ON FOLIATIONS OF SEMI-SIMPLICIAL MANIFOLDS AND THEIR HOLONOMY

Grzegorz Andrzejczak

Institute of Mathematics Polish Academy of Sciences Lódź Branch ul. Biedronkowa 15 m.9 PL-91-358 Lódź/Polen

and

SFB Theoretische Mathematik und Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 5300 Bonn 3 Federal Republic of Germany

MPI/SFB 84-55

ON FOLIATIONS OF SEMI - SIMPLICIAL MANIFOLDS AND THEIR HOLONOMY

Grzegorz Andrzejczak

Introduction

Semi-simplicial foliations have appeared in [2]-[3], where they form a linking between a group action on a manifold and characteristic classes of foliations and produce that way characteristic invariants of the group actions. In fact, the present paper arose while the author was trying to prepare a unified treatment of characteristic classes of foliations - on a manifold and, at the same time - on classifying spaces, which would cover the characteristic invariants studied in [1] (in future, we hope to continue that direction of an investigation). One of the questions was then: what is a geometrical setting in which the semisimplicial manifold $N\Gamma_{\bf q}$ (nerve of $\Gamma_{\bf q}$) could play the role of a classifying space? The solution found by the author is presented in Chapter IV of the paper (cf IV; proposition 1.10 and corollary 2.3.1) and given by a special category of semi-simplicial manifolds. Another question was: how to extend the notion of holonomy to foliations of arbitrary ssmanifolds? A solution to that problem, given in Chapter III, is also an attempt to "close the category", since it is reasonable (cf eg [4]) to look for the "manifold" of leaves of any foliation F among the nerves $N\Gamma_{F,T}$ of the holonomy groupoids. The results of Chapter IV allow one to identify with each other all the ss-manifolds $N\Gamma_{F,T}$, T being any complete transversal for

The paper consists of four chapters. Chapter I is of an introductory character and contains a brief account of foliations and Γ -structures (for a more complete treatment, see [11],[12],[13], and [14] as well as [7] and [8]).

Chapter II deals with semisimplicial objects and extends some ideas of [5].

In Chepter III we develop the notion of a holonomy pseudogroup $G_{F,T}$ (and groupoid $\Gamma_{F,T}$) of an ss-foliation with respect to a complete transversal T. Our main result here is theorem 2.2, in which the existence and minimality of a canonical semi-simplicial $\Gamma_{F,T}$ -structure

are established. In examples 3.1 - 3.3, the theorem is then applied to classical situations (a standard foliation, a pointwise foliation of $N\Gamma$, and a flag) and the corresponding holonomy objects are computed.

Chapter IV contains a presentation of a special category of ss-morphisms and their relations to ss-foliations. In particular, theorem 3.2 of the chapter assures a consistency of the notions of ss-foliations and ss-morphisms.

The author aknowledges the hospitality of the Max-Planck Institute für Mathematik, where the paper has been written, as well as the SFB 40 Universität Bonn for a financial support.

Grzegorz Andrzejczak

Polish Academy of Sciences Institute of Mathematics (Lódź Branch) ul. Narutowicza 56 PL-91-012 Lódź

Symbols and notations

f*F -	I; 1.2	(a ₀ ,,a _n ;x) - 1.4	$\boldsymbol{\Phi^T}$	- 2.3
r _q	- 1.3	$x_n^{(K)}$	- 2.5	$\{\gamma_{ab}\}$	- 2.5
EF	- 1.3&1.9	$\mathbf{x}^{(K)}$	- 2.5.1	\mathbf{E}^{Υ}	- 2.5.2
α, β	- 1.4	EF	- 3.1	[a;x,g]	- 2.5.2
f*E	- 1.641.8	$\Sigma \colon \Gamma \longrightarrow \Gamma^{+}$	- 3.4	Σ _{T',T}	- 3.3
[x,x]	- 1.8	ω_{Σ}	- 3.7	FT	- 3.3
f*o	- 1.12	Σ'• Σ	- 3.8	Fu	- 4.1
Ĩ	- 1.12	I ≈ I'	- 3.8	ω _U	- 4.1
$h_{C,T_1}^{T_0}$	- 2.1	$\Sigma_*\omega$	- 3.10	۴ م	-IV; 1.2
h _c	- 2.2	Σ_* E	- 3.10	f ~ g	- 1.3
$\Gamma_{\overline{F}}$	- 2.3	ωr	- 3.11.1	f∝g	- 1.3
r _{f,T}	- 2.5	$\overline{N}\Gamma$, $\overline{N}_{n}\Gamma$	- 3.11.1	$f: X \longrightarrow Y$	- 1.3
h _{c,T}	- 2.5	101	- 3.12	$f^{-1}v$	- 1.6
G _{F,T}	- 2.5	$\Phi_*\omega$	- 3.12.1	f _V	- 1.6
Φ: G→ G'	- 2.6	T^0 , T^1 -I	II; 1.1	g∘f	- 1.6.1
G ≈ G¹	- 2.7	GF,T0uT1	- 1.1	1_{X}	- 1.6.1
$\omega_{F,\mathbf{T}}$	- 2.8	idi	- 1.1	$\lambda: x_u \to x$	- 1.6.1
H _{c,T}	- 2.8	G _{F,T}	- 1.1	[f]	- 1.7
E _{F,T}	- 2.8	o _T	- 1.1.1	f*ω	- 1.9
ε _i , η _i -	II; 1.1	id ¹ ₀	- 1.1.1	f*ω	- 1.9.2
Nu, N _n u	- 1.3	^ω F,Τ	- 2.282.3	f*E	- 1.9.3
NM	- 1.3	$\Psi^{oldsymbol{\omega}}_{f T}$	- 2.2&2.6	X ≈ Y	- 1.12
Nr, N _n r	- 1.3	ω', T	- 2.3	f*F	- 2.2
×u	- 1.4	E, T	- 2.3	$f_{\mathtt{TS}}$	- 3.1

I. Foliations, pseudogroups, groupoids

In the present paper all manifolds, maps etc are of class C^{∞} (unless otherwise specified), although we do not require the manifolds to be neither paracompact nor even Hausdorff. We propose the following:

Definition 1.1. A q-codimensional (smooth) foliation F of an n-dimensional manifold M ($n \ge q \ge 0$) is a topology in M such that every point of M admits a chart $\varphi \colon U \to \mathbb{R}^n = \mathbb{R}^{n-q} \times \mathbb{R}^q$ trivializing F, ie inducing a homeomorphism of (U,F|U) into $\mathbb{R}^{n-q} \times (\mathbb{R}^q)_{\delta}$, where δ means the discrete topology.

On <u>leaves</u> of F, ie the connected components of (M,F), M induces a structure of (n-q)-dimensional submanifolds.

- 1.2 Any map $f: M' \to M$ transverse to F (ie to the leaves) induces a q-codimensional foliation f^*F of M' which is the topology generated by the pull-back of F and by the manifold topology of M'. For any leaf L' of f^*F there is a unique leaf L of F such that f(L') $\subset L$; the restriction $f|L': L' \to L$ is a smooth map.
- 1.3 The above modification of the definition has little influence on standard results and constructions associated with foliations, as there is still a one-to-one correspondence between q-codimensional foliations of M and some Γ_q -structures on M, Γ_q being the groupoid of germs of local diffeomorphisms of \mathbb{R}^q . If one interprets a Γ_q -structure as a collection of Γ_q -cocycles which are transition maps for a common principal Γ_q -bundle, then the Γ_q -bundle E_p that corresponds to a foliation F consists of all germs of submersions $M\supset U\to \mathbb{R}^q$ locally constant on the leaves ([7]). E_p is an example of highly non-Hausdorff smooth manifolds which come into consideration while studying foliations

We recall the definitions which will be exploited throughout the paper.

<u>Definition 1.4. A (differentiable) groupoid</u> Γ is a small category with only invertible elements (morphisms), such that both Γ and its set of objects U are equipped with differentiable structures, and

- (i) the source $\alpha: \Gamma \to U$ and the target $\beta: \Gamma \to U$ are submersions;
- (ii) the composition $\Gamma \times_{(\alpha,\beta)} \Gamma \ni (g_1,g_2) \to g_1g_2 \in \Gamma$ and the inverse map $\Gamma \ni g \to g^{-1} \in \Gamma$ are both smooth (by (i) the Whitney product

$$\Gamma \times_{(\alpha,\beta)} \Gamma = \{(g_1,g_2) \in \Gamma \times \Gamma; \alpha(g_1) = \beta(g_2)\}$$

is a manifold).

If one identifies objects with <u>units</u>, then U becomes a submanifold of Γ .

Definition 1.5. A principal Γ -bundle E over a manifold M is a manifold endowed with two maps, the projection $\pi\colon E \to M$ and the source $\alpha\colon E \to U$ (units of Γ) and with a right Γ -action $E \times_{(\alpha,\beta)} \Gamma \to E$ in the fibers of π (ie, z.g = z if $g \in U$, and $(z.g_1)g_2 = z(g_1g_2)$). One requires a local triviality condition: on a neighbourhood of each point $x \in M$ there is a section $g\colon M \supset V \to E$ of π such that the map

$$V \times_{(\alpha\sigma, \beta)} \Gamma \ni (y,g) \rightarrow \sigma(y)g \in \pi^{-1}(V) \subset E$$

is a diffeomorphism.

1.6 Many properties of principal G-bundles (G - a Lie group) carry over to the above, more general setting. In particular, any map $f: M' \rightarrow M$ pulls back Γ -bundles over M to Γ -bundles over M',

and the classical result that a homomorphism of a G-bundle E' into a G-bundle E, ie a commuting square

$$E' \xrightarrow{\overline{f}} E$$

$$\downarrow \qquad \qquad \downarrow$$

$$M' \xrightarrow{f} M$$

(where \overline{f} preserves the G-actions) yields an isomorphism E' \cong f*E, remains valid if G is replaced with Γ . An important exception here is that a Γ -bundle over MxR cannot be, in general, induced from a single bundle over M.

1.7 Given a family of local sections of E with domains covering M, the corresponding transition functions with values in Γ form a so-called Γ-cocycle over the covering of M. All the Γ-cocycles obtained in that way from a fixed principal Γ-bundle E are in some natural sense equivalent ([7]) and constitute a Γ-structure on M. The last notion means essentially the same as "an isomorphy class of principal Γ-bundles over M" and the distinction comes from the tradition only.

1.8 Apart from Lie groups, a large and in some sense opposite class of

groupoids constitute groupoids of germs, namely of all germs of elements of a pseudogroup of diffeomorphisms. We accept the notation $[\gamma,x]$ for the germ of a diffeomorphism γ at a point x, so that the composition $[\gamma,x][\gamma',y]$ is defined and equal to $[\gamma\gamma',y]$ iff $x = \gamma'(y)$.

While dealing with a groupoid of germs Γ it is convenient (for the notational reason) to consider principal Γ -bundles equipped with a <u>left</u> action of the groupoid. Such a bundle $\pi\colon E\to M$ is then endowed with a <u>target map</u> $\beta\colon E\to N$ (N - units of Γ) and the action $(g,z)\to gz$ is defined on the Whitney product $\Gamma\times_{\{\alpha,\beta\}}E$. If $f\colon M'\to M$ is any map, then for the same reason we define the pull-back <u>left</u> Γ -bundle to be $f^*E=E\times_{\{\pi,f\}}M'$.

1.9 We have mentioned (cf 1.3.) that a q-codimensional foliation F of M gives rise to a principal Γ_q -bundle E_F over M. E_F is the set of all germs $[\phi,x]$ of submersions locally defining F at $x \in M$, equipped with the sheaf topology and the differentiable structure induced from M, so that the projection $E_F \ni [\phi,x] \xrightarrow{\pi} x \in M$ be locally a diffeomorphism. Γ_q acts on E_F (from the left!) by the formula $[\gamma,y][\phi,x] = [\gamma\phi,x]$ iff $y = \phi(x)$.

1.10 Let Γ be any groupoid of germs and $\pi \colon E \to M$ a principal Γ-bundle such that the target map β of E into N, the manifold of units of Γ, is a submersion. Then there exists a unique foliation F of M such that at the level of E the foliation π^*F coincides with the one induced by β from the pointwise foliation of N. If this is the case, we shall call F the foliation defined by E or, by the Γ-structure corresponding to E. Clearly, codim $F = \dim N$. This definition agrees with the classical one which assumes the Γ-cocycles representing the Γ-structure to be generated by submersions of open subsets of M in N ([7]).

1.11 To any Γ -bundle $\pi\colon E\to M$ defining F one associates its canonical form $\widetilde{E}\to M$ composed of all germs $[\phi,x]$ of the submersions $\phi\colon M\supset U \overset{\sigma}\to E \overset{\beta}\to N$ (the distinguished submersions for E), where σ ranges over local sections of π (note that π is locally invertible for Γ a groupoid of germs) and $x\in U$ (cf [7]). Γ acts on \widetilde{E} from the left by the composition of maps. It can be easily seen that the map

(1.11.1) $E \ni g\sigma(x) \rightarrow g[\beta\sigma,x] \in \widetilde{E}$

is a well-defined canonical isomorphism. Clearly, the canonical form is the same for all Γ -bundles isomorphic to E and is canonically <u>distinguished</u> by the corresponding Γ -structure.

1.12 If $f: M' \to M$ is a map transverse to F and a Γ -bundle $\pi: E \to M$ defines F on M, then the pull-back bundle $f*E = E \times_{(\pi,f)} M'$ defines on M' the induced foliation f*F. Clearly, f pulls any section $\sigma: U \to E$ back to a section $f*\sigma = (\sigma \circ f, id): f^{-1}U \to f*E$; thus any distinguished submersion ϕ for E gives rise to a distinguished submersion ϕ for f*E. In terms of the canonical forms of the bundles the projection $f*E \to E$ takes the form

$$[\varphi f, x'] \rightarrow [\varphi, f(x')].$$

In particular, since E_{f*F} is necessarily the canonical form of the Γ_q -bundle $f*E_F$, $q=\operatorname{codim} F$, f lifts functorially to a Γ_q -equivariant map $\widetilde{f}\colon E_{f*F}\ni [\varphi f,x']\to [\varphi,f(x')]\in E_F$.

For any foliation F there is a family of pseudogroups of diffeomorphisms (thus also: groupoids of germs) which are related to F more closely than any other pseudogroup. These are holonomy pseudogroups (resp.: holonomy groupoids) and describe the transverse structure of the foliation.

Any map $f: M' \to M$ transverse to the foliation F carries transversals for the induced foliation f*F to transversals for F. If C is a path in a leaf of f*F, then for any two local transversals T and T' at the ends of C,

$$h_{C,T'} = h_{fC,T'}$$
.

2.2 An invariant description of the holonomy refers to the Γ_q -bundle E_F (cf 1.9): when restricted to a single leaf L of F, E_F becomes a covering of L, hence any path c in L lifts uniquely to a path in E_F starting from an arbitrary but fixed point of the fiber through c(0). As a result, c yields a Γ_q -equivariant bijection

$$h_c: \pi^{-1}(c(0)) \to \pi^{-1}(c(1))$$

which is just an alternative description of the holonomy ([7]; note that the target projection $\beta \colon E_F \to \mathbb{R}^q$ is locally constant on $\pi^{-1}(L) \subset E_F$

and thus $\beta \circ h_C = \beta$ on $\pi^{-1}(c(0))$). For a connection between the two notions of holonomy translation, $h_{C,T}^T$, and h_C , see (2.4.1) below.

2.3 The fact that h_{C} depends on the homotopy class of c only suggests that the set Γ_{F} of all h_{C} 's can be organized in a manifold. This has been done eg in [45]. In fact, Γ_{F} with the obviously defined composition rule $(h_{C}, h_{C}) = h_{C} + h_{C}$ is even a differentiable groupoid with M as the manifold of units; it is the graph of F. Topologically, h_{C} is close to h_{C} in Γ_{F} if there is a path \overline{c} close to c_{0} such that $h_{\overline{C}} = h_{C}$; evidently, $\alpha(h_{C}) = c(0)$ and $\beta(h_{C}) = c(1)$.

2.4 The action of Γ_F can be canonically extended to the general case of any principal Γ -bundle $\pi\colon E\to M$ (Γ - a groupoid of germs) defining the foliation F. A synthetic definition of holonomy translations in E is similar to the one given in 2.2: for any leaf E of F the deck transformations in the covering space $E\supset \pi^{-1}(E)\to E$ depend on the holonomy of paths in E only. Consequently, any path E in E yields a E-equivariant bijection E of E in E yields a action of the holonomy E of E in E yields a action of the holonomy E of E in E yields a

Lemma. For an arbitrary Γ -structure ω defining the foliation F and any path c in a leaf of F, the holonomy h_{C} acts on fibers of the canonical Γ -bundle $E \to M$ distinguished by ω (cf 1.11) according to the rule

$$(2.4.1) \qquad (h_{c}[\varphi,c(0)]) \mid T' = [(\varphi\mid T) \circ (h_{c,T'})^{-1},c(1)] \text{ for } [\varphi,c(0)] \in \pi^{-1}(c(0))$$

where T and T' are any local transversals at c(0) and c(1) resp., and ϕ is an arbitrary distinguished submersion for ω over a neighbourhood of c(0) (see figure 1).

Figure 1.

<u>Proof.</u> When starting from a collection of sections $\sigma_a \colon M \supset U_a \to E$, a \in A, such that the U_a 's cover M we get a Γ -cocycle $\{\gamma_{ab}\}$ repre-

senting ω . In particular, the maps $\gamma_{aa} = \beta \circ \sigma_a \colon U_a \to N$ (N - the units of Γ) are distinguished submersions such that for any $x \in U_a \cap U_b$, $a,b \in A$, one has

$$\gamma_{aa} = \gamma_{ab}^{(x)} \gamma_{bb}$$
 over a neighbourhood of x,

if $\gamma_{ab}^{(x)}$ is a diffeomorphism representing the germ $\gamma_{ab}(x) \in \Gamma$. We fix a sequence of indices a_0, \ldots, a_r such that $c([\tau_i, \tau_{i+1}]) \in U_{a_i}$, $i=0,\ldots,r$, for some partition $0=\tau_0 \le \tau_1 \le \ldots \le \tau_{r+1}=1$ of the unit interval. At every point $c(\tau_i)$, $i=0,1,\ldots,r+1$, we choose a transversal S_i ($S_0=T$ and $S_{r+1}=T'$). Let for shortness γ_{ij} denote $\gamma_{a_ia_j}$. Since γ_{ii} is a submersion locally constant on leaves of F, the composition $(\gamma_{ii}|S_{i+1})^{-1}(\gamma_{ii}|S_i)$, well-defined over a neighbourhood of $c(\tau_i)$ in S_i , is the holonomy translation along $c([\tau_i, \tau_{i+1}])$,

$$(\gamma_{ii}|s_{i+1})^{-1}(\gamma_{ii}|s_i) = h_{c|[\tau_i,\tau_{i+1}],s_{i+1}}$$
 for $i = 0,...,r$.

Consequently, at the level of germs one has

On the other hand, we are able to write down explicitely a lift \tilde{c} of c to E starting at $\tilde{c}(0) = [\gamma_{00}, c(0)]$. Namely, for $\tau \in [\tau_i, \tau_{i+1}]$ we define $\tilde{c}(\tau)$ to be the germ

$$\gamma_{01}(c(\tau_1)) \ldots \gamma_{i-1,i}(c(\tau_i))[\gamma_{ii},c(\tau)] \in E$$

(observe that $\gamma_{ii}(c(\tau)) = \gamma_{ii}(c(\tau_i)) = \gamma_{ii}(c(\tau_{i+1}))$). Clearly \tilde{c} is well-defined and thus continuous. By definition of the action of h_c one has

$$h_{c}[\gamma_{00},c(0)] = c(1)$$

$$= \gamma_{01}(c(\tau_{1})) \dots \gamma_{r-1,r}(c(\tau_{r}))[\gamma_{rr},c(1)]$$

and a comparison of the above two formulas gives

$$h_{c}[\gamma_{00},c(0)]|T' = [(\gamma_{00}|T) \circ (h_{c,T'}^{T})^{-1},c(1)].$$

The general formula follows now from the Γ -equivariance of h_c .

2.5 By fixing a complete transversal $i: T \subset M$ for F (complete means that i(T) cuts every leaf) one reduces Γ_F to a (transverse) holonomy groupoid $\Gamma_{F,T}$ which is a groupoid of germs on T. The underlying holonomy pseudogroup $G_{F,T}$ of diffeomorphisms of T is generated by all the holonomy translations $h_{C,T}$ of open subsets of T; we accept the notation $h_{C,T} := [h_{C,T}^{T}, c(0)]$ for the element of $\Gamma_{F,T}$ determined by an arbitrary path C. The holonomy pseudogroups for F with respect to different complete transversals are all canonically equivalent ([9]).

2.6 We recall here that a <u>morphism</u> Φ : $G \to G'$ of two pseudogroups of diffeomorphisms (on manifolds, resp., N and N') is a maximal collection of diffeomorphisms φ : N⊃U $_{\varphi}$ → N' of open subsets of N on open subsets of N' subject to the conditions

- (i) the collection of all U_{α} , $\phi \in \Phi$, covers N;
- (ii) $\varphi \gamma^{-1} \psi \in G'$ if $\varphi, \psi \in \Phi, \gamma \in G$;
- (iii) $\gamma' \phi \gamma \in \Phi$ if $\phi \in \Phi$, $\gamma \in G$ and $\gamma' \in G'$;

(we emphasize the fact that Φ is not a map by using the half-arrows). One defines the <u>composition</u> $G \xrightarrow{\Phi} G' \xrightarrow{C'} G''$ to be the unique morphism containing the diffeomorphisms $\phi' \phi$ ($\phi \in \Phi$, $\phi' \in \Phi'$). Clearly, any col-

lection of diffeomorphisms (of open subsets of N on open subsets of N') which satisfies the conditions (i)-(ii) is contained in (hence: generates) a unique morphism $G \longrightarrow G'$.

- 2.7 Given any two complete transversals $T,T' \hookrightarrow M$ for a foliation F, the collection of all the holonomy translations from T to T' is a canonical invertible morphism $G_{F,T} \rightharpoonup G_{F,T'}$. In general, invertible morphisms will be called equivalences (notation " \approx ").
- $\underline{2.8}$ For any complete transversal T \subset , M, there is a canonical $\Gamma_{F,T}$ -structure $\omega_{F,T}$ defining F on M, namely the one generated by those submersions of subsets of M on T which are holonomy projections $H_{C,T}$ along paths c such that $c(1) \in T \subset M$ (see figure 2).

The canonical $\Gamma_{F,T}$ -bundle $E_{F,T}$ over M distinguished by $\omega_{F,T}$

consists of all germs $[H_{C,T},x]$ of the submersions. Note that $\Gamma_{F,T}$ acts (from the left) on $E_{F,T}$ by the formula

$$h_{c,T}[H_{c',T},c'(0)] = [H_{c'*c,T},c'(0)]$$
 iff $c(0) = c'(1)$ in T.

2.9 The following minimality property of $G_{F,T}$ and $\omega_{F,T}$ belongs to the "folklore" although is rarely formulated in this way.

Under the above notations let Γ be a groupoid of germs such that some Γ -structure ω defines on M the foliation F. Then the distinguished submersions for ω restricted to $T \hookrightarrow M$ form a morphism $\Psi \colon G_{F,T} \longrightarrow G$ such that ω coincides with the induced Γ -structure $\Psi^*\omega_{F,T}$ (cf II.3.12.1 below; here G stands for pseudogroup underlying Γ).

It is worth noticing here that if the transversal T varies, then all the above morphisms $G_{F,T} \longrightarrow G$ come from the unique common morphism of groupoids described in 2.4, $\Gamma_F \longrightarrow \Gamma$ (cf also II.3.4 below).

II. Semi-simplicial structures

Any Γ -structure on a paracompact manifold M can be obtained as a pull-back of the so-called universal Γ -structure ω_o on B Γ - the classifying space of Γ , which unfortunately is no longer a manifold. One constructs B Γ as a realization of some semi-simplicial manifold N Γ (nerve of Γ). We recall some of the definitions ([5]).

(i)
$$\epsilon_{i}\epsilon_{j} = \epsilon_{j-1}\epsilon_{i} \quad \text{if } i < j$$

$$\eta_{j-1}\epsilon_{i} \quad \text{if } i < j$$
(1.1.1) (ii)
$$\epsilon_{i}\eta_{j} = \begin{cases} \text{id} \quad \text{if } i = j, j+1 \\ \text{id} \quad \text{if } i = j, j+1 \end{cases}$$

$$\eta_{j}\epsilon_{i-1} \quad \text{if } i > j+1$$
(iii)
$$\eta_{i}\eta_{j} = \eta_{j+1}\eta_{i} \quad \text{if } i \leq j$$

(which originate from purely combinatorical relations among face and degeneracy assignments for standard n-simplices).

Obviously, an <u>ss-map</u> (or <u>homomorphism</u>) $f: X \to Y$ of $X = (X_n)$ into another ss-manifold $Y = (Y_n)$ is a sequence $f = (f_n)$ of maps $f_n: X_n \to Y_n$ commuting with the structure operators.

1.2 After introducing the i-th face imbeddings $\epsilon^i : \Delta^{n-1} \to \Delta^n$ and i-th face projections $\eta^i : \Delta^{n+1} \to \Delta^n$ between geometrical simplices (cf [5; p. 6]), one defines the (fat) geometrical realization $\|X\|$ of X as the topological quotient of the disjoint union

$$\coprod X_n \times \Delta^n$$

by the relations $(\epsilon_i x, t) \sim (x, \epsilon^i t)$ for $x \in X_{n+1}$, $t \in \Delta^n$.

Although the topological space [X] is less abstract than the ss-manifold X itself, it is lacking in the "smoothness" of X. In the present paper we shall treat ss-manifolds themselves as a sufficiently good completion of the category of manifolds (cf eg IV. proposition 1.10).

1.3 Keeping the above plan in mind, we begin with some examples ([5]).

Example 1.3.1. Any open covering $U = \{U_a\}$ of a manifold M gives rise to an ss-manifold $NU = (N_n U)$, the <u>nerve</u> of U, such that

$$N_n U = \bigcup_{(a_0, \dots, a_n)} U_{a_0} \cap \dots \cap U_{a_n}$$

and the structure operators are the suitable inclusions

Roughly speaking, NU has the same differentiable structure as M whereas some part of the topological complexity of M is expressed in a combinatorial language.

The nerve NM of the trivial covering {M} can be identified with M itself.

Example 1.3.2. The nerve $N\Gamma = (N_n \Gamma)$ of an arbitrary groupoid Γ . Here $N_n \Gamma = U$ (units of Γ),

 $N_n^{\Gamma} = \{(g_1, \dots, g_n) \in \Gamma \times \dots \times \Gamma; \alpha(g_1) = \beta(g_2), \dots, \alpha(g_{n-1}) = \beta(g_n)\}$ and the structure operators are defined as follows:

on
$$N_1\Gamma = \Gamma$$
, $\epsilon_0 = \alpha$ and $\epsilon_1 = \beta$,
$$\epsilon_i(g_1, \dots, g_n) = \begin{cases} (g_2, \dots, g_n) & \text{if } i = 0 \\ (\dots, g_i g_{i+1}, \dots) & \text{if } i = 1, 2, \dots, n-1 \\ (g_1, \dots, g_{n-1}) & \text{if } i = n \end{cases}$$

$$\eta_0 \colon U \hookrightarrow \Gamma,$$

$$\eta_1(g_1, \dots, g_n) = \begin{cases} (\beta(g_1), g_1, \dots, g_n) & \text{if } i = 0 \\ (\dots, g_i, \alpha(g_i), g_{i+1}, \dots) & \text{if } i > 0 \end{cases}$$

Clearly, all the $N_n \Gamma's$ are manifolds.

1.4 Localization. For an arbitrary ss-manifold $X = (X_n)$ let $U = \{U_a\}$ be any open covering of X_0 . By the <u>localization</u> of X to U we shall mean an ss-manifold X_{ij} such that

$$(x_u)_n = \bigcup_{\substack{(a_0, \dots, a_n) \\ i=n}} \bigcap_{\substack{i=n \\ i=n}} (\epsilon_1^{n-i} \epsilon_0^{i})^{-1} U_{a_i}$$

and the structure operators are the maps

$$(a_0, \ldots, a_n; x) \xrightarrow{\overline{\epsilon}_i} (\ldots, a_{i-1}, a_{i+1}, \ldots; \epsilon_i x)$$
 $(a_0, \ldots, a_n; x) \xrightarrow{\overline{\eta}_i} (\ldots, a_i, a_i, \ldots; \eta_i x)$

where, for shortness, the coordinates before the semicolon point at the appropriate disjoint summand. A direct application of the axioms (1.1.1) proves that the maps $\overline{\epsilon}_i$ and $\overline{\eta}_i$ are well-defined and again satisfy (1.1.1). Note that, given u as in example 1.3.1, the ss-manifolds u0 and u0 are evidently isomorphic. In general, the localization replaces a part of the topological structure of u0 with a combinatorial construction. This statement will be made more precise in IV.

We return to foliations now. An obvious observation is that, given any covering u of a manifold M, each foliation F of M induces a foliation, say F_n , on each $N_n u$. Note that a suitably chosen covering can even trivialize all the foliations. We pose a problem which will be our starting point.

<u>Problem</u> 2.1. Reconstruct the holonomy pseudogroup of F in terms of the foliations $(F_n)_{n\geq 0}$ and the ss-structure of NU.

In fact, we shall solve a more general problem. Namely,

- 1° we shall give a construction of a holonomy pseudogroup for foliations of arbitrary ss-manifolds (cf III, theorem 2.2), and then
 - 2° we prove its invariance under localizations (cf III, proposition 4.2).

Definition 2.2. A q-codimensional foliation F of an ss-manifold $X = (X_n)$ is a sequence (F_n) of foliations such that

- (i) for each n, F_n is a q-codimensional foliation of X_n ;
- (ii) $\varepsilon_i * F_{n-1} = F_n$ for $i \le n$ (recall that all the ε_i 's are submersions).
- 2.3 The condition 2.2 (ii) together with (1.1.1;ii) implies transversality of all the degeneracy operators $n_i \colon X_{n-1} \to X_n$ to F_n as well as the equalities $n_i * F_n = F_{n-1}$, for $n = 1, 2, \ldots$ Moreover, F is completely determined by F_0 which is subject to the only condition $\epsilon_0 * F_0 = \epsilon_1 * F_0$ on X_1 ; then $F_n = (\epsilon_0^n) * F_0$ for every n. This allows

one to expect that the transverse structure of F (whatever this means) is not more complicated than that of ordinary foliations and can be described in terms of some differentiable groupoids.

2.4 We list a few naturally arising examples of ss-foliations.

Example 2.4.1. The foliation of NU induced from an ordinary foliation of M - already mentioned.

Example 2.4.2. If the structure operators of $X = (X_n)$ are locally invertible, then X carries a pointwise foliation which consists of the pointwise foliations on every stage X_n . In particular, this is the case of the nerve $N\Gamma$ of an arbitrary groupoid of germs Γ .

Example 2.4.3. Consider a flag F,F' of foliations of a manifold M (ie, codim $F \ge \text{codim } F'$, and the leaves of F' are foliated by leaves of F). Every complete transversal T for F is transverse to F', and the induced foliation F'|T of T lifts to a foliation of $N\Gamma_{F,T}$. We shall see later that differently chosen transversals give rise to nerves $N\Gamma_{F,T}$ equivalent as ss-manifolds, and that the corresponding foliations are in some sense identical (cf IV; corollary 3.3 & proposition 2.4).

Example 2.4.4. Any ss-manifold carries a unique 0-codimensional foliation.

2.5 Given an arbitrary foliation $F = (F_n)$ of an ss-manifold $X = (X_n)$, let for $n = 0, 1, \ldots$, L_n denote the set of all leaves of F_n . We consider an equivalence relation " ~ " in L_0 defined as the smallest one containing the pairs (L,L'), $L,L' \in L_0$, such that there is a leaf $\widetilde{L} \in L_1$ with the property $L \supset \varepsilon_0 \widetilde{L}$ and $L' \supset \varepsilon_1 \widetilde{L}$. For an arbitrary equivalence class $K \subset L_0$ and each $n \ge 0$ we define a manifold $X_n^{(K)}$ to be the disjoint union of the leaves $L \in L_n$ contained in the subset

$$\bigcup_{i=0}^{n} (\varepsilon_1^{n-i} \varepsilon_0^i)^{-1} (UK) \subset X_n.$$

Lemma 2.5.1. The manifolds $X_n^{(K)}$ and $X_n^{(K')}$ are disjoint if K and K' are different equivalence classes. Furthermore, for any class K, the structure operators of X induce on $X^{(K)} := (X_n^{(K)})$ a semi-simplicial structure.

<u>Proof.</u> Suppose $L \in L_n$ is a leaf such that

$$\epsilon_1^{n-i}\epsilon_0^iL \subset L'$$
 and $\epsilon_1^{n-j}\epsilon_0^jL \subset L''$ i < j

where $L' \in K \subset L_0$ and $L'' \in K' \subset L_0$. For h = 1, ..., j-i, let $L_h \in L_1$ be the leaf in X_1 such that $\epsilon_2^{n-1-h} \epsilon_0^{i+h-1} L \subset L_h$. Then the relations

$$\varepsilon_0(\varepsilon_2^{n-i-h}\varepsilon_0^{i+h-1}) = \varepsilon_1^{n-i-h}\varepsilon_0^{i+h}$$

and

$$\varepsilon_1 (\varepsilon_2^{n-i-h} \varepsilon_0^{i+h-1}) = \varepsilon_1^{n-i-h+1} \varepsilon_0^{i+h-1}$$

prove that $\epsilon_1 L_1 \subset L'$ and $\epsilon_0 L_{j-i} \subset L''$, whereas for $h = 1, \ldots, j-i-1$, $\epsilon_0 L_h$ and $\epsilon_1 L_{h+1}$ are contained in the same leaf. This immediately implies $L' \sim L''$, and thus K = K'.

Now we fix K. We have already shown that if a leaf L is in $X_n^{(K)}$ then for every i the set $\epsilon_1^{n-i}\epsilon_0^i L$ is contained in a leaf $\widetilde{L} \in K$. Consequently, if $\epsilon_h L \subset L' \in L_{n-1}$ then $L' \subset X_{n-1}^{(K)}$, and if $\eta_h L \subset L'' \in L_{n+1}$ then $L'' \subset X_{n+1}^{(K)}$, for $h = 0, 1, \ldots$. It follows that the structure operators induce maps

$$\widetilde{\varepsilon}_h \colon X_n^{(K)} \to X_{n-1}^{(K)}, \quad \widetilde{\eta}_h \colon X_n^{(K)} \to X_{n+1}^{(K)}$$

subject to the commutativity relations (1.1.1). By I.1.2, the maps are smooth.

2.5.2 We shall call the ss-manifolds $X^{(K)}$ leaves of the ss-foliation F. In view of lemma 2.5.1, any foliation divides the foliated ss-manifold into "disjoint" leaves which are again ss-manifolds.

Like in the classical situation (cf I.1.3 - 1.9) a q-codimensional foliation F of an ss-manifold X yields a Γ_q -structure on X. The last notion could be naively understood as a sequence of Γ_q -structures, say ω_n on X_n , such that $\varepsilon_1^*\omega_{n-1} = \omega_n$. In 3.3 below, we shall see that this condition would be too weak for our purposes.

3.1 Let us consider the distinguished Γ_q -bundles $\pi_n \colon E_{F_n} \to X_n$ associated with the foliations F_n , forming an arbitrary ss-foliation F of $X = (X_n)$. In view of I.1.12, the sequence $E_F = (E_{F_n})$ carries a canonical structure of an ss-manifold given by the lifts

and

$$\widetilde{\varepsilon}_{\mathbf{i}} \colon E_{F_{\mathbf{n}}} \ni [\varphi \circ \varepsilon_{\mathbf{i}}, \mathbf{x}] \to [\varphi, \varepsilon_{\mathbf{i}} \mathbf{x}] \in E_{F_{\mathbf{n}-1}}$$

$$\widetilde{\eta}_{\mathtt{i}} \colon \mathtt{E}_{f_{\mathtt{n}}} \ni \left[\psi \circ \eta_{\mathtt{i}} , \mathtt{x} \right] \to \left[\psi, \eta_{\mathtt{i}} \mathtt{x} \right] \in \mathtt{E}_{f_{\mathtt{n}+1}}.$$

It follows directly from the above definitions that the structure operators commute with the actions of Γ_q , and that $\pi=(\pi_n)$ is an ssmap of E_r in X.

<u>Definition</u> 3.2 (cf [5] for Γ a Lie group). Given any groupoid Γ , a (<u>principal</u>) ss- Γ -<u>bundle</u> E over an ss-manifold $X = (X_n)$ is an ss-manifold $E = (E_n)$ together with an ss-map $\pi = (\pi_n) : E \to X$ such that (i) for every n, $\pi_n : E_n \to X_n$ is a principal Γ -bundle;

(ii) the structure operators of E are I-equivariant.

In other words, the structure operators yield homomorphisms of I-bundles

$$E_{n-1} \stackrel{\varepsilon_{\underline{i}}}{\longleftarrow} E_{n} \stackrel{\eta_{\underline{j}}}{\longrightarrow} E_{n+1}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$X_{n-1} \stackrel{\varepsilon_{\underline{i}}}{\longleftarrow} X_{n} \stackrel{\eta_{\underline{j}}}{\longrightarrow} X_{n+1}.$$

We shall call isomorphy classes of principal ss- Γ -bundles over X Γ -structures on X (isomorphisms being meant as invertible Γ -equvariant ss-maps inducing the identity ss-map on the base X).

3.3 Consider an arbitrary principal ss- Γ -bundle π : $E \rightarrow X$. According to I;1.6, the maps

$$E_{1} \ni e \xrightarrow{(\pi_{1}, \epsilon_{0})} (\pi_{1}e, \epsilon_{0}e) \in \epsilon_{0}^{*}E_{0}$$

$$(\pi_{1}e, \epsilon_{1}e) \in \epsilon_{1}^{*}E_{0}$$

as well as

$$E_2 \ni e \longrightarrow (\pi_2 e, \epsilon_i e) \in \epsilon_i * E_1, i = 0,1,2$$

are isomorphisms of Γ -bundles. Together with the axioms (1.1.1), this gives rise to the following commuting diagram of isomorphisms of principal Γ -bundles:

where, for example in the pentagon ∇ , the arrows map an arbitrary $e \in E_2$ to $(\pi_2 e, (\pi_1 \epsilon_0 e, \epsilon_0 \epsilon_0 e)) \in \epsilon_0 * \epsilon_0 * E_0$ or to $(\pi_2 e, (\pi_1 \epsilon_1 e, \epsilon_0 \epsilon_1 e)) \in \epsilon_1 * \epsilon_0 * E_0$, and these two elements correspond to each other under the isomorphism

$$\varepsilon_0^* \varepsilon_0^* E_0 \cong (\varepsilon_0 \varepsilon_0^*)^* E_0 = (\varepsilon_0 \varepsilon_1^*)^* E_0 \cong \varepsilon_1^* \varepsilon_0^* E_0^*$$

The resulted commutativity of the triangle

$$(\varepsilon_0 \varepsilon_0)^* = 0$$

$$(\varepsilon_1 \varepsilon_0)^* = 0$$

$$(\varepsilon_1 \varepsilon_1)^* = 0$$

is precisely what differs the above definition of an ss-I-structure from the "naive" one (cf III; 2.5 below).

3.4 We have already got an example of a Γ -structure on an ss-manifold, namely - the one associated with an ss-foliation F and represented by E_F . The next example is provided by morphisms of groupoids (ie generalized homomorphisms in the sense of [10]). We recall the definition.

<u>Definition</u>. A <u>morphism</u> $\Sigma: \Gamma \longrightarrow \Gamma'$ of a groupoid Γ in a groupoid Γ' is the isomorphy class represented by a principal Γ' -bundle Σ over units of Γ , equipped with a Γ -action (a left one if Γ' acts from the right) $\Gamma \times_{(\alpha,\pi)} \Sigma \to \Sigma$ such that

- (i) the two actions commute with each other;
- (ii) g.z = z for $z \in \Sigma$ if g is a unit;
- (iii) $g_1(g_2z) = (g_1g_2)z$ if the elements are composable (we use the half-arrows to stress the fact that morphisms are not maps and to distinguish them from homomorphisms ie smooth functors).

Example 3.4.1. Let Γ and Γ' be arbitrary groupoids. For any principal Γ' -bundle E over the nerve $N\Gamma$ let μ_E denote the product

$$\Gamma * (\alpha, \pi_0)^E_0 = \epsilon_0 * E_0 \stackrel{\cong}{\longleftarrow} E_1 \stackrel{\epsilon_1}{\longrightarrow} E_0.$$

We claim that the assignment $E \leadsto (E_0, \mu_E)$ establishes a bijection between Γ' -structures on $N\Gamma$ and morphisms $\Gamma \longrightarrow \Gamma'$. This follows (cf 3.7 below) from the following useful lemma.

Lemma 3.5. Let $X = (X_n)$ be an arbitrary ss-manifold, Γ any groupoid and $\pi \colon E_0 \to X_0$ a principal Γ -bundle over X_0 . Assume that a map $\overline{\epsilon}_1 \colon \epsilon_0^* E_0 \to E_0$ satisfies the conditions

- (i) $\overline{\epsilon}_1$ is Γ -equivariant and induces the map $\epsilon_1: X_1 \to X_0$ on the bases;
- (ii) $\overline{\epsilon}_1(\eta_0\pi e, e) = e$ for $e \in E_0$;
- (iii) $\overline{\epsilon}_1(\epsilon_2 x, \overline{\epsilon}_1(\epsilon_0 x, e)) = \overline{\epsilon}_1(\epsilon_1 x, e)$ for every $(x, e) \in (\epsilon_0 \epsilon_0) * E_0$. Then the projection $\overline{\epsilon}_0 \colon \epsilon_0 * E_0 \to E_0$ together with $\overline{\epsilon}_1$ and the maps

$$(\varepsilon_0^n) * E_0 \ni (x,e) \xrightarrow{\overline{\varepsilon}_{\underline{i}}} \left\{ \begin{array}{ll} (\varepsilon_{\underline{i}} x,e) \in (\varepsilon_0^{n-1}) * E_0 & \text{if } i < n \\ (\varepsilon_{\underline{n}} x, \overline{\varepsilon}_{\underline{1}} (\varepsilon_0^{n-1} x,e)) \in (\varepsilon_0^{n-1}) * E_0 & \text{if } i = n \end{array} \right.$$

and

make the sequence $E = ((\epsilon_0^n)^*E_0)$ an ss-manifold which, when equipped with the projections $(\epsilon_0^n)^*E_0 \to X_n$, is a principal ss- Γ -bundle over X. Conversely, if $E = (E_n)$ is any principal ss- Γ -bundle over X, then

the map $\overline{\epsilon}_1$: $\epsilon_0^* E_0 \stackrel{\cong}{\longleftarrow} E_1 \stackrel{\epsilon_1}{\longrightarrow} E_0$ verifies the conditions (i) - (iii), and the maps

$$E_{n} \xrightarrow{(\pi, \varepsilon_{0}^{n})} X_{n} \times_{(\varepsilon_{0}^{n}, \pi)} E_{0} = (\varepsilon_{0}^{n}) *E_{0}$$

form an isomorphism of E and the ss-I-bundle reconstructed from E and $\overline{\epsilon}_1$.

<u>Proof.</u> The maps $\overline{\epsilon}_i$ and $\overline{\eta}_i$ are well-defined since

$$\varepsilon_0^{n-1}\varepsilon_{\mathbf{i}}x = \begin{cases}
\varepsilon_0^n x = \pi e & \text{if } i < n \\
\varepsilon_1 \varepsilon_0^{n-1} x & \text{if } i = n \\
= \varepsilon_1 \pi_1(\varepsilon_0^{n-1} x, e) = \pi_1 \overline{\varepsilon}_1(\varepsilon_0^{n-1} x, e)
\end{cases}$$

for $(x,e) \in (\epsilon_0^n) * E_0$, and

$$\varepsilon_0^{n+1}\eta_i x = \varepsilon_0^n x$$
 for all i's.

In a similar way we check that the maps are subject to the commutativity axioms (1.1.1). The only nontrivial relations are those involving $\overline{\varepsilon}_n\colon \left(\varepsilon_0^{\ n}\right)*{\rm E}_0\to \left(\varepsilon_0^{\ n-1}\right)*{\rm E}_0. \text{ One has } \overline{\varepsilon}_{n-1}\overline{\varepsilon}_1=\overline{\varepsilon}_1\overline{\varepsilon}_n \text{ on } \left(\varepsilon_0^{\ n}\right)*{\rm E}_0 \text{ (i<n-1),}$ as both the maps applied to (x,e) $\in (\varepsilon_0^{\ n})*{\rm E}_0$ give

$$(\varepsilon_{n-1}\varepsilon_{\underline{i}}x,\overline{\varepsilon}_{1}(\varepsilon_{0}^{n-2}\varepsilon_{\underline{i}}x,e)) = (\varepsilon_{\underline{i}}\varepsilon_{n}x,\overline{\varepsilon}_{1}(\varepsilon_{0}^{n-1}x,e)).$$

Similarly, for $(x,e) \in (\epsilon_0^n) * E_0$,

$$\overline{\varepsilon}_{n-1}\overline{\varepsilon}_{n}(x,e) = (\varepsilon_{n-1}\varepsilon_{n}x, \overline{\varepsilon}_{1}(\varepsilon_{0}^{n-2}\varepsilon_{n}x, \overline{\varepsilon}_{1}(\varepsilon_{0}^{n-1}x,e)))
= (\varepsilon_{n-1}\varepsilon_{n}x, \overline{\varepsilon}_{1}(\varepsilon_{2}\varepsilon_{0}^{n-2}x, \overline{\varepsilon}_{1}(\varepsilon_{0}\varepsilon_{0}^{n-2}x,e)))
= (\varepsilon_{n-1}\varepsilon_{n}x, \overline{\varepsilon}_{1}(\varepsilon_{1}\varepsilon_{0}^{n-2}x,e))
= (\varepsilon_{n-1}\varepsilon_{n-1}x, \overline{\varepsilon}_{1}(\varepsilon_{0}^{n-2}\varepsilon_{n-1}x,e))
= \overline{\varepsilon}_{n-1}\overline{\varepsilon}_{n-1}(x,e).$$

The remaining relations involve η_i 's. Clearly, for $(x,e) \in (\epsilon_0^n) * E_0$,

$$\overline{\varepsilon}_{n+1}\overline{\eta}_{1}(x,e) = (\varepsilon_{n+1}\eta_{1}x,\overline{\varepsilon}_{1}(\varepsilon_{0}^{n}\eta_{1}x,e))
= (\eta_{1}\varepsilon_{n}x,\overline{\varepsilon}_{1}(\varepsilon_{0}^{n-1}x,e)) = \overline{\eta}_{1}\overline{\varepsilon}_{n}(x,e) \text{ if } i < n,$$

whereas

$$\overline{\epsilon}_{n+1}\overline{\eta}_n(x,e) = (x,\overline{\epsilon}_1(\eta_0\epsilon_0^nx,e)) = (x,e)$$

as $\varepsilon_0^n x = \pi e$. This implies that $E' = ((\varepsilon_0^n)^* E_0)$ is an ss-manifold. The fact that $E' \to X$ is an ss-T-bundle follows now immediately from (i).

In order to prove the second part of the lemma it sufficies to show

that the isomorphisms $E_n \to (\epsilon_0^{\ n})*E_0$ form an ss-map, ie commute with the structure operators. This is again a direct computation of symbols. For $e \in E_n$, one has

$$\overline{\epsilon}_{i}(\pi e, \epsilon_{0}^{n} e) = (\epsilon_{i}\pi e, \epsilon_{0}^{n} e)$$

$$= (\pi, \epsilon_{0}^{n-1}) \epsilon_{i} e \text{ if } i < n$$

and

$$\overline{\epsilon}_{n}(\pi e, \epsilon_{0}^{n} e) = (\epsilon_{n} \pi e, \overline{\epsilon}_{1}(\pi \epsilon_{0}^{n-1} e, \epsilon_{0}^{n} e))$$

$$= (\epsilon_{n} \pi e, \epsilon_{1} \epsilon_{0}^{n-1} e)$$

$$= (\pi, \epsilon_{0}^{n-1}) \epsilon_{n} e.$$

Similarly, if $e \in E_n$, then

$$(\pi, \varepsilon_0^{n+1}) \eta_i e = (\pi \eta_i e, \varepsilon_0^n e) = \overline{\eta}_i (\pi, \varepsilon_0^n) e$$

as was to be shown. L

Corollary 3.6. Let $f: X \to Y$ be an ss-map and $E \to X$ and $E' \to Y$ any principal Γ -bundles over X and Y. Assume that $I_0: E_0 \to E_0'$ is a Γ -equivariant map inducing $f_0: X_0 \to X_0'$ on the bases. Then the maps

$$I_n \colon E_n \xrightarrow{(\pi, \varepsilon_0^n)} X_n \times_{(\varepsilon_0^n, \pi)} E_0 \xrightarrow{f_n \times I_0} Y_n \times_{(\varepsilon_0^n, \pi)} E_0^! \xrightarrow{(\pi, \varepsilon_0^n)^{-1}} E_n^!$$

constitute an ss-map $I = (I_n): E \rightarrow E^1$ iff the condition

$$\overline{\epsilon}_1(f_n \times I_0) = I_0 \overline{\epsilon}_1 \text{ over } \epsilon_0 * E_0$$

is fulfilled; here $\overline{\epsilon}_1$ stands for the maps $\epsilon_1(\pi,\epsilon_0)^{-1}$ induced from ϵ_1 .

3.7 Proof of 3.4.1. According to lemma 3.2, we know how to reconstruct the ss- Γ '-bundle E from E_0 and the product $\overline{\epsilon}_1 = \mu_E$: $\Gamma *_{(\alpha,\pi)} E_0 \to E_0$. It remains to observe that the conditions (i) - (iii) of the lemma correspond precisely to the conditions (i) - (iii) of definition 3.4. E

We reserve the symbol ω_{Σ} for the Γ '-structure on $N\Gamma$ that corresponds to a morphism $\Sigma \colon \Gamma \longrightarrow \Gamma$ '.

3.8 Morphisms of groupoids form a category, in which the identity $\Gamma \longrightarrow \Gamma$ is represented by Γ itself, and the composition $\Gamma \xrightarrow{\Sigma} \Gamma' \xrightarrow{\Sigma'} \Gamma''$ is given by the Γ'' -bundle (cf [10])

 $\Sigma' \circ \Sigma := \Sigma \times_{\Gamma} \Sigma' = \Sigma \times_{(\alpha,\pi)} \Sigma'$ (the diagonal action of Γ')

Any two groupoids Γ and Γ' are said to be equivalent (notation

 $\Gamma \approx \Gamma'$) if there exists an invertible morphism (an <u>equivalence</u>) of Γ in Γ' .

- 3.9 Remarks. 1. A simple criterion [10] of invertibility of a morphism $\Sigma\colon \Gamma \longrightarrow \Gamma'$ which says that the morphism is invertible iff the Γ -action makes Σ a principal Γ -bundle over units of Γ' (then the inverse morphism is represented by Σ with the transposed actions of the groupoids) allows one to treat the actions of the groupoids in a more symmetric manner. In particular, it is somethimes more convenient (especially, when the groupoids are groupoids of germs) to represent a morphism $\Gamma \longrightarrow \Gamma'$ by a left principal Γ' -bundle equipped with a (right or left) Γ -action.
- 2. As shown in [10], for any foliation F of a manifold M and an arbitrary complete transversal T, the canonical $\Gamma_{F,T}$ -bundle $E_{F,T}$ over M endowed with the Γ_{F} -action (see I.2.4) establishes an equivalence of the graph Γ_{F} and $\Gamma_{F,T}$.
- 3.10 Like in the classical situation (cf[10]), every morphism $\Sigma: \Gamma \longrightarrow \Gamma'$ transforms any Γ -structure ω on $X = (X_n)$ to a Γ' -structure $\Sigma_*\omega$ on X; by definition, if ω is represented by an ss- Γ -bundle $E = (E_n)$, then $\Sigma_*\omega$ is the ss- Γ' -structure represented by

$$\Sigma_* E := (E_n \times_{\Gamma} \Sigma)_{n \geq 0}$$

where the structure operators are induced from those of E.

3.11 Turning back to the bijective correspondence

"
$$\Sigma: \Gamma \longrightarrow \Gamma'$$
 " \longleftrightarrow " ω_{Σ} - a Γ' -structure on N Γ "

described in example 3.4.1 and 3.7, we can actually prove what follows.

<u>Proposition</u> 3.11.1. (i) For any groupoid Γ , the Γ -structure ω_{Γ} on $N\Gamma$ corresponding to the identity morphism $\Gamma\colon\Gamma \longrightarrow \Gamma$ is the one represented by the universal ss- Γ -bundle $\bar{N}\Gamma \to N\Gamma$, where $\bar{N}\Gamma = (\bar{N}_n\Gamma)$,

$$\overline{N}_{n}\Gamma = \{(g_{0}, \ldots, g_{n}) \in \Gamma \times \ldots \times \Gamma; \alpha(g_{0}) = \ldots = \alpha(g_{n})\},$$

the projection is given by the maps

$$\bar{N}_{n}\Gamma \ni (g_{0}, \dots, g_{n}) \mapsto (g_{0}g_{1}^{-1}, \dots, g_{n-1}g_{n}^{-1}) \in N_{n}\Gamma$$

and both the structure operators and the Γ -action are the classical ones ([5]).

(ii) For any two morphisms of groupoids $\Sigma: \Gamma \longrightarrow \Gamma'$ and $\Sigma': \Gamma' \longrightarrow \Gamma''$ there is

$$\Sigma_{+}^{1}\omega_{\Sigma} = \omega_{\Sigma \bullet \Sigma}^{1}.$$

<u>Proof.</u> One has $\bar{N}_0\Gamma = \Gamma$ with the standard right action of Γ . A computation of the corresponding left Γ -action,

$$\Gamma \times_{(\varepsilon_0,\pi)} \overline{N}_0 \Gamma \xrightarrow{(\pi,\varepsilon_0)^{-1}} \overline{N}_1 \Gamma \xrightarrow{\varepsilon_1} \overline{N}_0 \Gamma$$

gives

$$(g,g_0) \rightarrow (gg_0,g_0) \rightarrow gg_0$$

as was to be shown. As for (ii), we recall that ω_{Σ} is represented by the ss- Γ '-bundle $((\epsilon_0^n)^*\Sigma)$ with the structure operators given by lemma 3.5. Consequently, $\Sigma_*^!\omega_{\Sigma}$ is represented by the ss- Γ "-bundle $((\epsilon_0^n)^*\Sigma_{\Gamma}^*\Sigma')$ Que can now easily see that the isomorphisms $(\epsilon_0^n)^*\Sigma_{\Gamma}^*\Sigma'=(\epsilon_0^n)^*(\Sigma_{\Gamma}^*\Sigma')$ preserve the structure operators (actually the crucial ϵ_1).

3.12 Important examples of morphisms of groupoids are supplied by morphisms of pseudogroups of diffeomorphisms (cf I.2.6). Namely, such a morphism $\Phi: G \longrightarrow G'$ yields functorially a morphism

of the corresponding groupoids of germs, where

$$|\Phi| \,:=\, \{[\phi, \mathbf{x}];\; \phi\in\Phi,\; \mathbf{x}\in \mathtt{U}_{\phi}\}$$

is a manifold of germs (with the sheaf topology and the suitable differentiable structure), and the groupoids act by composition of germs.

We note that $|\Phi|$ is a <u>left</u> principal Γ' -bundle endowed with a <u>right</u> action of Γ (cf remark 3.9.1).

- 3.12.1 For any Γ -structure ω , Φ transfers ω to the Γ '-structure $\Phi_*\omega$:= $|\Phi|_*\omega$. Let us note here that ω defines a foliation iff the induced Γ '-structure $\Phi_*\omega$ defines a foliation. If this is the case, then the distinguished submersions for $\Phi_*\omega$ are locally of the form $\varphi \circ \gamma$, where $\varphi \in \Phi$ and γ ranges over the distinguished submersions for ω .
- 3.13 In IV below we extend the notion of a morphism to ss-manifolds in such a way that
- 1° a morphism $N\Gamma \longrightarrow N\Gamma'$ (again a half-arrow) means exactly a morphism $\Gamma \longrightarrow \Gamma'$;
 - 2° a Γ -structure on any ss-manifold X means a morphism X \longrightarrow N Γ ;
- 3° the transformation of ss- Γ structures to ss- Γ '-structures along an arbitrary morphism of groupoids $\Gamma \longrightarrow \Gamma$ ' corresponds to composition of morphisms of ss-manifolds.

The new category happens to be especially useful while studying semisimplicial foliations.

III. Holonomy in the semi-simplicial context

In this paragraph we modify the notion of the holonomy groupoid in order that the minimality property I.2.9 be valid for ss-foliations.

1.1 Let us fix a q-codimensional foliation F of an ss-manifold M and consider an arbitrary complete transversal $i: T \hookrightarrow X_1$ for F_1 (cf remark 1.4.2 below). Clearly, the disjoint union $T^0 \cup T^1$ of two copies of T immersed in X_0 by the map $\varepsilon_0 i \cup \varepsilon_1 i$ is a complete transversal for F_0 (in fact, so are both T^0 and T^1). Indeed, for any leaf L of there is a leaf \bar{L} of F_1 such that $\eta_0 L \subset \bar{L}$; since both $\varepsilon_0 \bar{L}$ and $\varepsilon_1 \bar{L}$ contain L and are contained in a leaf of F_0 , the equalities $\varepsilon_0 \bar{L} = L = \varepsilon_1 \bar{L}$ hold. Consequently, if $\bar{L} \cap iT \neq 0$ then also $L \cap \varepsilon_1 iT \neq 0$, for i = 0, 1.

We denote by $G_{F,T^0 \sqcup T^1}$ the pseudogroup (of diffeomorphisms of $T^0 \sqcup T^1$) generated by the holonomy pseudogroup $G_{F_0,T^0 \sqcup T^1}$ and the identification map $id_1^0 \colon T^0 \to T^1$. Finally, let $G_{F,T}$ stand for the pseudogroup

$$G_{F,T} = \{ \gamma \in G_{F,T^0 \cup T^1}; \text{ domain } \gamma, \text{ image } \gamma \subset T^0 \}.$$

Lemma 1.1.1. (i) The inclusion $T^0 \hookrightarrow T^0 \sqcup T^1$ generates an equivalence of pseudogroups

$$\mathfrak{C}_{\mathbf{T}} \colon \mathfrak{C}_{\mathsf{F},\mathbf{T}} \longrightarrow \mathfrak{C}_{\mathsf{F},\mathbf{T}^0 \cup \mathbf{T}^1}.$$

Furthermore, if $\overline{T} \subset X_1$ is another complete transversal for F_1 , then: (ii) the holonomy translations $h_{C,\overline{T}}$ of T in \overline{T} along the paths in leaves of F_1 generate an equivalence $\Phi: G_{C,\overline{T}} \to G_{C,\overline{T}}$;

in leaves of F_1 generate an equivalence $\Phi: G_{F,T} \longrightarrow G_{F,\overline{T}};$ (iii) the holonomy translations $h_{C,\overline{T}^0 \sqcup \overline{T}^1}$ of $T^0 \sqcup T^1$ in $\overline{T}^0 \sqcup \overline{T}^1$ along the paths in leaves of F_0 generate an equivalence $\Phi': G_{F,T^0 \sqcup \overline{T}^1} \longrightarrow G_{F,\overline{T}^0 \sqcup \overline{T}^1};$ and

(iv) the diagram

$$G_{F,T} \xrightarrow{\Phi_{\overline{T}}} G_{F,T} \circ_{\sqcup T^{1}}$$

$$G_{F,T} \xrightarrow{\Phi_{\overline{T}}} G_{F,T} \circ_{\sqcup T^{1}}$$

commutes.

<u>Proof.</u> (i) The fact that $\Phi_{\mathbf{T}}$ is invertible is a direct consequence of another one, that $G_{F,\mathbf{T}^0\sqcup\mathbf{T}^1}$ contains the identification map $\mathrm{id}_{\bar{b}}\colon \mathbf{T}^1\to \mathbf{T}^0$; clearly, the two diffeomorphisms

$$\mathbf{r}^0 \sqcup \mathbf{r}^1 \lesssim_{\mathbf{r}^1}^{\mathbf{r}^0} \xrightarrow{\mathbf{id}}_{\mathbf{r}^0}^{\mathbf{r}^0}$$

generate a morphism $\Phi^T: G_{F,T^0 \cup T^1} \longrightarrow G_{F,T}$ inverse to Φ_T .

We left the part (ii) for a moment and first prove (iii). Since the holonomy translations $h_{C,\overline{T}}:=h_{C,\overline{T}^0\sqcup\overline{T}^1}$ establish a morphism $G_{F_0,T^0\sqcup T^1}$ $G_{F_0,\overline{T}^0\sqcup\overline{T}^1}$, it sufficies to check (cf I;2.6(ii)) that they transfer id on a element of $G_{F,\overline{T}^0\sqcup\overline{T}^1}$ (invertibility of the resulted morphism follows then from the symmetry arguments). So let C and C' be any two paths in X_0 such that each one is contained in a leaf of F_0 , and that $C(0) = \varepsilon_0 t$ and $C'(0) = \varepsilon_1 t$ for a $t \in T \hookrightarrow X_1$. Moreover, we require both the paths to have their ends in $\overline{T}^0\sqcup\overline{T}^1 \hookrightarrow X_0$, and examine the diffeomorphism $h_{C,\overline{T}}$ \overline{T} \overline{T} \overline{T} defined over a neighbourhood of C(1) in $\overline{T}^0\sqcup\overline{T}^1$. If one choses a path C connecting C to a point of \overline{T} in a leaf of C, then one immediately gets

$$h_{c'}, \bar{T}^{id_{1}^{0}(h_{c}, \bar{T}^{T})^{-1} = h} (\epsilon_{1}^{C})^{-1} * c', \bar{T}^{h} \epsilon_{1}^{C}, \bar{T}^{id_{1}^{0}(h_{\epsilon_{0}}^{C}, \bar{T}^{T})^{-1}} h_{c^{-1} * (\epsilon_{0}^{C}), \bar{T}^{T}}$$

In view of I.2.1, the holonomy translations along ϵ_0^C or ϵ_1^C are the same as those along C in X_1 (up to the identification maps); this means the composition

$$h_{\varepsilon_1^{\mathsf{C}}, \bar{\mathbf{T}}} \operatorname{id}_1^{\mathsf{0}} (h_{\varepsilon_0^{\mathsf{C}}, \bar{\mathbf{T}}})^{-1} : \bar{\mathbf{T}}^0 \to \bar{\mathbf{T}}^1$$

is just the map id_1^0 . Consequently, being a composition of three maps from $G_{F,\bar{T}^0\sqcup\bar{T}^1}$ the examined diffeomorphism is an element of the same pseudogroup.

Turning back now to the assertion (ii) we note that the domains of the holonomy translations from \cdot T to \bar{T} (in X_1 !) cover the whole \bar{T} . Furthermore, since one has $h_{C\bar{T}}^{T} = h_{E_0C,\bar{T}^0}^{T^0}$ for c in X_1 , it follows from the above proof of (iii) that the collection of all the $h_{C,\bar{T}}^{T}$'s transfers the subset $G_{F,\bar{T}} \subset G_{F,\bar{T}^0 \cup \bar{T}^1}$ to the subset $G_{F,\bar{T}} \subset G_{F,\bar{T}^0 \cup \bar{T}^1}$, and thus generates a morphism $\Phi: G_{F,\bar{T}} \longrightarrow G_{F,\bar{T}}$ such that the square of (iv) commutes. Evidently, Φ must be an equivalence.

Definition 1.2. We shall call $G_{F,T}$ and $G_{F,T^0 \sqcup T^1}$ respectively the (reduced) holonomy pseudogroup and the non-reduced holonomy pseudogroup of F with respect to the complete transversal $T \hookrightarrow X_1$. Similarly, the corresponding groupoids of germs $\Gamma_{F,T}$ and $\Gamma_{F,T^0 \sqcup T^1}$ will be called the holonomy groupoid and the non-reduced holonomy groupoid of F with respect to T.

1.3 The lemma proves not only that the holonomy pseudogroups with respect to different transversals are all mutually equivalent, but also points, each time, at a particular canonical equivalence. Since no one invariant form of the holonomy pseudogroups or groupoids is known (at

least to the author; for standard foliations such a role plays the graph) let us put emphasis on the <u>consistency</u> of the canonical equivalences. Namely, for any three complete transversals T, \overline{T} and $\widetilde{T} \hookrightarrow X_1$ the corresponding triangle

$$G_{F,\overline{T}} \stackrel{G}{=} G_{F,\widetilde{T}}$$

commutes; clearly, the same holds for any such triangle composed of either reduced or non-reduced holonomy pseudogroups and their canonical equivalences.

In what follows, we generally formulate our results in terms of the reduced holonomy pseudogroups or groupoids, whereas the non-reduced notions appear to be more convenient for the proofs.

1.4 Remarks. 1. It can be shown that if one choses a complete transversal T for F_n , n arbitrary \geq 1, then maps it along all the boundary maps into X_0 and, finally, extends the corresponding holonomy pseudogroup of F_0 with the help of all the identification maps, then the resulted pseudogroup is equivalent to the holonomy pseudogroups of F.

2. Like in the standard (ie non-semi-simplicial) case the orbits $\beta(\alpha^{-1}(t))$, $t \in T$, of the holonomy groupoid $\Gamma_{F,T}$ are in a one-to-one correspondence with the leaves of F; the correspondence being given by the assignment

$$\beta (\alpha^{-1}(t)) \xrightarrow{} X^{(K_t)}$$

where K_t denotes the equivalence class containing the leaves of F_0 that pass through $\epsilon_i it$, i = 0,1 (cf II.2.5). Consequently, we may call T a complete transversal for F.

In order to justify the name: holonomy pseudogroup or holonomy groupoid, we shall now consider arbitrary groupoids of germs related to the foliation F as in I;1.10.

Definition 2.1. Let Γ be an arbitrary groupoid of germs such that $\dim \Gamma = \operatorname{codim} F$. An ss- Γ -bundle $E = (E_n)$ over X defines the foliation F of X (and so does the ss- Γ -structure represented by E) if the Γ -bundle $E_0 \to X_0$ defines F_0 .

By I.1.10 the condition means that the target map β_0 of E_0 to the units of Γ is a submersion, and the foliation π^*F_0 of E_0 coincides with the foliation induced by β_0 from the pointwise one. Clearly, this implies that for any n the Γ -bundle $E_n \to X_n$ defines F_n .

Our main result is the following one.

Theorem 2.2. Let $F = (F_n)$ be an arbitrary foliation of an ss-manifold $X = (X_n)$. For any complete transversal $T \hookrightarrow X_1$ there exists a canonical principal $\Gamma_{F,T}$ -structure $\omega_{F,T}$ defining F on X and such that

(i) if Γ is any groupoid of germs and an ss- Γ -structure ω on X defines F, the there is a canonically induced morphism $\Psi = \Psi_{\mathbf{T}}^{\omega}$ of $G_{F,\mathbf{T}}$ in G, the pseudogroup underlying Γ , such that

$$\omega = \Psi_* \omega_{F,T}$$

(ii) if $\overline{T} \hookrightarrow X_1$ is another complete transversal for F, then the canonically induced morphism

$$\Psi_{\mathbf{T}}^{\omega_{\mathcal{F}},\overline{\mathbf{T}}}\colon G_{\mathcal{F},\mathbf{T}} \longrightarrow G_{\mathcal{F},\overline{\mathbf{T}}}$$

is the canonical equivalence of holonomy pseudogroups (cf 1.3); (iii) if ω and \overline{T} are as in (i) - (ii) and, moreover, $\Lambda\colon G \longrightarrow G'$ is an arbitrary morphism of pseudogroups, then the square

$$G_{F,\overline{T}} \xrightarrow{\Psi_{\overline{T}}^{\omega}} G_{\Lambda}$$

$$G_{F,\overline{T}} \xrightarrow{\Psi_{\overline{T}}^{\Lambda}*\omega} G'$$

commutes, & being the canonical equivalence.

Definition 2.2.1. We shall call the morphism $\Psi_{\mathbf{T}}^{\omega} \colon G_{\mathsf{F},\mathbf{T}} \longrightarrow G$ constructed in the proof of theorem 2.2 (i) (cf 2.4 - 2.6 below), as well as the composition of $\Psi_{\mathbf{T}}^{\omega}$ and the canonical equivalence $G_{\mathsf{F},\mathbf{T}^0\sqcup\mathbf{T}^1} \longrightarrow G_{\mathsf{F},\mathbf{T}}$, the holonomy morphism for F with respect to T .

Our proof of theorem 2.2 will consist of several parts (cf 2.3 - 2.7 below).

 $\underline{2.3}$ We begin the proof with a construction of a $\Gamma_{F,T^0 \sqcup T^1}$ -structure $\omega_{F,T}^*$ canonically associated with F. Namely, let us consider a (left!) $\Gamma_{F,T^0 \sqcup T^1}$ -bundle over X_0 ,

(2.3.1)
$$E_{F,0} := \Gamma_{F,T^0 \cup T^1} \Gamma_{F_0,T^0 \cup T^1} E_{F_0,T^0 \cup T^1}$$

which is the result of an extension of the structure groupoid of $E_{F_0,T^0\sqcup T^1}$ (the canonical principal bundle associated with F_0 and the transversal $T^0\sqcup T^1 \hookrightarrow X_0$, cf I;2.8).

In view of lemma II;3.5, we may let $E_{F,n} := (\epsilon_0^n) * E_{F,0}$ and the question is how to construct the operator $\overline{\epsilon}_1 : E_{F,1} \to E_{F,0}$. To do that, we write an arbitrary element of

$$E_{F,1} = E_{F,0} \times (\pi, \epsilon_0)^{X_1}$$

in a special way. Namely, for any $x \in X_1$ we choose a path c in a lea of F_1 , connecting x to a point of $T \hookrightarrow X_1$. Then the path $\epsilon_0 c$ connects $\epsilon_0 x$ to a point of $T^0 \hookrightarrow X_0$, and the germ $[H_{\epsilon_0 c, T^0, \epsilon_0 x}]$ (cf I.2.8) is an element of $E_{F_0, T^0 \sqcup T^1}$. Consequently, any element of $\pi^{-1}(\epsilon_0 x) \subset E_{F,0}$ is of the form $g[H_{\epsilon_0 c, T^0, \epsilon_0 x}]$ for a $g \in F_{F,T^0 \sqcup T^1}$ such that $\alpha(g) = c(1) \in T^0$. We set

$$(2.3.2) \quad E_{F,1} \ni (g[H_{\epsilon_0C,T^0},\epsilon_0x],x) \xrightarrow{\overline{\epsilon}_1} g \ id_0^1[H_{\epsilon_1,T^1},\epsilon_1x] \in E_{F,0}$$

where id_0^1 stands for the suitable germ of the identification map. The resulted map $\overline{\epsilon}_1$ is well-defined. Indeed, if c' is another path in X_1 starting at x, then (cf I.2.8)

$$[H_{\epsilon_{\underline{i}}^{\mathbf{C}'},T^{\underline{i}'},\epsilon_{\underline{i}}^{\mathbf{X}}]} = h_{\epsilon_{\underline{i}}^{\mathbf{C}'},T^{\underline{i}'},\epsilon_{\underline{i}}^{\mathbf{C}'},T^{\underline{i}'},\epsilon_{\underline{i}}^{\mathbf{X}}]} \quad \text{for } i=0,1,$$

where, by I.2.1,

$$id_0^1h_{\epsilon_1}(c^{-1}*c'),T^1 = h_{\epsilon_0}(c^{-1}*c'),T^0 id_0^1$$

as both the holonomy translations are equal to $h_{c^{-1}*c',T}$. Now, an equal ity

$$g[H_{\epsilon_0C,T^0,\epsilon_0x}] = g'[H_{\epsilon_0C',T^0,\epsilon_0x}]$$

implies $g = g'h_{\epsilon_0(c^{-1}*c'),T^0}$, and thus the equalities

$$g id_0^1[H_{\epsilon_1C,T^1},\epsilon_1x] = g'id_0^1h_{\epsilon_1(c^{-1}*c'),T^1}[H_{\epsilon_1C,T^1},\epsilon_1x]$$
$$= g'id_0^1[H_{\epsilon_1C',T^1},\epsilon_1x]$$

prove correctness of the definition (2.3.2). Clearly, $\bar{\epsilon}_1$ is $\Gamma_{F,T^0 \sqcup T^1}$ equivariant and the map it induces on the bases is $\epsilon_1: X_1 \to X_0$.

Let us show now smoothness of $\bar{\epsilon}_1$. Namely, if x is an arbitrary point of X_1 and c is a fixed path in a leaf of F_1 connecting x to a point of T, then it sufficies to prove that $\bar{\epsilon}_1$ maps the section of $E_{F,1}$,

 $y \xrightarrow{\sigma} ([H_{\epsilon_0 C, T^0}, \epsilon_0 y], y)$ for y in a neighbourhood of $x \in X_1$, to the smooth map $y \longrightarrow id_0^1[H_{\epsilon_1 C, T^1}, \epsilon_1 y]$.

There is a neighbourhood U of x such that any point $y \in U$ can be connected to a point of T by a path c^Y continuously depending on y and contained in the leaf of F_1 through y (with the condition $c^X = c$). Now the paths $\epsilon_0 c^Y$ as well as $\epsilon_1 c^Y$ continuously depend on y, and it follows from the definition I.2.8 that for any y in a (possibly smaller) neighbourhood $V \subseteq U$ of x, one has

$$[H_{\varepsilon_i c^y, T^i}, \varepsilon_{i^y}] = [H_{\varepsilon_i c, T^i}, \varepsilon_{i^y}]$$
 for $i = 0, 1$.

Consequently, if $y \in V$, then

$$\overline{\epsilon}_{1}\sigma(y) = \overline{\epsilon}_{1}([H_{\epsilon_{0}CY,T^{0}},\epsilon_{0}Y],y)$$

$$= id_{0}^{1}[H_{\epsilon_{1}CY,T^{1}},\epsilon_{1}Y] = id_{0}^{1}[H_{\epsilon_{1}C,T^{1}},\epsilon_{1}Y]$$

as was to be shown.

We verify the conditions (ii) - (iii) of lemma II.3.5 (according to I.1.8 we use the notation for left principal bundles).

"(ii)" For an arbitrary $x \in X_0$ let c be a path connecting $\eta_0^{x \in X_1}$ to a point of T in a leaf of F_1 . Then

$$\overline{\epsilon}_{1}([H_{\epsilon_{0}C,T^{0},X}],\epsilon_{0}X) = id_{0}^{1}[H_{\epsilon_{1}C,T^{1},X}]$$

$$= id_{0}^{1}h(\epsilon_{0}C)^{-1}*(\epsilon_{1}C),T^{0}\Box T^{1}[H_{\epsilon_{0}C,T^{0},X}].$$

By choosing a local transversal $R \subset X_0$ for F_0 at x, we get

$$h_{(\varepsilon_0 c)^{-1} * (\varepsilon_1 c), T^0 \sqcup T^1} = [h_{\varepsilon_1 c, T^1}, x][h_{\varepsilon_0 c, T^0}, x]^{-1}$$

where (cf I.2.1) both the holonomy translations in X_0 are equal to ${}^h c, T$, a holonomy translation in X_1 . Consequently, the above composition of germs is a germ of the identification map $T^0 \to T^1$. In view of the $\Gamma_{F,T^0 \sqcup T^1}$ -equivariance of $\overline{\epsilon}_1$, the resulted equality

$$\bar{\epsilon}_1([H_{\epsilon_0C,T^0},x],\epsilon_0x) = [H_{\epsilon_0C,T^0},x]$$

immediately implies (ii) of lemma II;3.5.

"(iii)" We fix an arbitrary element x of X_2 and choose for each i=0,1,2, a path c_i connecting the point $\epsilon_i x$ to some point of T in a leaf of F_1 (see figure 3). Let $e=[H_{\epsilon_0 C_0,T^0},\epsilon_0 \epsilon_0 x]$, then one has $(e,\epsilon_0 x),(e,\epsilon_1 x)\in E_{F,1}$, and

$$\overline{\epsilon}_1(e, \epsilon_0 x) = id_0^1[H_{\epsilon_1 C_0, T^1}, \epsilon_1 \epsilon_0 x]$$

Figure 3.

whereas

$$\overline{\varepsilon}_{1} (e, \varepsilon_{1} \times) = \overline{\varepsilon}_{1} (h_{(\varepsilon_{0} C_{1})^{-1} * (\varepsilon_{0} C_{0}), T^{0}} [H_{\varepsilon_{0} C_{1}, T^{0}, \varepsilon_{0} \varepsilon_{1} \times], \varepsilon_{1} \times)}$$

$$= h_{(\varepsilon_{0} C_{1})^{-1} * (\varepsilon_{0} C_{0})} id_{0}^{1} [H_{\varepsilon_{1} C_{1}, T^{1}, \varepsilon_{1} \varepsilon_{1} \times]}.$$

According to (2.3.2), we get also

$$\begin{split} \overline{\epsilon}_{1} \left(\overline{\epsilon}_{1} \left(\mathbf{e}, \epsilon_{0} \mathbf{x} \right), \epsilon_{2} \mathbf{x} \right) &= \overline{\epsilon}_{1} \left(\mathbf{id}_{0}^{1} \mathbf{h} \left(\epsilon_{0} \mathbf{c}_{2} \right)^{-1} * \left(\epsilon_{1} \mathbf{c}_{0} \right), \mathbf{T}^{0} \cup \mathbf{T}^{1} \right) \left[\mathbf{H}_{\epsilon_{0}} \mathbf{c}_{2}, \mathbf{T}^{0}, \epsilon_{0} \epsilon_{2} \mathbf{x} \right], \epsilon_{2} \mathbf{x} \right) \\ &= \mathbf{id}_{0}^{1} \mathbf{h} \left(\epsilon_{0} \mathbf{c}_{2} \right)^{-1} * \left(\epsilon_{1} \mathbf{c}_{0} \right), \mathbf{T}^{0} \cup \mathbf{T}^{1} \right] \left[\mathbf{H}_{\epsilon_{1}} \mathbf{c}_{2}, \mathbf{T}^{1}, \epsilon_{1} \epsilon_{2} \mathbf{x} \right] \end{split}$$

and the condition (iii) Of lemma II.3.5 reduces to the equality

(2.3.3)
$$h(\epsilon_0 c_1)^{-1} * (\epsilon_0 c_0), T^{0} \stackrel{\text{id}_0^1}{} h(\epsilon_1 c_2)^{-1} * (\epsilon_1 c_1), T^1 =$$

=
$$id_0^1 h (\epsilon_0 c_2)^{-1} * (\epsilon_1 c_0), T^0 \cup T^1 id_0^1$$

which remains to be shown. Keeping this goal in mind, we fix a local transversal $Q \hookrightarrow X_2$ for the foliation F_2 at x. This allows us to consider all the holonomy translations $h_{c_i} : \epsilon_i Q \to T$, i = 0,1,2, as well as $h_{\epsilon_0 c_0}$, $h_{\epsilon_0 c_1} : \epsilon_0 \epsilon_0 Q \to T^0$, and $h_{\epsilon_1 c_0}$, $h_{\epsilon_0 c_2} : \epsilon_1 \epsilon_0 Q \to T$ etc (for shortness we use abbreviated notations) which are, by I.2.1, subject to the relations (at the level of germs)

$$h_{\varepsilon_0 c_0} = id_0 \circ h_{c_0} \circ (\varepsilon_0 | \varepsilon_0 Q)^{-1}$$

$$h_{\varepsilon_0 c_1} = id_0 \circ h_{c_0} \circ (\varepsilon_0 | \varepsilon_1 Q)^{-1} \quad \text{etc,}$$

id standing for the identification map $T \rightarrow T^{i}$ as i = 0,1. Consequently, the left-hand side of (2.3.3) is a germ of the composition

$$(\mathrm{id}_0 \circ \mathrm{h}_{\mathbf{c}_0} \circ (\epsilon_0 | \epsilon_0 Q)^{-1}) (\mathrm{id}_0 \circ \mathrm{h}_{\mathbf{c}_1} \circ (\epsilon_0 | \epsilon_1 Q)^{-1})^{-1} \circ \mathrm{id}_0^1 \circ \\ \circ (\mathrm{id}_1 \circ \mathrm{h}_{\mathbf{c}_1} \circ (\epsilon_1 | \epsilon_1 Q)^{-1}) (\mathrm{id}_1 \circ \mathrm{h}_{\mathbf{c}_2} \circ (\epsilon_1 | \epsilon_2 Q)^{-1})^{-1} \\ = \mathrm{id}_0 \mathrm{h}_{\mathbf{c}_0} (\epsilon_0 | \epsilon_0 Q)^{-1} (\epsilon_0 | \epsilon_1 Q) (\epsilon_1 | \epsilon_1 Q)^{-1} (\epsilon_1 | \epsilon_2 Q) \mathrm{h}_{\mathbf{c}_2}^{-1} (\mathrm{id}_1)^{-1}$$

whereas the right-hand side is a germ of

$$\begin{split} \mathrm{id}_0^1 \left(\mathrm{id}_1 \mathrm{h}_{\mathbf{C}_0} \left(\varepsilon_1 | \varepsilon_0 \mathrm{Q} \right)^{-1} \left(\mathrm{id}_0 \mathrm{h}_{\mathbf{C}_2} \left(\varepsilon_0 | \varepsilon_2 \mathrm{Q} \right)^{-1} \right)^{-1} \; \mathrm{id}_0^1 \\ &= \mathrm{id}_0 \mathrm{h}_{\mathbf{C}_0} \left(\varepsilon_1 | \varepsilon_0 \mathrm{Q} \right)^{-1} \left(\varepsilon_0 | \varepsilon_2 \mathrm{Q} \right) \mathrm{h}_{\mathbf{C}_2}^{-1} \left(\mathrm{id}_1 \right)^{-1}. \end{split}$$

Since now both the intrinsic compositions of the ϵ_i 's are identical and equal to the map $\epsilon_2Q \ni \epsilon_2z \mapsto \epsilon_0z \in \epsilon_0Q$, the equality (2.3.3) holds. This finishes the above construction of an ss- $\Gamma_{F,T^0 \sqcup T^1}$ -bundle $E_{F,T}^i = (E_{F,n})$ associated with the foliation $F = (F_n)$ and the transversal $T \hookrightarrow X_1$. The fact that $E_{F,T}$ defines F on X is obvious. Let $\omega_{F,T}^i$ denote the corresponding ss- $\Gamma_{F,T^0 \sqcup T^1}$ -structure; we end the construction by setting

$$\omega_{F,\mathbf{T}} := \Phi^{\mathbf{T}} * \omega_{F,\mathbf{T}}^{\dagger}$$

where Φ^T : $G_{F,T^0 \cup T^1} \longrightarrow G_{F,T}$ is the canonical equivalence.

<u>2.4</u> We consider now an arbitrary groupoid of germs Γ such that some ss- Γ -structure given by a (left) principal ss- Γ -bundle E + X, $E = (E_n)$, defines on X the foliation F. The submersions of subsets of X_0 to the manifold of units of Γ which are distinguished by E_0 can be restricted to $T^0 \sqcup T^1 \hookrightarrow X_0$; we claim that the resulted collection of diffeomorphisms of open subsets of $T^0 \sqcup T^1$ into the units of Γ

generates a morphism

$$\Psi': G_{F,T^0 \sqcup T^1} \longrightarrow G$$

such that $\omega = \Psi_*^* \omega_{F,T}^*$. Before proving this, we first give a cocycle description of an arbitrary ss- Γ -bundle.

Definition 2.5. Let Γ be an arbitrary groupoid, $X = (X_n)$ an ss-manifold, and $U = \{U_a, a \in A\}$ any open covering of X_0 . A Γ -cocycle on X with respect to U is any collection $\{\gamma_{ab}, (a,b) \in A \times A\}$ of maps

$$\gamma_{ab}$$
: $X_1 \supset \epsilon_1^{-1} U_a \cap \epsilon_0^{-1} U_b \rightarrow \Gamma$

such that

(2.5.1)
$$\gamma_{ab}(\epsilon_2 x) \gamma_{bc}(\epsilon_0 x) = \gamma_{ac}(\epsilon_1 x)$$

for $x \in (\epsilon_1 \epsilon_1)^{-1} U_a \cap (\epsilon_1 \epsilon_0)^{-1} U_b \cap (\epsilon_0 \epsilon_0)^{-1} U_c$ and for all triples of indices.

 $\underline{2.5.2}$ Any Γ -cocycle $\gamma = \{\gamma_{ab}\}$, as above, determines a (right) principa ss- Γ -bundle over X. Indeed, when applied to $\eta_0\eta_0 x \in X_2$ the condition (2.5.1) implies that $\{\gamma_{ab} \circ \eta_0\}$ is a Γ -cocycle on X_0 . Consequently, the corresponding Γ -bundle

$$E_0^{\gamma} := \bigsqcup_{a \in A} U_a \times (\gamma_{aa}^{\eta_0, \beta})^{\Gamma/\gamma}$$

where

$$(a;x,g) \sim (b;x',g')$$
 iff $x=x' \in U_a \cap U_b$ and $g'=\gamma_{ba}(\eta_0 x)g$,

together with the map

$$E_1^{\gamma} := X_1 \times_{(\epsilon_0, \pi)} E_0 \ni (x, [a; \epsilon_0 x, g]) \xrightarrow{\overline{\epsilon}_1} [b; \epsilon_1 x, \gamma_{ba}(x) g] \in E_0^{\gamma}$$

where the braces "[]" stand for the equivalence classes and b \in A is an index such that $U_b \ni \epsilon_1 x$, fulfill the assumptions of lemma II.3.5: "(i)" If $\epsilon_1 x \in U_b \cap U_b$, then one has

$$\eta_0 \mathbf{x} \in (\epsilon_1^2)^{-1} \mathbf{U}_{\mathbf{b}}, \ \mathsf{n}(\epsilon_1 \epsilon_0)^{-1} \mathbf{U}_{\mathbf{b}} \ \mathsf{n}(\epsilon_0^2)^{-1} \mathbf{U}_{\mathbf{a}}$$

and the equality $\gamma_{b'b}(\epsilon_2\eta_0x)\gamma_{ba}(\epsilon_0\eta_0x) = \gamma_{b'a}(\epsilon_1\eta_0x)$ implies

$$[b; \varepsilon_1 x, \gamma_{ba}(x)g] = [b'; \varepsilon_1 x, \gamma_{b'b}(\eta_0 \varepsilon_1 x) \gamma_{ba}(x)g]$$
$$= [b'; \varepsilon_1 x, \gamma_{b'a}(x)g].$$

Hence $\overline{\epsilon}_1$ is well-defined (its smoothness and Γ -equivariance are obvious).

(ii) If
$$x \in U_a$$
 and $[a;x,g] \in E_0^{\gamma}$, then

$$\overline{\varepsilon}_{1}(\eta_{0}x,[a;x,g]) = [a;\varepsilon_{1}\eta_{0}x,\gamma_{aa}(\eta_{0}x)g]$$
$$= [a;x,g].$$

(iii) If $x \in (\epsilon_1^2)^{-1} U_a \cap (\epsilon_1 \epsilon_0)^{-1} U_b \cap (\epsilon_0^2)^{-1} U_c$ and $[c; \epsilon_0 \epsilon_0 x, g] \in E_0^{\gamma}$, then

$$\overline{\varepsilon}_{1}(\varepsilon_{1}x,[c;\varepsilon_{0}\varepsilon_{0}x,g]) = [a;\varepsilon_{1}\varepsilon_{1}x,\gamma_{ac}(\varepsilon_{1}x)g]$$

whereas

$$\overline{\varepsilon}_{1}(\varepsilon_{2}x,\overline{\varepsilon}_{1}(\varepsilon_{0}x,[c;\varepsilon_{0}\varepsilon_{0}x,g])) = \overline{\varepsilon}_{1}(\varepsilon_{2}x,[b;\varepsilon_{1}\varepsilon_{0}x,\gamma_{bc}(\varepsilon_{0}x)g]) \\
= [a;\varepsilon_{1}\varepsilon_{2}x,\gamma_{ab}(\varepsilon_{2}x)\gamma_{bc}(\varepsilon_{0}x)g].$$

In view of the lemma, E_0^{γ} and $\overline{\epsilon}_1$ give rise to an ss- Γ -bundle $E^{\gamma} \rightarrow X$.

Lemma 2.5.3. Every principal ss- Γ -bundle $E \to X$ is isomorphic to a bundle E^{γ} , where γ is a Γ -cocycle on X with respect to a suitably chosen covering U of X_{Ω} .

<u>Proof.</u> Consider any collection of sections $\sigma_a: X_0 \supset U_a \rightarrow E_0$ such that $U = \{U_a\}$ covers X_0 . If $x \in \varepsilon_1^{-1}U_a \cap \varepsilon_0^{-1}U_b$ then the elements $\sigma_a(\varepsilon_1 x)$, $\sigma_b(\varepsilon_0 x) \in E_0$ are defined. Since there are canonical isomorphisms

$$\epsilon_1^* E_0 \xrightarrow{(\pi, \epsilon_1)} E_1 \xrightarrow{(\pi, \epsilon_0)} \epsilon_0^* E_0$$

one can compare the inverse images $(\pi, \epsilon_1)^{-1}(x, \sigma_a(\epsilon_1 x))$ and $(\pi, \epsilon_0)^{-1}(x, \sigma_b(\epsilon_0 x))$ which are in the same fiber of E_1 . Clearly, one has

$$(2.5.4) \qquad (\pi, \varepsilon_0)^{-1} (\mathbf{x}, \sigma_b(\varepsilon_0 \mathbf{x})) = (\pi, \varepsilon_1)^{-1} (\mathbf{x}, \sigma_a(\varepsilon_1 \mathbf{x})) \cdot \gamma_{ab}(\mathbf{x})$$

for a $\gamma_{ab}(x) \in \Gamma$. We claim that the maps $\gamma_{ab} : \varepsilon_1^{-1} U_a \cap \varepsilon_0^{-1} U_b \to \Gamma$ form the desired cocycle and that the cocycle condition (2.5.1) is just an alternative description of the commutativity observed in II.3.3. Indeed, any element x of $(\varepsilon_1^2)^{-1}U_a \cap (\varepsilon_1 \varepsilon_0)^{-1}U_b \cap (\varepsilon_0^2)^{-1}U_c$ determines three elements of $E_0: \sigma_a(\varepsilon_1 \varepsilon_1 x), \sigma_b(\varepsilon_1 \varepsilon_0 x),$ and $\sigma_c(\varepsilon_0 \varepsilon_0 x),$ six elements of $E_1:$

 $(\pi, \varepsilon_0)^{-1}(\varepsilon_0 \mathbf{x}, \sigma_c(\varepsilon_0 \varepsilon_0 \mathbf{x})), (\pi, \varepsilon_1)^{-1}(\varepsilon_0 \mathbf{x}, \sigma_b(\varepsilon_1 \varepsilon_0 \mathbf{x})), (\pi, \varepsilon_0)^{-1}(\varepsilon_1 \mathbf{x}, \sigma_c(\varepsilon_0 \varepsilon_1 \mathbf{x}))$

etc, and three of E_2 : $(\pi, \epsilon_1 \epsilon_1)^{-1} (x, \sigma_a(\epsilon_1 \epsilon_1 x))$, etc. Starting from the equality (in E_1)

$$(\pi, \varepsilon_1)^{-1} (\varepsilon_1 x, \sigma_a (\varepsilon_1 \varepsilon_1 x)) \gamma_{ac} (\varepsilon_1 x) = (\pi, \varepsilon_0)^{-1} (\varepsilon_1 x, \sigma_c (\varepsilon_0 \varepsilon_1 x))$$

we get in E_2 (cf II, diagram (3.3.1))

$$(\pi, \varepsilon_{1} \varepsilon_{1})^{-1} (\mathbf{x}, \sigma_{\mathbf{a}} (\varepsilon_{1} \varepsilon_{1} \mathbf{x})) \Upsilon_{\mathbf{a}\mathbf{c}} (\varepsilon_{1} \mathbf{x}) =$$

$$= (\pi, \varepsilon_{1})^{-1} (\mathbf{x}, (\pi, \varepsilon_{1})^{-1} (\varepsilon_{1} \mathbf{x}, \sigma_{\mathbf{a}} (\varepsilon_{1} \varepsilon_{1} \mathbf{x})) \Upsilon_{\mathbf{a}\mathbf{c}} (\varepsilon_{1} \mathbf{x}))$$

$$= (\pi, \varepsilon_{1})^{-1} (\mathbf{x}, (\pi, \varepsilon_{0})^{-1} (\varepsilon_{1} \mathbf{x}, \sigma_{\mathbf{c}} (\varepsilon_{0} \varepsilon_{1} \mathbf{x})))$$

$$= (\pi, \varepsilon_{0} \varepsilon_{1})^{-1} (\mathbf{x}, \sigma_{\mathbf{c}} (\varepsilon_{0} \varepsilon_{1} \mathbf{x})).$$

In a similar way, we check the equalities

$$(\pi, \varepsilon_1 \varepsilon_2)^{-1} (\mathbf{x}, \sigma_{\mathbf{a}} (\varepsilon_1 \varepsilon_2 \mathbf{x})) \gamma_{\mathbf{a} \mathbf{b}} (\varepsilon_2 \mathbf{x}) = (\pi, \varepsilon_0 \varepsilon_2)^{-1} (\mathbf{x}, \sigma_{\mathbf{b}} (\varepsilon_0 \varepsilon_0 \mathbf{x}))$$

and

$$(\pi, \varepsilon_1 \varepsilon_0)^{-1} (\mathbf{x}, \sigma_{\mathbf{b}} (\varepsilon_1 \varepsilon_0 \mathbf{x})) \gamma_{\mathbf{b} \mathbf{c}} (\varepsilon_0 \mathbf{x}) = (\pi, \varepsilon_0 \varepsilon_0)^{-1} (\mathbf{x}, \sigma_{\mathbf{c}} (\varepsilon_0 \varepsilon_0 \mathbf{x})).$$

Since $\varepsilon_0 \varepsilon_0 = \varepsilon_0 \varepsilon_1$, $\varepsilon_1 \varepsilon_0 = \varepsilon_0 \varepsilon_2$ and $\varepsilon_1 \varepsilon_1 = \varepsilon_1 \varepsilon_2$, this implies $\Upsilon_{ab}(\varepsilon_2 x) \Upsilon_{bc}(\varepsilon_0 x) = \Upsilon_{ac}(\varepsilon_1 x)$.

It remains to indicate an isomorphism between E and the reconstructed ss- Γ -bundle E $^{\Upsilon}$. Clearly, when applied to $\eta_0 x$, $x \in U_a \cap U_b$, the equality (2.5.4) reduces to

$$\sigma_b(x) = \sigma_a(x) \Upsilon_{ab}(\eta_0 x)$$

what means that $\{\gamma_{ab} \circ \eta_0\}$ is a cocycle describing E_0 . In other words, the map

$$E_0^{\Upsilon} \ni [a;x,g] \xrightarrow{I_0} \sigma_a(x)g \in E_0$$

is a well-defined isomorphism. The only extension of I_0 to an ss-map $I: E^Y \to E$ must be of the form $I = (I_n)$, where I_n is the isomorphism $I = (I_n) = (I_$

$$E_n^{\Upsilon} = X_n \times_{(\varepsilon_0^n, \pi)} E_0 \xrightarrow{id \times I_0} X_n \times_{(\varepsilon_0^n, \pi)} E_0 \xrightarrow{(\pi, \varepsilon_0^n)^{-1}} E_n, \quad n=1,2,...$$

and by corollary II.3.6, it sufficies to check the commutativity relation $I_0 = \varepsilon_1 I_1$. For $x \in \varepsilon_1^{-1} U_a \cap \varepsilon_0^{-1} U_b$ and $(x,[b;\varepsilon_0x,g]) \in E_1$, one has

$$\epsilon_{1}I_{1}(x,[b;\epsilon_{0}x,g]) = \epsilon_{1}(\pi,\epsilon_{0})^{-1}(x,\sigma_{b}(\epsilon_{0}x)g)
= \epsilon_{1}(\pi,\epsilon_{1})^{-1}(x,\sigma_{a}(\epsilon_{1}x))\gamma_{ab}(x)g
= \sigma_{a}(\epsilon_{1}x)\gamma_{ab}(x)g
= I_{0}[a;\epsilon_{1}x,\gamma_{ab}(x)g]
= I_{0}\overline{\epsilon}_{1}(x,[b;\epsilon_{0}x,g])$$

as was to be shown.

2.6 Now we turn back to our assertion that the restrictions to $T^0 \sqcup T^1 \hookrightarrow X_0$ of of the submersions distinguished by E_0 generate a morphism $G_{F,T^0\sqcup T^1} \rightharpoonup G$. The fact that the restrictions form a morphism $G_{F_0,T^0\sqcup T^1} \rightharpoonup G$ is a part of the minimality property in the non-semisimplicial case (I;2.9) and follows from the relation I(2.4.1). In order to prove that the morphism can be extended to $G_{F,T^0\sqcup T^1}$ we consider any Γ -cocycle $\{\gamma_{ab}\}$, $\gamma_{ab}\colon X_1\supset \epsilon_1^{-1}U_a\cap \epsilon_0^{-1}U_b\to \Gamma$ associated with the examined ss- Γ -structure. If an arbitrary but fixed point t of $T \hookrightarrow X_1$ is in $\epsilon_1^{-1}U_a\cap \epsilon_0^{-1}U_b$, then clearly

$$\eta_0 t \in (\epsilon_1^2)^{-1} U_a \cap (\epsilon_1 \epsilon_0)^{-1} U_a \cap (\epsilon_0^2)^{-1} U_b$$

and

$$\eta_1 \mathbf{t} \in (\epsilon_1^2)^{-1} \mathbf{U}_{\mathbf{a}} \cap (\epsilon_1 \epsilon_0)^{-1} \mathbf{U}_{\mathbf{b}} \cap (\epsilon_0^2)^{-1} \mathbf{U}_{\mathbf{b}}.$$

Consequently, the cocycle condition (2.5.1) gives

$$\gamma_{aa}(\epsilon_2\eta_0t)\gamma_{ab}(t) = \gamma_{ab}(t)$$

and

$$\gamma_{ab}(t)\gamma_{bb}(\epsilon_0\eta_1t) = \gamma_{ab}(t)$$
,

and it follows that

(2.6.1) $\gamma_{ab}(t) \in \Gamma$ is a germ of the locally defined diffeomorphism $(\gamma_{aa}\eta_0\epsilon_1|\mathbf{T}) \circ (\gamma_{bb}\eta_0\epsilon_0|\mathbf{T})^{-1}$.

In other words, the diffeomorphism, which is precisely the map $(\gamma_{aa}\eta_0|\mathbf{T}^1) \circ \mathrm{id}_1^0 \circ (\gamma_{bb}\eta_0|\mathbf{T}^0)^{-1}$ (see figure 4)

Figure 4.

belongs to G, the pseudogroup underlying Γ . This concludes our assertion; let $\Psi' = \Psi_{\mathbf{T}}^{i} : G_{F,\mathbf{T}^{0} \sqcup \mathbf{T}^{1}} \longrightarrow G$ denote the resulted morphism of pseudogroups.

2.6.2 We have to find an isomorphism between $E = (E_n)$ and the ss- Γ -bundle

$$\Psi_{*}^{!}E_{F,T}^{!} = (\Psi_{*}^{!}E_{F,0} \times (\pi, \varepsilon_{0}^{n})X_{n})$$

(cf 2.3; we use the convention of I; 1.8 for left principal Γ -bundles). At the zero level, one has

$$\Psi_{*}^{!}E_{F,0} = |\Psi'| \times_{\Gamma_{F,T^0 \sqcup T^1}} (\Gamma_{F,T^0 \sqcup T^1} \times_{\Gamma_{F_0,T^0 \sqcup T^1}} E_{F_0,T^0 \sqcup T^1})$$

$$\cong |\Psi'| \times_{\Gamma_{F_0,T^0 \sqcup T^1}} E_{F_0,T^0 \sqcup T^1}$$

(with the multiplicative notation). We identify E_0 with the corresponding Γ -bundle of germs of the distinguished submersions (the canonical form of E_0 , cf I;1.11) and define $J_0: E_0 \to \Psi_*^{\dagger} E_{F,0}$ to be the map

(2.6.3)
$$[\phi,x] + [\psi|T^0 \sqcup T^1,c(1)] \cdot [H_c,x]$$

where $[\phi,x]$ is the germ at $x \in X_0$ of a submersion ϕ , c is any path connecting x to a point of $T^0 \sqcup T^1$ in a leaf of F_0 , and $[\psi|T^0 \sqcup T^1,c(1)]=h_c([\phi,x])|T^0 \sqcup T^1$ is the image of $[\phi,x] \in E_0$ under the holonomy translation h_c (hence a germ $[\psi,c(1)]$ of a distinguished submersion) restricted to the transversal. If \overline{c} is another path from x to $T^0 \sqcup T^1$, then

 $[H_{\overline{C}},x] = h_{C^{-1}*\overline{C},T^0\sqcup T^1}[H_{C},x]$

and

$$\begin{split} h_{\overline{C}}([\phi,x]) \big| T^0 & \sqcup T^1 &= h_{C^{-1}*\overline{C}}(h_C[\phi,x]) \big| T^0 & \sqcup T^1 \\ &= (h_C[\phi,x] \big| T^0 & \sqcup T^1) \cdot h_{C^{-1}*\overline{C},T^0 \sqcup T^1}^{-1} \end{split}$$

by I(2.4.1). This proves correctness of the definition of J_0 . Smoothness of that map follows from the same argument as the one applied in 2.3. Now J_0 is a Γ -equivariant map (because h_c acts Γ -equivariantly) inducing the identity map on X_0 , hence an isomorphism. In view of corollary II; 3.6, J_0 can be extended to an isomorphism $J: E + \Psi_*^! E_{F,T}^!$ if the commutativity relation $\overline{\epsilon}_1 J_1 = J_0 \epsilon_1: E_1 + \Psi_*^! E_{F,0}$ holds, J_1 standing for the map

$$E_1 = E_0 \times (\pi, \epsilon_0) \times_1 \xrightarrow{J_0 \times id} \Psi_{+}^{i} E_{F,0} \times (\pi, \epsilon_0) \times_1 = \Psi_{+}^{i} E_{F,1}.$$

We fix an arbitrary element e of E_1 and a path c connecting $x = \pi e$ to a point of $T \hookrightarrow X_1$ in a leaf of F_1 ; then $\epsilon_1 c$ connects $\epsilon_1 x$ to $T^1 \hookrightarrow X_0$, for i = 0,1. By definition

$$J_0 \varepsilon_1 e = (h_{\varepsilon_1 c}(\varepsilon_1 e) | T^1) \cdot [H_{\varepsilon_1 c}, \varepsilon_1 x]$$

whereas (cf 2.3.2)

$$\bar{\epsilon}_1 J_1 e = (h_{\epsilon_0 C}(\epsilon_0 e) | T^0) id_0^1[H_{\epsilon_1 C}, \epsilon_1 x];$$

it remains to show the equality

(2.6.4)
$$(h_{\varepsilon_0 C}(\varepsilon_0 e) | T^0) id_0^1 = h_{\varepsilon_1 C}(\varepsilon_1 e) | T^1.$$

To do that, we once more take advantage of lemma 2.5.3 (modified suitably for left Γ -bundles). So we fix a covering $\{U_a; a \in A\}$ of X_0 and a Γ -cocycle $\{\gamma_{ab}\}$, $\gamma_{ab} \colon X_1 \supset \epsilon_1^{-1}U_a \cap \epsilon_0^{-1}U_b \to \Gamma$ associated with the examined ss- Γ -structure. Since the submersions $\gamma_{aa}\eta_0$ are distinguished for E_0 and since $E_1 \cong \epsilon_i^*E_0$ for i=0,1, we see that among the distinguished submersions for E_1 there are $\gamma_{aa}\eta_0\epsilon_0$ as well as $\gamma_{aa}\eta_0\epsilon_1$, and ϵ A. If $\kappa = \pi e \in \epsilon_1^{-1}U_a \cap \epsilon_0^{-1}U_b$ then, after the identification of E_1 with its canonical form (cf I;1.11), one may write

$$e = g[\gamma_{bb}\eta_0\epsilon_0,x] = g'[\gamma_{aa}\eta_0\epsilon_1,x]$$

for some g, g' E r, and the double description of e implies

$$\varepsilon_0 e = g[\gamma_{bb}\eta_0, \varepsilon_0 x]$$

and

$$\varepsilon_1 e = g'[\gamma_{aa}\eta_0, \varepsilon_1 x]$$

(cf I;1.12). In order to find a relationship between g and g' we apply the canonical isomorphism I(1.11.1) to the equality

$$(\varepsilon_0, \pi)^{-1} (\sigma_b(\varepsilon_0 x), x) = \gamma_{ab}(x)^{-1} (\varepsilon_1, \pi)^{-1} (\sigma_a(\varepsilon_1 x), x)$$

obtained from (2.5.4) for left principal bundles. The resulted equality

$$[\gamma_{bb}\eta_0\varepsilon_0,x] = \gamma_{ab}(x)^{-1}[\gamma_{aa}\eta_0\varepsilon_1,x]$$

implies $g = g'\gamma_{ab}(x)$. Consequently, (2.6.4) reduces to

$$(2.6.5) \quad \gamma_{ab}(x) \cdot (h_{\varepsilon_0 c}[\gamma_{bb}\eta_0, \varepsilon_0 x]|T^0) id_0^1 = h_{\varepsilon_1 c}[\gamma_{aa}\eta_0, \varepsilon_1 x]|T^1.$$

Now we take any local transversal $S \hookrightarrow X_1$ for F_1 at x and apply the relation I(2.4.1). It follows that the left-hand side of (2.6.5) is a germ of the map

$$\gamma_{ab}^{(x)} \circ (\gamma_{bb} \eta_0 | \epsilon_0 S) \circ (h_{\epsilon_0 C, T^0}^{\epsilon_0 S})^{-1} \circ id_0^1 = \gamma_{ab}^{(x)} \gamma_{bb} \eta_0 (\epsilon_0 | S) (h_{C, T}^{S})^{-1} \circ id_0^1$$

whereas the right-hand side -- of the map

$$(\gamma_{aa}\eta_0 | \epsilon_1 S) \cdot (h_{\epsilon_1 C, T^1})^{-1} = \gamma_{aa}\eta_0 (\epsilon_1 | S) (h_{C, T})^{-1} \cdot id^1$$

where $\gamma_{ab}^{(x)} \in G$ is a diffeomorphism representing $\gamma_{ab}(x)$, and id¹ is the identification map $T^1 \to T$. According to (2.6.1) the two maps yield the same germ.

To conclude our proof of theorem 2.2(i) and complete the construction we define the holonomy morphism $\Psi = \Psi_{\mathbf{T}}^{\omega} : G_{\mathbf{F},\mathbf{T}} \longrightarrow G$ to be the composition of $\Psi' : G_{\mathbf{F},\mathbf{T}^0 \cup \mathbf{T}^1} \longrightarrow G$ and the canonical equivalence $\Phi_{\mathbf{T}} : G_{\mathbf{F},\mathbf{T}} \longrightarrow G_{\mathbf{F},\mathbf{T}^0 \cup \mathbf{T}^1}$; by the equality

$$\Psi_*\omega_{F,T} = (\Psi_*^{\dagger}\Phi_{T*})\Phi_*^{T}\omega_{F,T}^{\dagger} = \Psi_*^{\dagger}\omega_{F,T}^{\dagger} = \omega$$

we are done.

 $\underline{2.7}$ We come to the proof of theorem 2.2(ii) now. By the above construction, the morphism

 $\Phi' = \Psi_{\mathbf{T}}^{\omega_{F}^{\dagger}, \overline{\mathbf{T}}} \colon G_{F, \mathbf{T}} \longrightarrow G_{F, \overline{\mathbf{T}}} \circ_{\omega_{\overline{\mathbf{T}}}^{1}}$

is the composition of the canonical equivalence $G_{F,T} \longrightarrow G_{F,T^0 \sqcup T^1}$ and the morphism $\Psi' \colon G_{F,T^0 \sqcup T^1} \longrightarrow G_{F,\overline{T^0} \sqcup \overline{T}^1}$ generated by restrictions to $T^0 \sqcup T^1$ of the distinguished submersions $H_{C,\overline{T^0} \sqcup \overline{T}^1}$ for $\psi_{F,\overline{T}}^+$. Since the restriction of $H_{C,\overline{T^0} \sqcup \overline{T}^1}$ to the transversal $T^0 \sqcup T^1$ is a holonomy translation along c, we see that Ψ' as well as Φ' are both the canonical equivalences. To and the proof of (ii) it sufficies to show that

 $\Psi_{\mathbf{T}}^{\omega_{F},\overline{\mathbf{T}}}\colon G_{F,\mathbf{T}} \longrightarrow G_{F,\overline{\mathbf{T}}}$

is the composition of Φ' and the equivalence $\Phi^{\overline{T}}: G_{F,\overline{T}^0 \sqcup \overline{T}^1} \longrightarrow G_{F,\overline{T}}.$ This will clearly follow from theorem 2.2(iii) (cf 2.8 below) as $\omega_{F,\overline{T}}$ is, by the construction, equal to $\Phi^{\overline{T}}_{*}\omega_{F,\overline{T}}^{*}.$

2.8 The last step is a proof of theorem 2.2(iii). In fact (cf lemma 1.1.1(iv)), it sufficies to prove commutativity of the modified diagram

$$G_{F,T^0 \sqcup T^1} \xrightarrow{\Psi_{\mathbf{T}}^{\omega} \circ \Phi_{\mathbf{T}}^{-1}} G$$

$$\Leftrightarrow \left| \Phi \right| \qquad \qquad \downarrow^{\Lambda}$$

$$G_{F,\overline{T}^0 \sqcup \overline{T}^1} \xrightarrow{\Psi_{\overline{T}}^{\Lambda} * \omega \circ \Phi_{\overline{T}}^{-1}} G'$$

 Φ standing for the canonical equivalence. By the construction 2.4 (and 2.6) $\Lambda \circ (\Psi_{\mathbf{T}}^{\omega} \circ \Phi_{\mathbf{T}}^{-1})$ is the morphism generated by the compositions $\lambda \circ (\phi | \mathbf{T}^0 \sqcup \mathbf{T}^1)$ where $\lambda \in \Lambda$, and ϕ ranges over the distinguished submer-

sions for E₀. One has to compare the above collection of diffeomorphisms with the one generating the morphism $\Psi^{\Lambda}_{\overline{T}}^{*\omega} \circ \Phi$ and composed of the superpositions $(\lambda \circ \phi | \overline{T}^0 \sqcup T^1) \circ h$, where λ and ϕ are as above (cf II;3.12-3.12.1) and h ranges over all the holonomy translations $h_{C}, \overline{T}^0 \sqcup \overline{T}^1$ We shall show that the second collection is contained by the first one.

Let c be an arbitrary path connecting $T^0 \sqcup T^1$ to $\overline{T}^0 \sqcup \overline{T}^1$ in a leaf of F_0 , and ϕ any distinguished submersion over a neighbourhood of c(1). By lemma I.2.4, one has (in the canonical form \widetilde{E} of E_0)

$$[(\phi|\overline{T}^{0} \sqcup \overline{T}^{1}) \circ h_{C}, \frac{T^{0} \sqcup T^{1}}{T^{0} \sqcup \overline{T}^{1}}, c(0)] = (h_{C^{-1}}[\phi, c(1)]) | T^{0} \sqcup T^{1}$$
$$= [\psi|T^{0} \sqcup T^{1}, c(0)]$$

where $h_{c^{-1}}$ is the holonomy translation and ψ is a distinguished submersion representing the germ $h_{c^{-1}}[\phi,c(1)] \in \mathbb{E}$. Consequently, for any $\lambda \in \Lambda$, one has

$$(\lambda \circ \phi | \overline{T}^0 \sqcup \overline{T}^1) \circ h_{C, \overline{T}^0 \sqcup \overline{T}^1} = \lambda \circ (\psi | T^0 \sqcup T^1) \quad \text{over a nbhd of } c(0),$$

and thus the morphism $G_{F,T^0 \sqcup T^1} \longrightarrow G$ generated by the first collection is the only one containing the second.

This concludes our proof of theorem 2.2.

According to theorem 2.2, foliations of ss-manifolds give rise to some pseudogroups of diffeomorphisms, canonical ss-I-structures, morphisms, etc. We now "compute" those objects in several particular cases.

Example 3.1. X = NM is the trivial ss-manifold (cf II; example 1.3.1) endowed with a foliation F_0 of M; the foliation extends trivially to a foliation F of X. If $T \subset X_1 = M$ is any complete transversal for F, then the pseudogroup $G_{F_0,T^0 \sqcup T^1}$ (cf 1.1) contains the identification map $T^0 + T^1$ (as there is $\varepsilon_1 = \varepsilon_0$ on X_1); hence the holonomy pseudogroups of F and of F_0 are the same

$$G_{F,T^0 \sqcup T^1} = G_{F_0,T^0 \sqcup T^1}$$
, and $G_{F,T} = G_{F_0,T}$.

Furthermore (and more precisely), it follows from the construction that also the canonical equivalences are the same. Similarly, a principal ss- Γ -bundle over X is nothing more than a Γ -bundle over M, and it can be easily verified that the canonical $\Gamma_{F,T}$ -structure on X as well as the holonomy morphisms $G_{F,T} \longrightarrow G$ (cf theorem 2.2(i)) are exactly the same as those corresponding to M and F_0 .

Example 3.2. $X = N\Gamma$ is the nerve of an arbitrary groupoid of germs Γ ; F is the pointwise foliation of X. Let N denote the manifold of

units of Γ and G the underlying pseudogroup of diffeomorphisms of N. We take $T = \Gamma = X_1$ as a complete transversal for F. Since leaves of F_0 are just points of $X_0 = N$, the holonomy translations of $T^0 \sqcup T^1$ are all of the form $\alpha^{-1}\alpha$, $\alpha^{-1}\beta$, $\beta^{-1}\alpha$, or $\beta^{-1}\beta$ and correspond to those parts of Γ where the source and target maps overlap. Precisely, the pseudogroup $G_{F_0,T^0\sqcup T^1}$ consists of the diffeomorphisms

$$[\gamma_0,x]^0 \rightarrow [\gamma_1,x]^0$$
, $x \in \text{domain } \gamma_0 \cap \text{domain } \gamma_1$, $[\gamma_0,x]^0 \rightarrow [\gamma_1,\gamma_1^{-1}(x)]^1$, $x \in \text{domain } \gamma_0 \cap \text{image } \gamma_1$,

etc, where γ_0 and γ_1 range over elements of G and the upper indices indicate the appropriate copy of $T = \Gamma$. The non-reduced holonomy pseudogroup $G_{F,T^0 \sqcup T^1}$ is generated by $G_{F_0,T^0 \sqcup T^1}$ and the identification $[\gamma,x]^0 \to [\gamma,x]^1$.

We apply theorem 2.2(i) to the Γ -structure ω_{Γ} over X (cf II.3.11) which clearly defines the pointwise foliation; the resulted holonomy morphism $\Phi\colon G_{F,T^0\sqcup T^1} \longrightarrow G$ is generated by the identity $N\to N$ restricted to the transversal, ie by those restrictions of the projections $\alpha\sqcup\beta\colon\Gamma\sqcup\Gamma\to N$ which are diffeomorphisms.

Proposition 3.2.1. (i) $\Phi: G_{F,T^0 \sqcup T^1} \longrightarrow G$ is an equivalence. (ii) The canonical $\Gamma_{F,T^0 \sqcup T^1}$ -structure $\omega_{F,T}$ (cf 2.3) on $X = N\Gamma$ is equal to $\omega_{|\Phi^{-1}|}$, the one corresponding to the morphism of groupoids $|\Phi^{-1}|: \Gamma \longrightarrow \Gamma_{F,T^0 \sqcup T^1}$ (cf II;3.7).

(iii) If ω is any ss- Γ '-structure defining F (Γ ' - a groupoid of germs) then the holonomy morphism $\Psi': G_{F,T^0 \sqcup T^1} \longrightarrow G'$ is the composition $\Psi \circ \Phi$, where $\Psi: G \longrightarrow G'$ is the only morphism of the pseudogroups underlying Γ and Γ' such that $\omega = \omega_{|\Psi|}$.

Proof. (i) By [10], it sufficies to show that the inverses

$$N \supset domain \ \phi \ni x \xrightarrow{\phi^0} [\phi, x]^0 \in T^0, \ \phi \in G$$

and

$$N \supset \text{image } \phi \ni x \xrightarrow{\phi^1} [\phi, \phi^{-1}(x)]^1 \in T^1, \phi \in G$$

of the projections generating Φ again generate a morphism $G \longrightarrow G_{F,T^0 \cup T^1}$. We verify the condition (ii) of I;2.6; one has

$$\varphi^1 \circ \gamma \circ (\psi^0)^{-1} : [\psi, x]^0 \to x \to \gamma(x) \to [\varphi, \varphi^{-1}\gamma(x)]^1$$
 for $\gamma \in G$

which is exactly the composition

$$[\psi, x]^0 \to [\gamma, x]^0 \to [\gamma, x]^1 \to [\psi, \psi^{-1} \gamma(x)]^1$$

of elements of $G_{F,T^0 \sqcup T^1}$; clearly, the same holds for the maps $\phi^1 \circ \gamma \circ (\psi^1)^{-1}$, i=0,1.

(ii) By theorem 2.2(i), $\omega_{\Gamma} = \Phi_{*}\omega_{F,T}^{*}$; on applying II;3.11, one immediately gets

$$\omega_{F,T}^{\prime} = (\Phi^{-1})_{*}\Phi_{*}\omega_{F,T}^{\prime} = (\Phi^{-1})_{*}\omega_{\Gamma} = \omega_{|\Phi^{-1}| \circ \Gamma} = \omega_{|\Phi^{-1}|}.$$

(iii) It follows from II.3.7 that there is $\omega = \omega_{\Sigma}$ for a morphism $\Sigma \colon \Gamma \longrightarrow \Gamma'$. ω defines the foliation F iff the target map β of the (left) principal Γ' -bundle Σ to the units of Γ' is locally a diffeomorphism; hence the only morphism of pseudogroups $\Psi \colon G \longrightarrow G'$ which underlies Σ (if any; cf II;3.12) must be generated by sections of $\pi \colon \Sigma \to \mathbb{N}$ followed by β . According to theorem 2.2(i) and to part (ii) already proved,

$$\omega = \Psi' * \omega_{F,T} = \omega_{|\Psi' \circ \Phi^{-1}|}$$

and we are done.

Remark. We have actually shown (cf the proof of (i) above) that the holonomy pseudogroup $G_{F,T}$ consists of all the diffeomorphisms of the form $[\phi,x] \to [\psi,\gamma(x)]$, for ϕ , ψ and $\gamma \in G$.

Example 3.3 Flags. Let (F,F') be an arbitrary flag of foliations of a manifold M (cf II; example 2.4.3). We recall that, given any transversals T, $T' \subset M$ for F and F', respectively, there is a canonical morphism $\Gamma = \Gamma_{T',T} : \Gamma_{F,T} \longrightarrow \Gamma_{F',T'}$; when considered as a $\Gamma_{F',T'}$ bundle over T, $\Gamma_{F,T} \longrightarrow \Gamma_{F,T} \longrightarrow \Gamma_{F',T'}$; when considered as a $\Gamma_{F',T'}$ bundle over $\Gamma_{F,T} : \Gamma_{F,T} \longrightarrow \Gamma_{F',T,T'}$; when considered as a $\Gamma_{F',T'}$ bundle over $\Gamma_{F,T} : \Gamma_{F,T,T'} : \Gamma_{F,T,T,T'} : \Gamma_{F,T,T,T$

We fix a complete transversal $i: T \subset M$ for F. As mentioned in II;2.4.3, the foliation $F'|_T = i*F'$ of T extends to a foliation F'_T of the ss-manifold $N\Gamma_{F,T}$. Now we choose a complete transversal T for F'_T in a special way described below. Let $\{V_a; a \in A\}$ be a fixed open covering of $\Gamma_{F,T}$ such that for every a the restrictions $\alpha|_{V_a}$ and $\beta|_{V_a}$ be diffeomorphisms. If ϕ_a denotes the composition $\beta \circ (\alpha|_{V_a})^{-1}: \alpha V_a \to \beta V_a$, then there is $\phi_a \in G_{F,T}$ and $V_a = \{[\phi_a,t]; t \in \alpha V_a\}$ for $a \in A$. In every set αV_a we fix a complete transversal

$$i_a: T_a \hookrightarrow \alpha V_a \subset T;$$

then $\overline{T} := \bigcup T_a$ immersed in $\Gamma_{F,T}$ with the help of the map

$$\vec{\lambda} = [(\alpha | V_a)^{-1} \lambda_a]$$

is a complete transversal for F_T^i . Obviously, being complete transversals for F' [T, both \overline{T}^0 and \overline{T}^1 are also complete transversals for F'

Proposition 3.3.1. (i) Given any complete transversal $T' \subset M$ for F', the $\Gamma_{F',T'}$ -structure ω_{Σ} on $N\Gamma_{F,T}$ that corresponds to the canonical morphism $\Sigma = \Sigma_{T',T} \colon \Gamma_{F,T} \longrightarrow \Gamma_{F',T'}$ defines on the nerve $N\Gamma_{F,T}$ the foliation F'_{T} . Furthermore, the corresponding holonomy morphism with respect to any complete transversal $S \subset \Gamma_{F,T}$ for F'_{T} ,

$$\Psi: G_{F'_{\mathbf{T}},S} \longrightarrow G_{F',\mathbf{T}}$$

is an equivalence of pseudogroups; if \widetilde{S} and \widetilde{T}' are any other complete transversals for F_T' and F', then the square

$$G_{F,,S} \xrightarrow{G_{F',T'}} G_{F',T'}$$

$$G_{F,,S} \xrightarrow{G_{F',T'}} G_{F',T'}$$

where the vertical half-arrows are the canonical equivalences, commutes.

(ii) With respect to the specially chosen complete transversals, the holonomy morphism

$$G_{F'_{\overline{T}},\overline{\overline{T}}} \longrightarrow G_{F',\overline{T}^0}$$

is the identity, and the canonical $\Gamma_{F_T^+,\overline{T}}$ -structure on $N\Gamma_{F,T}$ is the one corresponding (cf II;3.4.1) to the morphism $\Sigma_{\overline{T}^0,T}$: $\Gamma_{F,T} \longrightarrow \Gamma_{F',\overline{T}^0}$.

<u>Proof.</u> In order to verify the first assertion of (i), we consider an arbitrary continuous section of Σ . Since such a section can be obtained by taking the locally defined projection in T onto a local transversal for the foliation F'|T (along leaves of F'|T) followed by a holonomy translation to T' (see figure 5), we conclude that Σ defines the foliation F'|T.

Figure 5

general) follows from the particular case (ii), whereas commutativity of the square is guaranteed by theorem 2.2(iii) and naturality of the morphism $\Sigma\colon \Gamma_{F,T} \rightharpoonup \Gamma_{F',T'}$ with respect to T'. Furthermore, in view of theorem 2.2(i) the second assertion of (ii) is a straightforward consequence of the first one. Thus it remains to examine the holonomy morphism $\Phi\colon G_{F,T,T} \rightharpoonup G_{F',T^0}$. Clearly,

$$G_{F',\overline{T}^0} = \{ \gamma \in G_{F',\overline{T}^0 \sqcup \overline{T}^1}; \text{ domain } \gamma, \text{ image } \gamma \subset \overline{T}^0 \}$$

and we want to reduce the assertion to the non-reduced case of the holonomy morphism

$$\Phi' : \ G_{F_{\overline{\Gamma}}', \overline{T}^0 \cup \overline{T}^1} \longrightarrow G_{F', \overline{T}^0 \cup \overline{T}^1}.$$

First of all, we shall show that Φ' is the identity morphism. By construction, \overline{T}^0 and \overline{T}^1 coincide, respectively, with the transversals

$$\coprod i_a : \coprod T_a \hookrightarrow T$$

and

$$\bigsqcup \varphi_a i_a : \bigsqcup T_a \subset T.$$

Consequently, the subpseudogroup

$$G_{\mathsf{F}^{\,\prime},\,|_{\mathbf{T}},\,\overline{\mathbf{T}}^{\,0}\,\square\,\overline{\mathbf{T}}^{\,1}}\,\subset\,G_{\mathsf{F}_{\mathbf{T}}^{\,\prime},\,\overline{\mathbf{T}}^{\,0}\,\square\,\overline{\mathbf{T}}^{\,1}}$$

consists of all the holonomy translations $T_a \to T_b$, $T_a \to \phi_b T_b$, and $\phi_a T_a \to \phi_b T_b$ along paths in leaves of F'|T, whereas the identification $\overline{T}^0 \to \overline{T}^1$ adds all the holonomy translations along paths in leaves of F. In particular, one has

$$G_{F_{\overline{T}},\overline{T}^0 \cup \overline{T}^1} \subset G_{F},\overline{T}^0 \cup \overline{T}^1$$

and we claim that the holonomy morphism ϕ' is generated by (ie contains) the identity map on $\overline{T}^0 \sqcup \overline{T}^1$. Indeed, this is so, since among the distinguished submersions for Σ there are locally defined projections of T on $\overline{T}^0 \sqcup \overline{T}^1$ along leaves of F'|T; when restricted to $\overline{T}^0 \sqcup \overline{T}^1$, they reduce to the identity maps. Now we prove that actually the equality of the pseudogroups takes place. Namely, we fix an arbitrary path $c: [0,1] \to M$ connecting two points of $\overline{T}^0 \sqcup \overline{T}^1 \hookrightarrow T \hookrightarrow M$ in a leaf L of F' and denote by Ω the set of all $\tau \in [0,1]$ for which there are paths c_1 and c_2 in a leaf of, resp., F'|T and F such that (see figure 6)

$$h'_{\mathbf{C},\overline{\mathbf{T}}^0 \sqcup \overline{\mathbf{T}}^1} = h'_{\mathbf{C}_1 * \mathbf{C}_2 * \mathbf{C} \mid [\tau,1],\overline{\mathbf{T}}^0 \sqcup \overline{\mathbf{T}}^1} \cdot g \quad \text{for a } g \in \Gamma_{F'_{\underline{\mathbf{T}}},\overline{\mathbf{T}}^0 \sqcup \overline{\mathbf{T}}^1}.$$

Clearly, $0 \in \Omega$. Let us assume for the moment that $1 \in \Omega$. Then the

equality

$$h_{C,\overline{T}}^{\circ} \circ_{\overline{T}}^{1} = h_{C_{1}*C_{2},\overline{T}}^{\circ} \circ_{\overline{T}}^{1g}$$

holds for some c_1 and c_2 as above; clearly, $c_1(0) = \beta(g) \in \overline{T}^0 \sqcup \overline{T}^1$ and $c_2(1) = c(1) \in \overline{T}^0 \sqcup \overline{T}^1$. In order to show that

$$\mathbf{h}_{\mathtt{C}_{1}\ast\mathtt{C}_{2},\overline{\mathtt{T}}^{0}\sqcup\overline{\mathtt{T}}^{1}}^{\mathsf{I}}\in\Gamma_{\mathsf{F}_{\mathfrak{T}}^{\mathsf{I}},\overline{\mathtt{T}}^{0}\sqcup\overline{\mathtt{T}}^{1}}$$

we consider the holonomy translation $h_{C_2,T} \in \Gamma_{F,T}$ (observe that both ends of c_2 are in T). By the construction of $\overline{T} = \bigcup T_a$, there is an a \in A such that $h_{C_2,T} \in V_a$, and a path \overline{c} in $\alpha V_a \subset T$ connecting $c_2(0) = \alpha h_{C_2,T}$ to a point of T_a (in a leaf of F'|T). Consequently, $\phi_a\overline{c}$ is a path in $\beta V_a \subset T$ connecting $c_2(1) = \beta h_{C_2,T}$ to a point of ϕ_aT_a , and we may write (see figure 7)

$$h'_{c_{1}*c_{2},\overline{T}^{0}\cup\overline{T}^{1}} = h'_{\overline{c}^{-1}*c_{2},\overline{T}^{0}\cup\overline{T}^{1}}^{T_{a}} = h'_{\overline{c}^{-1}*c_{2},\overline{T}^{0}\cup\overline{T}^{1}}^{T_{a}} + \overline{c}_{1}*\overline{c}_{1}$$

$$= h'_{\phi_{a}}^{T_{a}} - 1,\overline{T}^{0}\cup\overline{T}^{1} + \overline{c}_{1}*\overline{c}_{1}^{T_{a}} + \overline{c}_{1}^{T_{a}} + \overline{c}_{1}^{T_{a}} + \overline{c}_{1}^{T_{a}}$$

$$= h'_{\phi_{a}}^{T_{a}} - 1,\overline{T}^{0}\cup\overline{T}^{1} + \overline{c}_{1}*\overline{c}_{1}^{T_{a}} + \overline{c}_{1}^{T_{a}} + \overline{c}_{1}^{T_{a$$

as was to be shown.

Continuing our proof of the proposition, we shall show now that the upper bound $\tau_0 = \sup \Omega$ is an element of Ω . Let c_0 be any path in a leaf of F connecting the point $c(\tau_0)$ to a point of T. In a neighbourhood U of $c(\tau_0)$ on which the submersion $H_{c_0,T}$ is defined, every point x can be connected to the point $H_{c_0,T}(x) \in T$ by a path close to c_0 , contained in a leaf of F, and continuously depending on x. In particular, if a $\tau \in \Omega$ satisfies $c([\tau,\tau_0]) \subset U$, then there exists such a path c_0 connecting $c(\tau)$ to a point of T. Let a path c in T be the projection of $c([\tau,\tau_0])$ with respect to $H_{c_0,T}$, and

$$h'_{C,\overline{T}^0} = h'_{C_1*C_2*C|[\tau,1],\overline{T}^0} = \overline{T}^{1g}$$

be a decomposition guaranteed by the property $\tau \in \Omega$. We consider the holonomy translation $h_{\mathbf{C}_2 * \widetilde{\mathbf{C}}_0, \mathbf{T}} \in \Gamma_{F, \mathbf{T}}$. Again, one has

$$h_{c_2 * \tilde{c}_0, T} = [\varphi_a, c_2(0)] \in V_a$$

for an a \in A, and there is a path \bar{c} in a leaf of $F'|\alpha V_a$ connecting $c_2(0)$ to a point of T_a (see figure 8)

Figure 8

Since the path $c \mid [\tau, \tau_0] * c_0$ is homotopic to $\widetilde{c}_0 * c'$, we may write $h'_{c_1} * c_2 * c \mid [\tau, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * c_2 * \widetilde{c}_0 * c' * c_0^{-1} * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1$ $= h'_{c_1} * c_2 * c' * c_0^{-1} * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * c_2 * \widetilde{c}_0 * (\phi_a \overline{c}), \phi_a \overline{T}_a = h'_{c_1} * \overline{c}, \overline{T}_a$ $\phi_a \overline{T}_a = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2 * c \mid [\tau_0, 1], \overline{T}^0 \cup \overline{T}^1 = h'_{c_1} * \overline{c}_2$

Indeed, if it was, then a decomposition

$$h'_{C,\overline{T}^0} u \overline{T}^1 = h'_{C_1 * C_2 * C} [\tau_0, 1], \overline{T}^0 u \overline{T}^{19}$$

would immediately imply

$$h'_{c,\overline{T}}^{0} \cup \overline{T}^{1} = h'_{(c_{1}+\overline{c})} * c_{2}^{1} * c | [\tau,1], \overline{T}^{0} \cup \overline{T}^{19}$$

for each τ close enough to τ_0 (and $> \tau_0$), $\bar{c} := H_{c_2^{-1},T}(c|[\tau_0,\tau])$, and c_2' being a path close to c_2 and connecting $H_{c_2^{-1},T}(c(\tau))$ to $c(\tau)$ in a leaf of F. The resulted contradiction to the maximality of τ_0 proves that $\tau_0 = 1$.

We have come to the point that the holonomy morphism $\Phi': G_{F_1}, \overline{T}_0 \cup \overline{T}_1 \longrightarrow G_{F_1}, \overline{T}_0 \cup \overline{T}_1$ is the identity. In particular, the equality

$$G_{F_{\mathbf{T}}',\overline{\mathbf{T}}} = G_{F',\overline{\mathbf{T}}}$$

holds, and it follows from the construction of the holonomy morphisms that the reduced holonomy morphism

$$\Phi": G_{F_{\overline{T}}, \overline{T}} \longrightarrow G_{F', \overline{T}^0 \cup \overline{T}^1}$$

is generated by the inclusion $\overline{T}^0 \subset \overline{T}^0 \sqcup \overline{T}^1$. By theorem 2.2(iii)

$$\Phi \colon \ G_{F_{\overline{T}},\overline{T}} \longrightarrow G_{F',\overline{T}^0}$$

is the composition of Φ " and the canonical equivalence G_{F',\overline{T}^0} which contains the diffeomorphism $\overline{T}^0 \sqcup \overline{T}^1 \supset \overline{T}^0 \xrightarrow{id} \overline{T}^0$. Hence Φ contains the superposition id: $\overline{T}^0 \to \overline{T}^0$, as was to be shown.

Remark 3.4. Roughly speaking, the above examples can be summarized as follows.

- 1° For standard manifolds and foliations the semi-simplicial constructions coincide with the classical ones.
- 2° If Γ is any groupoid of germs, then then the holonomy groupoid of the pointwise foliation of the nerve $N\Gamma$ is Γ itself; the canonical ss- Γ -structure associated with the foliation is the one corresponding to the identity morphism $\Gamma \longrightarrow \Gamma$.
- 3° If (F,F') is a flag of foliations, then for any pair T, T' of complete transversals $\Gamma_{F',T'}$ is a holonomy groupoid of the ss-foliation induced on $N\Gamma_{F,T}$ from F', and the canonical $\Gamma_{F',T'}$ -structure on $N\Gamma_{F,T}$ comes from the classical morphism $\Gamma_{T',T}$: $\Gamma_{F,T} \longrightarrow \Gamma_{F',T'}$.

In II; 2.1 we have posed a problem how to compute the holonomy pseudo-

group for a foliation F of a manifold M, starting from the foliation induced from F on the nerve NU of an arbitrary open covering U of M. Clearly, theorem 2.2 gives us a recipe for such a computation, and the fact that what we get is precisely the holonomy groupoid for F is a straightforward consequence of the general result formulated below.

4.1 Let us observe that in view of II;1.4 any foliation F of an ssmanifold X yields a foliation F_u of the localization X_u , for every covering U of X_0 (each $(X_U)_n$ is a disjoint union of open subsets of X_n). Similarly, if $\pi\colon E\to X$ is any ss-T-bundle over X, and $U=\{U_a\}$ is a covering of X_0 , then the localization $E_{\pi^{-1}U}$ of E with respect to the covering

 $\pi^{-1}u = \{\pi_0^{-1}u_a\}$

carries an induced from E structure of an ss- Γ -bundle over X_U . In this way any Γ -structure ω on X induces a well-defined Γ -structure ω_U on X_U .

<u>Proposition</u> 4.2. Let F be an arbitrary foliation of an ss-manifold $X = (X_n)$ and $U = \{U_a; a \in A\}$ an open covering of X_0 . If for each pair $(a,b) \in A \times A$, $i_{ab} \colon T_{ab} \hookrightarrow i_1 \circ U_a \cap i_0 \circ U_b$ is a complete transversal for the restriction of F_1 , then the disjoint union $F_1 \hookrightarrow i_1 \circ I_2 \circ I_3 \circ I_4 \circ I_4 \circ I_5 \circ I_5$

(i) the corresponding holonomy pseudogroups are equal,

$$G_{F,T} = G_{F_{U},T}$$

- (ii) the canonical $\Gamma_{FU,T}$ -structure on X_U associated with F_U and T is equal to the one induced from the $\Gamma_{F,T}$ -structure on X associated with F and T;
- (iii) let G be a pseudogroup and Γ the groupoid of germ; a Γ -structure ω on X defines the foliation F iff the induced Γ -structure ω_U on X_U defines the foliation F_U . If this is the case, then both the ss- Γ -structures give rise to the same holonomy morphism $G_{F,T} \longrightarrow G$.

Furthermore, if $\overline{T} = \bigcup \overline{T}_{ab}$ is another complete transversal for F_U , then the canonical equivalences of holonomy pseudogroups

$$G_{F,T} \approx G_{F,\overline{T}}$$
 and $G_{F_{II},T} \approx G_{F_{II},\overline{T}}$

are given by the same invertible morphism.

Proof. Completeness of T as a transversal is obvious.

(i) We shall prove that the non-reduced holonomy pseudogroups are equal. Clearly,

$$G_{F_{II},\mathbf{T}^0 \cup \mathbf{T}^1} \subset G_{F,\mathbf{T}^0 \cup \mathbf{T}^1}$$

and it remains to show the converse inclusion. Let c: $[0,1] \rightarrow X_0$ be an arbitrary path in a leaf of F_0 such that

$$c(0) = \epsilon_0 i_{kl} t \in U_1$$
 and $c(1) = \epsilon_1 i_{mn} \overline{t} \in U_m$

for some $t \in T_{kl}$, $\overline{t} \in T_{mn}$, and some indices k,l,m,n \in A (observe that, since both T^0 and T^1 are complete transversals, it sufficies to consider the holonomy translations from T^0 to T^1 only). There is a sequence of indices $a_0, a_1, \ldots, a_s \in A$, $a_0 = 1$ and $a_s = m$, and a partition $0 = \tau_0 < \tau_1 < \ldots < \tau_{s+1} = 1$ of the unit interval such that

$$c([\tau_{i}, \tau_{i+1}]) \subset U_{a_{i}}$$
 for $i = 0, 1, ..., s$.

For each i, we choose a path c_i in a leaf of the foliation $(F_{ij})_1$ of $(X_{ij})_1$ connecting the point

$$\eta_0 c(\tau_i) \in \epsilon_0^{-1} U_{a_{i-1}} \cap \epsilon_1^{-1} U_{a_i}$$

to a point

$$i_{a_i a_{i-1}} t_i \in (x_u)_1$$
, $t_i \in T_{a_i a_{i-1}}$.

Now.

 $c_0' = (c|[0,\tau_1])*(\varepsilon_0c_1) \quad \text{connects} \quad c(0) \quad \text{to} \quad \varepsilon_0i_{a_1a_0}t_1 \quad \text{in a leaf of } F_0|U_1,$ $c_1' = (\varepsilon_1c_1)^{-1}*(c|[\tau_1,\tau_{i+1}])*(\varepsilon_0c_{i+1}) \quad \text{connects} \quad \varepsilon_1i_{a_1a_{i-1}}t_i \quad \text{to}$

 $\begin{aligned} & \epsilon_0 i_{a_{i+1}a_i} t_{i+1} & \text{in a leaf of } F_0 | U_{a_i}, \text{ for } i=1,2,\ldots,s-1 \text{ , and} \\ c'_s &= (\epsilon_1 c_s)^{-1} * (c | [\tau_s,1]) & \text{connects } \epsilon_1 i_{a_s} a_{s-1} t_s & \text{to } c(1) & \text{in a leaf} \\ & \text{of } F_0 | U_m \end{aligned}.$

We claim that the holonomy translation $h_{C,T^1}^{T^0}$ (for F_0) is identical with the composition

$$h_{c_{s}^{1},T^{1}}$$
 id_{1}^{0} $h_{c_{s-1}^{1},T^{0}}$... id_{1}^{0} $h_{c_{1}^{1},T^{0}}$ id_{1}^{0} $h_{c_{0}^{1},T^{0}}$ $\in G_{F_{U},T^{0}\cup T^{1}}$.

Indeed, by choosing local transversals at the points $c(\tau_i)$ and lifting them to $\eta_0 c(\tau_i)$, i = 1, ..., s, one immediately reduces our assertion to I;2.1.

(ii) Again, it sufficies to compare the canonical $\Gamma_{F_U,T^0 \sqcup T^1}$ -structure on X_U with the $\Gamma_{F,T^0 \sqcup T^1}$ -structure on X. We recall the notation of

the proof of theorem 2.2. In view of (i), there is a well-defined map at the zero level,

$$\Gamma_{F,T^0 \sqcup T^1} \times_{\Gamma_{\{F_U\}_0,T^0 \sqcup T^1\}}} E_{\{F_U\}_0,T^0 \sqcup T^1} \xrightarrow{I_0} \Gamma_{F,T^0 \sqcup T^1} \times_{\Gamma_{F_0,T^0 \sqcup T^1}} E_{F_0,T^0 \sqcup T^1}$$

$$E_{F_U,0} \ni g \cdot [H_{C,T^0 \sqcup T^1},x] \longrightarrow g \cdot [H_{\lambda_0 C,T^0 \sqcup T^1},\lambda_0 x] \in E_{F,0}$$

where λ_0 stands for the projection $(X_U)_0 \rightarrow X_0$. Let us consider the following map

where a_e is the unique index such that $\pi(e) \in \{a_e\} \times U_a \subset (X_U)_0$. Clearly, J_0 is $\Gamma_{F,T^0 \sqcup T^1}$ -equivariant and projects to the identity map on $(X_U)_0$. Hence J_0 is an isomorphism of $\Gamma_{F,T^0 \sqcup T^1}$ -bundles. According to II; corollary 3.6, J_0 can be extended along the projection $\lambda = (\lambda_n)$: $X_U \to X$ to an ss-map

J:
$$E_{F_{II},T} \longrightarrow (E_{F,T})_{\pi^{-1}U}$$

(necessarily an isomorphism) if the commutativity relation

$$\overline{\varepsilon}_1 (I_0 \times \lambda_1) = I_0 \overline{\varepsilon}_1$$

holds. So we consider an arbitrary element e of $E_{F_{\mathcal{U}},1}$ written in the form

$$e = (g[H_{\varepsilon_0C,T^0}(b;\varepsilon_0x)],(a,b;x))$$

where $(a,b;x) \in (X_U)_1$, c is a path in $\varepsilon_0^{-1}U_b \cap \varepsilon_1^{-1}U_a \subset (X_U)_1$ connecting x to a point of T, and $g \in \Gamma_{F,T^0 \cup T^1}$. One has

$$I_0 \overline{\epsilon}_1 = I_0 (g id_0^1[H_{\epsilon_1 C, T^1}(a; \epsilon_1 x)])$$

$$= g id_0^1[H_{\lambda_0 \epsilon_1 C, T^1}, \epsilon_1 x]$$

and

$$\overline{\varepsilon}_{1}(I_{0} \times \lambda_{1}) = \overline{\varepsilon}_{1}(g[H_{\lambda_{0}\varepsilon_{0}C,T^{0}}\varepsilon_{0}x],x)$$

$$= g id_{0}^{1}[H_{\varepsilon_{1}\lambda_{1}C,T^{1}},\varepsilon_{1}x] = I_{0}\overline{\varepsilon}_{1} e$$

as \(\lambda\) commutes with the structure operators.

(iii) We shall show that both the ss- Γ -structures yield the same holonomy morphism $G_{F,T}$ \longrightarrow G. Let an ss- Γ -bundle E \rightarrow X represent ω . As ω_U is represented by $E_{\pi^{-1}U}$ and

$$(E_{\pi^{-1}U})_0 \cong \coprod E_0 | U_a$$

the first statement of (iii) is obvious. By definition, the distinguished

submersions for $\bigsqcup_{0} \mathbb{E}_{0} \mid_{0}$ are local sections of \mathbb{E}_{0} over subsets of the \mathbb{U}_{a} 's followed by the target projection on units of Γ . Hence they are distinguished also for \mathbb{E}_{0} , and their restrictions to the transversal generate the same morphism $G_{\mathsf{F},\mathsf{T}^{0}\sqcup\mathsf{T}^{1}} \longrightarrow G$ as the (possibly larger) collection obtained for \mathbb{E}_{0} does.

A similar argument proves the last assertion of the proposition. Indeed, if $\overline{\mathbf{T}}$ is another complete transversal for $\mathbf{F}_{\mathcal{U}}$, then the equivalence

$$G_{F_{U},\overline{T}} \longrightarrow G_{F_{U},\overline{T}}$$

IV Morphisms of ss-manifolds

Proposition III;4.2 above suggests that an ss-manifold X carries the same information (whatever that means) as any of its localizations X_U . A hint in the same direction is also lemma III;2.5.3:

1.1 A direct verification shows that Γ -cocycles $\{\gamma_{ab}; (a,b) \in A \times A\}$ on an ss-manifold X with respect to a covering $U = \{U_a; a \in A\}$ of X_0 are in a bijective correspondence with ss-maps $X_U \to N\Gamma$, the ss-ma corresponding to a cocycle $\{\gamma_{ab}\}$ being given by the formulas

$$(1.1.1) \qquad (x_{U})_{0} \ni (a;x) \rightarrow \gamma_{aa}(x) \in N_{0}\Gamma, \text{ and}$$

$$(x_{U})_{n} \ni (a_{0}, \dots, a_{n}; x) \longrightarrow$$

$$(\gamma_{a_{0}a_{1}}(\epsilon_{2}^{n-1}x), \gamma_{a_{1}a_{2}}(\epsilon_{2}^{n-2}\epsilon_{0}x), \dots, \gamma_{a_{n-1}a_{n}}(\epsilon_{0}^{n-1}x)) \in N_{n}\Gamma$$

for n = 1, 2, ...

We follow that suggestion. This is also an attempt to deal with the non-uniqueness problem that has arisen in II; example 2.4.3. In that example we have examined foliated ss-manifolds of the form $N\Gamma_{F,T}$ where F is fixed and T is arbitrarily chosen. The problem is: to what extent and in which sense are the ss-manifolds $N\Gamma_{F,T}$ as well as the ss-foliations induced on them from F' really equivalent.

1.2 Given any two open coverings $U = \{U_a; a \in A\}$ and $V = \{V_i; i \in I\}$ of a manifold X_0 , we say that V is subordinate to U if there is a comparing map $\rho: I \to A$ such that

$$V_{i} \subset U_{\rho(i)}$$
 for $i \in I$.

If $X = (X_n)$ is an ss-manifold, then any comparing map $\rho \colon I \to A$ induces an ss-map $\rho_{\#} \colon X_{U} \to X_{U}$,

$$(x_v)_n \ni (i_0, \dots, i_n; x) \rightarrow (\rho(i_0), \dots, \rho(i_n); x) \in (x_u)_n$$
.

Definition 1.3. Let $X = (X_n)$ and $Y = (Y_n)$ be any ss-manifolds. In the collection θ of all the ss-maps $X_{ij} \to Y$ (u ranges over all open coverings of X_0) we consider the smallest equivalence relation " \sim " generated by the relation " \simeq ", where $f \simeq g$ for some ss-maps $f\colon X_{ij} \to Y$ and $g\colon X_{ij} \to Y$ if there are:

- (i) a covering W, to which both U and V are subordinate,
- (ii) an ss-map $h: X_{(i)} \rightarrow Y$, and
- (iii) comparing maps $\,\rho\,$ and $\,\rho^{\,\text{!`}},\,$ such that the following diagram commutes.

$$(1.3.1) \qquad \begin{array}{c} x \\ y \\ x \\ y \\ x \\ y \end{array} \qquad \begin{array}{c} f \\ h \\ y \\ y \end{array} \qquad \begin{array}{c} f \\ y \\ y \\ y \end{array}$$

An ss-morphism f of X in Y (notation f: $X \longrightarrow Y$) is any equivalence class of the relation " ~ ".

Remark 1.4. The above notion of an ss-morphism $X \rightarrow Y$ can be defined in terms of equivalent ss-maps $X_U \rightarrow Y$, where U ranges over non-indexed coverings only (such a covering is indexed by its elements). Unfortunately, this would complicate the equivalence relation too much. Nevertheless, by considering only such elements of the ss-morphisms, one can assume ss-morphisms to be sets; then the collection of all the ss-morphisms of X in Y is clearly a set too.

<u>Proposition</u> 1.5. The description II; 2.5.2 - 2.5.3 of an arbitrary ss- Γ -structure through Γ -cocycles yields a bijective correspondence between Γ -structures on an arbitrary ss-manifold X and ss-morphisms $X \longrightarrow N\Gamma$.

<u>Proof.</u> Let $E \to X$ be an arbitrary but fixed principal ss- Γ -bundle over X, and $\{\gamma_{+}\}$ and $\{\bar{\gamma}_{+}\}$ any two Γ -cocycles on X such that

 $E = E^{\gamma} = E^{\overline{\gamma}}$. We shall show that the corresponding ss-maps $\gamma: X \to N\Gamma$ and $\bar{\gamma}: X \to N\Gamma$ (cf 1.1) yield the same ss-morphism $X \longrightarrow N\Gamma$. Indeed, by II; 2.5.2 -2.5.3 the cocycles correspond to some collections of sections $\sigma_a: U_a \rightarrow E$, $a \in A$, and $\overline{\sigma}_i: V_i \rightarrow E$, $i \in I$. Clearly, both U and V are subordinate to the disjoint union $W := U \sqcup V$, and all the sections together give rise to a I-cocycle such that the corresponding ss-map $\gamma: X_{tt} \rightarrow N\Gamma$ closes the diagram (1.3.1) (the comparing maps ρ and ρ' being the inclusions).

Conversely, it sufficies to show that any commuting triangle of the form

yields an isomorphism of the ss-I-bundles E^{γ} and $E^{\overline{\gamma}}$ (cf II;2.5.3). Since for $\gamma = {\gamma_{ab}}$ and $\bar{\gamma} = {\bar{\gamma}_{ij}}$, the commutativity means

$$\widetilde{Y}_{ij} = Y_{\rho(i)\rho(j)} | (\varepsilon_1^{-1} V_i \cap \varepsilon_0^{-1} V_j),$$

$$\widetilde{E}_0^{\overline{Y}} \ni [i;x,g] \rightarrow [\rho(i);x,g] \in \widetilde{E}_0^{\overline{Y}}$$

the map

is a well-defined isomorphism at the zero level. By II; corollary 3.6, the isomorphism extends to an ss-map $E^{\overline{\gamma}} \rightarrow E^{\gamma}$, which is again an isomorphism.

Corollary 1.5.1. The bijection established in proposition 1.5 restricts to a canonical bijection between morphisms of groupoids and ssmorphisms of their nerves.

Proof. Cf II; 3.4.1.

1.6. Suppose now that X, Y and Z are arbitrary ss-manifolds and consider any ss-maps f: $X_{U} \rightarrow Y$ and g: $Y_{V} \rightarrow Z$, where $U = \{U_{a}; a \in A\}$ and $V = \{V_i; i \in I\}$. Let $f^{-1}V$ denote the covering

$$\{f_{0a}^{-1}V_{i}; (a,i) \in A \times I\}$$

where

$$f_0 = \coprod f_{0a}: (X_u)_0 = \coprod U_a \rightarrow Y$$
.

We define an ss-map $f_V: X_{f^{-1}V} + Y_V$ as follows

$$(X_{f^{-1}V})_n \ni ((a_0, i_0), \dots, (a_n, i_n); x) \Rightarrow (i_0, \dots, i_n; f_n(a_0, \dots, a_n; x)) \in (Y_V)_n$$

for $n = 0, 1, \dots$

Definition 1.6.1. (i) By the composition gof: X - Z of ss-morphism

f: $X \longrightarrow Y$ and g: $Y \longrightarrow Z$ represented, respectively, by ss-maps f: $X_U \to Y$ and g: $Y_V \to Z$ we shall mean the equivalence class of the ss-map $g \circ f_V \colon X_{f^{-1}V} \to Z$.

(ii) An identity ss-morphism 1_X : $X \longrightarrow X$ is the one represented by the projections $\lambda : X_{II} \to X$,

$$(x_u)_n \ni (a_0, \ldots, a_n; x) \longrightarrow x \in x_n$$
.

<u>Proposition</u> 1.7. Semi-simplicial manifolds and their ss-morphisms (cf remark 1.4) form a category with products.

 \underline{Proof} is straightforward but rather tedious and we left it to the reader.

Clearly, there is a canonical functor carrying any ss-map $f: X \rightarrow Y$ to the ss-morphism

$$[f]: X \rightarrow Y$$

represented by the composition $X_{\{X\}} = X \stackrel{f}{\rightarrow} Y$.

<u>Proposition</u> 1.8. If ω is an ss- Γ -structure on X and $\Sigma: \Gamma \longrightarrow \Gamma'$ is an arbitrary morphism of groupoids, then the induced sś- Γ' -structure $\Sigma_*\omega$ (cf II.3.10) corresponds, under the bijection established in proposition 1.5, to the composition

$$x \xrightarrow{\omega} N\Gamma \xrightarrow{\Sigma} N\Gamma'$$
.

<u>Proof.</u> Let ω be represented by an ss- Γ -bundle $E \to X$. We fix a collection of local sections

$$X_0 \supset U_a \xrightarrow{s_a} E_0$$
, $a \in A$

such that $u = \{u_a\}$ covers x_0 , and a similar collection of sections $N \supset V, \xrightarrow{\sigma_i} \Sigma$

of the Γ '-bundle $\Sigma \to N$ (N = units of Γ). Each pair (s_a, σ_i) gives rise to a section

$$x_0 \Rightarrow (\alpha s_a)^{-1} v_i \ni x \xrightarrow{s_{ai}^i} s_a(x) \sigma_i(\alpha s_a(x)) \in E_0 \times_{\Gamma} \Sigma = \Sigma_* E_0$$
.

Now, if $\{\gamma_{ab}\}$ (resp., $\{\Sigma_{ij}\}$) is the Γ -cocycle over X (resp., the Γ -cocycle over N) defined by the equalities

in
$$E_1$$
: $(\pi, \varepsilon_0)^{-1}(x, s_b(\varepsilon_0 x)) = (\pi, \varepsilon_1)^{-1}(x, s_a(\varepsilon_1 x)) \gamma_{ab}(x)$,
 $(\text{resp., in } \Sigma: g \cdot \sigma_1(\alpha g) = \sigma_1(\beta g) \cdot \Sigma_{ij}(g)$),

then, in the induced Γ' -bundle $\Sigma_*E_1 = E_1 \times_{\Gamma} \Sigma$, one has

$$(\pi, \varepsilon_0)^{-1} (\mathbf{x}, \mathbf{s}_{bj}^{!} (\varepsilon_0 \mathbf{x})) = (\pi, \varepsilon_0)^{-1} (\mathbf{x}, \mathbf{s}_b (\varepsilon_0 \mathbf{x})) \sigma_j (\alpha \mathbf{s}_b (\varepsilon_0 \mathbf{x}))$$

$$= (\pi, \varepsilon_1)^{-1} (\mathbf{x}, \mathbf{s}_a (\varepsilon_1 \mathbf{x})) \gamma_{ab} (\mathbf{x}) \sigma_j (\alpha \mathbf{s}_b (\varepsilon_0 \mathbf{x}))$$

$$= (\pi, \varepsilon_1)^{-1} (\mathbf{x}, \mathbf{s}_a (\varepsilon_1 \mathbf{x})) \sigma_j (\alpha \mathbf{s}_a (\varepsilon_1 \mathbf{x})) \Sigma_{ij} (\gamma_{ab} (\mathbf{x}))$$

$$= (\pi, \varepsilon_1)^{-1} (\mathbf{x}, \mathbf{s}_{ai}^{!} (\varepsilon_1 \mathbf{x})) (\Sigma_{ij} \circ \gamma_{ab}) (\mathbf{x})$$

for $x \in \varepsilon_1^{-1}(\alpha s_a)^{-1} v_i \cap \varepsilon_0^{-1}(\alpha s_b)^{-1} v_j$. Consequently, the maps $\Sigma_{ij} \circ \gamma_{ab}$ form a Γ' -cocycle over X generating the Γ' -bundle Σ_*E .

Turning back to ss-morphisms, we recall that the cocycles $\gamma = \{\gamma_{ab}\}$ and $\sigma = \{\Sigma_{ij}\}$ are shortened descriptions (cf 1.1) of ss-maps $\gamma\colon X_U\to N\Gamma$ and $\sigma\colon (N\Gamma)_V\to N\Gamma'$ which represent the ss-morphisms $\omega\colon X\to N\Gamma$ and, respectively, $\Sigma\colon N\Gamma\to N\Gamma'$ (precisely, the ss-morphisms corresponding to ω and to Σ). Now, according to 1.6 $\gamma^{-1}V$ is precisely the covering $\{(\alpha s_a)^{-1}V_i; (a,i)\in A\times I\}$, and the composition

$$X_{\gamma^{-1}V} \xrightarrow{\gamma_V} (N\Gamma)_V \xrightarrow{\sigma} N\Gamma$$

corresponds to the Γ' -cocycle $\{\Sigma_{ij} \circ \gamma_{ab}\}$. In view of the previous considerations we are done.

Corollary 1.8.1. The bijective correspondence of 1.5 describes groupoids and their morphisms as a complete subcategory of the category of ss-manifolds and ss-morphisms.

Proof. Cf corollary 1.5.1 and II; proposition 3.11.1.

Definition 1.9. For any ss- Γ -structure ω on X and any ss-morphism $f: Y \longrightarrow X$, a pull-back ss- Γ -structure $f*\omega$ on Y is the one corresponding to the composition

Corollary 1.9.1. Let ω be an arbitrary Γ -structure on an ss-manifold X. (i) If $f: Y \longrightarrow X$ and $g: Z \longrightarrow Y$ are any ss-morphisms, then

$$(f \circ g) * \omega = g * f * \omega$$
.

(ii) If $f: Y \longrightarrow X$ is an ss-morphism and $\Sigma: \Gamma \longrightarrow \Gamma'$ an arbitrary morphism of groupoids, then

$$f*(\Sigma_*\omega) = \Sigma_*(f*\omega)$$
.

1.9.2 For any ss-map $f: Y \rightarrow X$ the induced ss-morphism $[f]: Y \rightarrow X$

pulls $\,\omega\,$ back to an ss-P-structure on $\,Y\,$ which we shall denote simply by $\,f^*\omega$.

Corollary 1.9.3. (i) If $f: Y \to X$ is any ss-map and if an ss- Γ -structure ω on X is represented by a principal ss- Γ -bundle $E = (E_n)$, then the ss- Γ -structure $f*\omega$ on Y is represented by the ss- Γ -bundle $f*E := (f_n^*E_n)$; the structure operators being induced from those of E and Y.

(ii) For any ss-map $f: Y_U \to X$ representing an arbitrary ss-morphism $f: Y \longrightarrow X$ the pull-back ss- Γ -structures $f*\omega$ on Y_U and $f*\omega$ on Y correspond to each other under the localization of Y (cf III; 4.1)

<u>Proof.</u> (i) We fix a collection of local sections $s_a\colon X\supset U_a\to E_0$, a \in A, such that $U=\{U_a\}$ covers X. Let $\{\gamma_{ab}\}$ be the corresponding Γ -cocycle on X; according to the formula (1.1.1), the cocycle extends to an ss-map $\gamma\colon X_U\to N\Gamma$ representing the ss-morphism $\omega\colon X\to N\Gamma$. Now the pull-back ss- Γ -structure $f^*\omega$ is, as an ss-morphism, represented by the composition

$$Y_{f^{-1}U} \xrightarrow{f_U} X_U \xrightarrow{\gamma} N\Gamma$$

which clearly corresponds to the Γ -cocycle $\{\gamma_{ab} \circ f_1\}$ on Y with respect to the covering $f^{-1}U = \{f_0^{-1}U_a; a \in A\}$. It sufficies to observe that the same cocycle comes from a collection $\{f_0s_a\}$ of sections

$$f^{-1}U_a \ni y \to (y,s_a(f_0(y))) \in f_0^*E_0$$

of the pull-back I-bundle.

(ii) In view of proposition 1.11.1(ii) below and corollary 1.9.1(i),

$$f*\omega = \lambda*(f*\omega)$$

where $\lambda\colon Y_U\to Y$ is the projection. Consequently, it sufficies to prove that for any ss-I-bundle E on Y the pull-back bundle $\lambda*E=(\lambda_n^*E_n)$ is isomorphic to the localization $E_{\pi^{-1}U}$. We wright down an isomorphism I: $E_{\pi^{-1}U}\to \lambda*E$ explicitely, as follows

$$(E_{\pi^{-1}U})_n \ni (a_0, \dots, a_n; e) \xrightarrow{I_n} ((a_0, \dots, a_n; \pi e), e) \in (Y_U)_n \times (\lambda_n, \pi)_n E_n$$

Clearly, $I = (I_n)$ is an invertible ss-map commuting with the two right actions of Γ induced from E.

<u>Proposition</u> 1.10. For any groupoid Γ and arbitrary ss-manifold X, the bijective correspondence (cf proposition 1.5) between ss- Γ -structures on X and ss-morphisms $X \longrightarrow N\Gamma$ is given by the assignment

where ω_{Γ} is the universal Γ -structure on $N\Gamma$ represented by the ss- Γ -bundle $\overline{N}\Gamma$ (cf II;3.11.1).

<u>Proof.</u> Let $E \to X$ be an arbitrary principal ss- Γ -bundle over X. We fix a collection of local sections $\sigma_a\colon X_0 \supset U_a \to E_0$, a \in A, such that $U = \{U_a\}$ covers X_0 ; the corresponding Γ -cocycle $\{\gamma_{ab}\}$ extends to an ss-map $\gamma\colon X_U \to N\Gamma$. In view of corollary 1.9.3(ii), it sufficies to prove that the localization $E_{\pi^{-1}U}$ and the pull-back $\gamma^*\overline{N}\Gamma$ are isomorphic ss- Γ -bundles over X_U . Since, for every n, $\gamma_n^*\overline{N}_n$ consists of the pairs

$$((a_0,\ldots,a_n;x),(g_0,\ldots,g_n)) \in (X_U)_n \times \overline{N}_n \Gamma$$

such that $g_0g_1^{-1} = \gamma_{a_0a_1}$, $g_1g_2^{-1} = \gamma_{a_1a_2}$ etc, one can easily see that the maps

$$\gamma_n^* \overline{N}_n \Gamma \ni ((a_0, \dots, a_n; x), (g_0, \dots, g_n)) \rightarrow (a_0, \dots, a_n; \sigma_{a_0}(x)g_0) \in (E_{\pi^{-1}U})_n$$

are well-defined and give rise to a desired isomorphism of the ss-r-bundles.

1.11 We end the above categorical considerations by proving a proposition that makes precise an intuitive equivalence between an arbitrary ss-manifold and any of its localizations.

<u>Proposition</u> 1.11.1. Let X be an arbitrary ss-manifold and $U = \{U_a; a \in A\}$ an open covering of X_0 .

- (i) The ss-morphism $[\lambda]: X_U \longrightarrow X$ defined (cf 1.7) by the projection $\lambda: X_U \to X$ is invertible.
- (ii) If $f: X \longrightarrow Y$ is an arbitrary ss-morphism and $f: X_U \to Y$ any ss-map representing f, then the triangle

$$\begin{bmatrix} x_u & \text{[f]} \\ x & \text{f} \end{bmatrix}$$

commutes.

<u>Proof.</u> (i) We shall show that the ss-morphism $h: X \longrightarrow X_U$ represented by id: $X_U \to X_U$ is inverse to $[\lambda]$. Clearly, the composition $[\lambda] \circ h: X \to X$ is represented by λ and thus equal to the identity 1_X . On the other hand, the composition $h \circ [\lambda]: X_U \longrightarrow X_U$ is represented by the ss-map

$$(x_u)_{\pi^{-1}u} \xrightarrow{\lambda_u} x_u \xrightarrow{id} x_u$$

One has $\left((x_u)_{\lambda^{-1}u} \right)_n = \bigsqcup_{(a_0,\ldots,a_n)} (\epsilon_1^n)^{-1} \lambda_0^{-1} u_{a_0} \cap \ldots \cap (\epsilon_0^n)^{-1} \lambda_0^{-1} u_{a_n}$

where every summand is a subset of

$$(\mathbf{x}_{u})_{n} = (\mathbf{b}_{0}, \dots, \mathbf{b}_{n})^{-1} \mathbf{U}_{\mathbf{b}_{0}} \cap \dots \cap (\epsilon_{0}^{n})^{-1} \mathbf{U}_{\mathbf{b}_{n}}.$$

Thus an arbitrary element of $(x_u)_{\lambda^{-1}u}$ is of the form $(a_0, \ldots, a_n; (b_0, \ldots, b_n; x))$, where

$$x \in (\epsilon_1^n)^{-1}(U_{a_0} \cap U_{b_0}) \cap \dots \cap (\epsilon_0^n)^{-1}(U_{a_n} \cap U_{b_n}),$$

and the ss-map λ_{II} acts by the formulas

$$(a_0,\ldots,a_n;(b_0,\ldots,b_n;x)) \longrightarrow (a_0,\ldots,a_n;x)$$

for n = 0, 1, ... We consider the disjoint union $W = \lambda^{-1} U \sqcup \{(X_{U})_{0}\}$, the last set being indexed by a star " * ". For $n \ge 0$, let μ_{n} denote the map $\{(X_{U})_{0}\}_{n} \to (X_{U})_{n}$,

$$(...,a_{i-1},*,a_{i+1},...;(b_0,...,b_n;x)) \rightarrow (...,a_{i-1},b_i,a_{i+1},...;x)$$

where we replace all stars with the corresponding b_i 's. Now the sequence (μ_n) is an ss-map $(X_{II})_{ij} \rightarrow X_{II}$ such that the diagram

commutes (the details are left to the reader). In conclusion, we get $h \circ [\lambda] = 1_X$.

(ii) Since $[\lambda]$ is invertible, it sufficies to observe the equality $f = [f][\lambda]^{-1}.$

As follows from the proof of (i), the right-hand ss-morphism is represented by $f \circ id = f$.

<u>Definition</u> 1.12. Two ss-manifolds X and Y are <u>equivalent</u> (notation $X \approx Y$) if there is an invertible ss-morphism (an <u>equivalence</u>) $X \longrightarrow Y$.

Corollary 1.12.1. Two groupoids are equivalent iff their nerves are.

We now turn back to foliations and shall show that some ss-morphisms act on ss-foliations, generalizing the action of transverse maps in the standard (ie non-ss-) case. We begin with an important

Lemma 2.1. Let F be a foliation of an ss-manifold X. For an arbitrary ss-morphism $f\colon Y \longrightarrow X$ the following four conditions are equivalent: (i) there is an ss-map $f\colon Y_U \to X$ representing f, such that the map $f_0\colon (Y_U)_0 \to X_0$ is transverse to the foliation F_0 ;

(ii) for every ss-map $f: Y_U \rightarrow X$ representing f, f_0 is transverse to F_0 ;

(iii) there exist a foliation F' of Y and a Γ -structure ω on X defining F , such that the pull-back Γ -structure $f^*\omega$ defines F' on Y;

(iv) there exists a foliation F' of Y such that for every Γ -structure ω defining F on X $f*\omega$ defines F' on Y.

<u>Proof.</u> (i) \Rightarrow (iv): We shall prove that the foliation $f_0^*F_0$ of $(Y_U)_0 = \bigcup U_a$ comes from a foliation F_0' of Y_0 . Let us observe first that the foliations $\varepsilon_0^*(f_0^*F_0)$ and $\varepsilon_1^*(f_0^*F_0)$ of $(Y_U)_1$ are equal, as they both coincide with $f_1^*F_1$. Next, for any pair a,b of indices, let us consider the maps η_0^* and η_0^* ,

$$(Y_{u})_{0} \Rightarrow \{a\} \times U_{a} \cap U_{b} \Rightarrow (a;x) \xrightarrow{\eta_{0}^{i}} (a,b;\eta_{0}x) \in (Y_{u})_{1}$$

 $(Y_{u})_{0} \Rightarrow \{b\} \times U_{a} \cap U_{b} \Rightarrow (b;x) \xrightarrow{\eta_{0}^{i}} (a,b;\eta_{0}x) \in (Y_{u})_{1}$

Since

$$\epsilon_1 \eta_0' = id_{\{a\} \times U_a \cap U_b}$$
 and $\epsilon_0 \eta_0'' = id_{\{b\} \times U_a \cap U_b}$

 η_0^* is transverse to any foliation pulled-back by ϵ_1^* and η_0^* - to any one pulled-back by ϵ_0^* . In particular,

$$f_0^*F_0|\{a\}\times U_a\cap U_b = (\eta_0^*)*\epsilon_0^*(f_0^*F_0) = (\eta_0^*)*f_1^*F_1$$

and

$$f_0^*F_0|\{b\}\times U_a\cap U_b = (n_0^*)*\epsilon_1^*(f_0^*F_0) = (n_0^*)*f_1^*F_1$$
,

and finally

$$f_0^*F_0|\{b\}\times u_a \cap u_b = (id_a^b)*(f_0^*F_0|\{a\}\times u_a \cap u_b)$$

where id_a^b : $\{b\} \times U_a \cap U_b \rightarrow \{a\} \times U_a \cap U_b$ is the identification map. Being the same over the overlaps, the foliations $f_0^*F_0 | \{a\} \times U_a$ are restrictions of a uniquely defined foliation F_0' of Y_0 .

Our next step is the equality $\epsilon_0^* F_0' = \epsilon_1^* F_0'$ on Y_1 . Let, again, a and b be arbitrary indices. By the construction of F_0' , the restrict

ion

$$\varepsilon_0^* F_0^* | \varepsilon_1^{-1} U_a \cap \varepsilon_0^{-1} U_b = (\varepsilon_0 | \varepsilon_1^{-1} U_a \cap \varepsilon_0^{-1} U_b) * (F_0^* | U_b)$$

is the same as the foliation

$$\varepsilon_0^*f_0^*F_0(\{a,b\}) \times \varepsilon_1^{-1}U_a \cap \varepsilon_0^{-1}U_b$$

of a summand of $(Y_U)_1$; similarly, $\epsilon_1^*F_0^*|\epsilon_1^{-1}U_a \cap \epsilon_0^{-1}U_b$ is the same as a suitable restriction of $\epsilon_1^*f_0^*F_0$. Since the two last foliations are equal, we get

$$\varepsilon_0^* F_0' = \varepsilon_1^* F_0'$$
 over $\varepsilon_1^{-1} U_a \cap \varepsilon_0^{-1} U_b$

and it remains to observe that the sets $\epsilon_1^{-1} U_a \cap \epsilon_0^{-1} U_b$ cover Y_1 . Let us consider now an arbitrary ss- Γ -bundle E + X defining F. By corollary 1.9.3, the bundles $(f_0 | U_a) * E_0 \to U_a$ come from an ss- Γ -bundle $E' \to Y$ representing the pull-back ss- Γ -structure. If $\sigma \colon V \to E_0$ is any local section, then the target map β' of E'_0 into the units of Γ evaluated on the pull-back section $(f_0 | U_a) * \sigma$ yields $\beta \circ \sigma \circ (f_0 | U_a) = \varphi \circ (f_0 | U_a)$, where φ is a distinguished submersion for E_0 . Now, the pull-back sections cover E'_0 and thus the bundle defines a foliation of Y_0 . Furthermore, the submersions $\varphi \circ (f_0 | U_a)$ are distinguished for E'_0 and define exactly the foliation F'_0 .

(iii) \Rightarrow (ii): Let an ss- Γ -bundle $E \to X$ define F and $f: Y_U \to X$ be an arbitrary ss-map representing f. Reasoning as above we see that if ϕ is any distinguished submersion for E_0 then $\phi \circ f_0$ is again a submersion. Hence f_0 is transverse to the foliation defined by E_0 . The parts (iv) \Rightarrow (iii), and (ii) \Rightarrow (i) are both trivial.

<u>Definition</u> 2.2. An ss-morphism $f: Y \longrightarrow X$ is <u>transverse</u> to a foliation F of X, if one of the conditions (i) - (iv) of lemma 2.1 is fulfilled; the corresponding foliation f*F = F' of Y is the <u>pull-back</u> foliation induced by F and f.

Corollary 2.3.1. A Γ -structure ω on an ss-manifold X defines a foliation iff the corresponding ss-morphism $X \xrightarrow{\omega} N\Gamma$ is transverse to the pointwise foliation of $N\Gamma$. If this is the case, then the foliation ω defines is exactly the pull-back foliation.

<u>Proof</u>: follows immediately from lemma 2.1(iii)-(iv), proposition 1.10, and the fact that the ss- Γ -bundle $\overline{N}\Gamma \to N\Gamma$ defines the pointwise foliation.

Corollary 2.3.2. Let F be a foliation of an ss-manifold X, and $f: Y \longrightarrow X$ and $g: Z \longrightarrow Y$ be arbitrary ss-morphisms. Then, the compo-

sition $f \circ g$ is transverse to F iff f is transverse to F and G - to the induced foliation f * F . If this is the case, then the equality

$$(f \circ q) *F = q *f *F$$

holds.

<u>Proof.</u> Clearly, if $f: Y_U \to X$ and $g: Z_V \to Y$ represent f and g, respectively, then g_0 is transverse to the foliation $(f*F)_0$ iff $(g_U)_0$ is transverse to f^*F_0 , the foliation obtained from $(f*F)_0$ by a localization. Consequently, the first assertion of the corollary follows from its standard, non-semi-simplicial version. The second assertion follows easily from lemma 2.1(iii)-(iv).

We are now ready to solve the problem posed at the beginning of this chapter.

<u>Proposition</u> 2.4. Let (F,F') be any flag of foliations of a manifold M. For each pair T, \overline{T} \subset , M of complete transversals for F, let $N\Phi$: $N\Gamma_{F}$, \overline{T} \longrightarrow $N\Gamma_{F}$, \overline{T} be the ss-morphism induced from the canonical equivalence Φ : G_{F} , \overline{T} \longrightarrow G_{F} , \overline{T} . Then one has

$$N\Phi^*F_{T}^{\prime} = F_{T}^{\prime}$$

 F_T' and $F_{\overline{T}}$ being the foliations induced by F' on the ss-manifolds $N\Gamma_{F,\overline{T}}$ and $N\Gamma_{F,\overline{T}}$, respectively.

<u>Proof.</u> Since Φ is the composition

$$G_{F,\overline{T}} \xrightarrow{\Psi_{\overline{T}}} G_{F,T} \sqcup \overline{T} \xrightarrow{\Psi_{\overline{T}}^{-1}} G_{F,T}$$

where both $\Psi_{\overline{T}}$ and $\Psi_{\overline{T}}$ are equivalences induced by an inclusion, we may restrict ourselves to the case $\overline{T} \subset T$. Consequently, Φ is generated by the inclusion $\overline{T} \subset T$, and the ss-morphism $N\Phi$ is represented by an ss-map $N\Phi \colon N\Gamma_{F,\overline{T}} \to N\Gamma_{F,\overline{T}}$ which is just a sequence of inclusions. Evidently the map $(N\Phi)_0 \colon \overline{T} \subset T$ is transverse to F'|T, and one has

$$(N\Phi)^*_0(F'|T) = F'|\overline{T}$$

which implies $N\Phi^*F_{\rm T}'=F_{\rm T}'$. Turning back to the general case, we thus get

$$N\Phi^*F_{\underline{T}}' = N\Phi^*N\Psi_{\underline{T}}^*F_{\underline{T}}' = N\Psi_{\underline{T}}^*F_{\underline{T}}' = F_{\underline{T}}'$$

where the transversality of No follows from that of $N\Psi_{\overline{T}} = N\Psi_{\overline{T}} \circ N\Phi$ (cf corollary 2.3.2).

<u>3.1</u> If an ss-morphism $f: Y \longrightarrow X$ is transverse to a foliation F of X, and $S \subset Y_1$ and $T \subset X_1$ are arbitrary complete transversals for $F' = f^*F$ and F, respectively, then by lemma 2.1, the pull-back $\Gamma_{F,T}$ -structure on Y induced by f from the canonical one on X defines the foliation F'. In view of III; theorem 2.2(i), this gives rise to a holonomy morphism

$$f_{TS} = \Psi_S^{f^*\omega_F,T} : G_{F',S} \longrightarrow G_{F,T}$$

induced by the foliation from f with respect to the pair S, T of transversals.

Theorem 3.2. (i) Let an ss-morphism $f: Y \longrightarrow X$ be transverse to a foliation F of X, and $S, \overline{S} \longrightarrow Y_1$ and $T, \overline{T} \hookrightarrow X_1$ be arbitrary complete transversals for, resp., $F' = f^*F$ and F. Then the square

commutes, Φ and Φ' being the canonical equivalences.

(ii) If T,\overline{T} are any two complete transversals for F , then the holonomy morphism

$$(1_X)_{\overline{T}T} : G_{F,T} \longrightarrow G_{F,\overline{T}}$$

is the canonical equivalence of holonomy pseudogroups.

(iii) If $f: Y \longrightarrow X$ and $g: Z \longrightarrow Y$ are ss-morphisms such that the composition fg is transverse to a foliation F of X (cf corollary 2.3.2), then for any triple of complete transversals R,S,T for, respectively, F'' = (fg) *F, F' = f*F, and F, the corresponding holonomy morphisms form a commuting triangle

(iv) If f and F are as in (i), then for any pair T,S of complete transversals for F and f^*F , respectively, and any ss-T-structure ω defining F, the following diagram composed of holonomy morphisms commutes.

Here G stands for the pseudogroup that underlies Γ .

<u>Proof.</u> (i) The equality $\omega_{F,\overline{T}} = \Phi_* \omega_{F,T}$ of theorem III;2.2(ii) impli (cf corollary 1.9.1)

$$f^*\omega_{F,\overline{T}} = \Phi_*(f^*\omega_{F,T})$$
.

Consequently, (i) follows from theorem III; 2.2(iii).

- (ii) is a part of theorem III; 2.2(ii).
- (iii) We first prove the commutativity for appropriately chosen transversals. Namely, let $f: Y_U \to X$ and $g: Z_V \to Y$ be any ss-maps representing f and $g, U = \{U_a\}$ and $V = \{V_i\}$; by definition, $f \circ g$ is represented by the composition

$$z_{q^{-1}u} \xrightarrow{g_U} y_u \xrightarrow{f} x.$$

If $\overline{R} \subset (Z_{g^{-1}U})_1$ is a complete transversal for $(F_{g^{-1}U})_1$, then g_U maps \overline{R} to a transversal for $(F_U')_1$. The new transversal need not be complete, so we extend it (by adding a suitable disjoint summand) to a complete one, say $\overline{S} \subset (Y_U)_1$. In a similar vein, we extend \overline{S} transferred by f to a complete transversal $\overline{T} \subset X_1$ for F_1 . Clearly,

$$G_{F_{\alpha^{-1}U},\overline{R}} \subset G_{F_{U},\overline{S}} \subset G_{F,\overline{T}}$$

and the holonomy morphisms induced from the ss-maps f, g_{ij} , and $f \circ g_{ij}$ are generated by the inclusions $\overline{S} \subset \overline{T}$, $\overline{R} \subset \overline{S}$, and $\overline{R} \subset \overline{T}$, respectively; at the moment the commutativity holds.

$$G_{F_{U}^{"},\overline{S}} = [g_{U}]_{\overline{S}\overline{R}} = \Psi_{\overline{R}}^{(g_{U^{\pm}})^{*}\omega_{F},\overline{T}}$$

$$G_{F,\overline{T}}$$

$$G_{F,\overline{T}}$$

$$G_{F_{U}^{'},\overline{S}} = [g_{U}]_{\overline{S}\overline{R}}$$

$$G_{F_{U}^{'},\overline{S}} = [g_{U}]_{\overline{S}\overline{R}}$$

$$G_{F_{U}^{'},\overline{S}} = [g_{U}]_{\overline{S}\overline{R}}$$

By III; proposition 4.2(i)-(ii), the morphism

$$[g_{U}]_{\overline{S}\overline{R}}: G_{F_{\alpha^{-1}U},\overline{R}} \longrightarrow G_{F_{U},\overline{S}} = G_{F},\overline{S}$$

is the holonomy morphism for the $ss-r_{F}$, \bar{s} -structure

$$g_{U}^{*\lambda*}\omega_{F',\bar{S}} = (\lambda \circ g_{U})^*\omega_{F',\bar{S}}$$

where $\lambda: Y_{U} \to Y$ is the projection. We claim that the ss-map $\lambda \circ g_{U}: Z_{g^{-1}U} \to Y$ represents the ss-morphism $fg: Z \longrightarrow Y$. Indeed, one can easily check that for $W = g^{-1}U \cup V$ (the disjoint union) the maps

$$(z_{w})_{n} \ni (\dots, i_{r}, \dots, (i_{s}, a_{s}), \dots; z) \rightarrow g(\dots, i_{r}, \dots, i_{s}, \dots; z) \in Y_{n}$$

constitute an ss-map $h: Z_{tt} \rightarrow Y$ such that the diagram

commutes; being equivalent to g, $\lambda \circ g_U$ represents the same ss-morphism $Z \longrightarrow Y$. In conclusion, the Γ_F , \overline{S} -structure $(\lambda \circ g_U)^* \omega_F$, \overline{S} on $Z_{g^{-1}U}$ is the one induced from $g^* \omega_F$, \overline{S} (cf corollary 1.9.3(ii)).

We are now able to apply theorem III;4.2(iii) to $g^*\omega_{F',\overline{S}}$ and to the ss- $\Gamma_{F,\overline{T}}$ -structures $f^*\omega_{F,\overline{S}}$ and $(f \circ g)^*\omega_{F,\overline{S}}$. As a result, we get the commuting triangle

$$G_{F'',\overline{R}} \xrightarrow{(f \circ g)_{\overline{TR}}} G_{F,\overline{T}}$$
 $G_{F'',\overline{S}} \xrightarrow{G_{F'',\overline{S}}} G_{F,\overline{T}}$

By the part (i) already proved, the specially chosen transversals can be replaced by arbitrary R, S and T.

(iv) We can apply theorem III;2.2(iii) to the morphism $\,\Psi_{T}^{}\,$ and to $f^*\omega_{F,T}^{}\,$ instead of $\,\omega.$ The resulted commuting triangle is

$$G_{F',S} \xrightarrow{\psi_{S}^{f*\omega_{F,T}}} G_{F,T}$$
 ψ_{S}^{G}

as

$$(\Psi_{\mathbf{T}}^{\omega})_{*}f^{*}\omega_{F,\mathbf{T}} = f^{*}(\Psi_{\mathbf{T}}^{\omega})_{*}\omega_{F,\mathbf{T}} = f^{*}\omega$$

by corollary 1.9.1(ii). According to 3.1, the upper morphism is exactly $\,f_{{\bf TS}}^{}$.

Corollary 3.3. If X and Y are equivalent ss-manifolds, then any equivalence $Y \longrightarrow X$ is transverse to every foliation of X. Furthermore, let $f: Y \longrightarrow X$ be such an equivalence, F a fixed foliation of

X , and T \subset X₁ and S \subset Y₁ arbitrary complete transversals for F and F' = f^*F , respectively. Then the holonomy morphisms

$$f_{TS}: G_{F',S} \rightarrow G_{F,T}$$

and

$$(f^{-1})_{ST}: G_{F,T} \longrightarrow G_{F',S}$$

are inverse to each other, ie $(f_{TS})^{-1} = (f^{-1})_{ST}$.

<u>Proof.</u> Let $f: Y \longrightarrow X$ be any equivalence and F an arbitrary foliation of X. By corollary 2.3.2, f is transverse to F as the composition $l_X = f \circ f^{-1}$ is. The rest follows directly from theorem 3.2(iii)

<u>3.4 Remarks</u>. 1. It can be shown that any ss-morphism $f: Y \longrightarrow X$ transverse to a foliation F of X induces well-defined ss-morphisms between appropriate leaves of f^*F and F. In particular, the assertion of corollary 3.3 completed by adding the following one:

If f is an equivalence, then leaves of f^*F are equivalent to the corresponding leaves of F (and there is a one-to-one correspondence between the leaves).

2. Our definition of ss-morphisms is a solution to the equivalence problem. The construction can be easily modified so as to cover the notion of simplicially homotopic ss-maps ([6]) which identifies any ss-set (in particular: any ss-manifold) $X = (X_n)$ with $X' = (X_n')$ such that

$$x_n = \bigcup_{\sigma} x_n$$

where σ ranges over non-decreasing (n+1)-sequences with the only elements 0 and 1, and the structure operators are

Let us sketch the modification. We consider <u>ordered</u> coverings, ie indexed coverings $U = \{U_a; a \in A\}$ endowed with a <u>preorder</u> \prec in the set A of indices, and generalize II;1.4 by requiring $(X_U)_n$ to be the disjoint union over the <u>ordered</u> (n+1)-tuples $a_0 \prec \ldots \prec a_n$ (an unordered covering can be trivially ordered by taking the total preorder relation). The above X' is now equal to the localization of X to the ordered covering $\{U_0, U_1\}$ of X_0 such that $U_0 = U_1 = X_0$.

Another modification requires the equivalence relation 1.3. Namely, we say that an ordered covering $U = \{U_a; a \in A\}$ has a supremum (infi-

mum) if the subset

 $A^{+} := \{a \in A; \text{ for every } b \in A, b < a\}$ $(resp. A^{-} := \{a \in A; \text{ for every } b \in A, a < b\})$

is non-empty and $U^+ = \{U_a; a \in A^+\}$ ($U^- = \{U_a; a \in A^-\}$) covers X_0 . The modified ss-morphism of X in Y is again an equivalence class of ss-maps $X_U \rightarrow Y$ where U are non-ordered, but in the diagram (1.3.1) $W = \{W_s; s \in S\}$ can be an arbitrary ordered covering having both supremum and infimum, whereas ρ and ρ' should map the indices into, resp., S^+ and S^- .

It can be shown that the modified ss-morphisms form a category with products, in which a localization X_U is equivalent to X if U has at least the supremum or infimum. Furthermore, the results: 1.5, 1.5.1, 1.8, 1.8.1, 1.9.1, 1.9.3, 1.10, and 1.12.1 concerning ss- Γ -structures and morphisms of groupoids, as well as: 2.1, 2.3.1, 2.3.2, 2.4, 3.2, and 3.3 concerning semi-simplicial foliations remain valid.

References

- [1] G. Andrzejczak, Some characteristic invariants of foliated bundles Dissertationes Mathematicae, 222, PWN, Warszawa, 1984.
- [2] R. Bott, On some formulas for the characteristic classes of group-actions. Differential Topology, Foliations and Gelfand-Fuks Cohomology (Proceedings, Rio de Janeiro, 1976), pp 25-61. Lecture Notes in Math., vol. 652, Springer Verl., Berlin et al., 1978.
- [3] R. Bott, On the characteristic classes of groups of diffeomorphism L'Enseign. math., XXIII. (1977), 3 4, pp 209-220.
- [4] A. Connes, A survey of foliations and operator algebras, preprint IHES (1981).
- [5] J. L. Duppont, Curvature and Characteristic Classes. Lecture Notes in Math., vol. 640, Springer Verl., Berlin et al., 1978.
- [6] P. Gabriel & M. Zisman, Calculus of Fractions and Homotopy Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 35, Springer Verl., Berlin et al., 1967.
- [7] A. Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoides. Comment. Math. Helv. 32, (1958), pp 248-329.
- [8] A. Haefliger, Homotopy and integrability. Manifolds Amsterdam 1970, pp 133-163. Lecture Notes in Math., vol. 179, Springer Verl., Berlin et al., 1971.
- [9] A. Haefliger, Some remarks on foliations with minimal leaves. J. Differential Geom. 15 (1980), pp 269-284.
- [10] A. Haefliger, Groupoïdes d'holonomie et classifiants. Structure Transverse des Feuilletages (Toulouse, 17 19 févrièr 1982), pp 70-97. Astérisque 116, Société Math. de France, 1984.
- [11] G. Hector & U. Hirsch, Introduction to the Geometry of Foliations
 Part A: Aspects of Math., vol. E1, F. Vieweg & Sohn Verl., Braunsch
 weig Wiesbaden, 1981; Part B: vol. E3, 1983.
- [12] H. B. Lawson, Jr., The quantitative theory of foliations. Conference Board of the Math. Sci., Regional Conf Series in Math., vol. 27, Providence, Rhode Island, 1977.
- [13] B. L. Reinhart, Differential Geometry of Foliations. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 99, Springer Verl.,

Berlin et al., 1983.

- [14] I. Tamura, Topology of Foliations (Russian; translated from Japanese), Mir, Moskva, 1979.
- [15] H. E. Winkelnkemper, The graph of a foliation. Ann. Global Analysis and Geometry, vol. 1 (1983)3, pp 51-75.