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Abstract

The Abel differential equation y′ = p(x)y3+q(x)y2 with polynomial coefficients
p, q is said to have a center on [a, b] if all its solutions, with the initial value y(a)
small enough, satisfy the condition y(a) = y(b). The problem of giving conditions
on (p, q, a, b) implying a center for the Abel equation is analogous to the classical
Poincaré Center-Focus problem for plane vector fields.

Center conditions are provided by an infinite system of “Center Equations”.
An important new information on these equations has been obtained via a detailed
analysis of two related structures: Composition Algebra and Moment Equations
(first order approximation of the Center ones). Recently one of the basic open
questions in this direction - the “Polynomial moments problem” - has been com-
pletely settled in [16, 17, 18].

In this paper we present a progress in the following two main directions: First,
we translate the results of [16, 17, 18] into the language of Algebraic Geometry
of the Center Equations. On this base we obtain new information on the center
conditions, significantly extending, in particular, the results of [3]. Second, we
study the “second Melnikov coefficients” (second order approximation of the Cen-
ter equations) showing that in many cases vanishing of the moments and of these
coefficients is sufficient in order to completely characterize centers.

————————————————

This research was supported by the ISF, Grant No. 639/09, and by the Minerva
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1 Introduction

We consider the Abel differential equation

y′ = p(x)y3 + q(x)y2 (1.1)

with meromorphic coefficients p, q. A solution y(x) of (1.1) is called “closed”
along a curve γ with the endpoints a, b if y(a) = y(b) for the initial element
of y(x) around a analytically continued to b along γ. Equation (1.1) is said
to have a center along γ if any its solution y(x) with the initial value y(a)
small enough, is closed along γ. We always will assume that γ is a (closed
or non-closed) curve avoiding singularities of p and q. Furthermore, in this
paper we always will assume that p, q are polynomials, and will denote by
P,Q the primitives P (x) =

∫ x

a
p(τ)dτ and Q(x) =

∫ x

a
q(τ)dτ .

The Center-Focus problem for the Abel equation is to give a necessary
and sufficient condition on p, q, γ for (1.1) to have a center along γ. The
Smale-Pugh problem is to bound the number of isolated closed solutions
of (1.1). The relation of these problems to the classical Hilbert 16-th and
Poincaré Center-Focus problems for plane vector fields is well known (see,
eg. [5, 11]).

Algebraic Geometry enters the above problems from the very beginning:
it is well known that center conditions are given by an infinite system of
polynomial equations in the coefficients of p, q, expressed as certain iterated
integrals of p, q (“Center Equations”; see Section 3 below). The structure of
the ideal generated by these equations in an appropriate ring (Bautin ideal)
determines local bifurcations of the closed solutions as p, q vary.

One of the main difficulties in the Center-Focus and the Smale-Pugh
problems is that a general algebraic-geometric analysis of the system of Cen-
ter Equations is very difficult because of their complexity and absence of
apparent general patterns.

In recent years the following two important algebraic-analytic structures,
deeply related to the Center Equations for (1.1), have been discovered: Com-
position Algebra of polynomials and generalized polynomial moments of the
form mk =

∫
γ
P k(x)q(x)dx (the last as a special case of iterated integrals).

The use of these structures provides important tools for investigation of the
Center-Focus problem for the Abel equation (see [1, 2, 3, 4, 7, 5, 9, 13] and ref-
erences therein). In particular, it was shown in [3] that Center Equations are
closely approximated by the Moment Equations mk =

∫
γ
P k(x)q(x)dx = 0,
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and in fact coincide with them “at infinity”. Moment Equations, in turn, im-
pose (in many cases) strong restrictions on P and Q, considered as elements
of the Composition Algebra. (Notice that usually linear Moment Equations
mk = 0 are considered, where P is fixed while Q is the unknown. However,
consideration of Center Equations at infinity in [3] and in the present paper
leads to a non-linear setting where Q is fixed, while the equations have to be
solved with respect to the unknown P ).

The following Composition Condition imposed on P and Q plays a central
role in the study of the Moment and Center Equations (see the references

above): there exist polynomials P̃ , Q̃ and W with W (a) = W (b) such that

P (x) = P̃ (W (x)), Q(x) = Q̃(W (x)).

Being a kind of “integrability condition”, Composition Condition implies
vanishing of Center and Moments Equations as well as of all the iterated
integrals entering the Center Equations. It is the only known to us sufficient
center condition for the polynomial Abel equation. Using the interrelation
between Center and Moment Equations at infinity, and the Composition
Condition, a rather accurate description of the affine Center Set for the
Abel equation has been given in [3]. Very recently important results relating
Center and Composition Conditions for trigonometric and polynomial Abel
equations have been obtained in [6, 7, 9].

In [17, 18] a serious progress has been achieved in understanding both the
Moments Equations and the relevant Composition Algebra. In particular,
explicit necessary and sufficient conditions for vanishing of all mk have been
given there.

One of the main goals of the present paper is to give an algebraic-
geometric interpretation of the results of [16, 12, 17, 18] in the context of
the Center-Focus problem for the polynomial Abel equation. Here we work
with the Moment Equations, which form the “first order approximation” of
the Center Equations. On this base we obtain, following the approach of [3],
new information on the center conditions, significantly extending the results
of [3].

The second main goal is to start the investigation of the “second Melnikov
coefficients”, which form the second order approximation of the Center Equa-
tions. We show that in many important cases vanishing of the moments and
of the Melnikov coefficients is sufficient in order to completely characterize
centers.

2



A general form of the results in this paper is the following: we show
that the Composition Condition is indeed a very good approximation to the
Center Conditions. In various circumstances we provide an upper bound for
the dimension of the non-composition components of the Center Set. In many
cases this bound is zero, so the Center Set coincides with the Composition Set
up to a finite number of points. The following theorems summarize our main
new results on the center configurations for polynomial Abel equation (1.1).
Since there is a one-to-one correspondence between pairs of polynomials p, q
and pairs of their primitives P,Q defined above, we will formulate all our
results in terms of P and Q.

Theorem 1.1 Consider equation (1.1) with Q fixed and P varying in the
space Pd of all the polynomials of the degree up to d vanishing at a and b.
Then the dimension of the non-composition components of the Center Set of
(1.1) does not exceed [d

6
] + 2.

In many cases the general bound provided by Theorem 1.1 may be im-
proved. In order to formulate corresponding results it is convenient to nor-
malize points a and b to be the points −

√
3
2

and
√
3
2
, respectively. Further,

let S ⊂ P be a subset of all polynomials Q ∈ P representable as a sum
Q = S1(T2)+S2(T3), where S1, S2 are arbitrary polynomials, while T2, T3 are
the Chebyshev polynomials of the degree 2 and 3, respectively (notice that
the normalization is chosen in such a way that T2(a) = T2(b), T3(a) = T3(b)).
Below we show that the dimension of S ∩ Pd does not exceed [2

3
d] + 1, so

“most” of the polynomials Q of degree d cannot be represented in the above
form.

Theorem 1.2 Let P vary in the space P9. Then for each fixed Q ∈ P \ S
the Center Set of (1.1) consists of a Composition Set and possibly a finite
set of additional points. For an arbitrary fixed Q the dimension of the non-
composition components of the Center Set of (1.1) does not exceed one. For
P varying in the space P11 and for an arbitrary fixed Q the dimension of the
non-composition components of the Center Set of (1.1) does not exceed two.

The next result heavy relies on computations with the second Melnikov co-
efficients.

Theorem 1.3 Let P vary in the space P9. Then for each fixed Q ∈ S ∩P8,
such that nether T2 nor T3 is a right composition factors of Q, the Center Set
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of (1.1) consists of a Composition Set and possibly a finite set of additional
points.

Our last result concerns the Center Set in subspaces of polynomials with a
special structure. Let Ud be the space consisting of all polynomials P ∈ Pd

such that the degrees of x, appearing in P with the non-zero coefficients, are
powers of prime numbers.

Theorem 1.4 Let P vary in Ud. Then for any fixed Q the Center Set of
(1.1) in Ud consists of a Composition Set and possibly a finite set of additional
points.

2 Preliminaries: Poincaré mapping, Center

Equations, and Composition condition

2.1 Poincaré mapping and Center Equations

Both the Center-Focus and the Smale-Pugh problems can be naturally ex-
pressed in terms of the Poincaré “first return” mapping yb = Gγ(ya) along
γ. Let y(x, ya) denote the element around a of the solution y(x) of (1.1)
satisfying y(a) = ya. The Poincaré mapping Gγ associates to each initial
value ya at a the value yb at b of the solution y(x, ya) analytically continued
along γ.

According to the definition above, the solution y(x, ya) is closed along γ
if and only if Gγ(ya) = ya. Therefore closed solutions correspond to the fixed
points of Gγ, and (1.1) has a center if and only if Gγ(y) ≡ y. It is well known
that Gγ(y) for small y is given by a convergent power series

Gγ(y) = y +
∞∑

k=2

vk(p, q, γ)y
k. (2.1)

Therefore the center condition Gγ(y) ≡ y is equivalent to an infinite sequence
of algebraic equations on p and q:

vk(p, q, γ) = 0, k = 2, 3, . . . . (2.2)

Each vk(p, q, γ) can be expressed as a linear combination of certain iterated
integrals of p and q along γ (see, for example, [3]). For the purposes of the
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present paper we do not need the exact form of these equations but only
some results about their behavior “at infinity” presented below.

2.2 Projective setting and Center Equations at infinity

Let P = P[a,b] be the vector space of all complex polynomials P satisfying
P (a) = P (b) = 0, and Pd the subspace of P consisting of polynomials of
degree at most d. We always shall assume that the polynomials

P (x) =

∫ x

a

p(τ)dτ, Q(x) =

∫ x

a

q(τ)d, (2.3)

defined above are elements of P . This restriction is natural in the study of the
center conditions since it is forced by the first two of the Center Equations.
Since (2.3) provides a one to one correspondence between (p, q) and (P,Q),
in order to avoid a cumbersome notation all the results below are formulated
in terms of (P,Q).

In the polynomial setting of the Center-Focus problem the choice of the
integration path γ from a to b is not essential. Indeed, we assume that ya
is small, and hence movable singularities of the solutions are “far away”. So
we may put γ = [a, b]. We shall assume that the points a 6= b are fixed and
usually shall omit a, b from the notation.

From now on we shall assume that Q ∈ Pd1 is fixed, while P varies in a
certain linear subspace V of the space Pd. This restrictive setting significantly
simplifies the presentation. See [3] for a comparison of this and other possible
settings.

Let a subspace V ⊂ P be given. We shall consider the projective space
PV and the infinite hyperplane HV ⊂ PV . To construct PV we introduce
an auxiliary variable ν ∈ C and consider the couples (S, ν) with (S, ν) and
(λS, λν) identified for λ 6= 0.

Let us denote by v̂k(p, q) the “homogenization” of the Center Equations
vk = 0 with respect to the variable P . In other words, we multiply each
term in vk by an appropriate degree of an auxiliary variable ν to make vk
homogeneous.

We call “Center Equations at infinity” the restrictions of the homogeneous
Center Equations to the infinite hyperplane HV . They are obtained by
putting ν = 0 in the homogeneous equations described above.
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Theorem 2.1 ([3]) For k = 2, 4, . . . even, and l = k
2
− 1 the Center Equa-

tions at infinity are given by the generalized moments

v∞k (P,Q) = ml(P,Q) =

∫ b

a

P l(x)q(x)dx = 0. (2.4)

For k odd the Center Equations at infinity are given by the coefficients of the
“second Melnikov function”

v∞k (P,Q) = Dk(P,Q) = 0, (2.5)

represented by certain linear combinations of iterated integrals in p, q with
exactly two appearances of q.

2.3 Center, Moment, and Composition Sets

Let us assume that Q ∈ Pd1 and a subspace V ⊂ Pd are fixed. We define
the Center Set CS = CSV,Q as the set of P ∈ V for which equation (1.1) has
a center. Equivalently, CS is the set of P ∈ V satisfying Center Equations
(2.2). The moment set MS = MSV,Q consists of P ∈ V satisfying Moment
equations (2.4).

To introduce Composition Set COS = COSV,Q we recall the polynomial
Composition Condition defined in [2], which is a special case of the general
Composition Condition introduced in [1] (for brevity below we will use the
abbreviation “CC” for the “Composition Condition”).

Definition 2.1 Polynomials P,Q are said to satisfy the “Composition Con-
dition” on [a, b] if there exist polynomials P̃ , Q̃ and W with W (a) = W (b)
such that P and Q are representable as

P (x) = P̃ (W (x)), Q(x) = Q̃(W (x)).

The Composition Set COSV,Q consists of all P ∈ V for which P and Q satisfy
the Composition Condition.

It is easy to see that the Composition Condition implies center for (1.1), as
well as the vanishing of each of the moments and iterated integrals above. So
we have COS ⊂ CS, COS ⊂ MS. Examples and partial results (see [3, 7] for
the most recent contributions) seem to support the following “Composition
conjecture”:
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Conjecture 1. The Center and Composition Sets for any polynomial Abel
equation coincide.

Define C̄S, M̄S, ¯COS as the intersections of the corresponding affine sets
with the infinite hyperplane HV . It follows directly from by Theorem 2.1
that the following statement is true.

Proposition 2.1 ¯COS ⊂ C̄S ⊂ M̄S.

Notice that COS and MS are homogeneous, and hence these sets are
cones over M̄S, ¯COS. However, CS a priori may be not homogeneous, and
the connection of the affine part CS to C̄S may be more complicated.

Our main goal will be to compare the affine Center Set CS the Compo-
sition Set COS. For this purpose we shall bound the dimension of the affine
non-composition components of CS, analyzing their possible behavior at in-
finity (Sections 5,6). To obtain these bounds we first describe the geometry
of the Composition Set COS (Section 3) and compare the Moment set MS
and its subset COS (Section 4).

3 The structure of the Composition Set

Geometry of the Composition Set reflects the algebraic structure of polyno-
mial compositions, which is well known to provide rather subtle phenomena.
In comparison with the classical theory developed by Ritt ([19]) we are in-
terested in what we call below [a, b]-compositions, i.e. compositions of poly-
nomials under requirement that some of the factors take equal values at the
points a and b.

3.1 Elements of Ritt’s theory

Let us recall first some basic facts on polynomial composition algebra, in-
cluding the classical first and second Ritt theorems.

Definition 3.1 A polynomial P is called indecomposable if it cannot be rep-
resented as P (x) = R ◦ S(x) = R(S(x)) for polynomials R and S of degree
greater than one. A decomposition P = P1 ◦ P2 ◦ · · · ◦ Pr is called maximal
if all P1, . . . , Pr are indecomposable and of degree greater than one. Two de-
compositions P = P1◦P2◦· · ·◦Pr and P = Q1◦Q2◦· · ·◦Qr, maximal or not,
are called equivalent (notation “∼”) if there exist polynomials of degree one
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µi, i = 1, . . . , r−1, such that P1 = Q1◦µ1, Pi = µ−1
i−1◦Qi◦µi, i = 2, . . . , r−1,

and Pr = µ−1
r−1 ◦Qr.

The first Ritt theorem states that any two maximal decompositions of
a polynomial P have an equal number of terms, and can be obtained from
one another by a sequence of transformations replacing two successive terms
A ◦ C with B ◦D, such that

A ◦ C = B ◦D. (3.1)

Let us mention that decompositions of a polynomial P into a composition
of two polynomials, up to equivalence, correspond in a one-to-one way to
imprimitivity systems of the monodoromy group GP of P . In their turn im-
primitivity systems of GP are in a one-to-one correspondence with subgroups
A of G containing the stabilizer Gω of a point ω ∈ G. In particular, for a
given polynomial P the number of its right composition factors W , up to the
change W → λ ◦W , where λ is a polynomial of degree one, is finite. Below
we shall call (with a slight abuse of notation) two right composition factors
W and λ ◦W of P , where λ is a polynomial of degree one, equivalent, and
write W ∼ λ◦W . We also usually shall write just “right factor” of P instead
of “compositional right factor”.

The first Ritt theorem reduces the description of maximal decompositions
of polynomials to the description of indecomposable polynomial solutions
of the equation (3.1). It is convenient to start with the following result
([8]): if polynomials A,B,C,D satisfy (3.1), then there exist polynomials
U, V, Â, B̂, Ĉ, D̂, where

degU = gcd(degA, degB), deg V = gcd(degC, degD), (3.2)

such that

A = U ◦ Â, B = U ◦ B̂, C = Ĉ ◦ V, D = D̂ ◦ V, (3.3)

and
Â ◦ Ĉ = B̂ ◦ D̂. (3.4)

In particular, if degA = degB, then necessarily A ◦ C and B ◦D are equiv-
alent as decompositions. More generally, if degB|degA, then there exists a
polynomial W such that the equalities

A = B ◦W, D = W ◦ C
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are satisfied.
Note that the above result is equivalent to the statement that the lattice of

imrimitivity systems of the monodromy group G of a polynomial P of degree
n is isomorphic to a sublattice of the lattice Ln consisting of all divisors of
n, where by definition

d1 ∧ d2 = GCD(d1, d2), d1 ∨ d2 = LCM(d1, d2)

(see [12]). For example, for the polynomials zn the corresponding lattices
consist of all divisors of n since for any d|n the equality zn = zd ◦ zn/d

holds. The same is true for the Chebyshev polynomials Tn since the equality
Tn(cosφ) = cosnφ implies that Tn = Td◦Tn/d for any d|n. On the other hand,
for an indecomposable polynomial P the corresponding lattice contains only
elements 1 and n.

The second Ritt theorem states that if A,B,C,D satisfy (3.1) and degrees
of A and B as well as of C and D are coprime, then there exist linear polyno-
mials U, V such that (3.3) and (3.4) hold, and, up to a possible replacement
of Â by B̂ and Ĉ by D̂, either

Â ◦ Ĉ ∼ zn ◦ zrR(zn), B̂ ◦ D̂ ∼ zrRn(z) ◦ zn, (3.5)

where R(z) is a polynomial, r ≥ 0, n ≥ 1, and GCD(n, r) = 1, or

Â ◦ Ĉ ∼ Tn ◦ Tm, B̂ ◦ D̂ ∼ Tm ◦ Tn, (3.6)

where Tn and Tm are the Chebyshev polynomials, n,m ≥ 1, GCD(n,m) = 1.
In particular, this holds when A,B,C,D solving (3.1) are indecomposable,
and the decompositions A ◦ C and B ◦ D are non-equivalent, since in this
case the degrees of polynomials U, V in (3.2) and (3.3) are necessarily equal
to one.

Clearly, the second Ritt theorem together with the previous result imply
the following statement: if A,B,C,D satisfy (3.1), then there exist polyno-
mials U, V such that (3.2), (3.3), (3.4) hold, and, up to a possible replacement
of Â by B̂ and Ĉ by D̂, either (3.5) or (3.6) holds.

3.2 [a, b]-Compositions

Now we return to [a, b]-compositions, i.e. compositions of polynomials under
the requirement that some of the factors take equal values at two distinct
points a and b.
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Definition 3.2 Let a polynomial P satisfying P (a) = P (b) be given. We call

polynomial W a right [a, b]-factor of P if P = P̃ ◦ W for some polynomial

P̃ , and W (a) = W (b). A polynomial P is called [a, b]-indecomposable, if
P (a) = P (b) and P does not have right [a, b]-factors non-equivalent to P
itself.

Remark. Notice that any right [a, b]-factor of P necessary has degree greater
than one, and that [a, b]-indecomposable P may be decomposable in the usual
sense.

Proposition 3.1 Any polynomial P up to equivalence has a finite number of
[a, b]-indecomposable right factors Wj, j = 1, . . . , s. Furthermore, each right

[a, b]-factor W of P can be represented as W = W̃ (Wj) for some polynomial

W̃ and j = 1, . . . , s.

Proof: As it was mentioned above up to equivalence there are only finitely
many general right factors W of P . In particular, this is true for [a, b]-
indecomposable right [a, b]-factors Wj of P .

Now let W be a right [a, b]-factor of P . If it is [a, b]-indecomposable,
then by the first part of the proposition W = λ ◦Wj for some j = 1, . . . , s.

Otherwise, W can be represented as W = V ◦ Ŵ , where Ŵ is a right [a, b]-
factor of P and deg V > 1. Since deg Ŵ < degW , it is clear that continuing
this process we ultimately will find an [a, b]-indecomposable right factor Wj

of P such that W = W̃ (Wj). �

An easy consequence of Proposition 3.1 is the following description of the
Composition Set given in [3]:

Proposition 3.2 Let Wj, j = 1, . . . , s, be all indecomposable right [a, b]-
factors of Q. Then the set COSV,Q is a union of the linear subspaces Lj ⊂ V ,
j = 1, . . . , s, where Lj consists of all the polynomials P ∈ V representable as

P = P̃ (Wj), j = 1, . . . , s, for a certain polynomial P̃ .

It has been recently shown in [18] that for any P ∈ P the number s of
its non-equivalent [a, b]-indecomposable right factors can be at most three.
Moreover, if s > 1 then these factors necessarily have a very special form,
similar to what appears in Ritt’s description above.

The precise statement is given by the following theorem ([18], Theorem
5.3):
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Theorem 3.1 Let complex numbers a 6= b be given. Then for any polynomial
P ∈ P[a,b] the number s of its [a, b]-indecomposable right factors Wj, up to
equivalence, does not exceed 3.

Furthermore, if s = 2, then either

P = U ◦ zrnRn(zn) ◦ U1, W1 = zn ◦ U1, W2 = zrR(zn) ◦ U1,

where R,U, U1 are polynomials, r > 0, n > 1, GCD(n, r) = 1, or

P = U ◦ Tnm ◦ U1, W1 = Tn ◦ U1, W2 = Tm ◦ U1,

where U,U1 are polynomials, n,m > 1, gcd(n,m) = 1.
On the other hand, if s = 3 then

P = U ◦ z2R2(z2) ◦ Tm1m2
◦ U1,

W1 = T2m1
◦ U1, W2 = T2m2

◦ U1, W3 = zR(z2) ◦ Tm1m2
◦ U1,

where R,U, U1 are polynomials, m1,m2 > 1 are odd, and GCD(m1,m2) = 1.

Notice that in all the cases above U1(a) 6= U1(b) while Wj(a) = Wj(b).

We are interested in the stratification of the space Pd of polynomials P
of degree d according to the structure of their [a, b]-indecomposable right
[a, b]-factors. Following Theorem 3.1 let us use the following notation for the
appropriate strata:

Definition 3.3 Let DECd
s (a, b) ⊂ Pd denote the set of polynomials P of

degree at most d satisfying P (a) = P (b) = 0 and possessing exactly s non-
equivalent [a, b]-indecomposable right factors. For s = 1 we write DECd

1 (a, b) =
DECd

1,0(a, b) ∪DECd
1,1(a, b) where for P ∈ DECd

1,0(a, b) (P ∈ DECd
1,1(a, b))

the corresponding factor is equivalent (not equivalent) to P .

As a first consequence of Theorem 3.1 we get upper bounds on the dimen-
sions of the sets DECd

s (a, b) considered as subsets of the algebraic variety
C

d−1 identified with Pd.

Proposition 3.3 DECd
1,0(a, b) consists of [a, b]-indecomposable polynomials

P ∈ Pd, and its dimension is d − 1. We have DECd
1,1(a, b) = ∅ for d ≤ 3,

and dimDECd
1,1(a, b) ≤ [d

2
] for d ≥ 4. DECd

2 (a, b) = ∅ for d ≤ 5, and

dimDECd
2 (a, b) ≤ [d

6
] + 1 for d ≥ 6. DECd

3 (a, b) = ∅ for d ≤ 89, and
dimDECd

3 (a, b) ≤ [ d
90
] for d ≥ 90.
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Proof: Assume we are given l parametric families of polynomials Sr =
{Sr(τr, z)}, r = 1, ..., l, with τr ∈ Tr ⊂ C

nr being the parameters of Sr. We
assume that the degree of the polynomials Sr(τr, z) remains constant and
equal to dr for all the values of the parameters τr ∈ Tr. Put τ = (τ1, . . . , τl),
and let

Pτ = S1(τ1) ◦ S2(τ2) ◦ · · · ◦ Sl(τl).

The degree of the polynomials Pτ of this form is d1 · ... · dl and they form
a parametric family with the parameters τ = (τ1, ...τl) ∈ C

n, where n =
n1...+ nl.

The dimension D of the stratum S in P formed by the polynomials Pτ as
above is at most n, and it may be strictly less than n since the parametric
representation as above may be redundant. The requirement Pτ ∈ Pd is
equivalent to d1 · ... · dl ≤ d. So to bound from above the dimension D of
the stratum S we have to accurately estimate D ≤ n1 + ... + nl, taking
into account the redundancy in the parametric representation, and then to
maximize D under the constraint d1 · ... · dl ≤ d.

Let us now consider the sets DECd
s (a, b) for s = 1, 2, 3 case by case. For

s = 1 any P ∈ DECd
1,0(a, b) is [a, b]-indecomposable, according to Defini-

tion 3.2. As we shall see below, all the other strata have dimension strictly
smaller than dimPd = d − 1. Hence dimDECd

1,0(a, b) = d − 1. Now, each
P ∈ DECd

1,1(a, b) has a form P = S1 ◦ S2, with deg S1 = d1 > 1, deg S2 =
d2 > 1, since we assume that P possesses a right [a, b]-factor S2, not equiv-
alent to P . In this case d ≥ d1d2 is at least 4, and S1 and S2 can be any
polynomials of degrees d1 and d2 with the only restrictions S2(a) = S2(b)
and S1(S2(a)) = 0. Hence n1 = d1, n2 = d2. On the space C

n1+n2 of the
parameters of (S1, S2) acts a two-dimensional group Γ of linear polynomials
γ. It acts by transforming (S1, S2) into (S1 ◦ γ, γ

−1S2). This action preserves
P . Accordingly, we have to maximize D = d1 + d2 − 2 under the constrain
d1d2 ≤ d. For d even this maximum is achieved for d1 = 2 or d2 = 2 and it
is d

2
. For d odd still d1 = 2 or d2 = 2, but the maximum of D is d−1

2
. Finally

we get dimDECd
1 (a, b) ≤ [d

2
].

Now let us consider the case s = 2. In this case by Theorem 3.1 we have
two options.

The first option is that P = U ◦ zrnRn(zn) ◦ U1, where U(z), R(z), U1(z)
are polynomials, r > 0, n > 1, and gcd(n, r) = 1, and zn and zrR(zn) take
equal values at U1(a) 6= U1(b).

12



Here, denoting the degrees of U,U1, R by k,m, l ≥ 1, respectively, we
get degP = k · n(r + ln) · m ≥ 6, while the number of the independent
parameters, i.e. the dimension of the corresponding strata is at most k +
l +m− 1 (we take into account the requirements W1(a) = W1(b), W2(a) =
W2(b), P (a) = P (b) = 0, and the fact that the scaling parameters of U and
of R act equivalently on P ). So we have to maximize k+ l+m−1 under the
constrain k · n(r + ln) ·m ≤ d. The variables are integers k ≥ 1, l ≥ 1,m ≥
1, r ≥ 1, n ≥ 2, gcd(n, r) = 1.

Let us first fix l, r, n. As above, the maximum of k+ l+m− 1 is attained
either for k = 1,m = [ d

n(r+ln)
], or for k = [ d

n(r+ln)
],m = 1. In both cases it

is l + [ d
n(r+ln)

], and this expression increases as l decreases. So we can put

l = 1 and so we get [ d
n(r+n)

] + 1. Once more, this expression increases as n, r

(which do not enter the maximized sum) decrease. Their minimal possible
values are r = 1, n = 2 and we get k + l +m− 1 = [ d

6
] + 1.

The second option is that P = U ◦Tnm◦U1, with n,m > 1, gcd(n,m) = 1,
and Tm and Tn take equal values at U1(a) and U1(b). Denote the degrees of
U and U1 by k and l, respectively, we get degP = klmn ≥ 6, while the num-
ber of the independent parameters, i.e. the dimension of the corresponding
strata, is at most k + l − 1 (we take into account the requirements that Tm

and Tn take equal values at U1(a) and U1(b), and P (a) = P (b) = 0). By
exactly the same reasoning as above we get the maximal dimension of the
corresponding strata is achieved as either degU = 1 or degU1 = 1, and it is
at most [ d

mn
]. The minimal possible values for m,n here are 2 and 3, so we

get the bound [d
6
] which is smaller than the one above.

It remains to consider the case s = 3. In this case by Theorem 3.1 we
have P = U ◦ z2R2(z2) ◦Tm1m2

◦U1, with U,R, U1 as above, m1,m2 > 1 odd,
and gcd(m1,m2) = 1. In addition, T2m1

, T2m2
and zR(z2) ◦ Tm1m2

take equal
values at U1(a) 6= U1(b).

As above, denoting the degrees of U,U1, R by k,m, l, respectively, we get
degP = k·(4l+2)m1m2·m ≥ 90. The number of the independent parameters,
i.e. the dimension of the corresponding strata, is here at most k+l+m−2 (we
take into account, besides the requirements thatW1,W2,W3 take equal values
at a, b, and P (a) = P (b) = 0, also the fact that the scaling parameters of U
and of R act equivalently on P ). Maximizing the last expression exactly as
above, we conclude that the maximum is achieved for l = 1,m1 = 3,m2 = 5,
and either k = 1,m = [ d

(4l+2)m1m2

] = [ d
90
], or m = 1, k = [ d

90
]. This maximum

13



is equal to [ d
90
]. This completes the proof of Proposition 3.3. �.

Based on Proposition 3.3 and Theorem 3.1 we can now give a much more
accurate description of the Composition Set COSV,Q for V = Pd or V ⊂ Pd:

Theorem 3.2 For any polynomial Q of degree at most 5 the Composition
Set COSV,Q is a linear subspace in Pd with dimL ≤ [d

2
]. For 6 ≤ degQ ≤ 89

the set COSV,Q is a union of at most two linear subspaces in Pd, and for
degQ ≥ 90 the set COSV,Q is a union of at most three linear subspaces. The
dimension of each of these subspaces is at most [ d

2
], their double and triple

intersections have dimensions at most [ d
6
] + 1 and [ d

90
], respectively.

Proof: Let Wj, j = 1, . . . , s be all the mutually prime right [a, b]-factors
of Q. By Proposition 3.3, for Q of degree at most 5 we have s = 1. For
6 ≤ degQ ≤ 89 we have s ≤ 2 and for degQ ≥ 90 we have s ≤ 3. Next, by
Proposition 3.2, COSPd,Q is a union of linear subspaces Lj = {P ∈ Pd, P =

P̃ (Wj)}.
Next notice that if degWj = d, then Lj is one-dimensional, and if degWj <

d, then Lj ⊂ DECd
1,1(a, b).We also have Li∩Lj ⊂ DECd

2 (a, b), Li∩Lj∩Lk ⊂
DECd

3 (a, b). All the required bounds on the dimensions of Lj now follow di-
rectly from Proposition 3.3. �

Remark. In fact, the dimensions of the linear subspaces Lj and of their
intersections may be strongly smaller than the bounds in Theorem 3.2. The
reason is that in this theorem we do not take into account, for example,
the fact, that if Q has mutually prime right [a, b]-factors W1,W2, then their
degrees, by Theorem 3.1, cannot both be equal to two. Another reason is that
in the setting of Theorem 3.2 the right factors are fixed, while in Proposition
3.3 they are variable, which also decreases the dimensions of the strata of
COSPd,Q in comparison with the strata DECd

s (a, b).

4 Moment vanishing versus Composition

The main result of [18] can be formulated as follows:

Theorem 4.1 Let P with P (a) = P (b) be given, and let Wj, j = 1, . . . , s, be
all its non-equivalent [a, b]-indecomposable right [a, b]-factors. Then for any

polynomial Q all the moments mk =
∫ b

a
P k(x)q(x)dx, k ≥ 0, vanish if and

only if Q =
∑s

j=1 Qj, where Qj = Q̃j(Wj) for some polynomial Q̃j.
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This theorem combined with Theorem 3.1 provides an explicit description
for vanishing of the polynomial moments. In order to use it for the study of
the Moment Set, let us introduce the notions of “definite” and “co-definite”
polynomials.

Definition 4.1 Let V, V1 ⊂ P = P[a,b] be fixed linear spaces. A polynomial
P ∈ P is called V1-definite if for any polynomial Q ∈ V1 vanishing of the
moments mk =

∫ b

a
P k(x)q(x)dx, k ≥ 0, implies Composition Condition on

[a, b] for P and Q. The set of such P is denoted DV1
.

A polynomial Q ∈ P is called V -co-definite if for any polynomial P ∈ V
vanishing of the moments mk =

∫ b

a
P k(x)q(x)dx, k ≥ 0, implies Composition

Condition on [a, b] for P and Q. The set of such Q is denoted CODV .
If V1 = P or V = P we call polynomials defined above [a, b]-definite or

[a, b]-co-definite correspondingly, and denote their sets by D or COD.

Definite polynomials have been initially introduced and studied in [15]. Some
their properties have been described in [16]. The notion of a co-definite
polynomials is apparently new (although some examples have appeared in
[3]). Below we give a characterization of definite and co-definite polynomials,
but many questions still remain open.

4.1 Definite polynomials

Theorem 4.1 allows us to give a complete description of [a, b]-definite poly-
nomials:

Theorem 4.2 A polynomial P is [a, b]-definite if and only if it has, up to
equivalence, exactly one [a, b]-indecomposable right factor W .

Proof: Assume that P has exactly one [a, b]-indecomposable right factor W .
By Theorem 4.1 for any polynomial Q vanishing of mk for all k ≥ 0 implies
that there exist Q̃ such that Q = Q̃(W ), so Composition Condition on [a, b]
is satisfied for P and Q. Hence, by Definition 4.1, P is [a, b]-definite.

Assume now that P has two non-equivalent [a, b]-indecomposable right
factors W1, W2, and show that the solution Q = W1 + W2 cannot be rep-
resented in the form Q = Q̃(W ), where W is an [a, b]-right factor of P and

Q̃ is a polynomial (cf. [14]). First observe that W1 and W2 have different
degrees for otherwise equalities (3.3) imply that W1 and W2 are equivalent.

15



Thus, without loss of generality we may assume that degW2 > degW1, and
so degQ = degW2, implying that if Q = Q̃(W ) then degW |degW2. There-
fore, using (3.3) again, we conclude that W2 = U(W ) for some polynomial
U . Furthermore, if degW < degW2, then we obtain a contradiction with
the assumption that W2 is an [a, b]-indecomposable right factor of P. On the
other hand, if degW = degW2, then as above we conclude that W and W2

are linear equivalent implying that W1 = Q −W2 is a polynomial in W2 in
contradiction with the assumption degW2 > degW1. �

Corollaries 4.1-4.2 below were proved in [16]. Here we give another proofs
of these results basing on Theorem 4.2 and the second Ritt theorem. We
believe that these “more algebraic” proofs clarify to some extent the structure
of definite polynomials, which still presents a lot of open questions (see [15]).
We also extend a classification of non-definite polynomials whose degree does
not exceed nine, given in [16], up to degree eleven.

Corollary 4.1 Let p be a prime. Then each polynomial P of degree ps,
s ≥ 1, is [a, b]-definite for any a, b ∈ C.

Proof: Indeed, since imprimitivity systems of GP form a sublattice of Lps

(see definition on page 9), if W1, W2 are arbitrary right factors of P , then
either W1 is a polynomial in W2 or W2 is a polynomial in W1. Therefore,
such P can not have two non equivalent [a, b]-indecomposable right factors.
�

Corollary 4.2 If at least one of points a and b is not a critical point of a
polynomial P , then P is [a, b]-definite.

Assume that P is not [a, b]-definite and letW1,W2 be its non linear equivalent
[a, b]-indecomposable right factors. Then the second Ritt theorem implies
that there exist polynomials of degree one µ1, µ2 and polynomials U , W
such that either

P = U ◦ zrsRn(zn) ◦W, W1 = µ1 ◦ z
n ◦W, W2 = µ2 ◦ z

sR(zn) ◦W, (4.1)

where R is a polynomial and GCD(s, n) = 1, or

P = U ◦ Tnm ◦W, W1 = µ1 ◦ Tn ◦W, W2 = µ2 ◦ Tm ◦W, (4.2)
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where Tn, Tm are the Chebyshev polynomials and GCD(n,m) = 1. Fur-
thermore, since W1, W2 are [a, b]-indecomposable and non equivalent, the
inequality W (a) 6= W (b) holds. In particular, n > 1, since W1(a) = W1(b).

It is easy to see that if (4.1) holds, then the equalities

W1(ã) = W1(̃b), W2(ã) = W2(̃b),

where
W̃1 = zn, W̃2 = zsR(zn), ã = W (a), b̃ = W (b),

taking into account the equality GCD(s, n) = 1, imply that the number

ãn = b̃n is a root of the polynomial R. It follows now from the first formula
in (4.1) by the chain rule that both a and b are critical points of P.

If (4.2) holds, then, taking into account the identity

Tl ◦
1

2

(
z +

1

z

)
=

1

2

(
z +

1

z

)
◦ zl (4.3)

and the eqaulity GCD(m,n) = 1, it is easy to see that there exist α, β ∈ C

such that

ã =
1

2

(
α +

1

α

)
, b̃ =

1

2

(
β +

1

β

)
, αn = βn, αm =

1

βm
, (4.4)

where as above ã = W (a), b̃ = W (b). Furthermore, α2 6= 1. Indeed, otherwise
the equalities

ᾱn = β̄n, ᾱm =
1

β̄m
,

where ᾱ = α2, β̄ = β2, taking into account the equality GCD(m,n) = 1,

imply that β2 = 1. Since ã 6= b̃ this yields that either ã = −1, b̃ = 1, or
ã = 1, b̃ = −1. On the other hand, since GCD(m,n) = 1, without loss of

generality we may assume that m is odd implying that Tm(ã) 6= Tm(̃b) for

such ã and b̃ since Tm(−1) = −1, Tm(1) = 1. Similarly, β2 6= 1. Finally,
observe that equalities (4.4) yield that αmn = ±1, βmn = ±1, implying that

Tmn(α) = ±1, Tmn(β) = ±1. (4.5)

In order to finish the proof observe that the equality Tn(cosφ) = cosnφ
implies easily that the polynomial Tn has exactly two critical values ±1 and
that the only points in the preimage T−1

n {±1} which are not critical points
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of Tn are the points ±1. Therefore, the equalities (4.5) taking account that
α 6= ±1, β 6= ±1 imply that α and β are critical points of Tmn and hence
critical points of P by the chain rule. �

Theorem 4.2 combined with the second Ritt theorem allows us, at list
in principle, to describe explicitely all the non-definite polynomials up to a
given degree. In particular, the following statement holds:

Theorem 4.3 For given a 6= b non-definite polynomials P ∈ P11 appear
only in degrees 6 and 10 and have, up to change P → λ ◦ P, where λ is a
polynomial of degree one, the following form:

1. P6 = T6 ◦ τ , where T6 is the Chebyshev polynomial of degree 6 and τ
is a polynomial of degree one transforming a, b into −

√
3
2
,
√
3
2
.

2. P10 = z2R2(z2) ◦ τ , where R(z) = z2 + γz+ δ is an arbitrary quadratic
polynomial satisfying R(1) = 0 i.e. γ + δ = −1, and τ is a polynomial of
degree one transforming a, b into −1, 1.

Proof: First of all observe that if in Ritt’s second theorem (Section 3.1
above) the degree of one of polynomials satisfying (3.4) is two, then solutions
(3.6) may be written in form (3.5). Indeed, for odd n the equality

Tn(z) = zEn(z
2) (4.6)

holds for some polynomial En. Furthermore, T2 = θ ◦ z2, where θ = 2z − 1,
and hence

zEn(z
2) ◦ θ ◦ z2 = Tn ◦ T2 = T2 ◦ Tn = θ ◦ T 2

n = θ ◦ zE2
n(z) ◦ z

2.

Since the last equality implies the equality

zEn(z
2) ◦ θ = θ ◦ zE2

n(z),

we conclude that

Tn = θ ◦ zE2
n(z) ◦ θ

−1, T2n = θ ◦ z2E2
n(z

2). (4.7)

Therefore, the equality
Tn ◦ T2 = T2 ◦ Tn

may be written in the form

(θ ◦ zE2
n(z) ◦ θ

−1) ◦ (θ ◦ z2) = (θ ◦ z2) ◦ zEn(z
2). (4.8)
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Now we are ready to prove the theorem.
Since each integer i, 2 ≤ i < 11, distinct from 6 or 10 is either a prime

or a power of a prime, it follows from Corollary 4.1 that P is [a, b]-definite
unless degP = 6 or degP = 10. It follows now from the second Ritt theorem
and the remark above that if degP = 10, then P has the form given above.
Similarly, if degP = 6, then P = z2R2(z2) ◦ τ , where R is a polynomial
satisfying R(1) = 0. However, since in this case the degree of R equals one,
up to change P → λ ◦ P ◦ τ, we obtain a unique polynomial P = T6. �

Let V, V1 ⊂ P be fixed linear spaces. Let us denote by NDV,V1
the set

of polynomials P ∈ V non-definite with respect to V1. In particular, for
V = Pd, V1 = P we denote the corresponding set by NDd. If V1 is a line
spanned by a fixed Q ∈ P we write NDV,V1

as NDV,Q.

Proposition 4.1 For each V1 ⊂ P and V ⊂ Pd we have NDV,V1
⊂ NDd.

The dimension of NDd does not exceed [d
6
] + 1.

Proof: The inclusion is immediate: any polynomial non-definite with respect
to a smaller subspace is non-definite with respect to a larger one. By Theorem
4.2 the set NDd consists of all P ∈ Pd which have s ≥ 2 mutually [a, b]-prime
right [a, b]-factors. Hence NDd ⊂ ∪s≥2DECd

s (a, b). By Proposition 3.3 we
have dimNDd ≤ [d

6
] + 1. This completes the proof. �.

4.2 Co-definite polynomials

Let [a, b] and a subspace V ⊂ P[a,b] be given.

Theorem 4.4 A polynomial Q is not V -co-definite if and only if there exists
a polynomial P ∈ V (necessarily non-definite) with a complete collection of
[a, b]-indecomposable right factors W1, . . . ,Ws, s ≥ 2, such that:

1. The polynomial Q can be represented as Q =
∑s

j=1 Sj(Wj),

2. No one of W1, . . . ,Ws is a right [a, b]-factor of Q.

Proof: By Definition 4.1 a polynomial Q is not V -co-definite if and only if
there exists a polynomial P ∈ V such that all the momentsmk =

∫ b

a
P k(x)q(x)dx,

k ≥ 0, vanish while P and Q do not satisfy the Composition Condition.
Clearly, if such P exists it cannot be definite. Furthermore, by Theorem 4.1
the polynomial Q can be represented as a sum Q =

∑s
j=1 Sj(Wj). Finally,
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since P and Q do not satisfy Composition condition no one of W1, . . . ,Ws

can be an [a, b]-right factor of Q.
In the opposite direction, assume that P ∈ V as required exists. Since

Q possesses a representation Q =
∑s

j=1 Sj(Wj), where W1, . . . ,Ws are right
[a, b]-factors of P, we conclude (by linearity of the moments in Q) that all the
moments mk, k ≥ 0, vanish. Furthermore, since W1, . . . ,Ws is a complete
collection of right [a, b]-factors of P , the second assumption implies that P
and Q do not satisfy the Composition Condition. Hence Q is not V -co-
definite. �

Definition 4.2 For V ⊂ P we define the set SV,d ⊂ Pd as the set of poly-
nomials Q ∈ Pd which can be represented as Q =

∑s
j=1 Sj(Wj), where

W1, . . . ,Ws are all [a, b]-indecomposable right factors of a certain non-definite
P ∈ V. The set SV is the union ∪dSV,d.

By Theorem 4.4, in order to describe explicitly all V -co-definite polynomials
up to degree d we have first to describe the set SV,d and then to describe
those Q ∈ SV,d for which no one of W1, . . . ,Ws is a right [a, b]-factor of Q.
Both these questions in their general form turns out to be rather tricky, and
we provide here only very partial results. To make formulas easier, without
loss of generality we shall assume that [a, b] coincides with [−

√
3
2
,
√
3
2
].

Theorem 4.5 Let V = P
9,[−

√

3

2
,
√

3

2
]
. Then the set SV,d is a vector space

consisting of all polynomials Q ∈ Pd representable as Q = S1(T2) + S2(T3)
for some polynomials S1, S2. Furthermore, the dimension SV,d is equal to
[d+1

2
] + [d+1

3
]− [d+1

6
]. In particular, this dimension does not exceed [ 2

3
d] + 1.

For d ≤ 4 the space SV,d coincides with Pd, and starting with d = 5 this
space is always a proper subset of Pd. We have SV,5 = P4 ⊂ P5 and SV,6 is the
subspace in P6 consisting of all the polynomials Q of the form Q = Q1+αT3

with Q1 even of degree at most 6. SV,7 = SV,6, while SV,8 is the subspace in
P8 consisting of all the polynomials Q of the form Q = Q1 + αT3 with Q1

even of degree at most 8.

Proof: By Theorem 4.3 the only non-definite polynomials in V = P
9,[−

√

3

2
,
√

3

2
]

are scalar multiples of T6. T6 = T2 ◦ T3 = T3 ◦ T2 has exactly two right
[−

√
3
2
,
√
3
2
]-factors T2 and T3. This proves the first claim of Theorem 4.5.

Next observe that
C[Tn] ∩ C[Tm] = C[Tl], (4.9)
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where l = LCM(n,m). Indeed if P is contained in C[Tn] ∩C[Tm], then there
exist polynomials A, B such that

P = A ◦ Tn = B ◦ Tm,

and in order to show that there exists a polynomial U such that P = U ◦ Tl

one can use the second Ritt theorem. However, such a proof is more difficult
that it seems since it requires an analysis of the possibility provided by (3.5)
(see e.g. Lemma 4.1 of [18]). It is more convenient to observe that identity
(4.3) implies that the function

F = P ◦
1

2

(
z +

1

z

)
= A ◦

1

2

(
zn +

1

zn

)
= B ◦

1

2

(
zm +

1

zm

)

is invariant with respect to the both groups D2n and D2m, where D2s is the
dihedral group generated by the transformations z → 1/z and z → e2πi/sz.
Therefore, F remains invariant with respect to the group < D2n, D2m >= D2l

implying that that there exists a rational function U such that

F = U ◦
1

2

(
zl +

1

zl

)
.

Since

U ◦
1

2

(
zl +

1

zl

)
= U ◦ Tl ◦

1

2

(
z +

1

z

)
,

we conclude that P = U ◦ Tl, and it is easy to see that U actually is a
polynomial.

Denote by Ud,n the subspace of C[Tn] consisting of all polynomials of
degree ≤ d. By the remark above we have Ud,n ∩ Ud,m = Ud,l. This implies
that

dimSV,d = dimUd,2 ⊕ Ud,3 − 2 = dimUd,2 + dimUd,3 − dimUd,6 − 2 =

= [
d+ 1

2
] + [

d+ 1

3
]− [

d+ 1

6
]− 1 ≤ [

2

3
d] + 1.

A description of SV,d for d ≤ 8 is obtained by a straightforward computation.
This completes the proof of Theorem 4.5. �

Theorem 4.6 A polynomial of the form Q = S1(T2) + S2(T3), where S1, S2

are non-zero polynomials, has T2 (resp. T3) as its right factor if and only if
S2 is a polynomial in T2 (resp. S1 is a polynomial in T3).
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Proof: Indeed, assume say that S1(T2)+S2(T3) = R(T2) for some polynomial
R. Then by (4.9) there exists a polynomial F such that

S2 ◦ T3 = F ◦ T6 = F ◦ T2 ◦ T3

implying that S2 = F ◦ T2. �

Corollary 4.3 Let V = P
9,[−

√

3

2
,
√

3

2
]
. A polynomial Q ∈ P

8,[−
√

3

2
,
√

3

2
]
is not

V -co-definite if and only if it can be represented in the form

Q = R + αT3, α ∈ C, (4.10)

where α 6= 0, and R ∈ P
8,[−

√

3

2
,
√

3

2
]
is an even polynomial distinct from βT6+γ,

β, γ ∈ C.

Proof: By the above results, if P ∈ P8 is not co-definite it can be represented
in the form Q = S1(T2) + S2(T3), where deg S1 ≤ 4, and S1 is not a linear
polynomial in T3, while degS2 ≤ 2, and S2 is not a linear polynomial in T2.
Since S2 can be represented in the form δT2 + αz + κ, where δ, α, κ ∈ C, we
conclude that such Q can be represented in the form

Q = S̃1(T2) + αT3, (4.11)

where deg S̃1 ≤ 4. Furthermore, α 6= 0, since otherwise Q is a polynomial in
T2, and S̃1 is not a linear polynomial in T3, since otherwise Q is a polynomial
in T3. Therefore, since C[T2] = C[z2] and T3 ∈ P8, the polynomial P admits
representation (4.10).

In other direction, it follows from (4.10) that (4.11) holds, where α 6= 0

and S̃1 6= βT3 + γ, β, γ ∈ C, implying that Q is not co-definite. �

4.3 Polynomials with a special structure

Let R = {r1, r2, . . . } be a set of prime numbers, finite or infinite. Define
U(R) as a subspace of P consisting of polynomials P =

∑N
i=0 aix

i such that
for any non-zero coefficient ai the degree i is either coprime with each rj ∈ R
or is a power of some rj ∈ R. Similarly, define U1(R) as a subspace of P
consisting of polynomials P such that for any non-zero coefficient ai of P
all prime factors of i are contained in R. In particular, if R coincides with
the set of all primes numbers, then U(R) consists of polynomials in P whose
degrees with non-zero coefficients are powers of primes, while U1(R) = P .
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Theorem 4.7 Let R = {r1, r2, . . . } be fixed. Then for any a 6= b each
polynomial P ∈ U(R) is [a, b]-definite, and, in particular, it is [a, b]-definite
with respect to U1(R), and each Q ∈ U1(R) is [a, b]-co-definite with respect
to U(R).

Proof: We show that vanishing of all the moments mk =
∫ b

a
P k(x)q(x)dx

for P ∈ U(R) and Q ∈ U1(R) implies Composition Condition. By the
construction, the degree of any Q ∈ U1(R) is the product of certain prime
numbers inR. By Corollary 4.3 of [16] vanishing of the moments implies that
the degrees of P and Q cannot be mutually prime. Hence degP is divisible
by one of rj. But then by the construction this degree must be a power of rj.
Finally, it was shown in [16] (see also Section 3.2.1 above) that polynomials
P with degP a power of a prime number are definite. Hence vanishing of
the moments mk implies Composition condition for P,Q on [a, b]. �

4.4 The Moment and the Composition Sets

Using the information on definite and co-definite polynomials provided above
we now can describe more accurately the interrelation between the Moment
and the Composition sets.

Let V, V1 ⊂ P be fixed linear spaces. As above, NDV,V1
is the set of

polynomials P ∈ V non-definite with respect to V1.

Theorem 4.8 For each Q ∈ V1 we have MSV,Q = COSV,Q ∪ N where N
is contained in NDV,V1

⊂ ND. In particular, for V ⊂ Pd and any Q the
dimension of N is at most [ d

6
] + 1.

Proof: If P ∈ MSV,Q but P is not in COSV,Q then P is not definite with
respect to V1, and hence it belongs to NDV,V1

, which is always a subset of
ND. If V ⊂ Pd then P ∈ NDd and the bound on the dimension follows from
Proposition 4.1. �

Example ([3]) Let [a, b] = [−
√
3
2
,
√
3
2
]. Put Q = (T2 + T3), and consider

V = P6. Then the Moment set MSV,Q contains exactly two components: the
composition component COSV,Q = {P = R(T2+T3)}, with R any polynomial
of degree 2, and the non-composition component T = {P = αT6, α ∈ C}.
Here T , in fact, coincides with NDV,Q.

Our description of co-definite polynomials in Section 4.2 produces the
following result on the Moment and Composition Sets:
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Corollary 4.4 Let V ⊂ P , and let V1 ⊂ Pd be such that V1 ∩ SV,d = {0}, in
the notation of Definition 4.2. Then for each Q ∈ V1 we have NDV,V1

= ∅
and MSV,Q = COSV,Q.

Proof: By Theorems 4.4 and via Definition 4.2, each Q ∈ V1, Q 6= 0 is
co-definite with respect to V . Consequently, each P ∈ V is definite with
respect to such Q. Application of Theorem 4.8 completes the proof. �

In situation of Section 4.3 we get

Corollary 4.5 For a fixed set R of prime numbers let V = U(R), V1 =
U1(R), in notations of Section 4.3. Then for each Q ∈ V1 we have MSV,Q =
COSV,Q.

Proof: The result follows directly from Theorems 4.8 and 4.7. �

5 Center Set near infinity

Let a polynomial Q and a linear subspace V ⊂ Pd be fixed. In this section
we analyze the structure of the Center Set CSV,Q at and near the infinite
hyperplane HV , as compared to the Moment and Composition Sets MSV,Q

and COSV,Q. By Proposition 2.1 we have at infinity ¯COS ⊂ C̄S ⊂ M̄S.
An important fact is that for each definite P0 ∈ C̄S there is an entire

projective neighborhood U of P0 in PV where CS and COS coincide:

Theorem 5.1 Let P0 ∈ C̄SV,Q be a definite polynomial. Then

1. In fact, P0 ∈ ¯COSV,Q.

2. There exists a projective neighborhood U of P0 in PV such that CSV,Q∩
U = COSV,Q ∩ U.

3. CSV,Q ∩ U is a linear space defined by vanishing of the linear parts of
the Center Equations. In particular, CS is regular in U and its local ideal is
generated by the Center Equations.

Proof: From the inclusion C̄S ⊂ M̄S we get P0 ∈ M̄SV,Q. Since the polyno-
mial P0 is definite by the assumptions, moments vanishing for this polynomial
implies composition, so in fact P0 ∈ ¯COSV,Q.

In homogeneous coordinates (P, ν) in PV near P0 put P = P0+P1, P1 ∈
V. By Proposition 7.2 of [3] the only nonzero linear terms in the expansions
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of the homogenized Center Equations around the point (0, 0) in variables
P1, ν are given by the following linear functionals in P1:

Lk(P1) = −(k − 3)

∫ b

a

P k−4
0 (x)q(x)P1(x)dx, k = 4, 5, . . . . (5.1)

Denote by L ⊂ V the subspace defined by the linear equations Lk(P1) =
0, k = 4, 5, . . . . Let us show first that L ⊂ COSV,Q. Consider cer-
tain polynomial P1 ∈ L. Since P0 is definite, vanishing of Lk(P1) implies
composition condition for P0(x) and S(x) =

∫ x

a
P1(τ)q(τ)dτ . Since, being

definite, P0 has only one [a, b]-prime right composition [a, b]-factor W , we

conclude that S = S̃(W ). By the same reason, from P0 ∈ COSV,Q it fol-

lows that Q = P̃ (W ). Now Lemma 7.3 in [3] implies that P1 = P̃1(W ), i.e.
P1 ∈ COSV,Q, and hence L ⊂ COSV,Q.

It follows that all the Center Equations vanish on L, which is the zero
set of their linear parts. Now we are in a situation of Lemma 7.4 of [3]
(Nakayama Lemma in Commutative algebra - see for example [10], chapter
4, lemma 3.4). The conclusion is that CS = L = COS in a neighborhood of
P0, and the local ideal of this set is generated by the Center Equations. This
completes the proof of Theorem 5.1. �

6 Main results

Let a 6= b be fixed. Below we denote by T̃j the transformed Cebyshev poly-

nomials T̃j = Tj ◦ µ, µ being a linear polynomial transforming the couple

(a, b) to the couple (−
√
3
2
,
√
3
2
).

Let linear subspaces V, V1 ⊂ P[a,b] and a polynomial Q ∈ V1 be fixed.
The affine Center Set CSV,Q always contains the Composition Set COSV,Q.
In this section we provide an upper bound for the dimensions of affine non-
composition components in CS. As above, NDV,V1

⊂ ND denotes the set of
V1 non-definite polynomials in V . For each affine algebraic set A ⊂ V let Ā
denote the intersection of A with the infinite hyperplane HV .

Theorem 6.1 For each irreducible non-composition component A of the
affine Central Set CSV,Q we have Ā ⊂ C̄SV,Q∩ND ⊂ M̄SV,Q∩ND. Conse-
quently, dimA ≤ dim(M̄SV,Q ∩ND) + 1. In particular, for any polynomial
Q, and V ⊂ Pd the dimension of A cannot exceed [ d

6
] + 2.
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Proof: We always have Ā ⊂ C̄S ⊂ M̄S. Now, if P0 ∈ Ā then P0 cannot
be definite. Indeed, otherwise there would exist a neighborhood U of P0

provided by Theorem 5.1, where A ∩ U ⊂ COS ∩ U . Since A is irreducible,
this would imply that A ⊂ COS, which contradicts the assumption that A is
a non-composition component of CS. Thus Ā ⊂ M̄SV,p∩ND. Now since the
infinite hyperplane HV has codimension one in the projective space PV , for
each A we have dimA ≤ dim Ā+1. Application of Proposition 4.1 completes
the proof. �.

Notice that the dimension of the composition components of CS may
be of order d

2
, while by Theorem 6.1 the dimension of the non-composition

components is of order at most d
6.

To our best knowledge, this is the first
general bound of this form for the polynomial Abel equation.

Corollary 6.1 ([3]). Let V = P5. Then for any Q the Center Set CSV,Q

consists of a Composition Set with possibly a finite number of additional
points.

Proof: By Theorem 4.3 there are no non-definite polynomials in V = P5.
So the set M̄SV,Q ∩ND is empty and its dimension is −1. �.

Corollary 6.2 Let V = P9. Then for any Q the Center Set CSV,Q consists
of a Composition Set with possibly a finite number of additional curves.

Proof: By Theorem 4.3 the only non-definite polynomials in V = P9 are
scalar multiples of T̃6. So the set M̄SV,Q∩ND consists at most of one point,
and its dimension is at most 0. �

Corollary 6.3 Let V = P11. Then for any Q the CSV,Q consists of a Com-
position Set with possibly a finite number of additional two-dimensional com-
ponents.

Proof: Theorem 4.3 describes non-definite polynomials in V = P11. We see
that the set M̄SV,Q ∩ND consists at most of a finite number of points, and
a one-dimensional component, and its dimension is at most 1. �.

Notice that the bounds of Corollaries 6.1-6.3 are more accurate than the
general bound of Theorem 4.3.

Recall that by Definition 4.2 the set SV consists of all Q which can be rep-
resented asQ =

∑s
j=1 Sj(Wj), whereW1, . . . ,Ws are all [a, b]-indecomposable

right factors of a certain P ∈ V.
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Theorem 6.2 Let V ⊂ P , and let Q ∈ P \ SV . Then the Center Set CSV,Q

consists of a Composition Set with possibly a finite number of additional
points. In particular, this is true for V = P9 and any Q not representable as
Q = S1(T̃2) + S2(T̃3).

Proof: This result follows directly from Theorem 4.3 and Corollary 4.4.
The case V = P9 is covered by Theorem 4.5. However, since Theorem 6.2
is one of the central results of this paper, we give its short independent
proof. We show that the Moment Set MSV,Q does not contain non-definite
polynomials. Indeed, for each non-definite P ∈ V vanishing of the moments
mk =

∫ b

a
P k(x)q(x)dx implies Q ∈ SV , by Definition 4.2. But by our assump-

tions Q ∈ P \ SV . Therefore P is not in MSV,Q. Application of Theorem 6.1
completes the proof. �.

We expect that the result of Theorem 6.2 can be extended as follows:

Conjecture 2 Let V ⊂ P . Assume that either Q ∈ P \ SV , or Q ∈ SV , and
it is not V -co-definite. Then the Center Set CSV,Q consists of a Composition
Set with possibly a finite number of additional points.

Closely related to Conjecture 2 is the following

Conjecture 3 For polynomials P,Q vanishing of all the moments mk(P,Q)
and of all the second Melnikov coefficients Dj(P,Q) (see Theorem 2.1) im-
plies Composition Condition.

Theorem 6.3 Conjecture 3 implies Conjecture 2.

Proof: Assume, as in Conjecture 2, that either Q ∈ P\SV , or Q ∈ SV , and it
is not V -co-definite. The first case is treated in Theorem 6.2. In the second
case we still show that the Center Set at infinity C̄SV,Q does not contain
non-definite polynomials. Assume, in contradiction, that P ∈ C̄SV,Q is non-
definite, and let W1, . . . ,Ws, s ≥ 2, be all the [a, b]-indecomposable right
factors of P . According to Theorem 2.1 P satisfies equations mk(P,Q) = 0
and Dj(P,Q) = 0. By the first set of these equations Q =

∑s
j=1 Sj(Wj),

and by the second set and by Conjecture 3 we conclude that one of Wj is
a right factor of Q. Now according to Theorem 4.4 Q is V -co-definite, in
contradiction with the assumptions. This completes the proof. �

Our next result confirms Conjectures 2 and 3 for degP ≤ 9, degQ ≤ 8.
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Theorem 6.4 Let degP ≤ 9, degQ ≤ 8. Then vanishing of all the moments
mk(P,Q) and of three initial second Melnikov coefficients Dj(P,Q) implies
Composition Condition.

In particular, for V = P9, and for any Q of degree up to 8 not of the form
Q = S1(T̃2)+S2(T̃3), or of this form, but such that neither T̃2 nor T̃3 are the
right composition factors of Q, the center set CSV,Q consists of a composition
set with possibly a finite number of additional points.

Proof: Let polynomials P,Q with degP ≤ 9, degQ ≤ 8 be given. If
P 6= αT̃6, it is definite, and hence vanishing of all the moments mk(P,Q)

implies Composition Condition for P,Q. Consider now the case P = T̃6.
Here vanishing of mk(P,Q) implies that Q has a form Q = S1(T̃2) + S2(T̃3)
for some polynomials S2 and S3. By Theorem 4.5 we conclude that Q can
be written as Q = S1(T̃2) + αT̃3, with S1(T ) =

∑4
i=1 ciT

i. Now we use the
second set of equations Dj(P,Q) = 0.

Proposition 6.1 The first four equations at infinity Dj(P,Q) = 0 given in
Theorem 2.1 can be written as

D1(P,Q) =

∫ b

a

Q2p = 0, D2(P,Q) =

∫ b

a

Q2Pp = 0,

D3(P,Q) = 2

∫ b

a

Q2P 2p+

∫ b

a

Q(t)P (t)p(t)dt

∫ t

a

Q(τ)p(τ)dt = 0.

D4(P,Q) = 2

∫ b

a

Q2P 3p+

∫ b

a

Q(t)P 2(t)p(t)dt

∫ t

a

Q(τ)p(τ)dt = 0.

Proof: Straightforward, but rather lengthy computation. �

The following results describe the application of these three equations
to the specific combinations of Chebyshev polynomials representing Q. To
simplify the numeric coefficients we assume here that [a, b] = [0, 1] and so

T̃2(x) = x(x−1), T̃3(x) = x(x−1)(2x−1). We also have T̃6 = T̃ 2
3 = T̃ 2

2 +4T̃ 3
2 .

Proposition 6.2 Let P = T̃6, Q = S1(T̃2)+αT̃3, with S1(T ) =
∑3

i=1 ciT
i. If

the first two equations of Proposition 6.1 are satisfied, then either Q = S1(T̃2)

or Q = βT̃6 + αT̃3. In each of these cases Q has either T̃2 or T̃3 as a right
composition factor.
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Proof: Substitution to the first two equations of Proposition 6.1 gives the
following system of equations on the coefficients α, c1, c2, c3:

α(−13c1 + 4c2 − c3) = 0, α(−
38

3
c1 + 4c2 − c3) = 0.

The result follows immediately from this system. �

Proposition 6.3 Let P = T̃6, Q = S1(T̃2)+αT̃3, with S1(T ) =
∑4

i=1 ciT
i. If

all the three equations of Proposition 6.1 are satisfied, then either Q = S1(T̃2)

or Q = βT̃6 + αT̃3. In each of these cases Q has either T̃2 or T̃3 as a right
composition factor.

Proof: Substitution to the equations of Proposition 6.1 gives the following
system of equations on the coefficients α, c1, c2, c3, c4:

α(−13c1 + 4c2 − c3 +
4

17
c4) = 0, α(−

38

3
c1 + 4c2 − c3 +

16

69
c4) = 0,

α(−
325

26
c1 + 4c2 − c3 +

20

87
c4) = 0.

The result follows immediately from this system. �

Combining Propositions 6.2 and 6.3 we complete the proof of Theorem
6.4: vanishing of the moments and of the initial three Melnikov coefficients
implies composition. �

Finally we consider Center Sets in the subspaces V = UR, as defined in
Section 3.3.

Theorem 6.5 Let a subset R = {r1, r2, . . . } of prime numbers be fixed. Put
V = U(R), as defined in Section 3.3 above. Then for any a 6= b and for
each fixed polynomial Q ∈ U1(R) the center set CSV,Q of Abel equation (1.1)
inside the space V consists of a Composition Set with possibly a finite number
of additional points.

Proof: This is a direct consequence of Corollary 4.5 and Theorem 6.1. �

The results of this section cover all the results of Theorems 1.1 - 1.4 stated
in the Introduction.

The methods developed in this paper work not only in the setting of the
Center Equations at infinity. They can be applied also to the study of the
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local structure of the affine Center Set, and to the parametric versions of the
Center-Focus problem for Abel equation (see [6, 7, 9] for recent developments
in this direction). We plan to present these results separately.
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