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ON FOLIATIONS OF SEMI - SIMPLICIAL MANIFOLDS
AND THEIR HOLONOMY

Grzegorz Andrzejczak

Introduction

Semi-simplicial foliations have appeared in [2]-[3], where they form
a linking between a group action on a manifold and characteristic clas-
ses of foliations and produce that way characteristic invariants of the
group actions. In fact, the present paper arose while the author was
trying to prepare a unified treatment of characteristic classes of foli-
ations - on a manifold and, at the same time - on classifying spaces,
which would cover the characteristic invariants studied in [1] (in fu-
ture, we hope to continue that direction of an investigation). One of
the questions was then: what is a geometrical setting in which the semi-
simplicial manifold NPq (nerve of Pq) could play the role of a clas-
sifying space? The solution found by the author is presented in Chapter
IV of the paper (cf IV; proposition 1.10 and corollary 2.3.1) and given
by a special category of semi-simplicial manifolds. Another question
was: how to extend the notion of holonomy to foliations of arbitrary ss-
manifolds? A solution to that problem, given in Chapter III, is also an
attempt to "close the category" , since it is reasonable (cf eg [4]) to
look for the "manifold" of leaves of any foliation F among the nerves
NPF,T of the holonomy groupoids. The results of Chapter IV allow one
to identify with each other all the ss-manifolds NT
complete transversal for F,

The paper consists of four chapters., Chapter I is of an introductory
character and contains a brief account of foliations and T-structures
(for a more complete treatment, see [11],[12],[13]), and [14] as well
as [7) and [81]).

Chapter II deals with semisimplicial objects and extends some ideas
of (5].

In Chepter III we develop the notion of a holonomy pseudogroup GF,T
(and groupoid PF,T) of an ss-foliation with respect to a complete
transversal T. Our main result here is theorem 2.2, in which the ex-
istence and minimality of a canonical semi-simplicial PFIT-structure

F.op ! T being any
1
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are established. In examples 3.1 - 3.3, the theorem is then applied to
classical situations (a standard foliation, a pointwise foliation of
N, and a flag) and the corresponding holonomy objects are computed.
Chapter IV contains a presentation of a special category of ss-mor-
phisms and their relations to ss-~foliations. In particular, theorem 3.2

of the chapter assures a consistency of the notions of ss-foliations
and ss-morphisms.
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Symbols and notations

£*F - 1; 1.2 (Bgse-rsa 5X) = 1.4 or - 2.3
Ty - 1.3 x{K) - 2.5 v, - 2.5
Ep - 1.321.9  x -2.5.1 BV - 2.5.2
a, B - 1.4 E; - 3.1 [a;x,q] - 2.5.2
£*E - 1.681.8 I: IF—T' -~ 3.4 T - 3.3
[r,x]) - 1.8 Wy - 3.7 Fio - 3.3
£*o - 1.12 I'« I - 3.8 Fy - 4.1
Ed - 1.12 T s T - 3.8 vy - 4.1
hc'gz - 2.1 I 0 - 3.10 oy ~IV; 1.2
h, - 2.2 IE - 3.10 f~g - 1.3
Ip - 2.3 wp - 3.11.1 fxg - 1.3
Tr g - 2.5 NT, N T ~3.11.1 fix—y -1.3
he g - 2.5 1o - 3.12 £l - 1.6
Gp - 2.5 O, W - 3.12.1 £, - 1.6
®: G=G' - 2.6 20, o1 -x1r; 1.1 gof - 1.6.1
G ~G! - 2.7 G mop? - 1.1 1y - 1.6.1
WE g - 2.8 ia} - 1.1 A: X, = X - 1.6.1
Ho p - 2.8 G, - 1.1 [£] - 1.7
Ep o - 2.8 6T -1.1.1 f*u - 1.9
eg, Ny =II3 1.1 id} -1.1.1 f*u -1.9.2
NU, N U - 1.3 O - 2.282.3 f*E - 1.9.3
NM - 1.3 Yo - 2.282.6 X =Y - 1.12
N, N T = 1.3 0l - 2.3 f*F - 2.2
X, - 1.4 Ef o - 2.3 fos - 3.1



I. Foliations, pseudogroups, groupoids

In the present paper all manifolds, maps etc are of class c” (unless
otherwise specified), although we do not require the manifolds to be
neither paracompact nor even Hausdorff. We propose the following:

Definition 1.1. A g-codimensional (smooth) foliation F of an n-di-
mensional manifold M (n 2 q 2 0) is a topology in M such that every
point of M admits a chart ¢: U -» B® = ®""9 x 89 trivializing F,
ie inducing a homeomorphism of (U,F|U) into ) S (Rq)a, where §
means the discrete topology.

On leaves of F, ie the connected components of (M,F), M induces
a structure of (n-q)-dimensional submanifolds.

1.2 Any map f: M' + M transverse to F (ie to the leaves) induces a
g-codimensional foliation £*F of M' which is the topology generated
by the pull-back of F and by the manifold topology of M'. For any
leaf L' of £*F there is a unique leaf L of F such that £(L')

c L; the restriction £|L': L' -» L is a smooth map.

1.3 The above modification of the definition has little influence on
standard results and constructions associated with foliations, as

there is still a one-to-one correspondence between g-codimensional
foliations of M and some Pq-structures on M, T being the groupoid
of germs of local diffeomorphisms of 4. If one interprets a Pq-struc-
ture as a collection of.rq—cocycles which are transition maps for a
common principal Pq-bundle, then the Pq—bundle EF that corresponds

to a foliation F consists of all germs of submersions M > U - g
locally constant on the leaves ([7]). EF is an example of highly non-
Hausdorff smooth manifolds which come into consideration while studying
foliations

We recall the definitions which will be exploited throughout the
paper.

Definition 1.4. A (differentiable) groupoid T 1is a small category
with only invertible elements (morphisms), such that both T and its
set of objects U are equipped with differentiable structures, and

(1) the source a: I' » U and the target @: ' » U are submersions;

(ii) the composition T x(u,a)r 3 (g1,gz) - 9,9, € I' and the in-
verse map [ 2 g = q'1 € I are both smooth (by (i) the Whitney product
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P xiq,mT = (l94,95) €T x T; algy) = Blgy)}

is a manifold).
If one identifies objects with units, then U becomes a submanifold
of T.

Definition 1.5. A principal I'-bundle E over a manifold M is a mani-
fold endowed with two maps, the projection wn: E + M and the source

a: E >+ U (units of T') and with a right I'-action E x(a’B)r + E in the
fibers of n (ie, 2.9 = 2z if g € U, and (z.g1)g2 = z(g1g2)). One re-
quires a local triviality condition: on a neighbourhood of each point
X € M there is a section o: MV =+ E of n such that the map

v x(ao,B)r 3 (v,9) » oly)g € n'1(V) cE

is a diffeomorphism.

1.6 Many properties of principal G-bundles (G - a Lie group) carry over
to the above, more general setting. In particular, any map £: M' + M
pulls back I'~bundles over M to T'-bundles over M',

f*E:= M'x
¥
Ml

(£,mE

i

and the classical result that a homomorphism of a G-bundle E' into a
G-bundle E, ie a commuting square

f

E' — E
+ +
M —£~ M

(where f preserves the G-actions) yields an isomorphism E' = f*E,
remains valid if G 4is replaced with TI'. An important exception here is
that a I-bundle over MxR cannot be, in general, induced from a single
bundle over M.,

1.7 Given a family of local sections of E with domains covering M,
the corresponding transition functions with values in I form a so-calle
I'-cocycle over the covering of M. All the I'-cocycles obtained in that
way from a fixed principal I'-bundle E are in some natural sense equiv-
alent ([7)) and constitute a I'-structure on M. The last notion means
essentially the same as "an isomorphy class of principal TI-bundles over
M" and the distinction comes from the tradition only.

1.8 Apart from Lie groups, a large and in some sense opposite class of
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groupoids constitute groupoids of germs, namely of all germs of elements
of a pseudogroup of difféomorphisms. We accept the notation [v,x] for
the germ of a diffeomorphism Y at a point x, so that the composition
[vy,x1{y',y] is defined and equal to [yr',y] iff x = v'(y).

While dealing with a groupoid of germs I it is convenient (for the
notational reason) to consider principal I-bundles equipped with a left
action of the groupoid. Such a bundle n: E » M is then endowed with a
target map f:E + N (N -~ units of T) and the action (g,z) » gz is de-
fined on the Whitney product T '(u,B)E' If f: M'» M 1is any map, then

for the same reason we define the pull-back left I'-bundle to be f*E =
E x

(“,f)M'.

1.9 We have mentioned (cf 1.3.) that a g-codimensional foliation F

of M gives rise to a principal Pq—bundle EF over M. EF is the set
of all germs [9,x] of submersions locally defining F at x € M,
equipped with the sheaf topology and the differentiable structure in-
duced from M, so that the projection Ep 3 [o,x] 3 x € M be locally
a diffeomorphism, Pq acts on EF (from the left!) by the formula
[y.ylle,x] = [vo,x] 1iff y = @(x). '

1.10 Let T be any groupoid of germs and w: E » M a principal I-
bundle such that the térget map B of E into N, the manifold of
units of T, is a submersion. Then there exists a unique foliation F
of M such that at the level of E the foliation n*F coincides with
the one induced by B from the pointwise foliation of N. If this is
the case, we shall call F the foliation defined by E or, by the |
structure corresponding to E. Clearly, codim F = dim N. This definition
agrees with the classical one which assumes the T'-cocycles representing
the T'-structure to be generated by submersions of open subsets of M
in N ([7]).

1.11 To any I'-bundle w: E -+ M defining F one associates its canoni-
cal form E - M composed of all germs [9,x] of the submersions
w: MU SE 8 N (the distinguished submersions for E), where ¢ ranges
over local sections of n (note that = is locally invertible for T

a groupoid of germs) and x € U (c¢f [7)]). T acts on E from the left
by the composition of maps. It can be easily seen that the map

(1.11.1) E 3 go(x) - glBo,x] € E

is a well-defined canonical isomorphism. Clearly, the canonical form is
the same for all T-bundles isomorphic to E and is canonically distin-
quished by the corresponding I'-structure.
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1.12 1f f: M' -« M is a map transverse to F and a I'-bundle n: E » M
defines F on M, then the pull-back bundle f£f*E = E % (u 'f)M defines
on M' the induced foliation f£*F. Clearly, £ pulls any section
c: U -+ E back to a section f*g = (gef,id): f 10 - f£*E; thus any dis-
tinguished submersion ¢ for E gives rise to a distinguished submer-
sion ¢f for f*E: In terms of the canonical forms of the bundles the
projection f*E - E takes the form

[of,x'] = [o,f(x')].

In particular, since Ef*F is necessarily the canonical form of the Fq—
~bundle f*EF, g = codim F, £ 1lifts functorially to a Pq-equivariant
map £ Ef*F 3 [E,x'] -+ [p,E(x')] € EF'

For any foliation F there is a family of pseudogroups of diffeomor-
phisms (thus also: groupoids of germs) which are related to F more
closely than any other pseudogroup. These are holonomy pseudogroups

(resp.: holonomy groupoids) and describe the transverse structure of the
foliation.

- 2.1 Given a continuous path ¢ in a leaf of F, any local transversal
T = To at c(0) can be continuously transported along c¢ in such a
way that each point of T remains all the time in the same leaf. As a
result one gets a locally defined diffeomorphism of the transversal Ty
at ¢(0) to a transversal T1 at c(1) which is called the holonomy
translation along ¢ (cf [12]; notation h g°)

Any map f: M' -« M transverse to the foiiatlon F carries transver-
sals for the induced foliation f£f*F to transversals for F. If ¢ is
a path in a leaf of f*F, then for any two local transversals T and
T' at the ends of ¢,

T T

hc,T' = heg,m -

2.2 An invariant description of the holonomy refers to the Pq-bundle

Ep (cf 1.9 ): when restricted to a single leaf L of F, Ec becomes

a covering of L, hence any path ¢ in L 1lifts uniquely to a path in
EF starting from an arbitrary but fixed point of the fiber through c(0).
As a result, ¢ yields a Fq—equivariant bijection

et 1(e(0)) = 1~ (c(1)

which is just an alternative description of the holonomy ([7], note that
the target projection B: Ep - ¥ s locally constant on n (L) c Eg
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and thus Bohc = f  on n_1(c(0)) ). For a connection between the two

notions of holonomy translation, hc g, and hc , see (2.4.1) below.
14

2.3 The fact that hc depends on the homotopy class of ¢ only sug-
gests that the set PF of all hc's can be organized in a manifold.
This has been done eg in [15]. In fact, PF with the obviously defined
composition rule (hc.hc, = hc'*c) is even a differentiable groupoid with
M as the manifold of units; it is the graph of F. Topologically, hc
is close to h, in T, if there is a path c close to ¢, such that

]
hE = hc; evidently, a(hc) = c(o) and B(hc) = c(1).

2.4 The action of PF can be canonically extended to the general case
of any principal I'-bundle n: E » M (I -~ a groupoid of germs) defining
the foliation F. A synthetic definition of holonomy translations in E
is similar to the one given in 2.2: for any leaf L of F the deck
transformations in the covering space E:n-1(L) -+ L depend on the holo-
nomy of paths in L only. Consequently, any path ¢ in L yields a
r-equivariant bijection = ' (c(0)) = m ' (c(1)) understood as a (left)
action of the holonomy hc € PF.

Lemma. For an arbitrary I-structure w defining the foliation F
and any path ¢ in a leaf of F, the holonomy hc acts on fibers of

the canonical TI-bundle E - M distinguished by o (cf 1.11) according
to the rule

1

(2.4.1)  (h lo,c(0) ) IT' = [{eIT)eth, 7,)7 ' cl1)] for [e,c(0) Jen (c(0)

where T and T' are any local transversals at c(0) and c(1) resp.,
and ¢ is an arbitrary distinguished submersion for « over a neigh-
bourhood of c(0) (see figure 1),

[y, <)) = he Ly, c(O]

Figure 1.

Proof. When starting from a collection of sections 0y¢ M::Ua - E,-‘
a € A, such that the U,'s cover M we get a I-cocycle {y, } repre-
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senting w. In particular, the maps Yaa = Booa: Ua -+ N (N - the units
of TI') are distinguished submersions such that for any x € Ua nbu

bl
a,b € A, one has

=  (X)

Yaa Yap Ypp OVer a neighbourhood of x,
if Y;z) is a diffeomorphism representing the germ Yab(x) €ETr. We fix
a sequence of indices @preeesdy such that C([Ti'Ti+1]) €U, i-=
0,...,r, for some partition 0 = Tg € Tq € eoe £ Ty = 1 of the unit
interval. At every point c(ri), i=0,1,...,c+1, we choose a transver-
sal Si (S0 = T and Sr+1
Since Yiy is a submersion locally constant on leaves of F, the
composition (Yiilsi+1)-1(viilsi), well-defined over a neighbourhood of
C(Ti) in S;r is the holonomy translation along cl[ri,T 1,

51
CllTy ety q1e8i44

= '
T'y. Let for shortness Yij denote Yaiaj'
i+1
_1 _
(33183490 (ryy18;) = h

for 1 =0,...,r.

Consequently, at the level of germs one has
[hc,g..c<o)] -
S S
r . , 1 T
= 2 e ' ’ 4 O
[th[Tr.1],T"c(Tr)] [hcl[T1,12],S2 C(T1)”th[0,r1],S1 cl )]

ST APCTETE RN SO Y SRR I SO T-I=To N R CONT XTI

v 170,17 v, L itett ) oen yqglelt ) [yggIT,c(0))]

(701(c(r1)) voo Yr_1,r(C(Tr))[YrrlT':C(1)])-1[Y00|T,C(0)]-

On the other hand, we are able to write down explicitely a lift ¢
of ¢ to E starting at c(0) = [Yggrc(0)]. Namely, for 1 € [t .7
we define E(T) to be the germ

]

i+1

(Observe that Yii(c (T )) = Yii (C(T i) ) = Yii(c(T 1+1) ) ) . Clearly 'E is
well-defined and thus continuous, By definition of the action of hc
one has

hc[YOO,C(O)] = c(1)

= Y01(C(T1)) cee Y (C(Tr))[Yrr:C(1)]

r-1,r
and a comparison of the above two formulas gives

T

B [vnnec(0) 11T = [(y,,IT)o(h, o)

c(1)].
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The general formula follows now from the I'-equivariance of hc.

2.5 By fixing 'a complete transversal 4i: T <, M for F (complete peans
that 4(T) cuts every leaf) one reduces rF to a (transverse) holonomy
groupoid rF,T which is a groupoid of germs on T. The underlying
holonomy pseudogroup GF,T of diffeomorphisms of T is generated by
all the holonomy translations hc,g of open subsets of T; we accept
the notation hc,T s = [hclg,c(O)] for the element of rF,T determined
by an arbitrary path c. The holonomy pseudogroups for F with respect

to different complete transversals are all canonically equivalent ([9]).

2.6 We recall here that a morphism &: G = G' of two pseudogroups of
diffeomorphisms (on manifolds, resp., N and N') is a maximal collect-
ion of diffeomorphisms ¢: N:Uwo N' of open subsets of N on open
subsets of N' subject to the conditions

(1) the collection of all Um, ¢ € ®, covers N;

(11) oy "WE G' if @,p € &, Y € G;

(iii) y'¢vy € @ if o€ ®, Y € G and Y' € G';
(we emphasize the fact that ® is not a map by using the half-arrows).

One defines the composition G—Q*G'-E:G" to be the unigque morphism
containing the diffeomorphisms ¢'p (¢ € ®, ¢' € ¢'). Clearly, any col-
lection of diffeomorphisms (of open subsets of N on open subsets of
N') which satisfies the conditions (i)-(ii) is contained in (hence:
generates) a unique morphism G — G'.

2.7 Given any two complete transversals T,T' =» M for a foliation F.
the collection of all the holonomy translations from T to T' 1is a
canonical invertible morphism GF,T -_ GF,T" In general, invertible mo:
phisms will be called equivalences (notation " =~ ").

2.8 For any complete transversal T <, M, there is a canonical rF,T-
structure Wp m defining F on M, namely the one generated by those
r’
submersions of subsets of M on T which are holonomy projections

H, p» along paths ¢ such that c(1) € T c» M (see figure 2)..
’

- et
- —— “Herly]
Y |
//-/’/ T
Pigure 3,

The canonical T ,-bundle E; , over M distinguished by OF o
L

)
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consists of all germs [Hc T,x] of the submersions. Note that T
’

T
'
acts (from the left) on E by the formula

F,T

hC,T[HC';T'c'(O)] = [H

c'ac T,C'(O)] iff c(0) = ¢'(1) in T.
!

2.9 The following minimality property of GF,T and mF,T belongs to
the "folklore" although is rarely formulated in this way.

Under the above notations let T be a groupoid of germs such that
some I'-structure w defines on .M the foliation F. Then the distin~
guished submersions for ww restricted to T < M form a morphism

s GF T —» G such that w coincides with the induced T-structure w*uF T
’ ’

(cf II.3.12.1 below; here G stands for pseudogroup underlying T).
It is worth noticing here that if the transversal T varies, then
all the above morphisms GF r G come from the unique common morphism
r

of groupoids described in 2.4, 'p — T (cf also II.3.4 below) .

II. Semi-simplicial structures

Any TI-structure on a paracompact manifold M can be obtained as a
pull-back of the so-called universal TI'-structure w, on Bl - the clas-
sifying space of T, which unfortunately is no longer a manifold. One
constructs BI' as a realization of some semi-simplicial manifold NT
(nerve of T). We recall some of the definitions ([5]).

1.1 An 8s- (semi-simplicial-) manifold X = (Xn)n_0 1
— - ¥ FAC I )
of manifolds endowed with structure operators
e, = ¢™; x

: - X
i i n nTA) .
sions) and ny TNy xn -+ xn+1 (i-th degeneracy operators), i = 0,1,...

n, which are subject to the conditions

is a sequence

(i-th face operators; we require them to be submer-

(1) eiej = sj_1€i if i< j .
“j-1si if i <3
(1.1.1) (ii) einj = { iad if 1 = 3,31
“jci-1 if 4 T j+1
(111) NNy = NyeqNy if 153

(which originate from purely combinatorical relations among face and de-
generacy assignments for standard n-simplices).

Obviously, an ss-map (or homomorphism) f: X - ¥ of X = (Xn) into
another ss-manifold Y = (Yn) is a sequence f = (fn) of maps
fn: xn - Xn commuting with the structure operators.
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1.2 After introducing the i~-th face imbeddings ci: An-1 - An and
i-th face projections ni: An+1 - An between geometrical simplices {(cf
[5; p. 6]), one defines the (fat) geometrical realization [X[] of X

as the topological quotient of the disjoint union
Lix, x a”

by the relations (eix,t) ~ (x,sit) for x € xn+1, t € An.

Although the topological space [[X]] is less abstract than the ss-mani-
fold X itself, it is lacking in the "smoothness" of X. In the present
paper we shall treat ss-manif6lds themselves as a sufficiently good com-
pletion of the category of manifolds (cf eg IV. proposition 1.10).

1.3 Keeping the above plan in mind, we begin with some examples ([5]).

Example 1.3.1. Any open covering U = {Ua} of a manifold M gives

rise to an ss~manifold NU = (NnU), the nerve of U, such that
N U = . u_.n...nU
n (ao,...,an) i) qn

and the structure operators are the suitable inclusions

8 .
i X € Ua N ...N Ua ] Ua n ...0Nn Ua
— 0 i-1 i+1 n
g n...nU_ 3 x
ao an ‘\\\s
ni xeuan -oon Uanuaﬂ...ﬂ Ua

0 i i n

Roughly speaking, NU has the same differentiable structure as M
whereas some part of the topological complexity of M is expressed in
a combinatorial language. _

The nerve NM of the trivial covering {M} can be identified with M
itself. -

Example 1.3.2. The nexrve NT = (Nnr) of an arbitrary groupoid T.
Here NOP = U (units of T),

NI = ((9qr00009) €T xevux Tj algy) = Blgy)seens alg, ) = B(gn):
and the structure operators are defined as follows:

on N1P =T, €y = O and &4 = B,

(9yr...19,) if 1 =0
ci(g“l"'lgn) =-{ ("'Igigi+1'coo) if i. 1,2,...,1’!'1

(g1,...,gn_1) if i=n

(B(g1)lg1poooygn) if i = 0

IR
(OO'Ogila(gi) lgi+1'n.0) if i > 0
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Clearly, all the Nnr's are manifolds.
1.4 Localization. For an arbitrary ss-manifold X = (xn) let U = {Ua}

be any open covering of X,- By the localization of X to U we shall

mean an ss-manifold Xu such that

n
_ L] n-1 i, -1
Ocooo' n
and the structure operators are the maps

a (...,a 1,ai+1,..., €, x)

(a ,...,a -x)
0 \\=“‘*(...,a

i,ai'o.-; niX)

where, for shortness, the coordinetes before the semicolon point at the
appropriate disjoint summand. A direct application of the axioms (1.1.1)
proves that the maps ?i and ﬁi are well-defined and again satisfy
(1.1.1). Note that, given U as in example 1.3.1, the ss-manifolds NU
and (NM)U are evidently isomorphic. In general, the localization re-
places a part of the topological structure of X with a combinatorial

0
construction. This statement will be made more precise in 1IV.

We return to foliations now. An obvious observation is that, given
any covering U of a manifold M, each foliation F of M induces a
foliatiqn, say Fn’ on each Nnu. Note that a suitably chosen covering
can even trivialize all the foliations. We pose a problem which will be
our starting point.

Problem 2.1. Reconstruct the holonomy pseudogroup of F in terms of
the foliations (F )n?_0

In fact, we shall solve a more general problem. Namely,

and the ss-structure of NU.

1° we shall give a construction of a holonomy pseudogroup for foliations
of arbitrary ss-manifolds (cf III, theorem 2.2), and then
2° we prove its invariance under localizations (cf III, proposition 4.2).

Definition 2.2. A g-codimensional foliation F of an. ss-manifold
X = (xn) is a sequence (Fn) of foliations such that
(1) for each n, Fn is a g-codimensional foliation of Xni
(i1) e, *F _, = F, for 4i < n (recall that all the

i ci's are submersions).
2.3 The condition 2.2 (ii) together with (1.1.1;ii) implies transversa-
lity of all the degeneracy operators ny: X9 ° xn to Fn as well as
the equalities ni*Fn = Fn-1' for n=1,2,... . Moreover, F 1is com-
Pletely determined by Fo which is subject to the only condition

- n
cO.Fo = ‘1*Fo on X,; then F (eq )*F, for every n. This allows
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one to expect that the transverse structure of F (whatever this means)
is not more complicated than that of ordinary foliations and can be de-
scribed in terms of some differentiable groupoids.

2.4 We list a few naturally arising examples of ss-foliations.

Example 2.4.1. The foliation of NU induced from an ordinary folia-
tion of M - already mentioned.

Example 2.4.2. If the structure operators of X = (Xn) are locally
invertible, then X carries a pointwise foliation which consists of the
pointwise foliations on every stage xn' In particular, this is the case
of the nerve NI of an arbitrary groupoid of germs T.

Example 2.4.3. Consider a flag F,F' of foliations of a manifold M
(ie, codim F 2 codim F', and the leaves of F' are foliated by leaves of
F) . Every complete transversal T for F is transverse to F', and the
induced foliation F'IT of T 1lifts to a foliation of NPF,T' We shall
see later that differently chosen transversals give rise to nerves
NPF,T ?quivalent as ss-manifolds, and that the corresponding foliations
are in some sense identical (cf IV; corollary 3.3 & proposition 2.4).

Example 2.4.4. Any ss-manifold carries a unique 0-codimensional foli-
ation.

2.5 Given an arbitrary foliation F = (Fn) of an ss-manifold X = (xn),
let for n=0,1,... , Ln denote the set of all leaves of Fn' We con-
sider an equivalence relation " ~ " in L
containing the pairs (L,L'), L,L'€ LO’ such that there is a leaf
e L, with the property L > ¢,f and L' > ¢,L. For an arbitrary(K)
equivalence class K c L0 and each n 2 0 we define a manifold X

0 defined as the smallest one

n
to be the disjoint union of the leaves L€ L contained in the subset
n
n-i i -1
U (e, eg ) (UK) =X .

i=0
Lemma 2.5.1. The manifolds XéK) and xéK') are disjoint if K and
K' are different equivalence classes. Furthermore, for any class K ,
the structure operators of X induce on xK) e (XAK)) a semi-simpli-
cial structure.
Proof. Suppose L € Ln is a leaf such that

e1n-ieoiL c L' and e1n_jaojL cL" 1<
where L' € K < L, and L" € K'e L,. For h = 1,...,3-1, let L, € L,

be the leaf in X, such that ezn- -heoi*h'1L < L. Then the relations

n-i--hc i+h
0

1

n-i-hc i+h=-1

e le, 0 ) = &,
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and v
n-i-h i+h-1, _ n-i-h+1 i+h-1
c1(32 £g ) = ey €p

prove that e1L1 c L' and COLj—i < L", whereas for h =1,...,j-i-1,
eOLh and 81Lh+1 are contained in the same leaf. This immediately im-
plies L' ~L", and thus K = K'.

Now we f£ix K. We have already shown that if a leaf L 4is in xiK)
then for every i the set c1n'ieolL is contained in a leaf T € K.
Consequently, if ehL c L' € Ln-1 then L' c xéf%, and if nhL c L€ Ln+1

then L" < xéf;, for h=0,1,... . It follows that the structure oper-

ators induce maps

~ LK) LK)~ (K) (K)
®h *n Xp-1r ™ Xp 0 2 X

subject to the commutativity relations (1.1.1). By I.1.2, the maps are
smooth.

2.5.2 We shall éall the ss-manifolds X(K) leaves of the ss~foliation
F. In view of lemma 2.5.1, any foliation divides the foliated ss-mani-
fold into "disjoint" leaves which are again ss-manifolds.

Like in the classical situation (cf I.1.3 - 1.9) a g-codimensional
foliation F of an ss-manifold X yields a I' -~structure on X. The
last notion could be naively understood as a sequence of Pqestructures,
say w  on X, such that e,;*w ., = o . In 3.3 below, we shall see
that this condition would be too weak for our purposes.

3.1 Let us consider the distinguished Pq-bundles mo EFn » X associ-
ated with the foliations Fn’ forming an arbitrary ss-foliation F of

X = (xn). In view of I.1.12, the sequence Ep = (EFn) carries a canonical
structure of an ss-manifold given by the lifts

£, : EFn3 [w°ei,x] » lo,e,x) € EFn—1
and
- . o o
n, EFnB [y nyox] [w,nix] € EFn+1.
It follows directly from the above definitions that the structure
operators commute with the actions of Fq, and that w = (nn) is an ss-
map of EF in X.

Definition 3.2 (cf [S) for T a Lie group). Given any groupoid T,
a (principal) ss-T-bundle E over an ss-manifold X (Xn) is an ss-ma-
nifold E = (En) together with an ss-map wn = (nn): E » X such that
(1) for every n, L En - X, isa principal I'-bundle;
(11) the structure operators of E are I'-equivariant.
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In other words, the structure operators yield homomorphisms of TI-bun-
dles

€ ns

e j
Bpoq T Enet
xn-1 Xn +1°

We shall call isomorphy classes of principal ss-T'-bundles over X
F-structures on X (isomorphisms being meant as invertible I'-equvariant
ss-maps inducing the identity ss-map on the base X).

3.3 Consider an arbitrary principal ss-I-bundle w: E - X. According to
I;1.6, the maps

(n.,e,) *
1°°0 (n 8¢ e) € £q E0

*
(n e,t e) € €4 Eo

E, 3 e

(“115 )
as well as

E2 J e r> (nze,eie) € ei*E i=20,1,2

1'
are isomorphisms of I'-bundles. Together with the axioms (1.1.1), this

gives rise to the following commuting diagram of isomorphisms of princi-
pal I'-bundles:

(3.3.1) // 'K /' *EJ\\CA

*51*E 1
*
\ / E E
*so*Eo — c *c1*Eo

where, for example in the pentagon , the arrows map an arbitrary

e € E, to (n e, (n1c0 ,aoeoe)) € ‘0 0*By oOFr to (nze,(n1c1e,ccc1e)) €
51*50*E0, and these two elements correspond to each other under the iso-
morphism

=
ao*so*Eo = (co o)*E (5051)*80 = 51*50 Eo.

The resulted commutativity of the triangle

(egeq) *E

0

(€1c0)*Eo o (5161)*E°
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is precisely what differs the above definition of an ss-I-structure from
the "naive" one (cf III;2.5 below).

3.4 We have already got an example of a I'-structure on an ss-manifold,
namely - the one associated with an ss~foliation F and represented by
EF' The next example is provided by morphisms of groupoids (ie genera-
lized homomorphisms in the sense of [10]). We recall the definition.

Definition. A morphism £: ' — I'' of a groupoid T in a groupoid
I'' 1is the isomorphy class represented by a principal I''-bundle [ over
units of T, equipped with a TI'-action (a left one if T' acts from the
right) T x(u’“)z -+ I such that

(1) the two actions commute with each other;

(1i) g.z =2 for 2z € I if g is a unit;

(iii) g1(gzz) = (9192)2 if the elements are composable
(we use the half-arrows to stress the fact that morphisms are not maps
and to distinguish them from homomorphisms ie smooth functors).

Example 3.4.1. Let TI' and TI' be arbitrary groupoids. For any prin-
cipal I''-bundle E over the nerve NI' let b denote the product

£
= * .q.___= _._r‘]
r x(G;HO)EO €y EO E1 Eo.

We claim that the assignment E ~- (Eo,uE) establishes a bijection be-

tween I''-structures on NI' and morphisms T — TI''. This follows (cf
3.7 below) from the following useful lemma.

Lemma 3.5, Let X = (Xn) be an arbitrary ss-manifold, T any groupoid
and w: E0 - xo a principal TI'-bundle over xo. Assume that a map
?1: co*Eo - E, satisfies the conditions

(1) 4 1s T-equivariant and induces the map ¢,: X, - X, on the bases;

B 1 1 0
(ii) 51(none,e) = e for e € EO;

(iii) 51(52x,?1(eox,e)) = ?1(a1x,e) for every (x,e) € (aoao)*EO.
Then the projection ?O: eO*EO - E, together with 31 and the maps

- n-1 .
€ (e, x,e) € (¢ ) *E if i <n
‘°on’*Eo > (xie] —3 { * - n-? ° n-1, .

(e,x,€, (e, x,e)) € (e )*Ey if i =n
and

No
*
EO 3 e —» (none,e) € 80 E0

n+1

(son)*Eo 3 (x,e) —3 (nix,e) € (so ) *E if i 21

0

make the sequence E = ((eon)*Eo) an ss-manifold which, when equipped
with the projections (eon)*E0 - xn, is a principal ss-T-bundle over X.
Conversely, if E = (En) is any principal ss-r-bundle over X, then
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€

the map T,: £4*E, L. E, — E, verifies the conditions (i) - (iii),

and the maps n
("lao ) n
En — Xn x n EO = (co )*EO
teg o m)

form an isomorphism of E and the ss-T-bundle reconstructed from E
and 31.

0

Proof. The maps ?i and ﬁi are well-defined since

conx =ne 1if i < n

n-1
5150 X if i =n

_ n-1 = —_ n-1
= a1n1(co X,e) n1e1(eo X,e)

for (x,e) € (aon)*Eo, and

n+1 = n '
£g n;x €p X for all i's.

In a similar way we check that the maps are subject to the commutati-
vity axioms (1.1.1). The only nontrivial relations are those involving

€nt (eg )*Eq = (eq ') *Ey. One has T _.T, = E,c  on (g, )*E, (i<n-1),

as both the maps applied to (x,e) € (aon)*E0 give

(cn_1six,?1(eon-2eix,e)) = (cienx,?1(c0n_1x,e)).

Similarly, for (x,e) € (edn)*EO.

? n-1

n-16n(X:€) = (¢

x,e)))
n-2 - n-2

n-1"n"’""1'°0

(¢ x,e)))

n-

(en_1cnx,E1(s1eon" x,e))
- n-2
x,e1(ao £ _

]

(€n-1%n-1

= ¢

n-1%n-1 (X1 .

The remaining relations involve ni's. Clearly, for (x,e) € (con)‘Eoc

- - - - n
EneqNy(Xs€) = (e nyx,2, (65 nyx,e))

1

= (nienx,?1(con- x,e)) = ﬁiih(x,e) if 1 < n,

whereas

g

7. (x,e)

n+1n (x,?1(noeonx.e)) = (x,e)

as coni = ne. This implies that E' = ((con)*Eo) is an ss-manifold. The
fact that E' - X 1is an ss-I-bundle follows now immediately from (i).
In order to prove the second part of the lemma it sufficies to show
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that the isomorphisms En - (eon)*E0 form an ss-map, ie commute with
the structure operators. This is again a direct computation of symbols.
For e € En' one has

?i(ne,eone) (cine,sone)

(u,eon-1)sie if i< n

and

— n - -1
cn(ne,eo e) (cnne,s1(neon e,eone))

n-1
(cnne,e1eo e)

n-1
(n,eo )ene.

Similarly, if e € En, then

n+1 _ n _ = n
(“"o )ne = (“”1e'°o e) = nylmey e
as was to be shown. L

Corollary 3.6, Let £f: X - Y be an ss-map and E - X and E' - ¥

any principal I'-bundles over X and Y. Assume that IO: Eo - E6 is a

I-equivariant map inducing fo‘”xo - X6 on the bases. Then the maps

(n,eon) fanO (n,son)-1

I : E ———— X x E. — Y «x B! m—e— B!

n n n n 0 n n 0 n
(so I") (eo l“)

constitute an ss-map I = (In): E - E' iff the condition
81(fnx10) = 1051 over eo*Eo
is fulfilled; here ?1 stands for the maps 51(11,1‘;0)"1 induced from «¢,.

3.7 Proof of 3.4.1. According to lemma 3.2, we know how to reconstruct

the ss-I''~bundle E from EO and the product ?1 = Mgt r * (o “)Eo » E,.
’

It remains to observe that the conditions (i) - (iii) of the lemma cor-

respond precisely to the conditions (i) - (iiil) of definition 3.4. [

We reserve the symbol Wy for the I''-structure on NI ~ that corres-
ponds to a morphism L: I' —T',

3.8 Morphisms of groupoids ‘form a category, in which the identity

I =T 4is represented by TI' itself, and the composition T DI F'E* r"

is given by the I'"-bundle (cf [ 10])

L'°f := I xp,L' = I « T 'Athe diagonal action of T')

(a,n)

Any two groupoids T and T' are said to be equivalent (notation
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I s T') if there exists an invertible morphism (an equivalence) of T
in I°'.

3.9 Remarks. 1. A simple criterion [10] of invertibility of a morphism

LZ: T — I'* which says that the morphism is invertible iff the TI'-action
makes I a principal I'-bundle over units of TI' (then the inverse mor-
phism is represented by I with the transposed actions of the groupoids)
allows one to treat the actions of the groupoids in a more symmetric man-
ner. In particular, it is somethimes more convenient (especially, when
the groupoids are groupoids of germs) to represent a morphism T — T'
by a left principal TI''~-bundle equipped with a (right or left)r-action.

2. As shown in [10], for any foliation F of a manifold M and an
arbitrary complete transversal T, the canonical FF'T-bundle EF,T over
M endowed with the PF-action (see I.2.4) establishes an equivalence of
the graph PF and T

F,T*

3.10 Like in the classical situation (cf[10]), every morphism L: ' — I
transforms any I'-structure o on X = (Xn) to a I''-structure I, w on
X; by definition, if w is represented by an ss-I'-bundle E = (En),
then I, w 1is the ss-T'-structure represented by

L,E := (E )

n “r“ nzo0
where the structure operators are induced from those of E.
3.11 Turning back to the bijective correspondence
w Lt T — f' T Wy - a I''-structure on NI' *
described in example 3.4.1 and 3.7, we can actually prove what follows.

Proposition 3.11.1. (i) For any groupoid T, the I'-structure wp on

NI' corresponding to the identity morphism TI: I' — TI' is the one repre-
sented by the universal ss-T-bundle NI - NI, where T = (N TI),

nnr = {(go,...,gn) €Tx ... xT; algy) = ... = a(gn)}.

the projection is given by the maps
- -1
nnr 3 (90"”'911) - (9091 1!'--lgn__1gn ) € Nnr

and both the structure operators and the T'-action are the classical ones
([51). ‘

(11) For any two morphisms of groupoids IL: ' —~T' and IL': ['—T"
there is

Lywp = Wogpes
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Proof. One has NOP = T with the standard right action of TI. A com-
putation of the corresponding left r'-action,

_ (".1:0)'1
fgf ——2—

r

“(egsm) 1

gives
(9,94) = (994.9,) = 99,

as was to be shown. As for (ii), we recall that Wy is represented by
the ss-I''-bundle ((eon)*ﬁ) with the structure operators given by lemma
3.5. Consequently, Z;mz is represented by the ss-I'"-bundle ((eon)*ZxFE')
Qne can now easily see that the isomorphisms (eon)*z er's (eo“)*(z xPZ')
preserve the structure operators (actually the crucial 51).

3.12 Important examples of morphisms of groupoids are supplied by mor-
phisms of pseudogroups of diffeomorphisms (cf I.2.6). Namely, such a
morphism ®: G — G' yields functorially a morphism

el ¢: T — T
of the corresponding groupoids of germs, where
ol := {{o,x]; 0 € &, x € Uw}

is a manifold of germs (with the sheaf topology and the suitable differ-
entiable structure), and the groupoids act by composition of germs.

We note that ¢l is a left principal TI''-bundle endowed with a right
action of T (cf remark 3.9.1).

3.12.1 For any TI'-structure w, ® transfers w to the I''-structure
¢, := |®l,w. Let us note here that w defines a foliation iff the in-
duced TI''-structure o,w defines a foliation. If this is the case, then
the distinguished submersions for ¢®,w are locally of the form ¢°v,
where ¢€® and <y ranges over the distinguished submersions for w.

3.13 In IV below we extend the notion of a morphism to ss-manifolds in
such a way that

1° a morphism NI — NI'' (again a half-arrow) means exactly a mor-
phism T — T*;

2° a T-structure on any ss-manifold X means a morphism X — NT;

3° the transformation of ss-I'structures to ss-T'-structures along an
arbitrary morphism of groupoids I — I'' corresponds to composition of
morphisms of ss-manifolds.

The new category happens to be especially useful while studying semi-
simplicial foliations.
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III. Holonomy in the semi-simplicial context

In this paragraph we modify the notion of the holonomy groupoid in
order that the minimality property I.2.9 be valid for ss-foliations.

1.1 Let us fix a g-codimensional foliation F of an ss-manifold M

and consider an arbitrary complete transversal .i: T ca X, for F1 (cf
remark 1.4.2 below). Clearly, the disjoint union Tou T1 of two copies
of T immersed in x0 by the map eoi u.s1i is a complete transYersal
for F0 (in fact, so are both T0 and T'). Indeed, for any leaf L of
F, there is a leaf L of F, such that nyL c L; since both eof and
e1ﬁ contain L and are contained in a leaf of FO, the equalities
(3
®

oﬂ =L = gL hold. Consequently, if L n 4T = 0 then also L n ¢
0, for i = 0,1.

iLT .

We denote by GF ot the pseudogroup (of diffeomorphisms of To
4

LIT1)
generated by the holonomy pseudogroup GFn TOT? and the identification
0 1 :

map id}: T~ T . Finally, let GF T stand for the pseudogroup
r

= . 0
GF'T = {T € GF'TOUT].I domain Y in‘age Y © T }.
Lemma 1.1.1. (1) Thé inclusion To c*.To LJT1 generates an equival-
ence of pseudogroups

<

i ¢ G G

F,» — Yf,poum1*

Furthermore, if T <. X, is another complete transversal for F

1'
then: (ii) the holonomy translations hc % of T in T along the paths
’
in leaves of F generate an equivalence @: G - G, =
1 70 ol F,T F,T _
(11i) the holonomy translations h Uil of T T in T 4T

c,TouT?
along the paths in leaves of F0 generate an equivalence @': G
’

-,

— GF',i,-ou,i,-l; and
(iv) the diagram

F,T Gp,po 2

L] L L ¢’

Sk,1 o OF,Foum
commutes.

Proof. (i) The fact that O is invertible is a direct consequence
of another one,that GF pord contains the identification map
?
ia}: ! . TO; clearly, the two diffeomorphisms

0 17""0 id, 0
T gyT
N1 _id) 0
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T
generate a morphism ¢ : GF,T°uT1"A'GF,T inverse to ¢

TI
We left the part (ii) for a mome?t and first prove (iii). Since the
T .. To,T?!
holonomy translations h c,T *° hc T T2 establish a morphism GF ,TOyT!
—_—

Fo,T°uTl'it sufficies to check (cf 1;2.6{(ii) )} that they transfer

id! to an element of GF,T°uT1 (invertibility of the resulted morphism
follows then from the symmetry arguments). So let ¢ and c¢' be any two
paths in xo such that each one is contained in a leaf of Fo, and that
c(0) = cot and c¢'(0) = c1t for a te€T c*.x1. Moreover, we require
both the paths to have their ends in T0 o T1 C» XO' and examine the dif-
feomorphism h ¢! g (hc T) -1 defined over a neighbourhood of c(1),

in To LST1. If one choses a path C connecting t to a point of T

in a leaf of F1. then one immediately gets

=)

hoi,3 448, 7= n S e Pecpiatn, o D7 A -
’ ! (e,C) «c',T 1! o-’ c +(e,0),T
In view of 1I.2.1, the holonomy translations along ¢,C or ¢,C

0 1
are the same as those. along C in X, (up to the identification maps);

this means the composition

T -1 <0 =1

T 140
h = idl (h C,T) : T -+ T

g1C,T £q

is just the map id]. Consequently, being a composition of three maps
from GF,T°uT1 the examined diffeomorphism is an element of the same
pseudogroup.

Turning back now to the assertion (i1ii) we note that the domains of the
holonomy translations from - T to T (in x1') cover the whole T. Fur-
thermore, since one has h = h go for ¢ in x1, it fo%lows from
the above proof of (iii). that the collection of all the h 's trans-
fers the subset GF,T c GF,T°uT1 to the subset GF,f
thus generates a morphism &: GF.T — GF,T such that the square of (iv)
commutes. Evidently, ® must be an equivalence.

c GF,T°uT1' and

Definition 1.2. We shall call GF,T and GF'TouTlrespectively the
(reduced) holonomy pseudogroup and the non-reduced holonomy pseudogroup
of F with respect to the complete transversal T c» x1. Similarly, the
corresponding groupoids of germs PF,T and FF,T°uT‘ will be called
the holonomy groupoid and the non-reduced holonomy groupoid of F with
respect to T.

1.3 The lemma proves not only that the holonomy pseudogroups with res-
pect to different transversals are all mutually equivalent,but also
points, each time, at a particular canonical equivalence. Since no one
invariant form of the holonomy pseudogroups or groupoids is known (at
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least to the author; for standard foliations such a role plays the graph)
let us put emphasis on the consistency of the canonical equivalences. Na-
mely, for any three complete transversals T, T and ¥ <, X
responding triangle

1 the cor-

————— ~e

' GF'T =

G—/”G
F,T F,T

commutes; clearly, the same holds for any such triangle composed of
either reduced or non-reduced holonomy pseudogroups and their canonical
equivalences.

In what follows, we generally formulate our results in terms of the re
duced holonomy pseudogroups or groupoids, whereas the non~reduced notions
appear to be more convenient for the proofs.

1.4 Remarks. 1. It can be shown that if one choses a complete transver-
sal T for Fn’ n arbitrary 2 1, then maps it along all the boundary
maps into x0 and, finally, extends the corresponding holonomy pseudo-
group of Fo with the help of all the identification maps, then the re-
sulted pseudogroup is equivalent to the holonomy pseudogroups of F.

2. Like in the standard (ie non-semi-simplicial) case the orbits
6(0-1(t)), t € T, of the holonomy groupoid PF,T are in a one-to-one

correspondence with the leaves of F; the correspondence being given by
the assignment

- . (K.)

Bla™ (£)) " X T

where Kt denotes the equivalence class containing the leaves of Fo
that pass through eiity i=20,1 (cf I1.2.5). Consequently, we may call

T a complete transversal for F.

In order to justify the name: holonomy pseudogroup or holonomy group-
oid, we shall now consider arbitrary groupoids of germs related to the
foliation F as in I;1.10.

Definition 2.1, Let T be an arbitrary groupoid of germs such that
dim T = codim F. An ss~I'-bundle E = (En) over X defines the foliation
F of X (and so does the ss-T'-structure represented by E) if the I'-
bundle Eo - xo defines Fo.

By I.1.10 the condition means that the target map Bo of Ey to the
units of I' is a submersion, and the foliation n*FO of Eo coincides
with the foliation induced by Bo from the pointwise one. Clearly, this

implies that for ary n the I'-bundle En - X, defines Fn.
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Our main result is thg following one.

Theorem 2.2, Let F = (Fn) be an arbitrary foliation of an ss-mani-
fold X = (xn). For any complete transversal T c» X there exists a

1

canonical principal T -structure WE defining F on X and such
’

that

F,T
(1) if T is any groupoid of germs and an ss-T-structure w on X
defines F, the there is a canonically induced morphism VY = Wg of
GF T in G, the pseudogroup underlying T, such that
7

w = Y*“F,T

(ii) if T o X, is another complete transversal for F, then the ca-
nonically induced morphism

— G 7

is the canonical equivalence of holonomy pseudogroups (cf 1.3);
(iii) if w and T are as in (i) - (ii) and, moreover, A: G — G’
is an arbitrary morphism of pseudogroups, then the square

Ay
T
commutes, ® being the canonical equivalence.

¥

Definition 2.2.1. We shall call the morphism Wgz GF > G construct-
’
ed in the proof of theorem 2.2 (i) (cf 2.4 - 2.6 below) ,as well as the
composition of Wg and the canonical equivalence G G the

F,To0uT! ™
holonomy morphism for F with respect to T.

F,T’

Our proof of theorem 2.2 will consist of several parts (cf 2.3 - 2.7
below) .

2.3 WeAbegin the proof with a construction of a PF TouTl-structure
. [
u# P canonically associated with F. Namely, let us consider a (left!)
[
PF'TouTl-bundle over Xo,

(2.3.1) E

: ’ E

which is the result of an extension of the structure groupoid of

EFo TguT;(the canonical principal bundle associated with Fo and the
’

transversal T° L!T1 > Xgs cf I;2.8).
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and the
To do that,

In view of lemma II;3.5, we may let EF n % (con)*E
’
question is how to construct the operator T,: E - E
we write an arbitrary element of

F.0

1 F.1 F,0°

E = E

Fo1 ™ BF0 “(me ™

in a special way. Namely, for any x € x1 we choose a path ¢ in a lea
of F1, connecting x to a point of T c, x1. Then the path £,C  con-
nects €% to a point of 'I‘0 < Xg» and the germ [Heoc'T.,£OX] (cf
I.2.8) is an element of EF o, Tt Consequently, any element of

-1 0

n (eox) c EF,O is of the form g[Haoc,T°'€0xl for a g € rF,T°uT1

such that al(g) = c(1) € TO. We set

€
1 1
(2.3.2) E,_.'1 3 (g[Hsoc,T°’80x]'x) — g id°[Hel,T"e1xl € EF,O

where id} stands for the suitable germ of the identification map. The
resulted map ?1 is well-defined. Indeed, if <¢' is another path in x1
starting at x, then (cf I.2.8)

(H e,x] = h - (H jrt.x) for 1i=0,1,
eic',Ti' i ¢, lc 1*c'),T1 e, TH Y
where, by I.2.1,
1l - = - 1
iah, (c7Tery, et T Pe e Teery, o0 140

as both the holonomy translations are equal to h -1 . Now, an equal

1
ity c =x¢',T
9[He°c,To,eOX] =g [Hcoc',T°"0xl

implies g = g'h o, and thus the equalities

eo(c_1*C'),T

g ida}ln €41 = g'id}h -1

£.X
¢,c,T?!’ gy (c *c'),T’tHclc,Tl' 1 ]

= glid%[HC;C',Tl,e‘lxl

prove correctness of the definition (2.3.2). Clearly, ¢
equivariant and the map it induces on the bases is €, 1 0

Let us show now smoothness of ?1. Namely, if x is an arbitrary
point of X, and ¢ 1is a fixed path in a leaf of F1 connecting x

to a point of T, then it sufficies to prove that ?1 maps the section
of EF,1'

1 is I‘F,'.l"’t..a'll‘lm
s X, » X..

g v
y —* ([Hsoc'To,z0y3,y) for y in a neighbourhood of x € X,,

to the smooth map y — id%[Hclc.T1,c1y}5
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There is a neighbourhood U of x such that any point y € U can
be connected to a point of T by a path Y continuously depending on

y and contained in the leaf of F1 through y (with the condition
X = c) . Now the paths eocy as well as c1cy continuously depend on

y, and it follows from the definition I.2.8 that for any y in a (pos-
sibly smaller) neighbourhocod V <« U of x, one has

(n v i,siy] = [(H i,siy] for i = 0,1.
ct, T

€ €.c
i i~’

Consequently, if y € V, then

e oly) = 51([Hsocy’To,coy],y)

1 - 1
id°[HelcY,T1'81y] id°[H51c,T1’€1y]

as was to be shown.
We verify the conditions (ii) - (iii) of lemma II.3.5 (according to
I.1.8 we use the notation for left principal bundles).

"(ii)" For an arbitrary x ¢ Xo let ¢ be a path connecting

to a point of T in a leaf of F,. Then

npX€X,

?1([H x),e0x) = id}(H X

g,c,T? e,c,T?

= 1
id°h(€oc)"1*(81c),T°uT1[Heoc,T"'X]'

By choosing a local transversal R c, X, for Fo at x, we get

: R R .=
B ieoe) ta(ere),m0umt = By o preX]B, oonoix]

where (cf I1.2.1) both the holonomy translations in x0
noR '
hc,T . a holonomy translation in x1. Consequently, the above composi-

tion of germs is a germ of the identification map To -+ T’. In view of
the T o. mi~equivariance of ¢,, the resulted equality
F,TouT 1

are equal to

z-‘([neoc'TOIX]lzox) = [HCQC'TO Ix]

immediately implies (ii) of lemma II;3.5.
“(iii)" We fix an arbitrary element x of x2 and choose for each

i=20,1,2, a path cy connecting the point 4% to some point of T
in a leaf of F1 (see "figure 3), Let e = [H

has (e,;ox),(e,c1x) € EF,1' and

coco,T°'°0°0x]' then one

eqlesggx) = 1aj(H x)

€10, T2 8180



whereas

eqlereqx) = eq(B iy o )=2u(g,c,) 10 He o, , 07 E0E1X] 0 84%)

id} [H x].

h(cocl)'l*(zoco) g,c, 12516

According to (2.3.2), we get also

€, (2, (e, e4x) ,€,x) = ‘1(id%h(e°c2)"*(a1c°),T°uT1[“z°c,,T°"o‘zx]’CZX)

= iddh i o) Tia(e,c,) ,ro m YA H, o gqE0X)

and the condition (iii) Of lemma II.3.5 reduces to the equality

(2.3.3)

- 1 -
h(cocl) 1*(5000’ ,TO 1d°h(tlcz) 1* (C;cl) OTI
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1 - i Al
= idoh(cocz) 1*(5100’,T°uTlldo

which remains to be shown. Keeping this goal in mind, we fix a local

transversal Q <, xz for the foliation F2 at x. This allows us to

consider all the holonomy translations hci: siQ -+ T, 1 =0,1,2, as well

0
as €0Co’ hcoclf €q€gQ > T, and h€1co’ hCoCz' €600 T etc (for

shortness we use abbreviated notations) which are, by I.2.1, subject to
the relations (at the level of germs)

- -1
heoco— id,ohcoo(eoleoQ)

_ -1
heocl- ido°hco°(€0‘€10) etc,

idi standing for the identification map T - pt as i

-~

L}

0,1. Conse-
quently, the left-hand side of (2.3.3) is a germ of the composition

1,-1

(1dgeh )

-1 o ° - 0idl o
o(eOIEOQ) ) (14, hc1 (€0|51Q) idg

0
o o -1 ° ° -1, -1
(idy°h (e le,0) 1) (iay he, (e le, 07"

_ -1 -1 -1 -1
= idohco(eolcoo) (60l81Q)(€1lc1Q) (e1lezQ)hc2(id1)
whereas the right-hand side is a germ of
1 -1 . -1 ‘1 s a1
idg (i, h, (e,1e Q) "(idoh  (eplen0) )7 ids
_ -1 -1 -1
= idohc°(51|500) (colszo)hcz(idl) .

Since now both the intrinsic compositions of the ci's are identical

and equal to the map €2Q 3 822 ad soz € SOQ , the equality (2.3.3) holds.
This finishes the above construction of an ss-Tr TouTl-bundle E! =
14

F,T
= (EF n) associated with the foliation F = (Fn) and the transversal
’
T X1. The fact that EF T defines F on X is obvious. Let w% T
’ '

denote the corresponding ss-I‘F TouTl-structure; we end the construction
t4
by setting

. T ]
W p 3% aep g
T
where ¢7: GF,T°uT1 — GF,T is the canonical equivalence.

2.4 We consider now an arbitrary groupoid of germs I such that some
ss-I-structure given by a (left) principal ss-T'~bundle E + X, E = (En),
defines on X the foliation F. The submersions of subsets of Xy to

the manifold of units of T' which are distinguished by EO can be

restricted to 0 L!T1 < Xys we claim that the resulted collection of

diffeomorphisms of open subsets of TO‘L;T1 intc the units of T
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dgenerates a morphism

¥': G — G

such that w = ?;w; T Before proving this, we first give a cdcycle des-
’

cription of an arbitrary ss-I-bundle.

Definition 2.5. Let T be an arbitrary groupoid, X = (Xn) an ss-ma-
nifold, and U = {Ua' a € A} any open covering of XO. A r-cocycle on
X with respect to U is any collection {Yab' (a,b) € A x A} of maps

-1 -1
Yab‘ X1 o> 51 Ua n so Ub -+ T

such that

(2.5.1) Yab(82X)ch(cOX) = Yac(e1x)
-1 -1

for x € (5151) Ua n (5180)

indices.

-1
Uy n (eoeo) 'Uc and for all triples of

2.5.2 Any T'-cocycle vy = {Yab}, as above, determines a (right) principa
ss~-I'-bundle over X. Indeed, when applied to nghoX € X, the condition

(2.5.1) implies that {Yabono} is a I'-cocycle on xo. Consequently, -
the corresponding I'-bundle

= ) U % T/~
0 a (Yaano.a)
where

(a;x,9) v (b;x',g') iff x=x'€ Uan Ub and g'= yba(nox)g,

together with the map

—

€
> o= . . - Y
E, : x1 X(eo’“)Eo E) (x,[a,cox,g]) 4 [b,a1x,yba(x)g] € Eo

where the braces "[ ]" stand for the equivalence classes and b € A 1is
an index such that Ub 3 €%, fulfill the assumptions of lemma II.3.5:

“(1)" If ¢,x € U, N U, then one has

2,~-1

-1
n X € (51 ) Ub' n(c1eo)

2, -1
U, Nley™) U,

and the equality yb,b(sznox)yba(eonox) = Yb'a(c1“0x) implies
[b;€1x,Yba(x)g] = [b';£1x,yb,b(noc1x)yba(x)g]
= [b';e1x,yb.a(x)g].

Hence ?1 is well-defined (its smoothness andl-equivariance are
obvious).
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(11) If x € U, and [a;x,9] € Eg, then

€y (ngx, lasx,g]) = [ase,n x,Y__ (N x)g)

= [a;x,q].
(iii) If x € (¢ 2)-10 n (e.¢ )-10 n (e 2)-10 and [c;e.e.x,9] € E!
: 1 a 170 b 0 c i Rl R 0’
then
81(81x,[c;8050x,g]) = [a;e1e1x,yac(e1x)g]
whereas

?1(52x,?1(eox,[c;cocox,g])) ?1(czx,[b;e1cox,ybc(eox)g])

[a;s1ezx,yab(ezx)vbc(eox)g].

In view of the lemma, E! and ¢ give rise to an ss-T'-bundle EV+ X.

0 1

Lemma 2.5.3. Every principal ss-T~bundle E + X is isomorphic to a
bundle EY, where vy 1is a I'-cocycle on X with respect to a suitably
chosen covering U of X

0.
Proof. Consider any collection of sections 0,¢ XO: Ua -+ EO such
that ( = {Ua} covers X,. If x € 51-1Uan 50-1Ub then the elements

oa(ﬂ1x), ob(eox) € Eo are defined. Since there are canonical isomor-

phisms
;ﬂ.61) (m,e4)

%* g *
€1Eg E > €0E0

one can compare the inverse images (ﬂ,c1)'1(x,ca(s1x)) and

(ﬂ,ﬂo)-1(x,ob(eox)) which are in the same fiber of E Clearly, one has

1
(2.5.4) ‘""o)-1(x'°bf°OX)) = (ﬂ;a1)_1(x,0a(e1x))‘Yab(x)

-1 -1
for a yab(x) € T'. We claim that the maps Yap® €4 Ua Neg Ub + ' form
the desired cocycle and that the cocycle condition (2.5.1) is just an
alternative description of the commutativity observed in II.3.3. Indeed,
any element x of (r:12)-1
elements of EO: Oa(a1g1x), ob(e1sox), and oc(cocox), six elements of
E,:

(; € )-1(8 x,0 (€ e.%x)), (7,€ )-1(e'x ( )),: (w )-1( x,0 (¢ x))
"0 07 Tctbp X! e 1WaEqd REHATp 18 EgRIT s TTaEg] 184 XT5 1808

-1 2, -1 ,
Ua n(c1eo) Ub n(e0 ) U, determines three

etc, and three of EZ: (n,e1e1)-1(x,ca(c1c1x)), etc. Starting from the
equality (in E1)

(ﬂ.°1)'1(61x,0a(6161x))vac(€1x) = (n.so)'1(=1x.oc(eoc1x))

we get in E, (cf II, diagram (3.3.1) )
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-1
(ﬂ.e1c1) (x.aa(e181X))YaC(e1x) =

(mre) ™ ix, (m, ) TN (e X0, (6,800 Y, (64%))

(mre) ™ 0k, (0,800 ™ (64%,0,(£8,%)))

=1
(“l£081) (X:Oc(5051x))-
In a similar way, we check the equalities

(n,e,sz)“‘(x.oa(e1c2x))yab(e2x)‘= (moege,) "' (x,0, (g0x))
and

(e e) ™ (x,0p (66000 )Yy (80%) = (M, 808007 (x,0,(£080%)) .

Since 5050 = 6081, 6180 = eoez and 8181 = 8162, this implies

Yab(ezx)ch(eox) = Yac(e1x)'

It remains to indicate an isomorphism between E and the reconstruc-
ted ss-T'-bundle EY. Clearly, when applied to Ng¥Xs X €'Uaﬂ Ub’ the
equality (2.5.4) reduces to

oy (x) = o_ (x)Y,, (nyx)

what means that {Yabono} is a cocycle describing E;. In other words,

the map 1
Y

E, 3 [a;x,q] -9, o,(x)g € E

0

is a well-defined isomorphism. The only extension of IO
I: EY - E must be of the form I = (In), where In is the iso-
morphism id!Io (n,don)'1

Y =
.- ———— -‘——‘—_’ - . e

to an ss-map

and by corollary I1.3.6, it sufficies to check the commutativity relatic

- -1 -1
. €
Iy8y = €4I,. For x €81 Uaﬂ ¢, U, and (x,[b; 0x,g]) € E,, one has

eq, (%, [bregx,g]) = &, (m,e0) " (x,0, (55x)q)

n

s1(n,e1)'1(x,oa(e1x))vab(x)9

oa(s1x)Yab(X)9

10?1(x,[b:cox.9])

as was to.be shown.
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2.6 Now we turn back to our assertion that the restrictions to

To L|T1 < XO of of the submersions distinguished by EO generate a mor-
phism GF,T°uT1 — G. The fact that the restrictions form a morphism
GFo,T°uT1 — (G is a part of the minimality property in the non-semi-
simplicial case (I;2.9) and follows from the relation I(2.4.1). In order

to prove that the morphism can be extended to GF 0, we consider any

Tl
I'-cocycle } Yab' X1=e1 1U n £g 1 b + T assoclated with the exam-
ined ss~P-structure. If an arbitrary but fixed point t of T <, X, is
-1 -1
in €, Uaﬂ eo Ub' then clearly
2,.-1 -1 2. -1
and

2, -1 -1 2, -
n1t € (51 ) Ua n(c1so) Uy n(e0 ) Uy,

Consequently, the cocycle condition (2.5.1) gives

Yaa(sznot)Yab(t) = Yab(t)
and

and it follows that

(2.6.1) yab(t) €T is a germ of the locally defined diffeomorphism
1
(Y aaN g TV e byppngegl T 7
In other words, the diffeomorphism, which is precisely the map

Yaa OIT )°idlo(ybbn0|T ) -1 (see figure 4)

Yoo

Yaullo |2/

Figure 14,

belongs to G, the pseudogroup underlying T . This concludes our asser-

tion; let Y' = ‘l’ F , T LT ~> G denote the resulted morphism of pseudo-
groups.
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2.6.2 We have to find an isomorphism between E = (En) and the ss-T-
bundle

YIEL . = (YLE

F,T F,0 x(w,aon)xn)

(cf 2.3; we use the convention of I;1.8 for left principal T'-bundles).
At the zero level, one has

Y!'E =|yr|x (r 0 m1X E 0, m1)

**F,0 PF,T"UTI F,T%uT I'Fo ,T“uTl Fo,T uT

il‘l"lx E 0, ml
Py, moumt Fo T 0T

(with the multiplicative notation). We identify Eo with the correspon-
ding I'-bundle of germs of the distinguished submersions (the canonical

form of Eo, cf I;1.11) and define Jo: EO - W;EF 0 to be the map
’

(2.6.3) - [¢,x] » [p]1° u ' ()] H,,x]

where ([¢,x] is the germ at x € x0 of a submersion ¢ , ¢ 1is any

path connecting x to a point of 0 U ! in a leaf of FO' and

wit® wrl,e(n = h t16,x1) |70 4 T is the image of [¢,x] € E under
the holonomy translation hc (hence a germ [y,c(1)] of a distinguished

submersion) restricted to the transversal. If ¢ is another path from

X to T0 u T1, then

(Bgox] = hoca,g qogpr (B x]
and

1 1

0 0
ho([e,xD) |77 u T = h -y =(h [é,xD [T LT

_1*3
I I
= (hc[¢'x] 'T o T) 'hc-].*'c"TﬂuTl

by I(2.4.1). This proves correctness of the definition of Jo. smooth~-
ness of that map follows from the same argument as the one applied in
2.3. Now JO is a I'-equivariant map (because hc acts I'-equivariantly)
inducingthe identity map on Xq0 hence an isomorphism. In view of co-
rollary I1I;3.6, Jo can be extended to an isomorphism J: E -+ v;Ef.T
if the commutativity relation ?1J1 = Joeq: By > YiEp o holds, J,

0"1°" ™1
standing for the map
Jnxid
4 ]
B1 % By *(m,e01®1 — " YBr,0 X, %1 * ¥aFF 0
We fix an arbitrary element e of E1 and a path ¢ connecting
X =ne toapointof T c.....x1 in a leaf of F1; then ¢,c connects

£,x to ™ e, Xq, for 4 = 0,1. By definition
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= 1 .
Jotqe = (h, (eqe)IT) - [H, ,e4%]

whereas (cf 2.3.2)

- - 0 N .
e1J1e (hcoc(eoe)lT ) idotﬂelc,c1x].

it remains to show the equality
0 1 o 1
(2.6.4) (heoc(coe)lT ) idg hclc(c1e)lT .

To do that, we once more take advantage of lemma 2.5.3 (modified suit-
ably for left I'-bundles). So we fix a covering {Ua; acEAa} of x0
-1 -1 .
a I'-cocycle {Yab}' Yap? Xq 2 €4 U, N ey U » T associated with the
examined ss-T'-structure. Since the submersions Yaa"o are distinguished

for Eo and since E1 g ai*Eo for i = 0,1, we see that among the dis-
tinguished submersions_for E1 -?here are Y,.Ny¢g YaaNotq "
a €A, If x = ne € £, Ua n £q Ub then, after the identification of
E1 with its canonical form (cf I;1.11), one may write

and

as well as

e = glvppngeg X] = 9t [y ngeqsx]
for some g, g' € I', and the double description of e implies

gge = glvy,ng s gpX]
and
= '
€, = g'[y, ngreqx%]
(cf I;1.12). In order to find a relationship between g and g' we ap-
ply the canonical isomorphism I(1.11.1) to the equality

-1 . -1 -1
(eo.w) (ab(zox).X) = Yab(x) (eq,m o, le x),x)
obtained from (2.5.4) for left principal bundles. The resulted equality
- -1
[YppNgtorXd = Yy (%) [¥aaotq %]
implies g = g'Yab(X)' Consequently, (2.6.4) reduces to

0 1
(2.6.5) Yab(x)'(h;,c[*bb“O"ox]‘T yid} = helc[Taan0’°1x]|T .

Now we take any local transversal S <., X, for F1 at x and apply

the relation I(2.4.1). It follows that the left-hand side of (2.6.5) is
a germ of the map

€oS, -1

(x) ° o - (x) S, -1
Yab '(Ybbnoltos) (hc.c.T’ ) 1d% Yab Yban(COls)(hc,T)

.1a!



whereas the right-hand side -- of the map

813)—1 S. -1

- edig?
(Yaa"0!51s)°(hcxc.T1 - Yaa"0(51's)(hc,T) id

where Yég) € G is a diffeomorphism representing Yab(X)' and id?! is

the identification map '1‘1 + T. According to (2.6.1) the two maps yield

the same germ.

To conclude our proof of theorem 2.2(i) and complete the constructior

we define the holonomy morphism V¥ = W$: GF 7 — G to be the composi-
14

tion of V¥': GF,T“uTl_; G and the canonical equivalence QT: GF,T —_
GF,T°uT1; by the equality

= T - =
V*NF,T = (Yabp,) e *w%'T = Yup p=w
we are done.

2.7 We come to the proof of theorem 2.2(ii) now. By the above construc-

tion, the morphism .
w ——

F.,T,
T -

¢'=y GF,T el ¢}

F,—'i‘-ou.'fl

is the composition of the canonical equivalence GF > GF,T°uT1 and
’

the morphism V': GF,T°uT1—; GF,T°uT‘ generated by restrictions to

0 1 _ . _
T o T of the distinguished submersions Hc,T“uT‘ for wF,T" Since

the restriction of Hc TO,T1 to the transversal T L|T1 is a holono-
4
my translation along ¢, we see that VY¥' as well as ¢' are both the

canonical equivalences. To and the proof of (ii) it sufficies to show
that

m—
F,T G —G

Yo "3 Gp g

F,T

is the composition of ¢' and the equivalence QT: GF §¢u51—*
1

This will clearly follow from theorem 2.2(iii) (cf 2.8 below) as

wF,T is, by the construction, equal to @T

F,T°

Wr me

*7F,T

2.8 The last step is a proof of theorem 2.2(iii). In fact (cf lemma
1.1.1(1iv) ), it sufficies to prove commutativity of the modified diagrai

¢ standing for the canonical equivalence. By the construction 2.4 (and

2.6) Ao(?¥°0;1) is the morphism generated by the compositions

Ao (@|T°,T?) where )X € A , and ¢ ranges over the distinguished submer-
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sions for EO' One has to‘compare the abgve collection of diffeomorphisms
with the one generating the morphism ?E*w o & and composed of the su-
perpositions (Xo¢|T°uT1)oh, where X and ¢ are as above (cf }I;§.12;
3.12.1) and h ranges over all the holonomy translations hcl%o:%x We
shall show that the second collection is contained by the first one.

Let ¢ be an arbitrary path connecting '1‘0 U T1 to 50_L1T1 in a

leaf of FO + and ¢ any distinguished submersion over a neighbourhood
of ¢(1). By lemma I.2.4, one has (in the canonical form E of Eq)

b LY

[T LT e hy Folma,c(0)] ‘

(he-sLo,cM 170 LT

)T’ uTt,c0)]

where hc'l is the holonemy translation and ¢ is a distinguished sub-
mersion representing the germ hc-1[¢:0(1)] € ¥. consequently, for any
A € A, one has

To,T!

(X°$l60“51)° h, Fo 2= X°(¢!TOUT1) over a nbhd of c(0),
7

and thus the morphism GF poypd — G generated by the first collection
’
is the only one containing the second.
This concludes our proof of theorem 2.2.

According to theorem 2.2, foliations of ss-manifolds give rise to
some pseudogroups of diffeomorphisms, canonical ss-I'-structures, mor-
phisms, etc. We now "compute" those objects in several particular cases.

Example 3.1. X = NM 1is the trivial ss-manifold (cf II; example 1.3.1)
endowed with a foliation Fo of M; the foliation extends trivially to
a foliation F of X. If T c, x1 = M is any complete transversal for
F, then the pseudogroup 'GFo,T°uT‘ (cf 1.1) contains the identification

nap T0 + T1 {(as there is €, =¢5 on x1); hence the holonomy pseudo-
groups of F and of Fo are the same

GF,T°UT1 = GFQ,TouTl' and GF,T =GF0,T .

Furthermore (and more precisely), it follows from the construction
that also the canonical equivalences are the same. Similarly, a princi-
pal ss-I'-bundle over X is nothing more than a I'-bundle over M, and it
can be easily verified that the canonical rF,T
as the holonomy morphisms GF,T — G {cf theorem 2.2(i) ) are exactly
the same as those corresponding to M and Fo.

~-gtructure on X as well

Example 3.2. X = NI' 4is the nerve of an arbitrary groupoid of germs
I's F is the pointwise foliation of X. Let N denote the manifold of



units of T and G the underlying pseudogroup of diffeomorphisms of N.
We take T =T = X, ‘as a complete transversal for F . Since leaves of
FO are just points of x0 = N, the holonomy translations of T0 s T1
are all of the form o ‘'a, o '8, 8 'a, or 3-13 and correspond to those
parts of T where the source and target maps overlap. Precisely, the

pseudogroup GFo Ol consists of the diffeomorphisms
!
[YO.XJO - [Y1,x]0 s, X € domain YO N domain 71,
[Yo,x]0 - [71,Y;1(x)]j » X € domain y, N image v,.

etc, where Yo and Y, range over elements of G and the upper indi-
ces indicate the appropriate copy of T =T. The non-reduced holonomy

pseudogroup GF PO md is generated by GFo ol and the identification
’ 14

v.x1% = [y,x27 .

We apply theorem 2.2(i) to the I'-structure wp over X {cf II.3.11)
which clearly defines the pointwise foliation; the resulted holonomy
morphism @: GF,T°uT1 —> G 1is generated by the identity N - N re-
stricted to the transversal, ie by those restrictions of the projections
ayuyB: TuT » N which are diffeomorphisms.

Proposition 3.2.1. (i) O: Gf,T°uT1 — G is an equivalence.
{(1ii) The canonical rF'TouTl—structure “%,T (cf 2.3) on X = NI 1is
qu?l to ml0'1|' the one corresponding to the morphism of groupoids
l® "|: T fé rF,T°uT1 (cf IXI;3.7).
(iii1) If v is any ss-I''-structure defining F (I'* - a groupoid of
germs) then the holonomy morphism VY¥': G

F, 7072 T G' is the composition
’
Yo@ , where Y¥: G — G' is the only morphism of the pseudogroups under-

lying T and TI'' such that o = TR

Proof. (i) By [10], it sufficies to show that the inverses

0
N o domain ¢ 3 x N [cp,x]o € TO s W EG

and
0! 1,001 o ol
N o image ¢ 3 x — [p,0 (X)] €T , ¢ €6
of the projections generating ¢® again generate a morphism G —>
GF popl- We verify the condition (ii) of I;2.6; one has
’

1 1

@Y °(W0)- : IW:XJO - X -+ yv(x) ~'[¢,w'1y(x)l1 for Y € G

which is exactly the composition
- 1
ox1% =+ [v,x1% = ty,x)? = f0,07 v )

of elements of GF pOupl} clearly, the same holds for the maps
’

ot oy eh™T, 1= 001,
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(ii) By theorem 2.2(i), wp = o*w% p i ON applying II;3.11, one imme-
14
diately gets

) -1 1 = -1 = =
WE,p = (8 )u@yup g = (@ ) 4up = wpmaop T g

(1ii) It follows from II.3.7 that there is w = Wy
L: T —TI'. w defines the foliation F iff the target map B of the
(left) principal I'-~bundle I to the units of TI' is locally a diffeo-
morpphism; hence the only morphism of pseudogroups ¥: G — G' which
underlies I (if any; cf II;3.12) must be generated by sections of
n: Z - N followed by B. According to theorem 2.2(i) and to part (ii)
already proved,

for a morphisn

= ! ! =
W= ¥0p p T Uyragr

and we are done.

Remark., We have actually shown (cf the proof of (i) above) that the
holonomy pseudogroup GF T consists of all the diffeomorphisms of the
r
form [¢,x] - [Yy,v(x)], for o, ¢ and v € 6.

Example 3.3 Flags. Let (F,F') be an arbitrary flag of foliations
of a manifold M (cf II; example 2.4.3). We recall that, given any trans-
versals T, T' = M for F and F', respectively, there is a canoni-
cal morphism [ = ET',T’ PF,T —AFF,'T,; when considered as a PF',T'_
bundle over T, I consists of all the holonomy translations hé (prime
" ' " means: with respect to F') along paths in leaves of F', such
that c¢({0) € T and c(1) € T'. Note that in terms of the graphs (cf
II; remark 3.9.2) the corresponding morphism g — PF' comes from a
smooth map (functor) h, - hé and thus is represented by PF' with

c
- ]
the left FF action (hcz'hcz) - h! héz.

We fix a complete transversal ci: T e, M for F. As mentioned in
11;2.4.3, the foliation F'|T = {*F' of T extends to a foliation Fé
of the ss-manifold NFF,T . Now we choose a complete transversal T
for Fé in a special way described below. Let {Va; a € A} be a fixed
open covering of rF,T such that for every a the restrictions alva
and BIVa be diffeomorphisms. If ©, denotes the composition
BelalV,)"': oV, » BV, , then there is ¢ € G p and V,={lo,,t]; teaV,)
for a € A. In every set av, we fix a complete transversal

5% Ta s aVa c T;

then T :=| |T, immersed in PF,T with the help of the map

= Jtalv) e,
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is a complete transversal for Fé . Obviously, being complete transver-
sals for F'|T, both TO and T! are also complete transversals for F'

Proposition 3.3.1. (i) Given any complete transversal T' c, M for
F', the T, ,,-structure u
F',T

g on NPF T that corresponds to the canoni-
’
cal morphism [ = zT',T: rF,T —_ PF',T' defines on the nerve NFF,T
the foliation Fé . Furthermore, the corresponding holonomy morphism
with respect to any complete transversal S c, PF B for é,
!

¥Y: G.,
Tl

s = %1,
is an equivalence of pseudogroups; if S and T' are any other comp-
lete transversals for Fé and F', then the square

6

—

FiiS Fr T

Grr, 8 — Bpr a0

where the vertical half-arrows are the canonical equivalences, commutes.
(ii) With respect to the specially chosen complete transversals, the

holonomy morphism
G

FaeT > Op 0

F,T is. the-one
Te,e = Tpr T
Proof. In order to verify the first assertion of (i), we consider an
arbitrary continuous section of I. Since such a section can be obtained
by taking the locally defined projection in T onto a local transversal
for the foliation F'|T (along leaves of F'|T) followed by a holonomy
translation to T' (see fiqure 5), we conclude that [ defines the
foliation F'|T.

is the identity, and the canonical PF& T—structure on NT
’
corresponding (cf I1I;3.4.1) to the morphism ZT° pt
?

T

Picqure >

By theorem 2.2(iii), invertibility of the holonomy morphism ¥ (in
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general) follows from the particular case (ii), whereas commutativity
of the square 1s guaranteed by theorem 2.2(iii) and naturality of the
morphism IL: rF,T —_ rF,,T. with respect to T'. Furthermore, in view
of theorem 2.2 (i) the second assertion of (ii) is a straightforward con-
sequence of the first one. Thus it remains to examine the holonomy mor-
phism @: GF&,T — GF',T“' Clearly,

GF',T° = {y € GF',T“uT17 domain y, image y < TO}

and we want to Yeduce the assertion to the non-reduced case of the holo-
nomy morphism
T . — -— — -
e GF,I',,T"uTl — O, FouFr-
First of all, we shall show that ¢' is the identity morphism. By

construction, T ana T coincide, respectively, with the transversals

LJ4y: LJTy = T

and
Lleg<,: LIT, = T.

Consequently, the subpseudogroup

GF' lT"rfOuTI [~ GF,i,,T°uT1

consists of all the holonomy translations T, ” Tb' Ta < @, Ty and
waTa_» wab along paths in leaves of F'|T, whereas the identification
T T! adds all the holonomy translations along paths in leaves of F.
In particular, one has

Ops T0uTr < Opr oM
and we claim that the holonomy morphism &' is generated by (ie con-

tains) the identity map on 70 L.T1. Indeed, this is so, since among

the distinguished submersions for I there are locally defined project-
ions of T on To | T1 along leaves of F'|T; when restricted to
TO W) T1, they reduce to the identity maps. Now we prove that actually
the equality of the pseudogroups takes place. Namely, we fix an arbitra-
ry path c¢: [0,1)] + M connecting two points of F,FleeTeo M in a
leaf L of F' and denote by Q the set of all <t € (0,1] for which
there are paths c1 and c2 in a leaf of, resp., F'{T and F such
that (see fiqure 6)

Be, FouT? = Bejucyuc|r,1],F0uF" 9 fora g € Tp, go -

Clearly, 0 € Q. Let us assume for the moment that 1 € Q. Then the



Figure ¢

equality

vV . = ht —_r =
hc,T°uT1 hcl*cg,T°uTlg

0 1

holds for some ¢, and c2 as above; clearly, c1(0) = glg) ET yT

1
and ¢,(1) = c(1) € T uT'. In order to show that
' —— — —— —
hcltcz,T°uT1 € rFé,T°uT1
we consider the holonomy translation hcz r € Tp (observe that both
’ 2
ends of ¢, are in T). By the counstruction of T = L jT,, there is an
a € A such that hcz T € Va' and a path c in ava c T connecting
4
c2(0) = uhc2 p toa point of T, (in a leaf of F'|T). Consequently,
4
©,¢ is a path in BV, ¢ T connecting c,(1) = gh
¢_T_ , and we may write (see figure 7)

f
c, T to a point o

T

he, T =
=:[#%(nci(ol]

Piqure 7

, TOLTL . Ta . TOT?!
=0 w1 ® h"—l =0 =1 -
ci1%C,,T uT CT %xCy ;T LT c;*c,Ta

< a‘a .10 TOLT? _
h('DaE-l 'TouTlidlhél ‘E ,Ta G GF‘ 'TouTl

as was to be shown,
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Continuing our proof of the proposition, we shall show now that the
upper bound Top = Sup @ is an element of . Let o
a leaf of F connecting the point C(TO) to a point of T. In a neigh-
bourhood U of c(TO) on which the submersion Hco,T is defined,
every point x c¢an be connected to the point Hco,T(x) € T by a path
close to Cq v contained in a leaf of F, and continuously depending on
X. In particular, if a T € Q satisfies C([T,To]) c U, then there
exists such a path Eo connecting c¢(1) to a point of T. Let a path <¢'

in T be the projection of cl[t,TO] with respect to Hco T and
?

be any path in

Vo . = ' —_—p -
he,Fo.T2 hcl*cz*cl[T,1],T°uT1g

be a decomposition guaranteed by the property T € Q. We consider the

holonomy translation h € FF e Again, one has
14

h [wa.cz(O)] € A

for an a € A, and there is a path ¢ in a leaf of F'IaVa connecting
c2(0) to a point of T, (see figure 8)

Figure 8
Since the path cl[T,tol*co is homotopic to Eotc', we may write
h'! 2:“21 = h! Eougl
cy*c,*c|[1,1),T'WT cy*c, s wc'xcyluc| [Ty ,1],TuT?
T T m™o. .
= h! -1 , -1 8? 21 h'-l ~ a h' _ TOT1!
(9,8) " sc'xcyiac| [10,1),TOUT "8 1xc, s #(9,2),0,T, c,;*T,T,
T o T
_ae O ¢t T°uT
= g, sz, xc|l1,,1], 00T Mile, u8, 1,

where 51 = (waE)—1*c' and 62 = c51. Since c1*§ is in a leaf of

F'IT, we are done. It remains to prove that T, cannot be less than 1.
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Indeed, if it was, then a decomposition

[ —_ [ — -
hC,TQUTl ghcl*Cz*C|[To,1],T°UTlg
would immediately imply

Vo = ' - —p ==
hc,T“uT1 h(cl*c)*ci*cl[T,1],T°uTlg

for each T close enough to 71, (and > Tyl s & 3= Hc;I,T(c|[TO'T])' and
cé being a path close to c, and connecting Hc;‘,T(c(T)) to c(t)
in a leaf of F. The resulted contradiction to the maximality of
proves that Tg = 1.
We have come to the point that the holonomy morphism &': GF&,T“ufl
— GF',T°uT1 is the identity. In particular, the equality

To

G = G

FpsT F',T°

holds, and it follows from the construction of the holonomy morphisms
that the reduced holonomy morphism

o": G - — G

F'I'."T F'QEOUTI
is generated by the inclusion 70 T, By theorem 2.2(iii)
H GF.i,,-'I_' — GF,';i;o

is the composition of ¢" and the canonical equivalence GF',T°uT1—*
GF' 7o which contains the diffeomorphism 70 L,T1 5> 70 14, 70 Hence
’

® contains the superposition id: To -+ TO. as was to be shown.

Remark 3.4. Roughly speaking, the above examples can be summarized
as follows.

1° For standard manifolds and foliations the semi-simplicial construc
tions coincide with the classical ones.

2° I1f I 4is any groupoid of germs, then then the holonomy groupoid
of the pointwise foliation of the nerve NI' is T itself; the canoni-
cal ss~I-structure associated with the foliation is the one correspon-
ding to the identity morphism I' — T, .

3° 1f (F,F') 4is a flag of foliations, then for any pair T, T' of
complete transversals rF',T' is a holonomy groupoid of the ss-folia-
tion induced on NPF,T from F', and the canonical PF,'T,-structure

on NI‘F p Comes from the classical morphism [ T
’

e, Te,p = Tpopoe

In II;2.1 we have posed a problem how to compute the holonomy pseudo-
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group for a foliation F of a manifold M, starting from the foliation
induced from F on the nerve NU of an arbitrary open covering U

of M. Clearly, theorem 2.2 gives us a recipe for such a computation,
and the fact that what we get is precisely the holonomy groupoid for F
is a straightforward consequence of the general result formulated below.

4.1 Let us observe that in view of II;1.4 any foliation F of an ss-
manifold X yields a foliation Fu of the localization xu,
covering U of X, (each (X,), 1is a disjoint union of gpen subsets
of xn). Similarly, if w: E - X is any ss-I-bundle over X, and U =
{Ua} is a covering of Xqg. then the localization E"

pect to the covering

for every

-1y of E with res-

carries an induced from E structure of an ss-I'-bundle over xu. In
this way any T-structure ® on X induces a well-defined I'-~structure
uu on XU -

Proposition 4.2. Let F be an arbitrary foliation of an ss-manifold
X = (Xn) and U

{Ua; a € A} an open covering of X,. If for each

. -1 -1 . -
pair (a,b) € A x A, 4ap' Tab < &, U_ N g Ub is a complete trans
versal for the restriction of F1, then the disjoint union T = L—JTab
is a complete transversal for F as well as for the foliation F
induced by F on the localization X, . Moreover,

(1) the corresponding holonomy pseudogroups are equal,

u

G =G

FIT Fu ' T

(1i) the canonical PFU'T-structure on xu associated with Fu and
T 1is equal to the one induced from the PF'T-structure on X associa-
ted with F and T;

(1ii) let G be a pseudogroup and T the groupoid of germ; a T-
structure w on X defines the foliation F iff the induced T'-struc-
ture w, on xu defines the foliation Fu. If this is the case, then

both the ss-I-structures give rise to the same holonomy morphism
G

AG.

F,T _ _
Furthermore, if T = | |T,, 4is another complete transversal for F, ,

then the canonical equivalences of holonomy pseudogroups

e G =

Cp,p ™G5 and G FyoT

ul
are given by the same invertible morphism.

'Proof.'Completeness of T as a transversal is obvious.
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(i) We shall prove that the non-reduced holonomy pseudogroups are

equal. Clearly, ;
GFU,T°uT1 < G, pour?

and it remains to show the converse inclusion. Let c¢: [0,1] = X

an arbitrary path in a leaf of FO such that

0 be

c(0) = COLklt € Ul and c(1) = 81Lmnt € Um

for some t € Tkl' t € Tmn' and some indices k,l1,m,n € A (observe that,

since both T° and T are complete transversals, it sufficies to con-

sider the holonomy translations from T0 to 'l‘1 only). There is a se-

quence of indices agr@q7e00s € A, a, = 1 and ag = m, and a parti-

s

0 < 11 < . €T = 1 of the unit interval such that

tion 0 = 1 S+ 1

c([Ti’Ti+1]) c Uai for i=0,1,...,s.

For each i, we choose a path cy in a leaf of the foliation (F
of (xu)1 connecting the point

4 1

-1 -1
n.c({t,) € ¢ U n ¢ U
0 i 0. "a;_, 1 a;
to a point
A t, € (X,) s t, €17 .
aja; 44 u'1 i a;a; 4
Now,
c6 = (cl[0,11])*(eoc1) connects c¢c(0) to eoLa1a0t1 in a leaf of Fo’ul'
[ =1 H
c! (c1ci) *(cl[Ti,Ti+1])*(coci+1) connects 81&aiai-1ti to

€l 5 ty,q in a leaf of FOIUa , for 1 =1,2,...,s-1 , and

i+174 i
- -1 {
C; (8105) *(cl[ts,1]) connects €1Lasas-1t5 to c(1) 1in a leaf
of FOlUm .

We claim that the holonomy translation hc T (for Fo) is identical

]
, Tt
with the composition

ol
cé,T1

Tl 0 7! 70

* & o G .
clqsT° ida hc1','r° cé,T‘ € FysTouT?
Indeed, by choosing local transversals at the points C(Ti) and lift-
ing them to nOC(Ti), i=1,...,s , one immediately reduces our asser-

tion to I;:2.1.

h id? n id! n

(ii) Again, it sufficies to compare the canonical FFU,T,HTl-structure
on X, with the PF po p1-Structure on X. We recall the notation of
’
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the proof of theorem 2.2. In view of (i), there is a well-defined map
at the zero level,

I
0
r 0, .ml X E 0 mi —> T 0 m1 X E 0 .ml
F,7%uT r(Fu)o,T?UTl (FU)Q,T wT F,T%uT FFo,ToluTl Fo ,T uT
EFu,o 39 -[Hy qo p1,x] —> g -[H o p1.AgX] € Ep

where AO stands for the projection (Xu)0 + X5 Let us consider the
following map

J
0 -1, _
EFU,O 3 e — (agiIge) € [_[n U, = ((Bp p) —ay)g
where a, is the unique index such that nle) € {ae} x U, < (Xu)o.
Clearly, Jo is PF TouTl-equivariant and projects to the identity map
’
on (Xu)o. Hence J0 is an isomorphism of FF'TQUT1~bundles. According

to II; corollary 3.6, J0 can be extended along the projection A = (An)z
Xu + X to an ss-map

. B R

(necessarily an isomorphism) if the commutativity relation

0 "

holds. So we consider an arbitrary element e of EF
ul
form

1 written in the

e = (g[Haoc,To(b;cox)],(a:b;x))

. -1 -1 _
where (a,b;x) € (xu)1, ¢ 1is a path in €g Ub n €, Ua =, (Xu)1 con
necting x +to a point of T , and g € YF IR EE One has

14

Iop ey € = Iglg id3[H . qulaiegx)])
=9 id%[HAoclc,T1'81x]
and
€ (Ig x Ajde = e (glH, o neegxl,X)
=g id%[Helklc,Tl’e1x] = I, ?1 e

as )\ commutes with the structure operators.
(1ii) We shall show that both the ss-I'-structures yield the same ho-

lonomy morphism GF T LT — G. Let an ss-T'-bundle E -+ X represent uw .
14
As Wy is represented by E“_lu and

(Bp-1y)g * LIE,IT,
the first statement of (iili) is obvious. By definition, the distinguished
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submersions for L—JEO'Ua are local sections of EO over subsets of the
Ua's followed by the target projection on units of T. Hence they are
distinguished also for EO’ and their restrictions to the transversal
generate the same morphism GF,T°uT1 — G as the (possibly larger)
collection obtained for E, does.

A similar argument proves the last assertion of the proposition. In-
deed, if T is another complete transversal for Fu, then the equival-
ence

G G

Fue™ — CF T

is generated by the holonomy translations from T to T along paths
contained in some 81-1Ua n.co—1Ub, a,b € A (cf III, lemma 1.1.1). Sinc
the collection of such translations generates a morphism V¥: GF,T e
GF,T « ¥ must be the morphism generated by the collection (larger, ip
general) of all the holonomy translations from T to T. This ends the

proof. of proposition 4.2.

IV Morphisms of ss-manifolds

Proposition III;4.2 above suggests that an ss-manifold X carries
the same information (whatever that means) as any of its localizations
xu « A hint in the same direction is also lemma III;2.5.3:

1.1 A direct verification shows that I'-cocycles {y,, ; (a,b) € A x A}
on an ss-manifold X with respect to a covering U = {Ua; a € A} of
X, are in a bijective correspondence with ss-maps X, 6 + NI' , the ss-ma

u
corresponding to a cocycle {Yab} being given by the formulas

(1.1.1) (Xu)o 3 (aj;x) -+ Yaa(x) € NOP, and

(Xu)n 3 (ao,...,an;x) —

n-2

(czn-1x),y (c2 eox),...,y (eon-1x)) € NnP

a,a

122 an-12

(v
aoa n-1"n

1

for n=1,2,... .

We follow that suggestion. This is also an attempt to deal with the
non~uniqueness problem that has arisen in II; example 2.4.3. In that
example we have examined foliated ss-manifolds of the form NFF,T where
F is fixed and T is arbitrarily chosen. The problem is: to what ex-
tent and in which sense are the ss-manifolds NPF,T as well as the
ss-foliations induced on them from F' really eguivalent.
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1.2 Given any two open coverings U = {Ua; a €A} and V = {Vi; ie€er}
of a manifold xo, we say that V is subordinate to U if there is a
comparing map p: I + A such that

V.,

for ieI.

i Up(i)

If X = (xn) is an ss-manifold, then any comparing map p: I + A

induces an ss-map Pyt XV - xu ’

(Xv)n 3 (iol---lin;x) i (p(io):---:p(in) iX) € (xu)n

Definition 1.3. Let X = (Xn) and Y = (Yn) be any ss-manifolds.
In the collection 6 of all the ss-maps Xu + Y (U ranges over all
open coverings of XO) we consider the smallest equivalence relation
" ~ " generated by the relation " ~ ", where f « g for some ss-maps
-£3 xu +Y and g: Xy > Y if there are:

(i) a covering W, to which both U and V are subordinate,

(i) an ss-map h: Xw + Y, and

(iii) comparing maps p and p',
such that the following diagram commutes.

Xu_ £
o4 h\A

(1.3.1) X, 12— v
"'#T%
Xy

An ss-morphism f of X in Y (notation f: X — Y¥Y) is any equiv-
alence class of the relation " ~".

Remark 1.4. The above notion of an ss-morphism X — Y can be de-
fined in terms of equivalent ss-maps xu + Y , where U ranges over
non-indexed coverings only (such a covering is indexed by its elements).
Unfortunately, this would complicate the equivalence relation too much.
Nevertheless, by considering only such elements of the ss-morphisms,
one can assume ss~morphisms to be sets; then the collection of all the
ss-morphisms of X in Y is clearly a set too.

Proposition 1.5. The description II;2.5.2 - 2.5,3 of an arbitrary
ss-T-structure through T'-cocycles yields a bijective correspondence be-

tween '-structures on an arbitrary ss-manifold X and ss-morphisms
X —~ NI,

Proof. Let E + X be an arbitrary but fixed principal ss-T-bundle
over X, and {vy .} and {¥..} any two I'-cocycles on X such that
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Es E = E'. we shall show that the corresponding ss-maps vy: X + NT
and ¥: X >+ NI (cf 1.1) yield the same ss-morphism X —> NI'. Indeed,
by 1I;2.5.2 -2.5.3 the cocycles correspond to some collections of sec-
tions 0, Ua + E, a € A, and 61: Vi + E, 1 € I. Clearly, both U and
V are subordinate to the disjoint union W := U w4 V, and all the sec-
tions together give rise to a I'-cocycle such that the corresponding
ss-map y: xw+ NT closes the diagram (1.3.1) (the comparing maps p
and p' being the inclusions).

Conversely, it sufficies to show that any commuting triangle of the
form
p#], Tsur
xu—"‘T"
yields an isomorphism of the ss-T-bundles E' and E' (cf 11;2.5.3).
Since for vy = {Yab} and ¥y = {Yij}, the commutativity means

- -1 -1
Yi3 = Yonpqy | ler Vi N gg Yy,
the map

E} 3 [1:x,9] > [p(4):x,9] € EY

is a well-defined isomorphism at the zero level. By II; corollary 3.6,
the isomorphism extends to an ss-map E - EY, which is again an isomor-
phism.

Corollary 1.5.1. The bijection established in proposition 1.5 res-
tricts to a canonical bijection between morphisms of groupoids and ss-
morphisms of their nerves.

Proof. Cf II;3.4.1.

1.6. Suppose now that X, Y and Z are arbitrary ss-manifolds and
consider any ss-maps f: X, » Y and g: ¥, + 2, wvhere U = {U,) a € A}
and V = {Vi; i1 €1I}. Let £ 1) denote the covering

-1
(£, V,; (a,i) € A x I}
where 0a’4’ )
fo = L_Jan: (xu)o = L__]Ua - Y .
We define an ss~map fvz xf_1V + YV as follows

(xf"l v)na( (aolio) gevey (an'in) ;x) L J (iolo -o,in:fn(ao’ooo 'an;X))e(Yv)n

for n=290,1,... .

Definition 1.6.1. (i) By the composition (gef: X —= 2 of ss-morphisr
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f: X — Y and g: ¥ — 2 represented, respectively, by ss-maps

£: Xu + ¥ and g: YU + Z we shall mean the equivalence class of the
ss-map gofV: xf_1V + Z,

(ii) An identity ss~morphism lx: X — X 1is the one represented by
the projections DXy X,

(xu)n 3 (aol'o.’anyx) — X E xn .

Proposition 1.7. Semi-simplicial manifolds and their ss-morphisms
(cf remark 1.4) form a category with products.

Proof is straightforward but rather tedious and we left it to the
reader.

Clearly, there is a canonical functor carrying any ss-map f: X + ¥
to the ss-morphism
[fl: X —™ Y
represented by the composition x{x} g X 5 Y.

Proposition 1.8. If w 4is an ss-T-structure on X and : ' — I!
is an arbitrary morphism of groupoids, then the induced ss-T'-structure

L,w (cf II.3.10) corresponds, under the bijection established in propo-
sition 1.5, to the composition

X_Q‘NP'_zaNr'.

Proof. Let w be represented by an ss-T'-bundle E -+ X. We fix a col-
lection of local sections
s

a
XODUa-—-—*EO, aEA

such that u = {Ua} covers xo, and a similar collection of sections

9y
N o Vi —

of the I''-bundle [ + N (N = units of T). Each pair (sa,ci) gives
rise to a section
-1 Sai
Xg @ (as,) V4 3 x —— sa(x)oi(asa(x)) € Ey xpL = L,E

Now, if {Yab} (resp.,{tij}) is the TI'-cocycle over X (resp., the
I''-cocycle over N) defined by the equalities

in E1: (n,so)-1(x,sb(cox)) = (n,c1)-1(x,sa(e1x))vab(x),

(resp., in I: g-cj(ag) = oi(ﬂg)~zij(g) )
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then, in the induced r'-bundle I,E, = E, x,L, one has

(mreg) ™ (3,85, (gg%)) = (m,e0) ™" (x,5, (%)) 0 (a8, (gx))

(moeg) ™" (x5, (6%)) ¥, (%) 0y (asy (£0%) )

(mye) 7 (x,5, (eqx) ) oy (s, (£1%)) By (v, (X))

(moeq) 7 (%, 8] (2,%)) (Eg4ovpp) (%)

-1 -1 -1 -1
for x € €4 (usa) v. n £g (asb) Vj‘ Consequently, the maps zijoYab

form a I'-cocycle ove; X generating the ['-bundle [_E.
Turning back to ss-morphisms, we recall that the cocycles vy = {yab}

and ¢ = {Zij} are shortened descriptions (cf 1.1) of ss-maps

Y X, - Nr and o : (Nr)v - NT'' which represent the ss-morphisms

w: X — NI' and, respectively, I: NI' — NI'' (precisely, the ss-morphism:

corresponding to w and to I ). Now, according to 1.6 Y_1

cisely the covering {(usa)-1v

YU o

VY is pre-

47 (a,i) € A x I}, and the composition

XY‘IV

corresponds to the r'4cocyc1e {zij°Yab}’ In view of the previous consi-

derations we are done.

Corollary 1.8.1. The bijective correspondence of 1.5 describes group-
oids and their morphisms as a complete subcategory of the category of
ss-manifolds and ss-morphisms.

Proof. Cf corollary 1.5.1 and II; proposition 3.11.1.

Definition 1.9. For any ss-I-structure ¢ on X and any ss-morphisi

f: ¥ — X, a pull-back ss-I-structure f*w on Y is the one correspon
ding to the composition

vy —L s x —9 s yr,

Corollary 1.9.1. Let w be an arbitrary r-structure on an ss-mani-
fold X. (i) 1f f: Y—X and (¢: 2 — Y are any ss-morphisms, then

(fog) *y = g*f*u .

(11) If f: Y > X 4is an ss-morphism and I: I — I'' an arbitrary
morphism of groupoids, then

fr(L,w) = L (f*w).

1.9.2 For any ss-map f£: Y - X the induced ss-morphism ({f}: ¥ — X
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pulls w back to an ss-T-structure on Y which we shall denote simply
by f*w .

Corollary 1.9.3. (i) If £f: Y - X is any ss-map and if an ss-T-struc-

ture ©w on X 1is represented by a principal ss-T-bundle E = (En),
then the ss-T-structure f*w on Y 1is represented by the ss~T-bundle
f*E := (f;En); the structure operators being induced from those of E
and Y.

(ii) For any ss-map f: Yu - X representing an arbitrary ss-mor-
phism f:Y¥ — X the pull-back ss-T'-structures f*u on Y, and f*u
on Y correspond to each other under the localization of Y (cf III;4.1)

Proof. (i) We fix a collection of local sections St X o Ua - EO'
a € A, such that U = {Ua} covers X. Let {yab} be the corresponding
[-cocycle on X ; according to the formula (1.1.1), the cocycle extends
to an ss-map y: Xu + NT' representing the ss-morphism w: X — NT .
Now the pull-back ss~I'-structure £f*w is, as an ss-morphism, represen-
ted by the composition

Yee1y » Xy » NT

which clearly corresponds to the I'-cocycle {Yab°f1} on Y with res-
pect to the covering £y = {fB1Ua; a € A}. It sufficies to observe

that the same cocycle comes from a collection {fosa} of sections

-1
£ U, 3y~ (y,sa(fo(y))) € faE0

of the pull-back T'-bundle. _
(ii) In view of proposition 1.11.1(ii) below and corollary 1.9.1(i),

f*w = A*(f*w)

where \: YU -+ Y 4is the projection. Consequently, it sufficies to
prove that for any ss-T-bundle E on Y the pull~back bundle A*E =
(A;En) is isomorphic to the localization E -1y - We wright down an
isomorphism I: E -1y ™ A*E explicitely, as follows

In

(E“.lu)n 3 (ao,...,an;e) —_ ((ao,...,an;ne),e) € (Yu)

E
n® (A ,mM"n
Clearly, I = (In) is an invertible ss~map commuting with the two
right actions of T induced from E.

Proposition 1.10. For any groupoid T and arbitrary ss-manifold X,
the bijective correspondence (cf proposition 1.5) between ss-T-struc-
tures on X and ss-morphisms X —NT is given by the assignment
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Wi X = ND " s, fra "

where W is the universal TI-structure on NI' represented by the ss-I-
bundle NI (cf II;3.11.1).

Proof. Let E - X be an arbitrary principal ss-TI-bundle over X. We
fix a collection of local sections 0,8 x0 ) Ua - EO' a € A, such that
u = {Ua} covers X,; the corresponding TI'-cocycle {Yab} extends to an
ss-map Y: X, - NT . In view of corollary 1.9.3(ii), it sufficies to
prove that the localization E -1 and the pull-back vy*NI' are isomor-
phic ss-T-bundles over xu . Since, for every n, Yﬁﬁn consists of
the pairs

((agsevesayix), (ggeeeasgy)) € (X)) x N T

-1

- - _
such that 9099 = Yaoal' 9.9, = Yalaz etc, one can easily see that the
maps

Y;ﬁnr 3 ((ao'...,an;x)'(go,ouulgn)) - (aol""an;oao(x)go) € (E“-lu)n

are well-defined and give rise to a desired isomorphism of the ss-r-bun-
dles.

1.11 We end the above categorical considerations by proving a proposi-
tion that makes preciée an intuitive equivalence between an arbitrary
ss-manifold and any of its lotalizations.

Proposition 1.11.1. Let X be an arbitrary ss-manifold and U =
{Ua; a € A} an open covering of Xq-

(1) The ss-morphism ([A]l: xu — X defined (cf 1.7) by the projectior
A Xy * X is invertible.

(i1) 1f f: X — Y 1is an arbitrary ss-morphism and f: xu -+ Y any
ss-map representing f ,then the triangle

[£1,

Xy
(Al //////7
P

Proof. (i) We shall show that the ss-morphism h: X —a-xu represen-
ted by id: xu - xu is inverse to [A] . Clearly, the composition
[Aleh: X — X 1is represented by A and thus equal to the identity l,.

On the other hand, the composition he [A]: xu — Xy is represented
by the ss-map

commutes.

AU id
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One has

= n,-1,-1 n,=1,-1
((Xu)l—1u>n = LJ (eg™) Ag U, N ... nley) AgU
(ao,...,an) 0 n

where every summand is a subset of

- -1
), = L Moy om0 (g™ Yy
(bo’--.)bn) 0 n

Thus an arbitrary element of ((Xu)x-lu)n is of the form

(ao,...,an;(bo,...,bn;x)), where

n, -1 n, -1
0] 0 n n

and the ss+map'ku acts by the formulas
(ao,...,an; (bo,...,bn;x)) —— (ao,...,an;x)

for n=0,1,... . We consider the disjoint union W = A_1U U{(Xu)o},

the last set being indexed by a star " * ", For n 2 0, let Hn denote

the map ((Xu)w)n + (Xu)n'

(...’ai-1,*,ai+1’... ;(bolouo’bn;x)) -»> (vnn'ai-1lbi'ai+1’ncu ;x)

where we replace all stars with the corresponding bi's. Now the se-
guence (un) is an ss-map (Xu)w - Xu such that the diagram
Xy

Ay

(x,), —=—3 x

n
id
Xy

commutes (the details are left to the reader). In conclusion, we get
helAl = 1x .
(ii) Since [A] 4is invertible, it sufficies to observe the equality

f=(£10017" .
As follows from the proof of (i), the right-hand ss-morphism is re-
presented by feid = £f.

Definition 1.12. Two ss-manifolds X and Y are eguivalent (nota-

tion X s~ Y) if there is an invertible ss-morphism (an equivalence)
X —Y,

Corollarx 1.12.1. Two groupoids are equivalent iff their nerves are.
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We now turn back to foliations and shall show that some ss-morphisms
act on ss-foliations, generalizing the action of transverse maps in the
standard (ie non-ss-) case. We begin with an important

Lemma 2.1. Let F be a foliation of an ss-manifold X. For an arbit-
rary ss-morphism f: ¥ — X the following four conditions are equival-
ent: (i) there is an ss-map ¢f: Y, » X representing f , such that the
map fo: (Yu)0 - X0 is transverse to the foliation FO;

(ii) for every ss-map £f: Yu -+ X representing f , f0 is trans-
verse to Fo;

(i1i) there exist a foliation F' of Y and a r-structure v on
X defining. F , such that the pull-back I-structure f*w defines F'
on Y;

(iv) there exists a foliation F' of Y such that for every I-struc
ture o defining F on X f*w defines F' on Y.

Proof. (i) =» (iv): We shall prove that the foliation faFo of
(Y)g = [LJU, comes from a foliation Fjy of Y,. Let us observe first
that the foliations zs(faFo) and 5?‘f5F0) of (Yu)1 are equal, as
they both coincide with f?F1. Next, for any pair a,b of indices, let
us consider the maps “6 and "8 '

3 (az;x) "

>(a,b;n0x) € (Y,), -

(Yu)o o> {a}x Uan Ub

(Y o> {b}x U nU_ 3 (b;x)

b Ny

Since

and

e n) = 1id e nt = id
1Mo {a}x U_n U, oMo {b}x U N U

b

“6 is transverse to any foliation pulled-back by €94 and na - to any
one pulled-back by €qe In particular,

£5F,{alx U0 U

(na)*sg(faFo)

b (ng) *£1F
and

£3Fo1{b}x U_N U = (ng) *e¥ (£3F,) (ny) *£2F,
and finally

ngol{b}x Uan Uy

(1aD) * (£2F 1{a}x U,N U,)

b

where ida: {b}=x Uan U + {a}x Uan Ub is the identification map. Being

b
the same over the overlaps, the foliations faFol{a}x Ua are restrict-
ions of a uniquely defined foliation F' of Yy

Our next step is the equality caF *F' on Y1. Let, again, a

and b be arbitrary indices. By the construction of F6 , the restrict
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ion

vy =1 -1, -1 -1
£6F0|81 U, Mgy Uy = (eols1 U, n g Ub)*(FélUb)

is the same as the foliation

safﬁFol{(a,b)}x 51-10 n 50-10

. , -1 -1 \
of a summand of (Yu)1, similarly, eTF0|e1 Ua n &g Ub is the same as

a suitable restriction of chaFO . Since the two last foliations are
equal, we get

over 51'10 A e )

] -
efFo = e3F alée Uy

'
0
and it remains to observe that the sets 51-1Ua n 80-1Ub cover Y1.

Let us consider now an arbitrary ss-I'-bundle E + X defining F .

By corollary 1.9.3, the bundles (fOIUa)*E0 - U_a come from an ss-T-
bundle E' » Y representing the pull-back ss~-I'-structure. If ¢g: V =+ E,
is any local section, then the target map p' of E6 into the units
of T evaluated on the pull-back section (fOIUa)*G yields

B°0°(f0|Ua) = mO(f0|Ua), where ¢ is a distinguished submersion for E,.
Now, the pull-back sections cover E6 and thus the bundle defines a
foliation of YO' Furthermore, the submersions 'wo(foan) are distin-
guished for Eé and define exactly the foliation Fé .

(iii) = (ii): Let an ss-T-~bundle E - X define F and f£f: Yu + X
be an arbitrary ss-map representing f . Reasoning as above we see that
if ¢ 4is any distinguished submersion for E, then q;ofo is again a
submersion. .Hence f0 is transverse to the foliation defined by Eo.

The parts (iv) = (iii), and (ii) =» (i) are both trivial.

Definition 2.2. An ss-morphism f: Y — X is transverse to a folia-
tion F of X , if one of the conditions (i) - (iv) of lemma 2.1 is
fulfilled; the corresponding foliation f*F = F' of Y is the pull-
back foliation induced by F and f .

Corollary 2.3.1. A T-structure « on an ss-manifold X defines a
foliation iff the corresponding ss-morphism X L. NI is transverse to
the pointwise foliation of NI. If this is the case, then the foliation
w defines is exactly the pull-back foliation.

Proof: follows immediately from lemma 2.1(iii)-(iv), proposition 1.10,
and the fact that the ss-T-bundle NI' + NI defines the pointwise
foliation,

Corollary 2.3.2. Let F be a foliation of an ss-manifold X, and
f: Y—X and @: 2 — Y be arbitrary ss-morphisms. Then, the compo-



sition feog 1is transverse to F iff f 1is transverse to F and @
- to the induced foliation f=*F . If this is the case, then the equality

(feg) *F = g*f=*F
holds.

Proof. Clearly, if f£: Y, » X and g: Z, = Y represent f and g,
respectively, then 99 is transverse to the foliation (f*F)0 iff
(gu)o is transverse to faFO’ the foliation obtained from (f*F)0 by
a localization. Consequently, the first assertion of the corollary fol-
lows from its standard, non-semi-simplicial version. The second asser-
tion follows easily from lemma 2.1 (iii)-(iv).

We are now ready to solve the problem posed at the beginning of this
chapter.

Proposition 2.4. Let (F,F') be any flag of foliations of a mani-
fold M. For each pair T, T «, M of complete transversals for F ,
let N°:‘NrF,T — NPF,T be the ss-morphism induced from the canonical
equivalence @: G

F,T'_A GF,T . Then one has

* =
No*Fp = F&

F& and Fé being the foliations induced by F' on the ss-manifolds

NFF,T and NrF,T , respectively.
Proof. Since ¢® is the composition

-1

Y5 Yo

G — GF,T g 6

F,T F,T

where both WT and VT are equivalences induced by an inclusion, we
may restrict ourselves to the case T c T . Consequently, ¢ is gene-
rated by the inclusion Te,a T , and the ss-morphism N@® is represen-
ted by an ss-map No: NrF,T - NPF,T which is just a sequence of inclu-
sions. Evidently the map (No)oz T c, T is transverse to F'|T, and
one has

(No)g(F' IT) = F'|T

which implies No*Fs = F5 . Turning back to the general case, we thus
get

*rr o * *r — Xt — = FL
No*Fp = No*N¥pFn 5 = NY§Fp 5 = Fg

where the transversality of No® follows from that of N?T = N?T°No (cf
corollary 2.3.2).
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3.3 If an ss-moxrphism f: Y — X is transverse to a foliation F of
X, and S c, Y1 and T c, X1 are arbitrary complete transversals for
F' = f*F and F , respectively, then by lemma 2.1, the pull-back
PF'T—structure on Y induced by f from the canonical one on X de-
fines the foliation F'. In view of III; theorem 2.2(i), this gives
rise to a holonomy morphism

f*mF
) ,T.
fos = ¥ 2 Gpy g ™ G

induced by the foliation from f with respect to the pair S, T of
transversals.

Theorem 3.2. (i) Let an ss-morphism f: Y —~ X be transverse to a
foliation F of X, and S,S <, Y, and T,T <, X, be arbitrary com-
plete transversals for, resp., F' = f*F and F . Then the square

fTS
F',S

F',S CF,T
commutes, ¢ and &' being the canonical equivalences.

(ii) 1£f T,T are any two complete transversals for F , then the ho-
lonomy morphism

— G

Q) gr® C,p F,T
is the canonical equivalence of holonomy pseudogroups.

(i41) If f: Y — X and (: 2 —> Y are ss-morphisms such that the
composition fg is transverse to a foliation F of X (cf corollary
2.3.2), then for any triple of complete transversals R,S,T for, res-
pectively, F" = (fg)*F, F' = f*F, and F, the corresponding holonomy
morphisms form a commuting triangle

(fg)TR

Fn
gsR\\\\\ ////)7 fos

(iv) If f and F are as in (i), then for any pair T,S of com-
plete transversals for F and f*F, respectively, and any ss-T-struc-
ture o defining F, the following diagram composed of holonomy mor-
phisms commutes. '



218 yf*o
f \SG
TS -
¥
6ra T

Here (G stands for the pseudogroup that underlies T.

Proof. (i) The equality Wp F =OuWr of theorem IIX;2.2(ii) impli
’ r
(cf corollary 1.9.1)

., _ = *
frop 7 0, (Frup p)-

Consequently, (i) follows from theorem IIX;2.2(iii).

(1i) is a part of theorem III;2.2(ii).

(1ii) We first prove the commutativity for appropriately chosen
transversals. Namely, let f£: Yu + X and g: ZV + Y be any ss-maps
representing f and g, U = {Ua} and V = {Vi}; by definition, feg
is represented by the composition

9y £

g *u

If R c, (zg‘lu)1 is a complete transversal for (F;_1U)1, then 9,
maps R to a transyersal for (Fd)1. The new transversal need not be
complete, so we extend it (by adding a suitable disjoint summand) to ¢
complete one, say S <, (¥,),. In a similar vein, we extend S trans-
ferred by f to a complete transversal T <, X, for F1. Clearly,

GF;-lu.'ﬁ < ;5 < OF,T
and the holonomy morphisms induced from the ss-maps £, gy + and fogI
are generated by the inclusions S «¢T, Rc S, and R « T, respectiv~:
ly; at the moment the commutativity holds.

(g,f) * T
oyflsr = Y5 -,
GF'g'-lul-ﬁ F,;f
3
gade 3 £ Wg T
g = l9ylsg [flzg = ¥5
Grp 8

By III; proposition 4.2(i)-(ii), the morphism

Sulgr® Cro_yy & 7 %5 7 OF 0B

is the holonomy morphism for the ss-PF. §-structure
4

*y % - = * -
IyrTupsr g = (Aegy) Tup. g
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where A: Yu + Y is the projection. We claim that the ss-map
Aogu: zg‘lu + Y represents the ss-morphism fg: Z — Y. Indeed, one can
easily chegk that for W = g-1u u V (the disjoint union) the maps

(zw)n3 ("'lirl".l(is(as),-.o;z) -)g(oo.'i ,...,is,...;Z) EYn

r

constitute an ss-map h: 2, -+ Y such that the diagram

commutes; being equivalent to g, Aogu represents the same ss-morphism
- * -
Z — Y, In conclusion, the rF',S structure (A°gu) WEr g on Zg’lu
is the one induced from g*uF. = (cf corollary 1.9.3(ii) ).
’

S

We are now able to apply theorem III;4.2(iii) to g*uF, 5 and to
’

the ss-T',. =-structures f*y, z and (feQ)*uw, g . As a result, we get
F,T F,S F,S
the commuting triangle
(foQ)pg

F',S
By the part (i) already proved, the specially chosen transversals
can be replaced by arbitrary R, S and T .

{iv) We can apply theorem III;2.2(iii) to the morphism WT and to
f*mF T instead of w. The resulted commuting triangle is
]

wf*“F,T
. s
wm
T
f*u L
Yg G

as
W, .g* = * W = *
(\PT) *f wF'T f (WT) *mF’T f W
by corollary 1.9.1(ii). According to 3.1, the upper morphism is exact-
ly fpg -

Corollary 3.3. If X and Y are equivalent ss-manifolds, then any
equivalence Y — X is transverse to every foliation of X. Further-
more, let f: Y — X be such an equivalence, F a fixed foliation of



X ,and T c, X1 and S <, Y1 arbitrary complete transversals for F
and F' = f*F, respectively. Then the holonomy morphisms

G G

fps? Gpr g = G ¢

and

-1
(f gyt Gpr — G g

-1

are inverse to each other, ie (fTS) = (f—1)ST .

Proof. Let f: Y — X be any equivalence and F an arbitrary foli-

ation of X. By corollary 2.3.2, f is transverse to F as the compo-
sition 1x = f°f'1 is. The rest follows directly from theorem 3.2(iii)

3.4 Remarks. 1. It can be shown that any ss-morphism f: Y — X trans-
verse to a foliation F of X induces well-defined ss-morphisms be-
tween appropriate leaves of f*F and F. In particular, the assertion
of corollary 3.3 completed by adding the following one:

1f f is an equivalence, then leaves of f*F are equivalent to the
corresponding leaves of F (and there is a one-to-one correspondenqg
between the leaves).

2. Our definition of ss-morphisms is a solution to the equivalence
problem. The construction can be easily modified so as to cover the no-
tion of simplicially homotopic ss-maps ([6]) which identifies any ss-set
(in particular: any ss-manifold) X = (xn) with X' = (xg) such that

5 L

where ¢ ranges over non-decreasing (n+1)-sequences with the only ele~
ments 0 and 1, and the structure operators are

}r(...,ih,...;th) Ex;l_.‘
X, 3 (io,...,in;x)
"h

(eeesdpodyseeesnpX) € X1, o .

Let us sketch the modification. We consider ordered coverings, ie
indexed coverings U = {Ua; a € A} endowed with a preorder < in the
set A of indices, and generalize I1I;1.4 by requiring (Xu)n to be
the disjoint union over the ordered (n+1)-tuples a, < ... <8, (an un-
ordered covering can be trivially ordered by taking the total preorder
relation). The above X' is now equal to the localization of X to
the ordered covering {Uo, U1} of X, such that Upg = U, = Xqe
Another modification requires the equivalence relation 1.3. Namely,

we say that an ordexred covering U = {Ua’ a € A} has a supremum (infi-
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mum) if the subset

A+ := {a € A; for every b € A, b < a}

(resp. A" := {a € A; for every b € A, a < b})

is non-empty and ut = {Ua; aea’} (" = {Ua; a € A }) covers Xq-

The modified ss-morphism of X in Y is again an equivalence class
of ss-maps xu + Y where U are non-ordered, but in the diagram
(1.3.1) W = {Ws; S € S} can be an arbitrary ordered covering having
both supremum and infimum, whereas p and p' should map the indices
into, resp., S and s~.

It can be shown that the modified ss-morphisms form a category with
products, in which a localization xu is equivalent to X if U has
at least the supremum or infimum. Furthermore, the results: 1.5, 1.5.1,
1.8, 1.8.1, 1.9.1, 1.9.3, 1.10, and 1.12.1 concerning ss-I-structures
and morphisms of groupoids, as well as: 2.1, 2.3.1, 2.3.2, 2.4, 3.2,
and 3.3 concerning semi-simplicial foliations remain valid.
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