Riemann domain (even if it is finitely sheeted).
The above mentioned result of K. Oka has been generalized by H. Grauert and F.

Docquier [5] to the case of Stein manifolds. In particular, they proved:
If p : Y → X is a Riemann unbranched domain, p is a Stein morphism and X is a Stein

manifold, then Y also is Stein.
Andreotti and Narasimhan considered for the first time in [1] the Levi problem for Stein

spaces with singularities. This question can be stated as follows:
Question 1. Let Y ⊂ X be an open subset of a Stein space X. Assume that Y is locally

Stein. Does it follow that Y is (globally) Stein?
A more general question than Question 1 which is in the spirit of Oka’s article [13] in

considering unbranched Riemann domains is the following:
Question 2. Let p : Y → X be an unbranched Riemann domain and assume that X is

a Stein space (possibly with singularities) and assume that p is a Stein morphism. Does
it follow that Y is Stein?

Andreotti and Narasimhan [1] showed that the answer to Question 1 still is in the
affirmative if X has isolated singularities. The general case of Question 1, for arbitrary
singularities, is one of the most difficult and important open problems in complex analysis,
called the “local Steinness problem” or the “Levi problem on singular spaces”. Andreotti
and Narasimhan used for the proof of their partial positive answer a “projective” method
which cannot be adapted to the more general Question 2 especially since the fibers of
p might be infinite, because, with their method, it might be impossible to construct a
“nice” vertical exhaustion function with bounded Levi form from below. Our main result
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in this paper (Theorem 2.1) asserts that Question 2 has a positive answer for spaces with
isolated singularities. Instead of the “projective” method we shall use a patching technique
for plurisubharmonic functions with bounded differences together with the existence of
a strongly plurisubharmonic exhaustion function with value −∞ on the exceptional set
over the desingularization of X (see [4]).

2. The main result

Theorem 2.1. Let X and Y be complex spaces with isolated singularities and p : Y → X
an unbranched Riemann domain. Assume that X is a Stein space and p a Stein morphism.
Then Y also is Stein.

Proof: Using a Runge type exhaustion argument, we may assume that Sing(X) is a
finite set. Let us even assume for the convenience of the reader, that Sing(X) even consists
of one point only, say Sing(X) = {x0}. Again using a Runge type exhaustion argument
we also may assume, that p(Y ) ⊂⊂ X. We distinguish between two cases:

(a) x0 6∈ p(Y )
(b) x0 ∈ p(Y )

Case (a): Let π : X̃ → X be a resolution of the singularity x0, B := π−1(x0) the
exceptional set of X̃. Then X̃ is a 1-convex manifold. The main result of [4] guarantees

the existence of a strongly plurisubharmonic exhaustion function f : X̃ → [−∞,∞) such
that

B = {f = −∞}

(one also may assume that exp(f) is smooth). Since x0 6∈ p(Y ), we may consider Y as a

Riemann domain over X̃, say p1 : Y → X̃. According to our assumptions p1 is a Stein
morphism and, moreover, there is a strongly pseudoconvex neighborhood U ⊂⊂ X̃ of B
such that p−1

1 (U) ⊂ Y is a Stein subset. We, obviously, also may assume, that we have a
smooth plurisubharmonic function α on X̃ with α ≥ 0, α ≡ 0 on U , α > 0 outside U and α
strongly plurisubharmonic outside U . We choose strongly pseudoconvex neighborhoodsW
and W ′ of B with B ⊂ U ⊂⊂ W ⊂⊂ W ′ and such that p−1

1 (W ′) is Stein. We may assume
in addition that f ≥ 0 outside U . We denote by h : p−1(W ′) → R+ a smooth strongly

plurisubharmonic exhaustion function. Consider the compact subset K := p1(Y ) ⊂ X̃.
We cover K by finitely many open balls {Ui}i∈I , such that each p−1

1 (Ui) is Stein. Over
Ui we consider the euclidean metric and let δi be the corresponding boundary distance
(measured in the euclidean metric) for the Riemann domain Yi := p−1

1 (Ui) → Ui ⊂⊂ Cn.
Since Yi is Stein, it follows from Oka’s theorem that − log δi is a plurisubharmonic function
(not necessarily an exhaustion function!). Choose, furthermore, concentric balls Vi ⊂⊂ Ui

such that K ⊂
⋃
i∈I

Vi. By Lemma 3 in K. Matsumoto [9] (cf. also M. Peternell [14]) the

quotients δi/δj are bounded on p−1
1 (Vi∩Vj). Therefore, the differences − log δi−(− log δj)

are also bounded. For each i we can suitably choose a function θi ∈ C∞

0 (Vi), θi ≥ 0, such
that the function
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l(y) := max
p1(y)∈Vi

(− log δi(y) + θi(p1(y)))

is continuous on Y . Moreover, for a sufficiently large constant A > 0 the function

q := A · f ◦ p1 + l

is a strongly plurisubharmonic function on Y since f is strongly plurisubharmonic on
X̃, the θi are smooth and of compact support and the − log δi are plurisubharmonic. In
order to prove that Y is Stein, it again follows from a Runge type argument, that it is
enough to check, that the sets {q < c} are Stein for every c ∈ R.

We fix a Riemannian metric g on X̃ and denote by g∗ its pull-back to Y . Let δ = δY

be the induced boundary distance on the Riemann domain p1 : Y → X̃ with respect to
g. For each ε > 0 we define the set Yε := {y ∈ Y : δ(y) > ε}. (Observe that, in general,
the Yε are not Stein!) Then there exists a C2-function φ = φε : Yε → R+ such that

(i) |∂φ| ≤ C1 (φ is a Lipschitz function on Yε)
(ii) Lφ ≥ −C2 (the Levi form of of φ is bounded from below)
(iii) φ is a vertical exhaustion function on Yε, i.e. ∀ b ∈ R the set

{φ < b} ⊂⊂ Y .

The construction of this type of functions φε will be done in the Appendix. If ε = ε(c) > 0
is chosen sufficiently small then (*)

{q < c} \ p−1
1 (U) ⊂ {δ > ε}

We consider the product function µ := φ · α̃ : {q < c} → R where α̃ := α ◦ p1 (which is
well-defined on {q < c} because of (*). From the formula:

L(µ) = α̃ · L(φ) + φL(α̃) + 2Re(∂φ)(∂α̃)

it follows that L(µ) is bounded from below on {q < c} (in general, it is not bounded
in modulus), µ is a vertical exhaustion function outside p−1

1 (U) and it is ≡ 0 on p−1
1 (U).

Now choose a strongly pseudoconvex neighbourhood U ′ ⊂⊂ U of B such that there exists
a smooth plurisubharmonic function ψ ≥ 0 on X̃, ψ ≡ 0 in U ′, ψ > 0 and strictly

plurisubharmonic outside U
′

. Therefore, if M > 0 is a sufficiently large constant then
µ + M · ψ ◦ p1 : {q < c} → R is plurisubharmonic on all of {q < c} and even strongly

plurisubharmonic and relatively exhausting outside p−1
1 (U) and it is ≡ 0 on p−1

1 (U
′

). Let
χ : [0,∞) → [0,∞), χ(0) = 0, be a smooth rapidly increasing strictly convex function
such that

χ ◦ (µ+M · ψ ◦ p1) > h on {q < c} ∩ p−1
1 (∂W )

Over {q < c}∩p−1
1 (W ) we consider the plurisubharmonic function max(h, χ◦(µ+Mψ◦

p1)). It can be extended by χ ◦ (µ + Mψ ◦ p1) to a plurisubharmonic function τ on all
of {q < c}. With it the function η := 1

c−q
+ τ is a continuous strongly plurisubharmonic

exhaustion function on {q < c}, consequently, by Grauert’s solution of the Levi problem
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(H. Grauert [7], R. Narasimhan [10]) it follows, that the set {q < c} is Stein. This proves
the claim in case (a).

Case (b): As already observed, we may assume that p(Y ) ⊂⊂ X and that SingX is
finite. In fact, we even assumed that SingX = {x0}. We consider the fiber product

Ỹ of the locally biholomorphic map p : Y → X and the local desingularization at x0,
namely the map π : X̃ → X. Hence, Ỹ = {(y, x̃) : p(y) = π(x̃)} and there are the
two natural projection maps π1 : Ỹ → Y and p1 : Ỹ → X. The map π1 is a proper
modification of Y at the discrete set p−1(x0) = {an}n and p1 : Ỹ → X̃ is a Riemann

domain over X̃. Moreover, p1 is a Stein morphism and there is a strongly pseudoconvex
neighbourhood U ⊂⊂ X̃ of B, such that p−1

1 (U) is a nondegenerate manifold, i.e. a
proper modification at a discrete subset of a Stein space. Exactly as in case (a) we get
a function g : Ỹ → [−∞,∞) which is strongly plurisubharmonic, exp g is smooth and

g = −∞ exactly on the exceptional set B̃ of Ỹ of the proper modification π1 : Ỹ → Y .
Moreover, for each fixed c ∈ R, there exists (exactly as in case (a)) on the open set

{q < c} ⊂ Ỹ a continuous real valued plurisubharmonic exhaustion function. Clearly,
Y carries smooth strongly plurisubharmonic functions > 0. This shows, that Y can be
exhausted by a sequence {Yn}n∈N of Stein open sets such that each pair (Yn, Yn+1) is a
Runge pair. Hence, Y is a Stein space as claimed.

3. Appendix

We prove now the existence of the function φε = φ with the stated properties. We
recall that φε : Yε → R where Yε = {y ∈ Y |δ(y) > ε}. Let Ai ⊂⊂ Bi ⊂⊂ Ci be

relatively compact open subsets (biholomorpic to balls) of X̃, i = 1, ..., m such that

K := p1(Y ) is covered by ∪iAi. If ε1 > 0 is sufficiently small then for every i one has
p−1

1 (Bi) ∩ Yε ⊂ {y ∈ p−1
1 (Ci)|δi(y) > ε1} = Qi where δi denotes the euclidian distace in

the Reimann domain p−1
1 (Ci) → Ci. We choose also ε2 > 0 sufficiently small such that

∪i{y ∈ p−1
1 (Ci)|δi(y) > ε1} ⊂ Yε2

.On Yε2
we consider the distance,measured in g∗, to a fix

point O (of course we may assume that Yε2
is connected). We denote by η this distance.It is

a Lipschitz function and vertical exhaustion i.e. {η < c} ⊂⊂ Y for every c ∈ R. Using the
regularization method in Hörmander [8] p.130-131 we may regularize η|Qi

and we get C∞

functions ηi : Qi → R with |η−ηi| < 1, |∂ηi| ≤M , |Lηi| ≤ P . In particular the differences
ηi − ηj are bounded on Qi ∩Qj, therefore on p−1

1 (Bi)∩ p
−1
1 (Bj)∩ Yε. We choose functions

λi ∈ C∞

0 (Bi) with Ai ⊂ suppλi ⊂ Bi. If Ki > 0 are suitable chosen sufficiently large
constants then we get a continuous function Γ(y) := max

y∈p−1

1
(Bi)∩Yε

(ηi(y) +Kiλi(p1(y))).

We now consider the ”max-regularization” of Γ defined for small enough α > 0. Let
u ∈ C∞

0 [−1, 1] ,u ≥ 0,
∫

R
u = 1 and consider

Γα(y) :=

∫
Rm

max
i

(ηi(y) +Kiλi(p1(y)) + αti)u(t1)...u(tm)dt1...dtm

for y ∈ Yε. Then clearly φε := Γα, for small enough α is a vertical exhaustion function,
it satisfies |∂φε| ≤ D since max(x1, ...., xm) is Lipschitz and the terms contained in the
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”max-regularization” are Lipschitz. It has Levi form bounded from below since the ”max-
regularization” of 1-convex functions is 1-convex and all terms involved in the ”max-
regularization” of Γ have bounded Levi form from below. The proof of the assertion
contained in the appendix is thus complete.

4. Additional remarks

Our result admits with almost the same proof the following generalization:

Remark 4.1. Let X be a complex space with isolated singularities such that on each rel-
atively compact open subset of X there exists a real-valued continuous strongly plurisub-
harmonic function (e. g. X is a K-complete space with isolated singularities). Let
p : Y → X be an unbranched Riemann domain such that p(Y ) ⊂⊂ X and p is a Stein
morphism. Then Y is a Stein space.

Another observation concerning the case of branched Riemann domains is the following

Remark 4.2. G. Coeuré and J. J. Loeb constructed in [3] a locally trivial holomorphic
fibration f : Y → C∗ with the fiber being a bounded Stein domain in C2 such that,
nevertheless, the total space Y of the fiber bundle is not Stein. By the results of Y. T. Siu
from [15] there are two holomorphic functions g1, g2 : Y → C such that the holomorphic
map p = (f, g1, g2) : Y → C∗ × C2 has discrete fibers. Therefore, it turns Y into a
branched Riemann domain spread over the Stein manifold X = C∗ × C2. Since, clearly,
p is a Stein morphism (because f has this property) this construction provides another
example having similar properties as the one due to J. E. Fornæss from [6]. Notice also
([15]) that holomorphic functions on Y separate points and give local coordinates.

Remark 4.3. Our proof gives also the following result concerning Riemann (unbranched)
domains over 1-convex manifolds: if p : Y → Z is a Riemann domain over a 1-convex
manifold Z, p is a Stein morphism and there exists a neighborhood V of the exceptional
set of Z such that p−1(V ) is Stein, then Y is Stein itself.
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pointing out a small error in a first version, i.e. that the arguments of A. Takeuchi [16],
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M. Colţoiu: Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-

014700, Bucureşti, Romania.
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