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AN ELEMENTARY PROOF OF FEFFERMAN'S THEOREM

Franc Forstneric

1. Introduction.

One of the classical problems of several complex variables is to understand the bound­
ary behavior of biholomorphic mappings f: D ---+ D' between bounded domains D, D' c c n

with COO-smooth boundaries. In one variable there is a classical theorem, due to I<:ellog [21],
- -,

to the effect that every such mapping extends to a COO-smooth diffeomorphism f: D ---+ D
of their closures. If the boundaries bD, bD' are smooth real-analytic curves, then f extends
holomorphically to a neighborhood of D according to the much more elementary Schwarz
refiection principIe.

It is not a simple task to prove the corresponding statements for domains in C n for
n > 1, and the problem is still open on arbitrary d01l1ains. The first general result in this
direction was the following theorem of C. Fefferman [14] in 1974. By smooth we always
mean Coo unless otherwise specified.

1.1 THEOREM. H f: D ---+ D' is a biholomorphic mapping between bounded domains
D, D' in C n with smooth strongly pseudoconvex boundaries, then f extends to a smooth

- -,
diffeomarphism of D anto D .

Recall that a domain D C c n is p3eudoconvex if there is a defining function r( z) on
a neighborhoo cl of D satisfying D = {r < O}, dr =j:. 0 on bD = {r = O}, so that for each
z E bD the Levi form

n 8Zr
.c(z;w) = L: a ErZ (Z)WjWk

j,k=l Zj Z k

is non-negative on the maximal complex tangent space

(1.1)

(1.2)

Fefferman's proof involvecl deep ancl rather difficult analysis of the Bergman kernel
function and the associated Bergman metric of a smooth strongly pseudoconvex domain
in C n

. On the other hand, if the mapping f is assumed to be continuously differentiable
up to the boundary and the boundaries are real- analytic, it is not difficult to show that
f extends holomorphically past the boundary. This 'refleetion principle' was first proved
by Lewy [23] and Pincuk [27] by a clever application of the implicit function theorem.
Webster [35] provided another proof, using the classical edge-of-the-wedge theorem.

Today there exist several proofs of Theorem 1.1. The result has been localized and
extended to proper holomorphic mappings between pseudoconvex domains of finite type
in c n

. One approach relies on the biholomorphic invariance of the Bergman kernel and
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the regularity of the associated 8-Neumann problem. See the papers by Bell and Ligocka
[9], Bell [4, 5, 6], Bell and Catlin [7,8], and Diederich and Fornress [11, 12]. Independent
proofs using more elementary techniques were given by Nirenberg, Webster, and Yang [25],
Lempert [22], and more recently by Pincuk and Hasanov [30]. See also the recent survey
[16] by the author.

The purpose of this paper is to give yet another proof of Theorem 1.1. It is based
on two classical results of complex analysis: the edge-of-the-wedge theorem and its gen­
eralization to Coo edges (Theorem 3.1 below), and the theorem of Julia-Caratheodory in
several variables (Rudin [33, p.174]) that follows from the invariant Schwarz leInma.

A similar approach was developed in the papers by Webster [35], Nirenberg, Webster
and Yang [25], and Pincuk and Hasanov [30]. Julia's theorem has been used in this context
in 0, but our proof seems shorter and simpler. The difference between our proof and that
of Pincuk and Rasanov is that we replace their method of scaling by the theorem of Julia­
Caratheodory. This way we can avoid some of the delicate points in the normal families
arguments of [30] and [28]. We believe that our proof is accessible also to beginners in
complex analysis. It is espeeially elementary in the case of real-analytic boundaries.

The proof is completely loeal and gives the following local theorem.

1.2 THEOREM. Let M and M' be smooth strongly pseudoconvex hypersurfaces in
C n (not necessarily c1osed), and let D c C n be a domain in tbe pseudoconvex side of
M, containing M in its boundary. Let I: D U At[ -t C n be a continuous mapping that
is holomorphic in D and takes M to M'. H for some p E M the fiber !( = 1-1(/(p))
is a cOlnpact subset contained in the (relative) interior of M, then I is smooth in a
neighborhood oE p in D uM.

Reluarks.

1. This theorem has been proved for mappings between pseudoconvex hypersurfaces of
finite type by Bell and Catlin [8J via the Bergman kernel method. Recently Pincuk and
Tsyganov have proved the same result for strongly pseudoconvex hypersurfaces without
assUlning that I-I(f(p)) is a compact subset of M. (This was announced by Pincuk at
the conference in Santa Cruz, July 1989.)

2. The continuity of f on DU M follows from the assumption that the cluster set of I at
M is contained in M'. See for instance the papers [15J and [17].
3. We shall always restrict ourselves to the Coo case, although the same proof can be
applied in the case of finite smoothness of M and M' (see [30J, [22]). The following sharp
regularity result has been obtained recently by Hurumov (to appear): If M and A1' are of
class Ck , k > 2, then I is of class Ck-l/2-0.

The paper is organized as follows. In section 2 we localize the problem near a given
boundary point p E M. In section 3 we recall sOlne regularity results for mappings on
wedge domains with a generic totally real edge (COO version of the edge- of-the-wedge
theorem). In section 4 we explain the connection between the two problems. This part
follows closely the approach by \iVebster [35] and Pincuk and Hasanov [30]. Everything up
to this point is well-known.
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The crucial part of our proof that differs from the existing ones is given in section 5
\vhere we complete the reduction step (Proposition 5.1).

I wish to thank J. P. Rosay who called my attention to the work [30l and who shared
with me many of his ideas on the subject during my visit to the University of Wisconsin
in September 1988. I also thank S. Bell and J. Globevnik for several discussions on this
subject. Last but not least, I thank S. I. Pincuk who kindly explained me certain points
concerning the normal families argument in the paper [30].

This work was supported in part by agrant from the Research Council of the Republic
of Slovenia.

2. Localization.

We shall first prove that a nonconstant holomorphic mapping satisfying the conditions
of Theorem 1.2 is biholomorphic locally near p. A similar localization can be found in the
papers by Bell [6] and Bell and Catlin [8]. If the reader is only interested in the global
case (Theorem 1.1), he may skip this section.

Let D ' be a domain in C n bounded in part by ]";f' and lying in the pseudoconvex side
of ]1,1['. Recall that D c c n is a similar domain bounded in part by M.

Definition. We say that a set C c D is a one- sided neighborhood oE a point p E M i[
G contains UnD for some open neighborhood U oE p in C n

.

2.1 PROPOSITION. Under tbe hypotheses of Theorem 1.2 there exist arbitrarily
small one-sided neighborhoods G oE p E M and C' of I(p) E A1' such that tlle restrietion
I: G ----+ G' is biholomorphic.

Proof. If V C C n is a sufficiently small open neighborhood of the cOlnpact set ]( =
1-1 (/(p)) in C n

, then V n 1\1 ce M, V n D ce DUAl, and I(V n D) c D' according to
the maximum principle. For such V, the compact set E = l(bVnD) does not contain I(p),
so there are is a ball U' centered at f(p) that does not meet E. We choose U' sufficiently
small such that the domain G' = U' n D' is compactly contained in D' U lvI'.

Let G = l-l(G' ) n V n D. By continuity of I, G is a one sided neighborhood of each
point in ](. We claim that the restriction I: G ----+ G' is proper holomorphic. To prove this,
take an arbitrary compact subset L' C G' and let L = /-1 (L') n G. If L is not compact,
then its closure in C n intersects the boundary of G, so there is a point z E bG for which
fez) E L'. Sirrce z cannot be in M, it must be in bG n D. Also, z cannot be in bV nD
by the construction of G'. Hence z is an interior point of V n D. By the continuity of f
it follows that a neighborhood U of z in V nD is rriapped irrto G'. Hence U C G, which
contradicts the assumption that z is a boundary point of G.

Thus, f: G ----+ G' is proper holomorphic. Let A = {z E G: det D/(z) = O} be the
brauch locus of / in G. Pincuk proved in [28] that A does not approach the strongly
pseudoconvex boundary points of G when n > 1. (For self- mappings of the ball this is
just the weIl known result of Alexander [1), [33, p.316].) If we now shrink the neighborhood
V of ](, we luay assume that I is locally biholomorphic in V n D. Repeating the above
procedure we find sn1aller dOlnains, still called G and G', such that I: G --+ G' is proper,
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whence a holomorphic covering. If U' is a sufficiently small ball at I(p), then G' = U' n D'
is simply connected. If we now replace G by the connected component of G whose closure
contains p, then I: G -t G' is biholomorphic.

A standard argument (see for instance (2] or [26]) shows that the inverse 1-1: G' -t G

extends continuously to a neighborhood of f(p) in G', so p is an isolated point of the fiber
!(. Thus we may apply the above proof with V an arbitrary small neighborhood of p. This
concludes the proof of Proposition 2.1.

3. Regularity of l11appings on wedge donlains.

In this section we recall some results due to Pincuk and Hasanov [30] and, indepen­
dently, to Coupet [10], concerning mappings between wedge domains.

Perhaps the main reason why it is much easier to prove the boundary regularity
theorem in one variable than in several variables is that the boundary of a domain in Cl is
areal curve with no complex structure, while in C n it is areal hypersurface with plenty of
complex structure. This point of view suggests that the most natural generalization of the
aue-variable mapping problem to several variables is obtained by considering the behavior
of holomorphic mappings near totally real submanifolds in cn.

Recall that areal submanifold E C c n is said to be totally real if for each Z E E the
real tangent space T zE contains no nontrivial cOlllplex subspaces, i.e., T zE n iTzE = {O}.
Clearly this requires dimR E :::; n. E is said to be maximal real if, in addition, dimn E = n.
Thus, every smooth real curve in Cl is maximal real.

If E c c n is a maximal real submanifold that is also real-analytic, we can find
locally near each point z E E a biholomorphic change of coordinates so that, in the new
coordinates, E corresponds to a piece of Rn C C n. Thus E is the fixed point set of an
anti- holomorphic reflection <1>, defined on a neighborhood of E in C n .

If E is merely snl00th, we can find a snl00th change of coordinates Wthat maps E to
Rn and that is 8-flat on E, i.e., aw vanishes to infini te order on E [24]. This gives us a
reflection <I> that fixes E pointwise and that is almost antiholomorphic, in the sense that
its holomorphic derivative BtI> vanishes to infinite order at every point of E.

A natural type of dOlnains associated to a maximal real submanifold E C C n are
the wedges with edge E. Locally near p E E we can find n slnooth real- valued functions
Tl, ... ,rn so that E = {Z:TI(Z) = ... = rn(z) = O}, and the con1plex gradients

L
n BT·

Br· = -} dZk} 8zkk=l

are C-linearly independent on~. If U is a neighborhood of p in C n and r c Rn is an
open convex cone with vertex zero, we define the wedge with edge E:

W = W(U,r) = {z E U:r(z) Er}. (3.1)

We recal! the edge-of-the-wedge theorem: If W+ = W(U, r), W- = W(U, -r), and f
is a continuous function on W+ U EU W- that is holomorphic on W+ uW -, then f extends
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holomorphically to a neighborhood of E n U in C n . For real-analytic edge E this follows
from the classical result [34] where ~ is an open subset of Rn by a change of coordinates.
For smooth edges see [3], [29], or [32].

There is aversion of this result for asymptotically holomorphie funetions. A smooth
function f defined on a wedge W is said to be asymptotically holomorphic at E if each

derivative Danß(8f) of 8 f extends continuously to E and equals zero there. Here is
the Coo version of the edge-of-the-wedge theorem: If E is smooth, f is continuous on
w+ UM u W- and smooth on W+ U W-, and if f is asymptotically holomorphic at E,
then the restriction of f to E is also smooth. More precise results in trus direction have
been proved by Pincuk and Hasanov [30, Theorem 1] and by Coupet [10]. In the case when
'E = Rn this also follows from a more general result concerning the Coo wave front set of
a function on Rn; see Hörnlander [20, p.257]. The general case follows by applying a local
Coo change of coordinates near p E E that takes E to Rn and is 8-flat on E.

The above implies the following regularity result for mappings on wedgesj this is a
special case of results due to Pincuk and Hasanov [30] and Coupet [10]:

3.1 THEOREM. Let W = W(U, r) be a wedge (3.1) with a smooth maximal real edge
~ C C n

, let E' C C n
' be a smooth totally real sublnanifold, and let F: W U E -J. C n

'

be a continuous mapping that is smooth on W, asymptotically 1101omorphic at E, and
F(E) C E'. Then the restrietion of F to ~ n U is slnooth. H botb E and 'E' are real­
analytic and F is holomorphic on W, then F extends holomorphically to a neighborhood
ofE n U in C n .

In the real-analytic case the result follows from the edge-of- the-wedge theorem as
follows. Without loss of generality we can assume that E' is maximal real in C n '. Let 1>'
be the anti-holomorphic reflection that fixes E' pointwise, and let 1> be the corresponding
reflection on 'E. We can extend F to a wedge W- that is essentially the opposite of
W+ = W by taking 1>' 0 F 0 1>. If F is hololnorphic on W+ and <1> resp. 1>' are anti­
holomorphic, the extended map is holomorphic also on W-, so the c1assical edge-of-the­
wedge theorem shows that F extends holomorphically to a neighborhood of p in c n .

In the smooth case we use allnost anti-holomorphic reflections <1> resp. <1>', together
with a distance estimate

dist(F(z), 'E') :::; Cdist(z, E),

valid on any finer wedge wt c W+ with some C < 00 (see [30] and [31]), to see that the
extended map is asymptotically holomorphic at 'E also from the wedge W1-. Hence the
smoothness of F on ~ follows from the Coo edge-of-the-wedge theorem quoted above.

4. Reduction to the edge-of-the-wedge theorell1.

We shall now explain the connection between Theorem 3.1 and the mapping problem.
This is due to S. Webster [35], although the idea appeared hnplicitly already in the papers
by H. Lewy [23] and S. Picuk [27].

In view of Proposition 2.1 we may assume the following situation. Let 111 and 111' be
Iocal strongly convex smooth hypersurraces containing the origin in C n (n > 1). Let D be
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a loeal domain in C n near the origin that is smoothly bounded and pseudoeonvex along
M, and let D' be a similar such domain bounded in part by M'. We have a biholomorphie
mapping f: D -+ D' that extends to a homeomorphism of D onto n' and takes the origin
to the origin, and \ve fiust prove that f is smooth on D U M near the origin. Sinee the
problem is a local one, we may shrink our sets towards the origin, which we shall freely do
in the sequel.

Let (z,w) = L:Zj Wj. For eaeh nonzero vector a E Cn\{O} we denote by [al the
corilplex hyperplane

[al = A a = {w E Cn:(w,a) = O} E cpn-1.

Two vectors in C n determine the same hyperplane precisely when they are multiples of
each other, and every complex hyperplane through 0 is of this form. Hence the set of
all such hyperplanes is the complex projective space cpn-1, and a is the homogeneous
coordinate of Aa •

Following Vvebster (35] we associate to f the holomorphic mapping

F(z,A) = (f(z),Df(z)A),

where z E D and A E cpn-1 is a complex hyperplane through Q. Here, Df(z)A is
the image of A by the derivative Df(z). Clearly F maps the domain jj = D x Cpn-1
in the complex manlfold X = C n X Cpn-1 biholomorphically onto the domain iY =
D' x Cpn-1 C X.

If Ais an invertible n x n matrix and a E Cn\{O} is a row-vector, a simple calculation
shows that A(Aa ) = Ab for b = aA- 1 • Here, aA-1 is the matrix product of the row a with
the matrix A -1. Thus F is given in the homogeneous coordinates on Cpn-1 by

F(z, [a)) = (f(z), (aDf(z)-l]). (4.1)

Recall that HzM C T zM is the maximal complex subspace of the real tangent space
T zM (1.2). We associate to M the smooth submanifold M of X defined by

M = {(z,HzM) E X:z E M}. (4.2)

Let M' c X be the analogous manifold associated to the hypersurface lvI'.

If f is continuously differentiable up to D UM, then for each z E M the derivative
Df(z) maps Hz .i\l isomorphically onto Hf (z)A1'. Hence the associated mapping F extends

continuously from the domain iJ to jj U M and maps M to M'. Hs restriction to M is
given by

j(z, HzM) = (f(z), H f(z) 1\1') .

Fefferman's theorem now follows immediatelly from Theorem 3.1 and the following

LEMMA. (Webster [35].) H M C Cn is strongly pseudoconvex, the associated manifold
M.c C n X cpn-1 is totally real (whence maximal real).
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Namely, the domain fJ dearly contains a wedge W of type (3.1) with the edge M, so
Theorem 3.1 implies that j is smooth on 1\1 whence f is smooth on M.

Suppose now that f is merely continuous up to M. In order to use Theorem 3.1 one
has to prove

4.1 THEOREM. There is a wedge W C fJ with edge 1\1 such that tlle restrietion oE F
to W extends continuously to M and equaJs j there.

Onee this is established, the smoothness of f on M follows fron1 Theoreln 3.1 as
above. We shall prove Theorem 4.1 in the following section. A different proof had been
given before by Pincuk and Hasanov [30], using the scaling method.

5. An application of J ulia-Caratheodory's Theorenl.

Let M = {r( z) = O} and M' = {r' (z) = O} be strongly eonvex hypersurfaees, wi th
defining funetions whose Taylor expansion at the origin is of the form

(5.1)

where Q is a strongly positive definite quadratic form in the indicated variables. Also let
D = {r(z) < O}, D' = {r'(z) < O}. We shall use the notation

From (1.2) \ve see that the maximal complex tangent space HzM has the homogeneous
coordinate 8r(z). Since Bn 1'(z) =1= 0 in a neighborhood of the origin, we can restriet our
eonsiderations to the coordinate chart cn-I C cpn-I on which the last coordinate is
nonzero. Let P = (PI,"" Pn-I) be the affine coordinate of the point [pI, ... ,Pn-I, I} E
cpn-I. Then M is given by

l:5.j::; n-l,

and similarly for M'.
Let G: D x C n

-
1

-4 C n \ {O} be the holomorphic lnapping

Then the mapping F (4.1) can be expressed by

F(z,p) = (f(z), [G(z,p»)) , z E D, pE C n
-

1
.

Shrinking D if necessary we may assume that each point z E D has a unique dosest
point tr(z) E A1. For Q' > 0 and U a small neighborhood of 0 in C n we denote by
Wa(U) C U X C n

-
1 the wedge

Wa(U) = {(z,p): z E UnD, Ipj - Bjr /8n 1·(tr(Z»J < Q' dist(z, M), 1 ::; j ::; n - I}
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with edge M. Now Theorem 4.1 will follow immediatelly from

5.1 PROPOSITION. For each a > 0 there is a neighborhood U of the origin in C n

such that the functions GI, G2 , ••• , G n and l/Gn are bounded llolomorphic on WaiU).
Moreover, tbe quotients Gj/Gn for 1 ::; j ::; n - 1 extend continuously to Wo(U) U M so
that for each ( E M n U we bave

Notice that for points (z,p) E Wen Z ~ ( E M implies that p converges to the affine
coordinate of H,M. Since the right hand side above is the affine coordinate of the point

H f«)M' E Cpn
-

1
, proposition implies that F extends continuously to Wo(U) U M and

coincides with J on !YI, so Theorem 4.1 holds.

Proof of Proposition 5.1. Let U C C n be a small ball centered at the origin. Fix a
ß > 1. Far each painteE U n M we let

r (. {z E D: lz - (I < ßdist(z, Al)}

be a nontangential approach region for ( in D. We denote by f\ c Wo the preimage of
r ( in the wedge Wo under the coordinate projection (z, p) ~ z.

We no\v fix ( E M n U and choose new coordinates w = (w', wn ) on C n so that (
corresponds to the point w = 0, and the outer normal direction to M at ( corresponds
to the axis ~wn > 0. To find an explicit expression for w we choose a unitary matrix
U( E D(n) satisfying U,V71'(() = ten for some t > O, where \7r(z) = 2ßr(z) is the gradient
ofr at ((consideredas acolumn vector), and en = (O',l). vVelnay assume that l\7r(e)1 = 2
for each ( E M. By conjugating and transposing the above relation we obtain

(5.2)

The relation between the old coordinates z and the new coordinates w is then

w = c/>«(z) = U«(z - ().

Clearly we can choose U( to depend continuously on ( E 1\11. VVe introduce a similar
coordinate change

w' = lj;!«)(z') = Vf«)(z' - fee))
for the target hypersunace M' at the point fee), with v!«) E D(n). Ta simplify the
notation we shall drop ( and write </>( = </>, u = U(, etc.

We now have f = -rj;-l 0 f( 0 C/>, where f( is the expression for our mapping in the new
coordinates w resp. w'. The chain rule gives

G(Z,P) = (PI, ... ,Pn-I, 1)U-1 Df,(</>(z))-l V.

8
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Let z E r(, w = 4>,(z), and f = €(z) = dist(z, M). Then we also have € = dist(w, M,),
where Me = </>,(:/1.1). Write

(
A(W)

Df,(w) = C(w) B(W))
D(w) , (5.4)

where A is a square matrix of dimension (n - 1), B is a eolumn (n - 1) X 1, C is a row
1 >; (n - 1), and D is a sealar. Of course these entries also depend on (, but we shall
supress ( to simplify our notation.

We shall now estimate various entries in (5.3) in terms of the boundary distanee €. All
eonstants in these estimates will be independent of ( E Mn U and zEr, unless otherwise
speeified.

First of all we have a distanee estimate

dist(f(z), M') ~ CI€ (5.5)

for some Cl > 0 (see [2] 01' [26]). For any given eomplex direction in C n we can find a
linear eomplex dise in D in that direction, eentered at z, of radius €. In eomplex tangent
direetions w' we ean find larger dises of radii proportional to €I/2. On the other hand, the
largest linear dise in D' eentered at fez) has radius at most C2€I/2 for some C2 > O. Since
the domains D resp. D' are convex along M resp. M', a theorem of Graham [18, 19] gives
an estimate

IDf,(w)1 = IDJ(z)1 ~ C3€-1/2.

Integrating this estimate along the straight path from 0 to wand using f,(O) = 0 we get
If,(w) I :s 2C3€I/2.

Set w' = f, (w) = f (z), and let tU be the unique point in MI«) that differs from w'
only in the real part of the last coordinate. Since the hypersurrace M I «) has a defining

function of the fonu (5.1) near the origin, the estiIuate Iw/l ~ 2C3€1/2 implies I~wn I :s; C4 €

for some C4 > O. Since l~w~ - ~wnl aproxiluately equals dist(w' , MI(C)) which is ~ CI€ by
(5.5), it follows that

(5.6)

for SOlDe Cs > O. Hence the projection of any linear disc in D ' , centered at fez) = w', onto
the complex line through f( () in the w~-direction has radius at IUOSt C5€' A theorem of
Graham [19] now implies the following bounds on the derivatives of J(:

A(w) = 0(1), B(w) = 0(e-1
/

2
), C(w) = 0(eI

/
2

), D(w) = 0(1) (5.7)

as € = dist(z, M) -+ O. These estimates are uniform for ( E Mn U since they only depend
on the geometry (curvature) of M resp. M' and on the constant in the distance estimate
for f.

The estiluates (5.7) imply det Df(z) = det Df,(w) = 0(1) as € -+ 0, so det Df is
a bounded hololnorphic function on D n U. Applying the same to the inverse /-1 we
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conclude that 1/ det DJ is bounded on D n U as weIl. The formulas for computing the
inverse matrix show that the entries in

-1 (A'(W) B1(w))
DJ,(w) = C'(w) D'(w)

satisfy the same estimates (5.7), uniformly in ( E Mn U.

We can refine these estimates by applying the Julia- Caratheodory's theorem for
mappings of balls (Rudin [33]). At the point ( E M n U we osculate M from within by
a ball B, E D that is tangent to M at the point (. By scaling we may assume that the
radius of B( equals one for all ( E M n U. At the image point J(() E M' we osculate D'
from without by a ball B f() containing D' that is tangent to M' at J( ()j this is possible
since M' is strongly convex. Again we mayassume that Bf(,) has radius one for each
(E Mn U.

Consider now the restricted mapping J: B( -+ Bf(). From (5.6) it follows that the
restriction satisfies

(5.8)

for some constant C6 > 1 independent of C. Theorem 8.5.6 in Rudin [33] now gives the
finer estimates

(5.9)

where D, > 0 depends ouly on the liminf in (5.9) and on the displacement of the image
J(a() of the center point a( of the ball B, from the center of the ball Bf(,). Thus we have

-1 D
C7 < ,< C7 (5.10)

for SOlne C1 > 1 independent of (. Alternatively, the first two estimates in (5.9) show that
detDf,(w) -+ detA(w)D(w) as f -+ O. Since both factors are uniformly bounded and
their product is bounded away from 0, the factors are also bounded away from 0, so we get
(5.10). However, the theorem we used does not give HS unifonnity in (5.9) with respect to
(.

Since 1/ det Df is bounded on D, (5.9) implies silnilar estimates for the entries of the
inverse matrix Df,( w )-1:

Ern D'(w) = 1/D(.
f-+O

(5.11)

Let (z,p) E f',. Then

(PI, ... ,Pn-l, 1) = 8r(()/8n r(() + O(f),

10



so (5.2) gives

From the expression (5.3) we further have

G(z,p) = (l/an r(())e n Df((w)-lV + O(e1
/

2
)

= (l/an r(())(C'(w), D'(w))V + O(e1
/

2
).

The term O( e1/2) is uniform in (. PrOfi the estimates (5.7) for C' (w) and D' (w) we see
that G is bounded on r" and the bound is independent of (. Hence G is bounded on the
wedge Wo' Moreover, as z tends to ( within r(, it follows from (5.11) that G(z,p) has the
limit within the region r( equal to

G*(() = Ern G(z,p) = (1/8n r(()D,))en V/(,)z--,
= (1/8n r(()D,)) ar'(f(()).

The last equality follows from (5.2).

When ( E M i8 elose to 0 then 8n r(() is elose to 1 and V = V/ C,) is elose to the identity
matrix. Hence the real part of the last component of G*(() i8 positive and bounded away
from zero, uniformly in (.

We elaim that, as a consequence, the real part of Gn i8 itself bounded away from zero
on every finer wedge Wo' (0" < Q') sufficiently elose to the edge M. This will imply that
l/G n is bounded as weIl. In the case of a straight edge M C R 2n-l this follows from the
Poisson integral formula applied on linear discs that He in the wedge and abut the edge.
The same applies in the case when the edge is real-analytic via change of coordinates. In
the smooth case we can either construct (non-linear) analytic discs in the wedge that abut
the edge and whose images fill a finer wedge. Such construction8 are well-known, see for
instance [10], [13]. Alternatively, \ve can apply a change coordinates that is 8-flat on the
edge and prove a similar result for asympotically holomorphic functions. The details of
this approach are very similar to those in Rosay [32] .

. It follows that each quotient Gj/G n converges to 8jr'(f(())/8n r ' (f(()) as (z,p) E

f\ and z -4 (. Since the limit function is continilOUS on the edge !VI, Gj / Gn extends
continuously to the edge from every finer wedge W0

'
(0" < Q') acoording to Rosay [32].

This completes the proof of Proposition 5.1.

Rell1ark. An alternative proof of Theoreln 4.1 can be found in the paper [30] by Pincuk
and Hasanov. Their method is based on special changes of coordinates and nonhomoge­
neous scalingj it gives an alternative way to obtain the crucial estimates (5.9).
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