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TAIWANG DENG

ABSTRACT. We describe torsion classes in the first cohomology
group of SLy(Z). In particular, we obtain generalized Dickson’s
invariants for p-power polynomial rings. Secondly, we describe
torsion classes in the zero-th homology group of SLy(Z) as a mod-
ule over the torsion invariants. As application, we obtain various
congruences between cuspidal forms of level one and Eisenstein
series.
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1. INTRODUCTION
Let I' = SLy(Z)/{£1d} and H = {z € C: J(2) > 0}. Let
X =T\H

In this article, we investigate the torsion classes in H'(X, Mn) and

H?(X, M,), where the sheaf M,, is induced by the action of SLy(Z)

on the space of homogeneous polynomials of degree n, denoted by M,,.
Fix a prime p > 3E| We consider the following generalized Dickson’s

invariants

D G it

Xp—l —Yyp-1 '

frs = (XPY = XY?P fos = (
Then in section [4] we prove that

Key words and phrases. Invariants, co-invairants, cohomology of SLy(Z), tor-
sions, congruence of modular forms, Stirling number of the second kind .

IWe remark that most part of the results in this article remain valid for p = 2
and p = 3, we exclude them for two reasons: one is due to the fact that the Lemma
fails for these primes, the other is for being less technical.
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2 TAIWANG DENG

Theorem 1.1. The polynomial ring 7.)p°[f1.s, f2.s] is a SLa(Z/p%)-
invariant sub-ring of Z/p°[X,Y]. Moreover, any invariant element of
order p° (i.e., primitive) is congruent to some element in Z/p°[f1.5, fo.s]
modulo p.

The polynomial ring Z/p°[f1s, fo.5] is defined to be a primitive sub-
ring of the invariant sub-ring Z/p°[ X, Y]5t2(#/ v,

From this one can determine the p-power torsion classes in H'(X, Mn)

As for H?(X, M,), a well known result says that H2(X, M,) =~

M, /Ir M,,, where Ir is the kernel of the augmentation map
Z[l' — Z.
In section [5, we analyze more generally the module
M/ Is,myM, M =DM,

In particular, we determine the module structure of M/Is,zyM @ F,
over (M ® FP)SLQ(]FP), which is the following theorem( see Proposition

5.9)
Theorem 1.2. We have

M IstyyM & F, = (M )52 X7y v-1
p—1
D @(M ® FP)SIQ(]FP)X(kfl)(Pfl)Ypfl D (M ® Fp)SLQ(FP)l
k=2
where
(1) the module (M @ F,)32F0) XP*=PyP=1 s free of rank one over
(M ®F,)3=E);
(2) the module (M®TF,)St2E) x E=DE-Dy?=1 4pq (M@TF,)S2E) ]
are free of rank one over (M @ F,)St2E) /(£ ).

We furthermore determines the free (primitive, as defined in the
paper) part of the module M/ Igy,zM ® Z/p’( which is denoted by
M? in the paper), which is the following (see Proposition [5.16)

paper), g b
Theorem 1.3. The element
Xp5+l_p5+p5—l_1yp§_1
under the action of the polynomial ring Z/p°[f1s, f2s), generates a sub-
module of M /Is1, 2 M®Z/p’, which is free over Z/p°[f1.5, f2.5]. More-

over, any element of M/Ig,zyM ® Z/p° which is of order p° can be
written of the form

cf +h, ce(Z/p°)*, P 'h=0

and
f €L [frs, f2,5]Xp5+17”5”5_1*11”’5’1.
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These two results allow us to determine all the p-power torsion ele-
ments in M /Iy, z) M.

Finally, in section [0} applying the fundamental exact sequence from
section 1, i.e., the exact sequence , we get various congruences be-
tween cuspidal forms of level 1 and Eisenstein series. This recovers the
famous congruences for Ramanujan 7-function modulo small primes.

Acknowledgement. First of all, I would like to thank Professor
Giinter Harder, for suggesting the problem to me and also for his
encouragement and guidance. I thank Robin Bartlett, Bingxiao Liu,
Sheng Meng, Carlo Pagano and Danylo Radchenko for many helpful
discussions on the article. The whole article is written during my stay
at the Max Planck Institute for Mathematics of Bonn as a postdoc. I
would like to thank their hospitality.

2. COHOMOLOGY OF ARITHMETIC GROUPS

We follow the notation of [?|. Let I' = SLy(Z)/{£1d} and H = {z €
C:3(z) > 0}. Let
X =T\H

be the quotient space. We are interested in the Cohomology groups of
X.

Definition 2.1. Let
M, = {ZaUX”Y’H’ cay, €72, 0<wv<n}
be the space of homogeneous polynomials of degree n. We define also

an action of I' on M,,, for g = (i 2) and P(X,Y) € M,

g.P(X,Y) = P(aX + ¢Y,bX + dY).
This action defines a sheaf on X, which we denote by M,,.

Remark: For more information about the sheaf M,,, we refer to [?].
To study the cohomology of the sheaf M,,, we fix some generators
of the group I’

1 -1 0 —1 11
n=(i9) 5= (0 0) T (o)
Note that in this special case we have the following.
Proposition 2.2. We have

Hl(Xa Mﬂ) = Mn/(M:R> + M;S>)

and

HY 90X, M,) ~ M, /((1d=T)M,)
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where MEE> (resp. M5 ) is the sub-module fized by R (resp. S), and
X = X UOX is the Borel-Serre compactification of X. Moreover, we
have the following fundamental exact sequence

0— H' (X, M,) = H(0X, M,) = HY (X, M,) —» H' (X, M,)
— HY(0X, M,,) = H*(X,M,) — 0. (1)
Definition 2.3. We define
HY (X, M)t = Im(HY (X, M,,) = H'(X, M, ® Q)),

Hl(Xv Mn)tor = keI‘(Hl (Xa Mn) — Hl (X7 Mn)int)a

and
HY (X, M,) =Im(H (X, M,) = H(X, M,)),

]—I!1 (X7 Mn)int = Im(H!l (X7 Mn) — Hl (X7 Mn)int)-

Similarly, we define H*(0X, Mn)im,Hl(aX,/\;ln)tor.

Now we have the following commutative diagram of exact sequences

Hl (X, -A;ln)tor I Hl(aXa Mn)tor

0—— H!I(Xw/\;ln) - Hl(XaMn) —>H1(6X7Mn)

|

0—— Hl(Xv Mn)int,! - Hl <X7 Mn)int - Hl (OX, Mn)int —0

0 0

Applying the Snake Lemma to last two exact sequences in columns,
we get
0 — Hl (Xa -/\;ln)int,!/Hll (Xa Mn)int — Hl (8X, -/\;ln)tor/-[{1 (X, Mn)tor —
— H2(X,M,) =0 (2)

The object of study in this paper is the fundamental exact sequence

2).
Remark: We should remark that all the terms are torsions and non-
vanishing in general.
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3. TORSIONS IN THE COHOMOLOGY OF BOUNDARY

In this section we study the torsions in the first cohomology of the
boundary 0X. We show the semi-simplicity of the Hecke action on
them and compute the Hecke eigenvalues.

Definition 3.1. We introduce a new set of elements in M,
A=X" =YY -X)-- (Y -kX+X)X"* 1<k<n.
When there is no confusion about degrees, we use €, instead. Also, we

will never take the product of €' and €.

Remark: In the literature, the element (X), = X(X —=1)--- (X —k+1)
is called a Pochhammer symbol or falling factorial.

Proposition 3.2. Let n > 0. The set {e; : 0 < k < n} form a basis
for M,,, i.e,
M, = B _Ley.
Moreover,
Tep = € + keg_q,
therefore, we have

M /(1A =T)M,, = ZY" D @y (Z/kZ)ex1.
Proof. We have

k
€x = Z s(k,7) X" IY?
=0

where (—1)"7s(k, 7) is Stirling number of the first kind. Conversely,

we have
bk
Xy = {j}ej

J=0

k

where { } is Stirling number of the second kind. Therefore the set
J

{er : 0 < k < n} forms a basis for M,,. O

We are ready to compute the Hecke action on the boundary cohomol-
ogy. Following Harder(cf. [?] §3.3), we know that the Hecke operator
T, acts on H'(0X, M,,) as follows

p—1
Tp(Xn—kyk> — pk Z Xn—k(y + jX)k + pn—an—kyk
=0

Therefore

Proposition 3.3. Let p > n be prime. The Hecke operator T, acts
semi-simply on H'(0X, M,,) with

Ty(ex) = (" "4+ p" Ve, 1<k <n.
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Remark: Note that our proposition applies equally to the free part of
the cohomology with generator ¢,.

Proof. We prove the statement by induction on k. For k = 1, our
statement is trivial. For k > 1, since

" (k
Xy k= j{ .}ej
=0 \J
k . .
and { k:} = 1, by induction we have

T,(ex) = T,(X"7FYF) %{}

]:

“o ey (- e

= AR (j +19)!
AR | M B MR R
j=0 J i=1 J:
Note that here we use the fact that
k
XFY +iX)"F = TH(XFYy ™R Z{ }Tl )
7=0

and '
T'(e;) = € + 2jej1 +3j(J — D)ej2 + -+
We need to show that

k—1 . .
(" FpM T —p =) g +i(z’+1)p’“(p—i)(j+l)! " b =0 mod j+1
i [RVESI I

We observe that for ¢ > 0,
(j +1)!
4!
hence, we only need to show

(pnfkr +pk+1 n p]+1){j} = O mod] + 1

Note that this also holds for j = k for trivial reasons. To show this
we need the following lemma

=0, modjy+1,
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Lemma 3.4. (c¢f.|?| Page 57) We have the following identity

2 (r —k 1
Z{k}x C1-X)1-2X)---(1—kX)

r=k

Consider the following polynomial

X (L B p ‘ . p
P(va):ZZ{j}(pn k+pk+1_pn ]_p]+1>X kyk—j

k=j n=k
We have
B oo k yk—i k pk+lykfj k pk*jyk*j k pj+1yk*]’
P<X’Y>_,;({j}1—px+{j} - X _{j} I pX _{j} —x
B 1 1 N pitt 1
S (1-pX)(1-Y)--(1—-35Y)  (1-X)(1—pY)---(1—pjY)
B 1 1 B pitt 1
(I=-pX)(1=pY)---(1=pjY) (1-X)1-Y)---(1-3Y)
1 pitt 1 1

BT Gl T T o R o B R s e e o L
Note that the condtion that p > n > k > j implies (p,j+1) = 1, hence
1 1
1=Y)---(1-5Y) (1=pY)---(1—-pjY¥)
which in turn implies that
P(X,Y)=0mod j+ 1.
This finishes the proof. Il

mod j + 1

Remark: Our proposition might fail for p < n, consider for example
J=17k=23,n=24,p =3, then

A A k
(pn—k +pk+1 — i — pJ+1){]} =6 modl8

However, a weaker statement holds without the assumption on p, i.e,
Ty(er) = (" " +p"* e modg
for any prime ¢|(k + 1). In fact, we have

("Mt = - pj“){?} =0 modp.
for any p and n > k. Combining this and the argument in the propo-
sition implies our weaker assertion.
Before we finish this section, we deduce from lemma [3.4] some con-
gruence properties of Stirling number of the second kind which will be
used in the next section.
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Corollary 3.5. Let 1 <t k <p. We have
p*—tp Ilmodp, ifk=1andt=1,
kp—1

{ 0 mod p, otherwise ,
lmodp, ifk=1,
k:p — 1 Omodp, otherwise .

and

Finally, we have

)=

Proof. By lemma we have

lmodp, ifk=1ork=np,
0 mod p, otherwise .

- r r—kp+1 __ 1
2 {kp—l}X C(1-X)0-2X) - (1= (kp = 1X)’

r=kp—1
But

1 1

X020 (- (DX ~ (= xr e = 20X modp

(=1

We can assume that p? — tp > kp — 1, which imply t + k& < p. For
1<k<p—-1,1<r<p-—1,then (p—1)|plp—1t)—kp+ 1 would
imply t+k =2 or p+ 1. Hence we must have t + k =2, ie, t =k = 1.
By comparing the coefficients, we get the result. As for

Vo)

we observe that (p—1) | t¢(p—1) —kp+1 only if £k = 1. Hence it follows

that
tip—1) lmodp, ifk=1,
kp—1 0 mod p, otherwise .
—1
Same argument shows the case of {Z 1}. O
p —

4. TORSIONS IN THE FIRST COHOMOLOGY

We fix an odd prime p > 3. We recall the following theorem of
E.L.Dickson (for SLy(Z)),

Theorem 4.1. The group SLy(Z) acts on the polynomial ring F,[X,Y]
with the ring of invariants a polynomial ring generated by
Xp2 1_ypr*-1
—ypr-1°
Our first goal in this section is to generalize this theorem to allow
p-power torsions.

fi=XY - XYP fy =
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Definition 4.2. Let G-be a group and M be a G-module which is free
over Z/p". Let (i, M) be the pair where the embedding i : Mgim —
M€ realizes MpGrim as one of the mazximal Z/p"-sub-modules of MY
which is free (over Z/p"). We call it primitive invariant sub-module of
G over Z/p". We also call an element primitive if it is of order p" in

MEC.

Remark: By elementary divisor decomposition theorem, we know the
pair (i, M) always exists and is not unique. When no ambiguity
arises, we also drop the morphism ¢ and say simply that ]\4pGrim is a
primitive invariant sub-module.

Then we have the following

Theorem 4.3. Let p > 3. The group SLy(Z) acts on on the poly-
nomial ring Z/p"[X, Y| with a polynomial ring of primitive invariants
generated by

xp-1 _ypP-1
Xp—l —Yypr-1
Proof. We prove this theorem by induction on n. The n = 1 case is
just the theorem of Dickson. Assume n > 1 from now on. Note that

since the action of SLy(Z) factor through SLy(Z/p™) we are allowed to
replace it by the latter. Now let G,, = SLo(Z/p"), and

Ln=<(é })>an.

Let M™ =7Z/p"[X,Y], then we have the following morphisms of coho-
mology groups

—1
>

Fim = (XPY = XYPVP"7' fo, = (

Res: H'(G,,, M"™) — H'(L,, M™),
Inf: H (L,, M") — H' (Lo, M™),

which are the restriction and inflation, here Lo, = (T") C SLy(Z). Note
that we have the following exact sequence

0 M! M™ Mt ——0

which induces long exact sequence

0 —— HYGy, M) —— HO(Gp, M™) —— H(Gp, M) 22 HY(G,, M)
We get the following morphisms
6 HY(Gpoy, M"Y — HY(G,,, M),
rm = InfoResod, : H(Gn_1, M"') — H' (Lo, M").
The morphism 4, admits the following description: let h € G, then
for any f € H*(G,_1,M" "), and f € M™ be a lift, then

hf) = f

on(f)(h) = o

Y
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here we identify the element ¢ € H'(G,,, M) as
0 :Gn— M, @(hihs) = @(h1) + hip(hs).

Lemma 4.4. The morphisms 6, and r, are additive and for f,g €
HO(Gn—lan_1>;

on(fg) = gon(f) + foulg), ru(fg) = gra(f) + fra(g).

Proof of Lemma[{.4 We only prove this lemma for d,( it is similar for
rn). In fact, for h € G,,, and f,§ € M™ be lifting,

sulg)) = "LDZIT 13, (9)0) + 301 )

by assumption, we know that f mod p" ! lands in H°(G,_, M"1),
therefore we know that

h(f) = f mod p"t.
The additivity is obvious. Hence we finish the proof of the lemma. [J

As an outcome, we know that
a(fP)=0, Vfe HO(Gn,l,M"*I).
By induction, we know that H(G,, M"*) = H°(G,_1,M™ ") con-
tains a primitive polynomial ring generated by

- Xyl
fra1 = (XY = XYPP fun = (s

We pick a lift of f;,—; and f,,-1 to M,

szfl - Yprl
Xr1 —yr-1

n—2

fl,n—l — (XPY - Xyp)p ) ,f2,n—1 — (

)pn—Q

We have the following

Lemma 4.5. Let p > 3. Let f € H*(Gn_1, M"™) be a polynomial
such that f = fﬁn_lf;n_l with p 1 (a,b), here (a,b) denotes the gcd
of a and b. Then we have r,(f) is non-trivial in H'(Le, M*). More

generally, let f = Zcifafn_l an—l such that p t (a;, b;), then r,(f) =0
implies ¢; = 0 in IF;.

We postpone the proof of this lemma to the end of the section.
Assuming this lemma, we still need to show that fi, and f;, lie in
H°(G,,, M™)(Note that both of them are of order p"). For p > 2, the
invariance under S is obvious. As for the action of R, for p > 3,

R(fin) = (X +Y)(=X) = (X +Y)(=X)")"
— (YXP XY
= (XPY — Xyp)p”’l +p"(--)

n—1
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the second term vanishes in M™ by applying lemma [7.4 And
((X + Y — (=Xt
(X +Y)r-1 — (=X)r!
= (X 4+ Y)Y (X +Y)eDe-Dxe- 4oy Xp(p—l))p"’l‘
To apply lemma [7.4], it remains to see that
(X + V)PP~ (X + ) DD xe-D 4 oy xpe-D)
= yre-) 4 ye-Ne-b x @1 4 ... 4 X~ mod p.

But this follows from the fact that fs; is invariant under SLy(IF,). Fi-
nally, we need to show the algebraic independence of f; ,, and f5,. This
follows from the fact that their images under the canonical projection
into M are algebraically independent, since they are p" '-powers of
the algebraically independent elements f; ; and f;2. We are done. [

)pn—l

R(fQ,n)

With the above theorem, one can proceed to compute the torsions
in H'(X, M,,).

Lemma 4.6. (cf. |?| §2.1) Let A be a ring such that 2,3 are inverted.
Then functor from the category of SLa(7Z)-modules with coefficients in
A to the category of abelian sheaves on X with coefficients in A is exact.

Therefore we have the following short exact sequence of sheaves

p6

0 M, M, —= M, @ Z/p’ —0,
which induces a long exact sequence

0 — H(X, M,) — H°(X, M,)) — H(X, M, @ Z/p’) >~

—% HY(X, M,) RS (X, M,) — H' (X, M, @ Z/p°)

Corollary 4.7. Let p > 3. Assume that n > 0. We have an isomor-
phism ) )

« HO<X> Mn X Z/p(s)prim — Hl(Xa Mn)[p(s]prim>
where the latter denotes the primitive p°-torsions in H' (X, Mn) which
1 1nduced through the morphism a. Moreover, we have

H(X, M, ® Z/p’) = (M)",
where M° = 7.)p°[ X, Y].
Proof. We know that for n > 0,
(X, M,) =0,

this proves the injectivity of a. On the other hand, any primitive
p‘s—torsio~n is killed by multiplication by p°, hence must come from
H°(X, M, ® Z/p®) in the long exact sequence above. g
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We finish this section by supplying a proof of Lemma [4.5]

Proof of Lemma[[.5. Let M* = @3 ,M;, where M is the subspace
of homogeneous polynomials of degree d. First of all, we know from
Proposition [3.2] that

H'(Loo, M) = Z/pZei® P Z/pZe]_,.
1<k<dplk

Note that here we use the superscript to distinguish the generators
for different degrees. We first compute r,,(f1,-1) and r,(f2,—1). For
p>3,

T(.];Ln—l) - fl,n—l

Tn f n—1) =
( 1 1) pn—l
O (XPX+Y) - X(X +Y)P)PT — (XPY — XYP)
pn—l
(XP(X +Y) = X(XP+ VP4 p(XYP~! 4+ X)) — (XPY — XyP)r" ™
- pn—l
(XPY — XYP — p(X2YP~! 4 X3g))P"° — (XPY — XyP)"
- pn—l
_ (XY - XyPy" ™ —pn= Y (XPY — XYPY' T IL(X2Y Pl 4 X))
pn—l

2

(XPY — XYP)P""
B pn—l
—(XPY — XYY" (XY P 4 X))
_ (_1)pn72Xpn72+1an71_1 + Xpn72+2hl (4)

We make some remarks concerning the computation. Here hy, g1 €
Z[X,Y], and in the expansion (3), we ignore the terms divisible by p"
since by Lemma , we have for 2 < k < p" 2,

(3)

n—2
val,(pF (pk )) >k +n— 2 — val,(k)

This guarantees that for p odd, we have

pn—Q
Valp(pk< i )) > n.
Therefore, we have

Falfrnn) = (1P S 4 ST T,

k<pr—1-1
which is nontrivial in H'(L.,, M'). Similarly, we have

T(f~2,n71> - fNQ,nfl
pnfl

Tn(f2,n—1) =
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(XPe=D) 1 Xe-De-D(X V)P o (X + y)p(zo—l))p"*2

pn—l

(XP=1) 4 Xe-D-Dyr-1 4 ... 4 Y}D(pfl))p”’2
- pn—l
_ (XPe=D) 4 X=De-Dyp=1 ... L yPe=) 4 op(p — 1) XYPP-D 4 X292)p”‘2

pn—l

(XPe=1) 4 Xe-De-Dyr-1 4 ... 4 yp(pfl))p"‘2
- pn—l

(XPe=1) 4 Xe-De-Dyr-1 4 ... 4 Yp(pfl))p"‘2
- pn—l

P (p — D) (XPeD) 4 X-De-Dyp-1 g yp(p—l))p"‘Q—lep(p—l)
+ pn—l

xre-1) 4 xe-De-1)ypr-1 ... ypel-1))p"?
( + : + - F ) X%,

P

(5)
— (p—D)XYP" D=1 X2,

Here again ho, hs, g» € Z[X,Y], and in the expansion (), we ignore the
terms divisible by p".

n—1¢(,__ 1/,
Tn(fon-1) = (p — 1)€§n71§g,371 + Z br.€” (b=1).
k<pn—1(p—1)—1
which is nontrivial in H 1(LOO, M 1). We will also need to compute the

image of fi,—1fon-1 = (X”ZY — XYIDQ)]’%2 under r,,, which is

T(fl,n—lf2,n—l) - fl,n—lf2,n—l
pn—l
(XP (X +Y) - X(X + Y — (XPY — Xy»' "
pnfl
(XP(X +Y) = X(XP Y7 4 Y (2) Xy r'=iv 4 g2y
pn—l

Tn(fl,n—lfQ,n—l) -

(Xp2Y . XYPQ)pn72
pn—l
(XP'Y — XYP" — ( f;ll (fZ)XipHyp?—ip + X gs))P
pnfl

n—2

2

(XPY — Xy?»’ )™
pnfl
(XP'Y — XYyP )" — (XP'Y — XYP)
pnfl

n—2
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PN XYY — XY P TR L2 Xty et g g

i=1 p\ip

pn—l
L1 p—i
= —(XPY — Xy?" -l ) Xty vt
( (7 )
(6)
Here g3 € Z[X,Y], and in the expansion (), we ignore the terms

C n 1 (p? 1 —1
divisible by p™ and use the fact that — = — , mod p.
p

p \1p —1 7

i=1

p—1
1 -1 , 2 .
By Corollary , we know that the term Z : <p . ) Xptlyp—ip
i PN
vanishes in H'(Ls, M'), which implies that it lies in the image of
(T —1). Now applying the fact that in M*,

(T = D((XPY = XyP ") =, (7)

we know that the term

1 1

(Xp2y _ XYPQ)p"”—l(Z p— Xip+lyp2—ip)

i P — 1 U

vanishes in H'(L.o, M"). Therefore,
o fine1fon-1) = (XPQY _ Xypz)p"‘klxpﬂyptp 4

Again, Corollary [3.5] tells us that

2 241 2 _
Xptlypr—p egﬁ — P pt2yp-1

in H'(Lo, M"). Hence applying again equation (7)) allows us to obtain
Tn(fin—1fon1) = (XP2Y — XYp2)pn72_1Xp2_p+2Yp_1

2 n—2(,2 n—2(,2

_(__1\P?—1_p"2(p+1) p" T (p?+1)

=(-1) € prip1 T d€p )
k<pm—p?+p—1

Note that by property of r,, we have
ra(f5) = k().

Therefore,

T'ﬂ(fﬁnflfg,nfl) =a ﬁ;llfg,nflrn<fl,n—l) + bfinflfé);ilrn(fzn—l)

= (=1 (@ = D) G
So if a — b # 0 mod p, we know that Tn(fﬂn_lfg’n_l) is non-zero in
H'(Loo, M*). Assume that p | (a — b) but p { (a,b). We show that
rn(ff’n_lfgvn_l) does not vanish in H'(Ls, M"). We argue under the
assumption

a=b+ps,s >0,
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which is similar for the case b > a. In fact, we have

Tn(ff;fl(fl,n—lf&n 1) ) _bfln l(fl,n—lan l)b_lrn(fln 1f2n—1)

_(_1\(a=D)p"=2; _p"%(a(p+1)+p(p—1)b)
= (=1 b€ (1) —pap1 T

This shows the non-vanishing of r,,(f{,_; f2,n_1). Finally, if

Zm Ciftn1 2n ) =

such that
d=p"(ai(p+1) +pp—1b), (=1, L. (8)
Assume first n > 2, then
P+ (p—1)b) =1 Zp" Ha+ (p—1)b) — p* +p— Lmodp" .
And for n = 2, the equality
P a+ (p=1)b) = 1#p"Ha+ (p— 1) —p*+p—1
imply
a;+(p—1)b; = 1) =a; + (p — 1)b;.
But from , we get
a;+ (p—1)b =a; + (p— 1)b;.
We deduce from it that
p—1=0,

which is absurd. Therefore we are reduced to following two cases:
(1) We have a; — b;  0mod p for all i, but the equations

PN a4+ (p—1)b) —1=p" Ya;+ (p—1)b;) — 1
" (ai(p+ 1) + p(p — 1)b;) = p" *(a;(p+ 1) + p(p — 1)b;)

imply a; = a;,b; = b;. Hence we must have

rn(cifﬁi’l—lfé)jn—l) = 077/ —= 1’ “ e 76.

This shows ¢; = O mod p.
(2)We have a; — b; = 0mod p and p 1 b; for all 7, then

PN ai+ (p—Db) —p*+p—1=p""a;+ (p—1b;) —p°+p—1
P (ai(p+ 1)+ p(p — 1)b;) = p"*(a;(p+ 1) + p(p — 1)b;)

imply also a; = a;, b; = b, from which we deduce that ¢; = 0mod p.
O
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5. TORSIONS IN SECOND COHOMOLOGY WITH COMPACT SUPPORT

In this section, we determine the torsions appearingappear in H2(X, Mn)
As in the previous section, we fix a prime p > 3.

Definition 5.1. Let It be the augmentation ideal of the group algebra
v:Z[l — Z, Zaigi — Zai.

Proposition 5.2. (cf. [?], §4.8.5) We have
HZ (X, My) = My /Ir M.

Therefore we need to compute the coinvariants of M,, ® Z/ p° under
the natural action of SLy(Z).

We follow the strategy of [?], where the authors treat the case of
GLy(F}) acting on F,r[X,Y]. We remark that though the strategy is
the same, their method does not yield the case SLy(FF,) due to the
lack of construction of some auxiliary linear functions. Instead, our
study of invariants in the divided power rings gives naturally such linear
functions.

Definition 5.3. Let G be a group acting on a module M. Then we let
Mg =M/IcM
be the space of coinvariants of G. In case Gs = SLy(Z/p°) and M° =
Z/p°[X, Y], let
Hilb(Mg,, t) =) _ ranky,s (M, )at"
>0

be the Hilbert series of Mgé, where (Mgé)d be the degree d part of Mgé.
Remark: Although the module M} , is not free over the ring Z/ P°, by
elementary divisor theorem it still makes sense to speak about the rank
of the free part(in the decomposition).

Before we state and prove the main result, we recall some preliminary
results on divided power rings, for details, see [?].

Definition-Proposition 5.4. Set Vs = (Z/p’)*>. Then regarded as
a Hopf algebra, the algebra M° = Z/p°[X,Y] = Sym(Vy) admits a
(restricted) dual Hopf algebra

D(V;S) = Z/p5[€1752]7

where D(Vy)q = (M3)*, with & dual to X and & dual to Y. Moreover,

D(Vy) carries a divided power structure satisfying

gi(m)ggn) _ <m + n) é_i(m+n)7 fori=12.
n



TORSIONS IN COHOMOLOGY 17

Proposition 5.5. The divided power ring D(Vs) admits an action of
Gs by

(‘C‘ Z) F(E60.62) = F(a&y + by, c6y + &)
satisfying
(gf h) = (f.gh), YfeD(Vs)ahe Mg g€
where () : D(V)g x M§ — Z./p° being the natural pairing.
Proof. We only need to check that we have
{gfh) = (f,9h)

for f (resp. g) running through the basis {5§m)52”) :m+n =d} (resp.
{X™Y"™:m+n=d}). We have

(S(E™e™), XTYe) = ((—1)medMe™, XTY)

= (1), XT(E™, Y
(= 1) 8Os,

and similarly,
(66, SV ) = (€77, YT (= X))

= (_1)s<€1m)’ XS> <€§n)7 Yr)
(—=1)™6, 1 0m s

Therefore
(S(EMeS), XTYe) = (el S(XTY?)).
Also
(T(EMEM), XTY*) = (&1 + 52><m>5§">, X'Y*)

Z g el Xy
23 (” i ’“) (€I, XY )
k=0
Z (n M k) m— k,r5n+k,s
=0
n+m-—r
(o)
(€e T(XTY)) = (el X?"<X +Y)%)

(n) s r+ky s—k
- (S (k)x veoh)

and
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B —
k=0

Il
ol
I @
o
R
™ »
N

>

3

3

+

b

e

vy

Bl

therefore
(T(E™e), XYY = (6™ T(XTY)).

Corollary 5.6. The pairing (,) induces a morphism
s+ D(Vs) — (Mg,)*
which induces an isomorphism
p1: D) = (Mg,)*

Proof. The morphism ¢ is an isomorphism due to the fact that Z/p is
a field. g

Remark: Although we do not give a proof, the reader should be aware
that we have an isomorphism

D(‘/5>1?r<im (Mg(;,prim)*7

of course, the module MG 5 prim Should be appropriately defined.

Proposition 5.7. We have a set of elements belonging to D(V;)%!

n—1

k(p— n—k)(p—
{37 F gl heD) 5 9y
k=1

Proof. Indeed,

Zf(k(i’ 1)5271 k)(p— 1)))

3

(6 )R D)

x~
Il

k

3
»—- —

I
M

(p—
r) ~(k(p—1)—r n—k)(p—1
§ : 5( )fé (p—1) ))fé( )(p—1))
=0

hf@:<m£%2 Q&f o

r=

3?‘
,_.,_.
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(n—1)(p—1)-1
_ n(p—1) — (r) ¢ (n(p—1)—
= 2 X (<n B >)51 ©

r=0 I+l cp<n—1
p—1—="=

n—1
k(p—1 n—=k)(p—1
+Z§§ (p ))é( )(p ))‘

k=1

Note that it is enough to show

2 ((ZZ(f ;i;:;)) =0 modp

r+l cp<n—1
p—1—="=

or, equivalently,

Z (‘;) =0 modp,Vj > 0.
q—1]k1<k<j—1

Now we want to use the following trick

Zﬂk:{p—l——l, if k=4{(p—1) for some ¢ € Z,
0,

otherwise.

7j—1 .
h(t) = (1 +t ( )
k=1
Then we have

> (I)--Z

BEF,
Let

q—1|k,1<k<j—1 BEF)
==Y h(B)
BEF,
SRP SLASVED SLED B
BE]FP /BEFp ﬁE]Fp
= 0.

We first study the module structure of M .

Theorem 5.8. We have
$2(p—1) p(p+1)

—o 1 A=) —pe D)

Hilb(M{, 1) =1+

Remark: One easily rewrites the expression in the theorem as follows

1+ 2= L 3(0=1) ... 4 ¢(—1)? o1

. 1 _
Hilb(Mg, ,t) = 1 — D) +(1 — p+1)(1 — tp(=1))

Remark: The analogous theorem holds with [, replaced by any [F,-
Also, similar proof can be produced for SL,(F,-)(n > 3)(under the
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condition that we have a good understanding of the boundary coho-
mology of certain locally symmetric space). But since we are only
interested in the n = 2 case for present, we leave the case n > 3 for
future work.

Note that our theorem is a consequence of the proposition below.

Proposition 5.9. We have the following structure decomposition of
M.,

MélNMlGl pfl@@MlGl @MlGll

where

(1) the module M*"© p is free of rank one over M*““1;
(2) the module M Z(fl V@2 <k<p—1) and M1 are free of
rank one over MYC1/(f)).

Remark: We remark that in M 1’G1

FP=1) e (k=1)(p-1)yp- 1(k—2 p—1), Ep — xP*-ryr-1

p—1 p—
Proof. We start with the canonical subjective morphism
T MY/ (1—-T)M" — MYCr,
First of all, we know from proposition that
Mi/(1-T)Mj=Fes& €D Fel,.

1<0<d,p|t

Consider the case d = p—1, then eﬁj = Y?~!. The fact that 7(65:%) =
0 follows from

n(Yp—l) = X714 (S — Id)(XP™)

and XP' =™ = 0in M'/(1 — T)M'. We use Proposition to
show that 6831 1)(2 < k < p—1) does not vanish in M{, . In fact, by
Corollary (3.5 we have

61;971—1) — x*k=Dp-Dyr-1

in M,i(p_l)/(l - T)M,i(p_l). Since

k—1
<Z ér(p—l))é(/’f—r)(p—l))7 X(kfl)(pfl)yp71> —1

r=1

we know that W(Ek(p Yy £ 0 in Mg, .

Lemma 5.10. The elements {ep(p Vio<k<p-— 1} U {1} are all
annihilated by f1 but not annihilated by any power of fs.
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Proof of Lemma[5.10, We have
fi=XPY — XY? = (Id —9)(X*Y).
For 2 < k <p — 1, consider
k—1
hy, = ZXi(p—l)y(k—i)(p—l).
i=1
Note that

k
_ Py p i(p—1)y (k—i)(p—1) _ yk(p—1) _ yk(p—1)
fihi = (XPY — XYP)( X Y X Y )
i=0
— x kD) -1ty  xy kD) (p-1)+1
+Xk(p—1)+py +Xpyk(p—l)+l _ Xk(p—1)+lyp o XYk(p—1)+p
= (Id =8)(X FHD-D+ly 4 xk@e-Divy 4 xpykp-1)+1)
It remains to see that
hie = (k= 1)e"®1 £ 0

p—1

in Mg, . In fact, we have

(k—i)(p—1) .
xile—Dy (k=) (p—1) _ Z {(k —i)(p— 1)}6k(p1)

r
r
r=0

only the terms with » = —1modp remains in M'/(1 — T)M*. But
applying Corollary [3.5, we know that for 1 <i <k — 1,
xilb-Dy (k=) (p-1) _ 6’;991*1)‘

Hence we have proved that f; annihilated all the elements in {eﬁg’f V.
2<k<p-—1}U{1}. We still need to show that any power of f, does

not annihilate any element in the same set. We know that

fy = X201 4 xe-De-Dyp-1 4 4 yee-1),

And
fI=yre-1 4 Z Cmme(p—l)yn(p—l) + XIp(p—1),
m,n>1
And we note that Z Cmn = (p+1)7 — 2. Therefore,
m,n>1

Jp—1 ‘ . .

(3 gD ) = N e = (p+1Y —2 = —1modp.

r=1 m,n>1
And for i > 1,

Jpti

(g e Xy — (14 p) = 1mod p.

r=1



22 TAIWANG DENG

We finish the proof of the lemma. O

Lemma 5.11. Let d > 0. Then the monomial X“Y?P~! vanishes M,
i (p—1)1d.
c 0

Proof of Lemma [5.11] In fact, let g = <O 0_1) € G; with ¢ € IF;.
Then

(Id —g)(XYP™") = (1 — ) XyP 1
If (p — 1) 1 d, then picking ¢ with ¢ # 1 shows the result. O

Lemma 5.12. The set of elements

2(p—1) 3(p—1 —1)2 21
{]‘JEp(j)l )7€p(z)1 )7 76;17—1) }U{Egil )

generate M(l;l/(fl, fg)Mél as a vector space over I, and hence generate
M¢,, as module over M

Proof of Lemma[5.13. Let h € Mj = F,[X,Y];. Then by Euclidean

division with respect to Y, we can write
h=fohy+hy, hy =Y/ XTI 43 VX" j<p’—p.
<j
Furthermore, we have

hy = fihs +aY? + DX PHY P 4 by by = Z me X4yt

t<p—1
Therefore in Mg, /(f1, f2)M¢,, we have
h=hy=aY?+bXTPHYP~l 4 py,
But the term hy vanishes in M'/(1 — T)M", we have
h=aY?+bX"PHyr 1,
We also know that in M,
V= X4 (5 —1d)(X%),
while X? vanishes in M*'/(1 — T)M*. Hence
h = bX 4Py P!
in Mg, /(f1, f2)Mg,. According to the lemma , this term can only

be nonzero when

(p—1)d
Assume that d = (p — 1)d;. At this point we invoke the following
relation between f; and fs,

XVl = Xty —
Therefore, if 5 > p* — 1, then
ijpfl — (prle o fiufl)AX—j,pQJrly'pfl7
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which vanishes in M¢, /(f1, f2)M¢,. Therefore, we can assume d — p +
1 < p? — 1, hence

di <p—+2,
then d = di(p — 1) < p* — 1. Therefore, we know that the set

2(p—1) p(p—1) p*-1
{17 €p—1 5 s €pt1 H6pa

generates the space M(l;l /(f1, fg)M(]';l. We claim that the element eg(_pf 2
also vanishes. To show this, consider
fy = XPD 4 (X(p—l)(p—l)yp—l 44 X(p—l)y(p—l)(p—l)) + yre-b,
by Corollary [3.5, we know that all the terms inside the parenthesis
XDy r=0k-1 " 1 <j<p—1

are equal to ei(jpl_ U which implies

—1 —1
0= (p - 1)55(—101 )= _55(—]01 )-

The second assertion in the lemma follows from the first via the fol-
lowing lemma

Lemma 5.13. (c¢f. [?]| Proposition B.14) Let R be an N-graded ring.
Let I C Ry := ®4>0Rq be a homogeneous ideal of positive degree ele-
ments. Let M be a Z-graded R-module with nonzero degrees bounded

below. Then a subset generates M as R-module if and only if its images
generate M/IM as R/I-module.

g

Now we can finish the proof of Proposition 5.9, Let N; and Ny be
the M sub-modules of M, generated by 6&—11 and {e’;(fl_l) 02 <
k <p—1}U{1}. Then lemma implies

MYt = Ny + Ns.
And lemma [B5.10l shows that
Ny = @5, MY 4/ (f)e, 0 @ MY/ (f)1.
We claim that N, ~ M"%'. In fact, if f € M annihilates 622:11.
Then ff, annihilates the whole module MY“!, which contradicts the
following

Proposition 5.14. (c¢f. |?| Proposition 5.7) Any finite group G of
automorphisms of an integral domain S has rankge (Sg) = 1.

Finally, we conclude that the sum N; + N, is direct since
N1 N N2 C Anan,Gl (f1> N N1 = 0.
O

We still need to consider the case of M& for 6 > 1. We have the
following
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Theorem 5.15. We have
tp5+1+p671_2

(1— tp‘“l(p+1))(1 — tp‘s(p—l))'

Hilb(M¢,,t) =1+

Again, this theorem is a consequence of the following

Proposition 5.16. Assume p>3. Let M>S? = Z.)p°[fis, f2s5]. Then

prim
5+1

the sub-module of Mgé generated by the element XP AR b

2,Gy . :
over MJi® is free of rank one. Moreover, the direct sum of this module

and a copy of Z/p° generated by the degree zero element 1, which is
denoted by Mga, forms a primitive sub-module of Mgé.

Remark: For § = 1, it is covered by previous case.
As before, we need some results on the divided power rings.

Proposition 5.17. Let Vo, = Z*. Then we have

D(Vo)a/(1d =T) = Zvy & P Z/iZv;

i=1

with
d

u=3 {110

j=i

Remark: Note that here by convention, we have

{8} :1,{3} =0, for n > 0.

Proof. We want to show that
(T - Id)I/Z = (Z + 1)Vi+1

In fact,

d_d=j j . .
-3 Y {Te e

j=i k=1

d d—j . .
_ I\ (BT ctai k) G)
= : )G &

— ] J

Jj=t k=1

o=
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Therefore, we need to show that

§ {Z}(g) St 1){211}'

7=
Note that we have

g{Z}tj: (1—t)(1—2t:€)---(1—z't)'
Then
=30
{2 ()
) i g
B (1) ti
- - - ) (-1 -0 -2t (1—ib)
_ (i + 1)ttt
-t =2t)---(1—(GE+ D)
We are done. Il

Corollary 5.18. The element v; in D(Vy)a/(Id =T) is of order divisi-

ble by p if and only if p | i. Moreover, the exact p-power of v; is p"alp( )
where val,, is the standard p-adic valuation.

Proposition 5.19. The set of elements

{Zg(p‘s L_145pS—t(p— 1))55 Sl 14+(p—j+1)p° 1 (p-1)) 5> 1)

belongs to D(V;)®
Proof. For 6 = 1, we are covered by proposition [5.7] By design, the

element

p
Ug = Zép‘i‘lflﬂpé‘l(wl)) §p5‘171+(p7j+1)p‘5‘1(pfl))

j=1
is symmetric with respect to & and &. Therefore we only need to show
that it is invariant under 7'. In fact,

p

T(us) = Z(& § &) P I T =) gl A gt T (1)

Jj=1
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p pPTi-144p’"(p-1)

0 671_1 - 6—1 —1)—¢ 671_1 s 5—1 1
— Z Z 'Si )gép +ip* = (p—1) )gép +(p—j+1)p*~  (p—1))
J=1 /=0

01 o4 jpd=1(p—1) _
_ zp:p i p ( p6+1 +p5 1L_9_y ) (£)€(p5+1+p671_2_5)
= = P14 (p—j i p 1))

1 i ép‘s‘l71+jp5‘1(pfl))gép‘s‘l71+(pfj+1)p5‘1(p71))
j=1

PO+l _pdypd—1_9

B Z ( p5+1 +p5—1 _ 2 o é )é—(
pPl—1+(p—j+ptp-1))>"

= _p0—1
=0 Z}»Elp S
p° T (p—1)

J<p

P

671_1 . 0—1 1 571_1 —i41 5—1 1
+§ :ép +ip°~H(p ))fgp +(p—j+1)p°~(p ))'
j=1

As in Proposition [5.7, we need to show that for fixed j > 0,
51 ~
P14+ )
E ( =0 modp. 9)
5—1 _ 5—1(y —
k:1<kp®—1(p—1)<j p 1+ kp <p 1>

We prove this equality by induction on ¢. The case = 1 is proved in
Proposition[5.7, Assume that 6 > 1. We recall the following congruence
property of binomial coefficients.

Lemma 5.20. (Lucas’s theorem) Assume that we have

m=pmj;+mg,n=pn;+ng, 0<me<p0<my<p

then
()= )
= mod p.
n nq N9

Assume now j = pj; + jo with 0 < jo < p. If jo > 0, then by the
above lemma, we have

P =1+ _ (321 P+
= mod p
P =1+ kp(p—1) p—1)\pP2—=1+kp2(p—1)

o — 1
but by assumption jo —1 < p— 1, therefore we get (‘]2 ) = 0, hence

p—1
A
Pl =14+ kp~i(p—1)

Now assume j = pj;, then we have

A _ P2 =1+
= mod p.
Pt =1+ kp(p—1) P2 =1+ kp"2(p— 1)

) =0 modp.

0) (PP pP 1 —2-0)
2
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The left hand side of @D becomes

> (e lietn)

5—2 _ §—2(p _ )
k:1<kpS—2(p—1)<j1 p 1+ kp (p 1)
applying induction, we know that it vanishes in [F),. O

Furhtermore,

Proposition 5.21. The element

p
Ug = Zépé‘lflﬂp‘s‘l(p%)) gp‘s‘l71+(pfj+1)p5‘1(p71))

lift to a primitive element ws in D(Vs)%
Lemma 5.22. We have

Us = sz'S,l — Vp5+1*1

in D(V7).
Proof of lemma[5.29 By lemma [3.4] we have
- n 1
t" = .
21{p5_1} =00 =20 (1= (7 = 1)
n=p%—

The right hand side equals to

°—1
tp — - th‘s L+j(p—1)p°~*
(1 —tp=1)p*! T 1t

in F,[t]. Similarly,

(e 9]

Z { s } tha+1 145 (p—1)p
p

n=pStl—-1
Hence we have
}p:(‘s ( P~ (p—1)) (p° 3= (p—1))
_ p°—1+(p—7—1)p°~ " (p—1 p°—1+jp°~(p—1)) _
1 — é-l 52 = Ug =+ Vp6+l,1.
j=0

g

Proof of Proposition|5.21. First of all, we have the following short ex-
act sequence of Gg-modules

0— D(Vs_1) = D(V5) » D(V;) = 0,

which induces the following long exact sequence

0 — H(Gs, D(Vs_1)) — H(G5, D(V5)) — H(Gs, D(V})) —=~

— H'(Gs, D(Vs-1)) — H' (G5, D(Vs)).
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Fix ts = vy 1 — Vo1 € Z[§,&)], then by Lemma we have
ts = usmodp. The element rs(us) € H'(Gs, D(Vs_1)) on the level of
cochain is defined as follows: we have for g € G5

_g(ts) —ts
ke(us)(g) = T

this makes sense since g(t5) = ts mod p. We claim that

€ D(‘/:S*l)a

Lemma 5.23. The map

ts) —t
vs(us) - Gs = D(Vpa), grs S =t

vanishes on

10
N52{96G5:g5(0 1) mod p}.

Proof of Lemma[5.23 Note that we have an exact sequence of groups
1— N575_1 — Ns — Ns_1 — 1

where Njs_1 >~ IF?, is generated by

B 1+p5—1 0 B 1 pé—l B 1 0
g1 = 0 1_p5—1 92=\g 1 )97 p5—1 1/

We first show that rs(us) vanishes on Nss_;. By symmetry, we only
check that

i(ts) — 1 .
M =0€ D(Vs_q), fori=1,2,3.
p
Let dy = p°™ 4+ p°~! — 2, then we have
91(ts) — ts
p
_p6 1 { 5J 1} { 5+1 1} 1 ‘f‘p(S ! él)(do =) (( )52) — s

p
_ i 1) = i P+ )OI (1= p 1) — 1)
i—pd p
Jj=p°—1

Butforj>p5—1and(5>2
6j - {6+1 I 1+p5 D1 —p"t)y —1)

do—i .
é 0 ])géj)

5]1} {5+1 1} 1+p61 1—p71) 1)
b

=0 modp’!
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We conclude that
g1(ts) — ts

=0€ D(Vs-1).
And
9a(ts) —ts
p
ij51{5 1} {6+11} fl"‘pélé)(dOjg() t(;
do . . 510 (do—j1) "
DY {pgi_l})p AL
do ; ; | |
-2 ({ 5 — 1} - { 51 _ 1})195_2(9‘ 1 1)gldo=i=D gl
j=p®—1 p p

Therefore we need to show

(0ot Jusnen. o

But by Theorem [7.1], we know that
J : _ -1
{p5 - 1}(] +1)=0 modp
This shows that
92(ts) — ts

=0¢€ D(Vs_4).
P (Vs-1)

For gs,
g3(ts) —ts
p
_ Z—p5 1 { - 1} { s 1} o) (P16 + )9 — t

— Z?O:p“ 1 { s 1} {5; 1} 6 lfldo 355(] ’ (mod p°~ 1)

do . .
7 7 _ ) 0—j -
= ({ p }— {p5+1_1})p5 2(d — j+ 1)g ey,

p°—1

j=p°—1

Therefore we need to show

j j o
({p5 _ 1} - {p‘”l . 1})(d —j+1)=0, modp.
But by Theorem [7.1], we know that

valp({péj_ 1}) > 5 —1—val,(j+1)

29
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and since
val,(d+2 — (5 + 1)) > min{val,(j + 1), val,(d + 2) = d},
we must have
J - _ 51
d— 1) = d
{p5—1}< j+1)=0 modp

This shows that
g3(ts) — ts

p
Therefore ks(us) vanishes on Njss_1. For g € N5, h € Nss_1, we have

ks(us)(gh) = ks(us)(g) + grs(us)(h) = ks(us)(g)

=0€ D(Vs-1).

Moreover,

tis(us)(hg) = rs(us)(h) + hrs(us)(g) = hrs(us)(g),
which shows that xs(us)(g) € D(Vs_1)V*-1. Hence ks(us) defines a
co-chain
Ha(u(;) : Ng,l — D(‘/:;,l)N‘;"S*l.
For 0 < v < 6 — 1, we prove by induction that xs(us) defines a

co-chain map

ks(us) : Ny — D(Vs_y)Noo,
where

1— Ns,— Ns — N, — 1.
The case of v =6 — 1 is already proved. Assume the co-chain map

ks(us) : Ny — D(Vs_y)Nor,
we show that it vanishes on IV, 1, where
1—-Nyy—1 >N, — Ny, = 1.

The group N, ,_1 =~ Ff’, generated by

(1 =p 0 (1 P (1 0
g4 = 0 (1_pfy)—1 ygs = 0 1 y e = p'y 1/

here we identify g; with their lift to Gs and therefore
> P
0<iy<s

Again, we check that

i(ls) —1 ]
gilts) —ts _ 5 D(Vs-1), for i =4,5,6.
b
We have
9alts) — ts
p

Z] =p°— { 1} { 51 1} (1= p)&) @D ((1 — p7)~1&) W) — t
p
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do ( p5j_1} - {p6+jl_1})<(1 _pv)do—Qj - 1)
— Z .

j=p’—1
But

a7 b= b -y
LR TR I BRI Ea R (R !

= ({ 7 = (i

+ min{val,((1 — p’y)d0+2 —1),val,(1 — (1 - p’y>2j+2>}
By Proposition [7.5, we know

valy (1= p7)®*2 = 1) 2 valy(do +2) +7 =6 — 1 +7,

do—i .
é-g 0 J)fgj)

and '
val,(1 — (1 — p")¥*?) > val,(j + 1) + v
By Theorem [7.1]

valp({péj_ 1}) > 61— val,(j +1).

Note that p° —1 < j < d, implies val,(7+1) <d+1. Ifval,(j +1) <
0 — 1, then

min{valy((1 — p7)*2 — 1), valy(1 — (1 — p)¥*2)} > val,(j + 1) + 1,
hence we have

J J do—2j
NG I S SN (R R R Y
If val,(j +1) > 4, we have
min{val,((1 — p")%*? — 1), val,(1 — (1 = p")¥**)} > 5,

valp({péj_ 1} - {pﬁ_ 1}) > 0,

RGN B N ICE B VER

This finishes the proof of

ts) —t
alls) =15 _ ¢ pey;_)).

but

hence

As for gs,

g5(ts) — ts
p
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_ Z?OZP‘S—l({p‘sj—l} - {p§+{_1})(€1 +p7£2)(d0_j)§§j) —t5

p
({7 — () S e e e
p
do d . .
_ - OZJ J )é'y—l l+ é-(do*j*f)f(ﬁrf)
- Z p° _1 Pl — 1 p j 1 2
Jj= p5 1 ¢=1
do - .
B j }) (h—j)'y—l(h> (do—h) 4 ()
—Z Z p BISRERSR
_ o+1 _
h=p% j=p®—1 {p 1} {p 1 J

And consider the following formal series

SEL

p‘”h 1( )(p”t)h

j fy'y _ Y+\J
o 1}p T~ Ve

sl 1_pwt y+1 _J 21 {pa _ 1}15
B B tp5—1
‘<1—p7t><1—<pv+1>>---<1—<p Fp—0n (-0 -2 (-~ 1D
=0 modp’.

The same proof applies to also to

h— ho_ 5
E E { e } ( 7)7(j>t = Omodp
h=p% j=p®—1
This shows that

ts) —t
go(ts) = ts 5; S _0e D(Vyy).
As for g,
ge(ts) —ts
p
Zy —pi—1 { - { 51 1} Dpr& +&)9 —ts
p

do—7) (—0) (€
. Z?O:pé 1 { 5 1} { 5+1 1} Zz op] 5)7£§ ’ J)SJ )gé)
p
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do j—1 . . do — ¢
_ ( J _ J )p(j—é)'y—l 0 g(do—f)g(f)
it Al VA Pt -1 j—t)t

J=p -
o do . .
_ Z Z ({ J } _ { J })p(j—é)'y—l <d0 - 6) (do=0) (0
5 _ 541 _ F_ :
= o Wl P j-t
We put
do j j do— ¢
H(O) — _ pu—ew—l( 0 )
UE S A} S P L Vi

We want to show that
val,(H({)) > 6§ — 1.
Note that it is enough to show that

il J-d (e

Indeed, we will show that

valp({p(;]_ 1}Pj_é_1 <d.0 _;>) >0—1, for 0 +1 <5 <dy,

since the same proof applies to show

Valp({p6+1]_ 1}p]131 (C;O_ ;)) >4 —1.
First of all, note that we have
do — ¢
(5-0)

(do—O)(do—€—=1)-++(do—j+1)

(j—0)!
_(do—é)(dg—é—1)---(d0—j+2)d0—j—|—1
(j—€—1) j—=0
Hence
do — do—7+1
val,(( ¢ )Zvalp(o,—‘7+)Zvalp(do—j—i—l)—valp(j—f).
7=/ g =7
So we get

j g fdo—1¢
T (M)
Zvalp({p(sj_ 1}) +j—L—14val,(dy—j+1)—val,(j —¥£).

We know that for j — ¢ > 1,
j—L0—1>val,(j—¥0).

33
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So

N | |
Valp({p‘;j—l}p] e 1(]’()—@)) - {p‘sj—l} Fvabldo =g+ 1)

If val,(j +1) > d — 1, then
J 1 (do— 1 :
Va‘lp({pa " 1}p7 ¢ l(j B 6)) > val,(dy —j + 1)
> min{val,(dy + 2),val,(j + 1)}
>0 — 1.

And if val,(j +1) < 6 — 1, then val,(dy — j+ 1) = val,(j + 1), applying
Theorem [7.1], we get

O\ ey (o — ¢
Valp({p(gj_ 1}p]_ﬁ_1(j0_ g)) > 0—1- Valp(j + 1) +valp(d0 —]—{— 1)
=0— 1.

We conclude that ks(us) vanishes on Nj. O

We continue to finish the proof of Proposition [5.21]
Now we get a co-chain
Ks : G1 — D(‘/(;_l)N‘S,

which defines an element in H'(Gy, D(Vs_1)™).

Now we use the special fact about G;: the element T generates a
cyclic subgroup of order p in GGy, which is a p-Sylow sub-group. There-
fore if we consider the restriction and corestriction morphism of coho-
mology groups

Res : HY (G, D(V5_1)N*) — HY(< T >, D(Vs_1)™%)
Cor: H (< T >,D(V5_1)*) — H' (G, D(V5_1)™)
satisfying
CoroRes =[Gy :<T >]=p*—1.

This shows that Res is actually injective since p® — 1 is co-prime to p.
But we know that

T(Vpéil - Vp6+171) - (Vp‘sfl - I/p6+171)

ke(us)(T) = = Omod p°~".
p
Therefore the co-chain #;(us) must be a co-boundary in H'(Gs, D(Vs_1)).
This proves the existence of lifting. U

Remark: The whole argument relies on the choice of 5.
Remark: In fact, in general for p odd and 0 = 2, one can write down
an explicit lifting

do—p®+1 .
_ N J (d—3) ¢(5)
Wy = Z p(; _ 1 fl §2 .

j=p’—1
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However, this is the only case where such formulas are found. Instead
for the general case, our proof only yields the existence of ws, no explicit
formula could be extracted from the proof.

As a consequence, we have

Corollary 5.24. The module Mg5 contains a primitive element
Xp5+1_p5+p571_1yp5_1
Furthermore, the image of X Ty L ynder the canonical
projection
Mg, — M,
is primitive for any 1 < r <.
Proof. Indeed, consider the lifting ws of us, then
(wg, XV Sy oy
is a unit in Z/p°. d
Lemma 5.25. In M, , we have

Xp5+17p5+p5—lilyp571

= XY P fy, fo) + Y XY ay(fi, fo)

0<tl<p

+ Z Xe(p*l)bz(flafz) (10)

0<l<p+1

satisfying the conditions

(A): h(f1, f2) = f1

571_1f§,671_1 + Z hi,jfffzj;
J<po=t-1

(B): degy, (ac(fr, f2)) <p"™' —p+1—1, for 1 <l <p.

(C): degy,(be(f1, o)) <P ' —p+1—1, forl<l<p+1.
Proof of Lemma |5.25. We show this by induction on 4. For § =
the left hand side is X?*"?Y?!. Assume that we have the desired
expression for §. Then for § 4+ 1,

Xp5+2_p5+l+p5_1yp5 Xp(p(5+1 p(5 1_1)+p_1Yp(p5_1)+p_1

— (Xp '—pP+p *1—1yp5—1)po—1yp—1' (11)
Applying the induction on ¢, the right hand side of equals to

(XPT Y P OR( L 1) 4+ D XY tay(f7, ff)
0<t<p
Y X )XY

0<l<p+1



36 TAIWANG DENG

which simplifies to be
(XPEPm Y P (fE fR) Y XPeTORRly P g (£ f)

0<t<p

n Z X@p(p—l)+p—1Yp_lbe(ff,fg)- (12)

0<l<p+1
We need the following two relations between f; and fo
XV = Xy —
R N
Then
X P —p)tp—1y =
— xP(-Dyr’~1xp-1
= (X" = X Y = DX

p—1
= (Z X(p_l)(H_l)fngl(p_l)(p_z_l))(Yp_1f2 o f{?—l)Xp_l
=0

= (XP7 fy = fUTOYPL Y XPET Y
+ Z Xe(p—l)Yp—1f2e—1fl(p—1)(p—é+l _ Z Xe(p—1)f2e—2fl(p—1)(p—€+2)

2<0<p-1 2
+ (XPLfy — f77 ) r- iy
This shows the term
(Pt D gty

n is of the form described on the right hand side of . Moreover,
for 1 < ¢ < p,

deg, (fs L AP VT OR( ) <= 14p(p* Tt 1) =p° —p+i—1
and for 1 </ <p+1,
degy, (fs 2f7 VDR ) < =24 p(pP T = 1) < PP —prl—1,

which shows the conditions (B) and (C). And for the second term in

(12),

Xﬁp(p—l)er—lyp?—lag(f{” )

_ XLy pL fa (77, f7) — XU a7, ),
we prove by induction on ¢ that the term

Xép(pfl)JrP*lYp*lfgae(ff, f§>
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is of the form described on right hand side of and satisfying (B)
and (C). For ¢ = 0, the term X?'Y?~!foa,(f7, f) is already of the
desired form. And for ¢ > 0,

XWED Y P (7 15)
= XDpe=D(xply, f’_l)Yp_lag(ff,fé’)
= Xy foag(fF, f5) = XODEDYPUT a1 ).
If furthermore ¢ > 2,
x =p(p—1)yp-1
— X (=2)@*-D+p-1)(p—t+2)yr-1
_ (prlfz - f{?fl)8—2X(p71)(p76+2)yp71
= Xp(p—l)yp—1f§—2 + Z diX(p—l)(p—Z—l—i-l-Q)Yp—lf;’fl(p—l)(f—2—i)
i<t—2
Therefore for 2 < ¢ < p — 1, we get a contribution
XPEmOY Pt L £ 2a(fF f5)
by assumption, we know that
degy, (fI7' f5 2a(f1, f9) < p(0* ' —p+L—1)+0—2<p’ 1.
Also for i < £ — 2, we get
XDty et g T ay (£ 1)
satisfying
i p(p—1)(l—i— , -
degy, (fF7 T Va7 1) < i+ p™ T —p 1)
<p—p+(p—L+i+2)—1,

which verifies the condition (B) above. Applying induction on ¢ shows
that

XY fa 7, )
is also of the form described on the right hand side of . We still
need to show that the term

S X vstyrty (2 g

0<l<p+1

is of the form on the right hand side of and satisfying (B) and (C).
The case of 0 < ¢ < p — 1 is already proved. For [ = p, we have

){p2 (p—1)+p—1Yp—1

= (XPfy = X Iy ixrtyr!
p—1

- (p—1)(i+1) gi £(P—1)(P—i—1)\ yp—1y p-1
QX o h ) XPY
i=0

= (X771 fy = YTt g XP0 Dy p et
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+ Z Xr(p_l)Yp—1f5—2f1(p71)(p77‘+1)'

2<r<p

And we have

deg, (A 202 5) <p(@ ' —p+p—1+p—2<p’ —1,
and

degy, (f3 2 f~ V0= Dy, (2, f2)) <

This proves the lemma. U

Lemma 5.26. Assume p > 3 be a prime. Let
U(S — Xp5+1_p5+p571_1yp6_1
Forr > 1, we have
7'_1 T_l
(Wsyrs f1s fos Us)
is a unit in Z/p°, where ws,, is considered to be the primitive element
in D(V5)%. Moreover, for a > 0,

r_1 —1) pp"—1—a(p+1
(wsir, f5 TPV R0 =0, modp,
where a € 1/27.
Remark: For an element f} P fgj;*l*bl to be of the same degree as
r S fs !, we must have

by =a(p+1), by=ap(p—1),
with a being half integer for p > 3.
Proof of Lemma[5.20. To show

(Wsgr, ff,{l 5571U5>

is a unit in Z/ p°, we can take the projection onto F,. Then it suffice
to show that

p'—1 ep"—1
<U6+r>f1§ 2.6 Us)
is a unit in F,. But over F,, we have
p' =1 p"—1
f1,5 2,6 Us

— (XPQY _ Xyp2)105*1(10“1)[](S

_ (Xp6+1Yp671 . Xp571Yp5+1)p7'_1Xp5+1_p6+p571_IYP5_1
p"—1

— E D AR e e ) Ve e N e R e e b A R |
j=0
p"—1

_ Z P =1 T = D (i (04 )y T =1 T (o= 1) (p+i (04 1)

J=0
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And we have

p
_ (PP =14 p? T (p=1)) (PO T =1 (p— e 1)p T (p- 1)
Us4r = 51 6 '

2
(=1

Therefore we have (usy,, f{ S fy 'Us) equal to
tH{il0<j<p " —1:p+jlp+1)=1~£p" for some 1 < ¢ < p}.

For r odd and ¢ = 1, we know

plp't —1)

R

is an integer. And for 2 < ¢ < p,

p+l=Lp +1)—j(p+1)=0, mod(p+1)

admits no solution. For r even and ¢ = p,

_pp"—1)
p+1

is an integer. And for 1 </ <p—1,
p+ep="Lp(p’ +1) = j(p+1) =0, mod(p+1)

admits no solution. Therefore

Let a > 0,

p"—14ap(p—1)

1,6
= (XPY — Xyp)p‘s*la(p%l)(Xp?y _ Xyp2)p‘sfl((pT—l)—a(erl))Ug

— (Xy?

a(p?+1)

=0

p'—1—a(p+1)

(

2

=0

6—1

p"—1 pp"—1 —
<U5+r>f1,5 2,6 Us) =
p"—1—a(p+1)
2,6 Us

s—1

_ Xp‘s—lyp‘s)a(pz-ﬁ-l)(Xp‘”lyp _ Xp‘;*lyp‘s“)p”—l—a(pﬂ)(](s

2
( Z (_l)a(p2+1)—i (a(p .“‘ 1)>Xip5+(a(p2+1)—z‘)p51yp51+(a(p2+1)—z‘)p5)

?

(_1)prflfa(p+1)fj (pr —1 —'a(p + 1>>ij‘”1+(1f1ja(10+1))10‘51
J

yarP T (" —1=j—a(p+1)p* ! )Us

a(p?+1) p"—1—a(p+1)

Z Z (1) el p) i (a(p2i+ 1)) <p7“ —1 —ja(p - 1))

XP

5+'r71_

o= 1+p6 Hip—itp®j—j+ap(p—1))yp* T —p? T 4p® T (—ip+i—p?i+j—ap(p—1)) Us

a(p?+1) p"—1-a(p+1) ,
Z Z (- 1)pr-1+a<p2-p>—i-j(a(p2+1>) (p —1—a<p+1>)
i j

Xp”r 1fler‘s Y= D)((GHa)ptiti+p)yp’ T —1-p* = (p=1)((j+a)p+i+i+p)
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Again, recall that

Ussr = Zp:ép““‘l1+€p5+r‘1(p1))£§p‘5“‘11+(pf+1)p5+’”‘1(p1))_
=1
Hence we need to consider the equation
P =D +ap+it+i+p) =" p-1)
or equivalently,
prl=jlp+1)+ap+i+p. (13)
In fact, when p is odd, the equation requires a to be integer.

From now on we consider a to be integer and prove the general case.
The equation allows us to reduce to prove that the sum of coeffi-
P

cients E bepr in
=1

deg(Q(t))
Q(t) = ¢ ThP(1 — e+ (1 — gptlyp"—1-alp+1) Z b

vanishes [F),, where b; are all integers. We have

deg(Q(t)) = (a+1)p+a(pP*+1)+(p+1)(p' —1—a(p+1)) = p" ' +p" —ap—1
As a consequence, we see that

0= 3t

prli

Motivated by this, we define for any h(¢ Z cit' € Fyl

Sr(h) = Z C; € ]Fp.
prli
We observe that the operator S, is linear and invariant under multipli-
cation by ', i.e
S,.(ht?") = S,(h).

One gets as an immediate consequence that

S.(h(t" —1)) = 0.
Now we only need to show that

Q) == (1—-t)Q'(t), modp.
Over F,,
(=)= (-0
and Q(t) is divisible by
(1 — )s D (1 — )P —1al+l) — (1 — g —1+e@®—p)

the condition that a > 0 shows the desired result. O
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Remark: Note that we have for (,» the p"-th roots of unity,
Z CCk ’ if pT ‘ ¢,
0, otherwise .
This shows that Con81der Q(t) as an element in Z[t], we have
10
Z N 3l (5]
p?"

As a consequence, we get

val,(} " Q(¢r)) =+ 1.

Remark: Indeed the statement also holds for a < 0, but we do not need
it.

Remark: We thank Danylo Radchenko for discussion on the last part
of the proof.

Proposition 5.27. Let [ € Mgfg = Z)p°[frs, fas) such that f #
Omodp. Then the element fX?

5+1 o—1__ S _ . . Ly
—PT 1y P 1 s glso primitive.

Proof. We first show that this is the case when f is a monomial. For
simplicity, we denote

Uy i= X7 000t ity

The lemma above implies that the element fﬁ ;_ 25 UG s primitive
in Mgé. Therefore for any monomial f = f{; fé)’(;, we can choose f =
fﬁ(;_a_l 5;_b_1, where r is an integer such that p” — 1 > max{a,b}.
Then f'fUs is primitive, which implies that fUj itself is primitive.
For general case let f = Z h; be a linear combination of monomials
hi = c¢if1’s 2 's- Without loss of generality, assume that ¢; # 0 mod p for
all 7, and
by >by>---, a1+b=ay+by=

Let r be the minimal integer such that p" — 1 > max{ay, b1 }. Hence
frs T s T U = fs T S T I Us s T T haUs - -
We claim that

(ussr, f15 " Sog " FUs)

is nonzero in [F,. Note that in the lemma above, we have shown
(Ustrs [T 5 alfpr_1 "hUs) = 1.

and for ¢ > 1,
(u5+r,ff . e ~"h,Us) = 0.

This shows that fX?""' 7"+~ 1’1Yp ~!is primitive. O
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Corollary 5.28. Let M5 = 7./’ f1 5, fas]. Then

prim

S+1_ .0 S—1_ d_
Ann s, (XP 7Py P —

prim

Therefore X Ty generates a free module of rank one
over M{jﬁg.
Proof. We recall that

fio = (XPY — XYP)P°

fos = (Xp(p—l) + Xe-De-Dyp-1 4 4 Yp(p—l))p‘sfl‘

Suppose that f € Mgﬁr‘i = Z/P°[f1s, [2.5] annihilates the element
XP Ty P ol Asqume f = p" fo for some r > 0 and fo #
0 mod p. But then Proposition |5.27| shows that ngerl’péﬂ’g_l’1Y1”5’1

is of order p’. This implies r > 4, therefore f = 0 in M*$*. This shows

prim*

S+1_ 8 4 6—1_ o
AIlIlMa,G5 (Xp PP 1Yp 1) = 0.

prim

By Proposition , we known that the sub-module N of Mé gener-
ated by X?"“PY?~1 is free of rank one over M . Lemma above
shows that the element X?' " #"*+"7'=1y?"~1 is non_trivial under the
projection of Mcl,l to N, this shows the freeness of

M67G5 Xp5+17p5+p5—171Yp571 .

prim

O
We return to the proof of Proposition |5.16]

Lemma 5.29. Let d > 0. Then the monomial X*Y" vanishes in Mg5

if p—11 (a—10). Moreover, if p—1 | (a —b), let r = Valp(a_lle
p_

then X*Y" € M, [p""], where Mg [p™*"] is the sub-module generated

by elements killed by p™ ™.

c
0

(Id —g)(X°Y?) = (1 — ") XY°.

If p—1+a—b, then picking ¢ with ¢*™® # 1mod p yields the result.
Andifp—1|a—0, and

Proof. In fact, let g = ( 091) € Gy with c € (Z/p‘s);. Then

a—">

p=1"

Then p"(p — 1) | (a — b). Pick ¢ € Z/p°, such that
1— b = cop™™t ¢y € (Z/p°).

This shows the result.

r = val,(
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We first take care of the case § = 2.

Lemma 5.30. Let p > 3. We have
(1): For 0 <d < p*+p—2, no elements in Mé%d are primitive.
(2): For d = p* +p—2, all primitive elements f in M(Q;%d are of
the form
cX P -Pr-lyp*-1 + h,
where ¢ is a unit and h € M¢,[p|, where M¢ [p] is the sub-
module of elements of killed by p in MéQ.
(3): Ford > p® +p — 2, all primitive elements are of the form
CftafyaXP VI P T o,
where ¢ is a unit, h € MZ, [p] and
d=ap(p+1)+bp*(p—1)+p*+p—2.
Remark: The case of d = 0 is omitted for triviality.

Proof. We first assume that d < p*+p—2 = p(p — 1)* +p® — 1. Recall
that we have a canonical projection

T o M? /(1A —=T)M? — M,
and
(M?/(1d =T)M?)gpuim = Z/p°Y' & P Z/p%a. (14)
kp?|k+1
Note that
Yi= (S —1d)X*+ x4
and X vanishes in M?/(Id —T)M?, therefore Y vanishes in M2, . We

are reduced to show that all elements €,2_; lie in MéQ [p] for ¢ < p.
Note that for p > 2, by Lemma 5.1 of [?]|, we have

> n . ¢t =1
2 {EPZ - 1}t T A-Ha -2t (1 (2 - 1))

n=~¢p2—1
tpr—l )
From this equality we get for 1 < ¢ < ¢ < p,
p? —1
{é’pQ B 1} =0, modp’. (16)
and
C+r)p?—rp—1
{( é)/]ﬂ . =0, modp’. (17)

{(€+T)p2 —rp— 1} _ ((“ TP = 1), modp?.  (18)

p? —1
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Note that we have
APy -1 €1+ Z {€p2r_ 1}@«-
r<tp2-—1
And applying equation yields in Mé2,
pxdf€p2+1yép271 = pegye1,

And lemma shows that pX4=#+1y® =1 = () unless plp—1) |
d — 20p* + 2. Now let
d=20p* =2+ kp(p—1).

Now

) , p%+p—2 €p2 fp— 1
T —1d Xd—fp —p—‘rlyfp +p—1y _ Xd_iYi_
(7~ 14) =2 (7
Note that forlﬁp2 —1 < i< /{p*+p—2, we have p(p — 1)  d — 2i,
therefore X“~*Y" vanishes in M¢,,. Moreover,

(T — Id)(Xd—Kp2—p+1YKp2+p—1)
= Xd—ép2—p+1 (Xp2 + Yp?')E(X + Y)p—l B Xd—pr—p—I—lypr—&-p—l mod p

P tp—1
which implies that if ( © P
1

0<i3 </, 0<i,<p—1. In this case
d—2i=2((0 —i))p* —is — 1)+ kp(p— 1),

and p(p — 1) | d — 2i implies i, = p — 1 and for p > 3

p+1

# 0mod p then i = i1p* + iy with

or ¢ —1

Z'lzg—

We prove by induction on ¢ that
pX NP = =Dy (=Dp*4e-1 _

1
in M¢, . Note that for ¢ < ]%, we have

p(T o Id) (Xd—€p2—p+lyfp2+p—1) — paﬁXd—(Z—1)p2—(p—1)Y(Z—1)p2+p—1’
for some a, € (Z/p*)*. This proves
pX A EDPP ==y (=Dp*4e=1

And for ¢ > ]%1

p(T _ Id) (Xd—EpQ—p—i-lyﬁpQ-‘rp—l)
— paZXd—(é—l)pQ—(p—l)y(f—l)p2+p—1

by Xy (-,
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for some units ay, by € (Z/p*)*. Apply induction shows the result. Now
this implies
pX(f—1)p2+p—1yd—(€—1)p2—(p—1) = (S — Id)(de—(f—l)pg—(p—l)y(f—l)p2+p—1)

+ pX - (E=1P* = (=D y (= 1)p* +p-1
=0
We deduce from the condition
d=20p* -2+ kplp—1)<p*+p—2
that
k<p
and

. ka1
P Ut k—"T s B Sy
p p

And by Lemma [5.20, we have for £ + k < p,

<(kz+€+1)p—1) _ (k+€

1 = E—l)’ mod p (19)

E+0+1)p—1
which shows that (( * ; - )1p ) is a unit in Z/p*. Now
p R
X (- Dp*+p—lyd—(t=1)p’~(p=1) _ Z d—(l— 1)292 —(p—-1) e
r T

r<d—({—1)p*—(p-1)

and
d—(=1)p" = (p—1) =" =1+ (k+ p(p - 1).
Applying and gives in Még,

pX(Zfl)PQerflYd*(ffl)pzf(pfl) = PErp2—14(k+1)p(p—1) T D <I; j f) €op2—1-
(20)
The fact that £ + k < p shows that k£ < p — 1, and
P’ ep* + (k+ pp — 1)
hence €214 (k1)p(p—1) 18 killed by p, i.e.,
PEp2 -1+ (kt+1)p(p-1) = 0

This shows peg,2_; = 0 in M¢,. To finish the proof of (1), we are left to
consider the case £ = p (the condition £p* < p* + p — 2 implies £ < p).
The equation ((15) gives

{p3—1} (27”2_1) if =1
fd 2_1 ) -
2 _ p

ep* =1 0, for 1 <0 < p.
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And Lemma, (Lucas’s theorem) shows that

2% —1 2p — 1
P = (P =0, modp.
p*—1 p—1
So we still have
de_p3+1Yp3_1 = PEps_1.
And the same argument as the case ¢ < p holds as long as we have
p+ k < p,ie., k<0. This finishes the proof of (1).

As for d = p® + p — 2, again we need to consider the element €op2—1
with 1 < ¢ < p. First consider the case 1 < ¢ < p, then as before, we
still have

de—€p2+lyﬂp2—1 = pegy2 1,
Furthermore,
plp—1)|d—20p* +2
implies for that p > 3

1
leorpjL )

1
Therefore we are reduce to consider the cases £ = 1, Z%, p. Note that

d=p*—1+pp—1)°
Then ¢ =1 and k = p — 1, and equation becomes

(k+(+1)p—1 ~ 1 modyp
p—1

which is still a unit. And becomes
0 = poilypgil = p€p3,1 + p€p2,1.
But we know that
3_p24p—1 2_1 p2 — 1
XP P tp—lyp = €21+ Z . €

r<p?-—1

is primitive, hence so is €,2_;. We conclude that €,3_; +¢,2_; is of order

1
p. Finally for ¢ = Z%, the 1} becomes
=1 PP
0=pX" 2 YT = peag
2

This finishes the proof of (2).
As for (3), we consider the action of

Mﬁ;iGn’f =Z/p*f1.2, [2.2)-
We first show the following lemma
Lemma 5.31. We have
Baspiap—2(Me, [ (fr2, fa2)ME,)a =0
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Proof of lemmal5.31. By definition, we have

fra=fl, far = 13
By Proposition [5.9, we know that Mél/(f172,f272)Mcl;l as IF,-vector
space, is generated by

2ao7 fénprlypfl’ f2azX2(p71)ypfl, e f§p*2X(pf2)(pfl)ypfl, fff;po(pfl)ypfl

with 0 < a; <p—1and 0 < b < p—1. All of these generators are of
degree < p® +p — 2. O

Now (3) is a consequece of Lemma [5.31 We are done. O

Remark: The reader will find that the case of § > 3 is exactly the same
as 0 = 2 but the notations are more complicated.
We still need to treat the case when § > 2.

Lemma 5.32. Let p > 3. We have
(1): For 0 < d < p"™ + p°~' — 2, no elements in Mg&d are
primative.
(2): For d = p°™ + p°~' — 2, all primitive elements f in Mg&d
are of the form
eX PP Tyl

where ¢ is a unit and h € M& [p°1], where M& [P’ is the
sub-module of elements of killed by p°~* in Mgé.

(3): For d > p°t' 4+ p°~1 — 2, all primitive elements are of the
form

s Xy
where ¢ is a unit, h € M¢, [p°~'] and
d=ap’(p+ 1) +bp"(p— 1) +p" +p7" -2

Proof. The case of § = 2 is already treated. Assume from now on § > 3.
We follow the strategy in the proof of case § = 2.

We first assume that d < p°*! + p°~1 — 2. Recall that we have a
canonical projection

ms: M°/(1d =T)M° — Mg,
and
(M /(1A =T)M®) g prima = Z/D°Y' @& P Z/p e, (21)
r,pd|r+1

Note that
V4= (S —1d)X%+ X
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and X vanishes in M°/(Id —T)M°, therefore Y¢ vanishes in M{ . We
are reduced to show that all elements €,s_; lie in Mgé [p°~'] for £ < p.
Note that for p > 2, by Lemma 5.1 of [?], we have

> n . #tp° -1
> o) = T A

n=~0pS—1
tﬁp‘s—l 5
From this equality we get for 1 < ¢ < £ < p,
p® —1
{f’p‘s B 1} =0, modjp’. (23)
and
(l+r)p’ —rp~t—1
{ 1 =0, modp’. (24)
(C+r)p’ —rp*t =1 (C+r)p*t =1 5
= dp°. 2

Note that we have
d—tpP+1v/0p°—1 lp® —1
X Y = Eepéfl + Z , €p.
r<fp®—1
And applying equation yields in Mg6,
pé—le—£p5+1Yep5—1 _ pé—leepéil’
And lemma shows that p? ' X #* 1y %" =1 — ( unless p*~ ' (p—1) |
d — 20p° + 2. Now let
d=20p° — 24 kp*L(p—1).

Now

(T 1) (X4 ey oy

S ,0—1_
1

)Xd—iyi.
i=0
Note that for £p° —1<i< (p° +p°~ 1 =2, we have p°(p—1) t d — 2i,
therefore p° ' XY vanishes in Mg s~ Moreover,
(T — Id)(Xd—fp‘s—p‘s_l—i-lyép‘;-&-p‘s_l—1)
= X (XY Ly P (X Y

S 1 5.5
_Xd £p° —p Jrlyfp +p! 1H10dp

5—171

0 4 o—1 1
which implies ( P p. ) # 0mod p implies i = i1p° + 5 with
i
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In this case
and p"'(p — 1) | d — 2i implies iy = p’' — 1 and

1
P+ orf—1

=10 —

As in the case of § = 2, we show by induction that

D Gl G GO Y Cot L e )

1
in Mgé. The case of £ < 2 i follows from

PP HT — 1) (X4 Ty
= p‘;—laéXd—(ﬁ—l)p‘s—(pé*l—1)Y(f—1)p5+p‘5’1—1

1
for some unit a, € (Z/p°)*. And for ¢ > ]%7

PPHT — 1a)(X 0y
— p5—1aéXd—(€—1)p5—(p5*1—l)y(f—l)p‘“rp‘s’l—l

1, XU B (07 =Dy (e B

for some unit ag, b, € (Z/p°)*. And our induction gives
p5—1Xd—(€—1)p5—(p‘5*1—1)Y(€—1)p‘5+p‘5’1—1 —0

This shows

p5—1X(f—1)p5+p“*1—1yd—(f—1)p5—(p5*1—1)

= (S —1d) (p5—1Xd—(4—1)p5—(p5*1—1)y(€—1)p5+p5’1—1)

+ p5*1Xd*(€*l)p‘sf(p‘sfl)y(ffl)p‘hrp“‘l71

=0
We deduce from the condition

d=20p° =24+ kpH(p—1)<p’ +p° 1 =2

that
k<p
and

ka1 ka1
p>2e+k—%ze+k+5—%ze+k

And by Lemma [5.20] we have for ¢ + k < p,

((k + O+ 1) — 1) _ (’f + f), modp (forp>3),  (26)

pd—1 —1 (-1

49
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C+r)p’ —rp’~t —1
pd —1

X(é_l)P5+P571—1yd—(€_1)p5_(p671_1)

_ oy {d— (=1 = - 1>}6r_

r<d—({—1)p°—(p°~1-1)

which shows that {( } is a unit in Z/p’. Now

and
d—(t=1p" =@ =)=’ =1+ (k+1)p" '(p - 1).
Applying and gives in Mgé,

pé_lX(f_l)P(s‘FPé*l—1Yd—(f—1)p5—(p571—1)

_ 1 (k+1
= pé 1€Zp571+(k+1)p5*1(p71) + pé ! (€ _ 1) €pd—1- (27)

The fact that ¢ + k < p shows that £ < p — 1, and
PO+ (k+1)p° p—1)
hence
p5_1€€p5—1+(k+1)p5*1(p—l) =0.
This shows pé_lﬁgpé_l =0 in Mgé. To finish the proof of (1), we are

left to consider the case ¢ = p (the condition 0p° < PPt 4 pPTt -2
implies ¢ < p). The equation (22)) gives for p odd,

2p° — 1
P -1 (% ) i =1,
0ps -1 p°—1
0, for 1 < ¢ < p.
And Lemma [5.20] (Lucas’s theorem) shows that

2p0 — 1 2p — 1
= = dp.
<p5—1) (p—1> . modp

§—1 3y d—pStiqiy pPti-1 5—1
P X p + Yp =p 6p5+1,1.

And the same argument as the case ¢ < p holds as long as we have p +
k < p, i.e, k<0(which is the case since we suppose d < p**!4p°~1 —2).
This finishes the proof of (1).
As for d = p®* + p?~1 — 2, again, we need to consider the element
€gps—1 With 1 < ¢ < p. First consider the case 1 < £ < p, then as before,
we still have

So we still have

p671Xd7€p5+1ng571 _ p571%5_1’
Furthermore,
Pl p—1)|d—20p° +2
implies for p > 3

1
Kzlorp+ .
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1
Therefore we are reduce to consider the case £ = 1, ]%, p. Note that

d=p" —1+p" ' (p—1)%
Then for / =1 and k = p — 1, equation becomes

(k+0+1)p°~t -1
|

which is still a unit. And becomes

) =1, modp

5+1_1

— o—1_ — —
0= p6 lXp 1yp — p(S 1'E£17(s_~_171 +p6 1€p5,1.

But we know that

PO+ pd Lt =11y pd—1 p5 -1
X Y = €p_1 + g €r
r
r<pd—1

is primitive, hence so is €,5+1_1. And we conclude that €s+1_1 + €,5_1

1
is of order at most p°~*. Finally for £ = Z%, the becomes

5 5
p°(p—1) , §5—1 p?(p+1)
_ —s—+p’ T —ly -1
0=pX > Y > = PE€prn -
2

This finishes the proof of (2).
As for (3), we consider the action of

My = T/ [f16, fas)-
We first show the following lemma
Lemma 5.33. We have
Basprtips-1—2(Me, /(fr, f25) Mg, )a =0
Proof of lemmal5.35. By definition, we have

5—1 5—1
f1,5 = ff 7f2,6 = fg .

By Proposition 5.9, we know that Mél/(flv(;,fgﬁ)M(l;l as [F,-vector
space, is generated by

;0, fngp—lyp—17 f;2X2(p—1)yp—1’ e f;p%X(p—?)(p—l)yp—l, fffngp(p—l)yp—l

with 0 < aq; < p‘s’1 —land 0<b < ]0‘5’1 — 1. All of these generators
are of degree < p®*! 4 p?~t — 2. O

Now (3) is a consequence of Lemma [5.33, We are done. O

Proof of Proposition[5.16, Now Proposition [5.16] is proved combining
Corollary and Lemma [5.32] O
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6. APPLICATION TO CONGRUENCE OF MODULAR FORMS

Using results from previous sections, we are able to determine the
torsions of H'(X, M,,) and H*(X, M,,). Note that though the 2 and
3 torsions are not determined by the article, we still list them in the
examples.

Definition 6.1. We say a prime { is good with respect ton if 3 < £ <n
and both Hl(X,j\/ln)tmr and HE(X, M,,) contain no (-power torsions.
Let T(n) denotes the set of good primes with respect to n.

Example 6.2. We have
HY(X, Mig)sor = Z/4;
which is already known to Harder. And
HA(X, M) = (Z/2)* & Z/3.
Moreover, .
HY (X, M) = (Z/N)* ©Z/2DZ)3
H2(X, Myy) = (Z)2)® @ Z/4 @ (2/3)%2.

Now recall that from we have the following exact sequence
0 — H' (X, Myp)inst/ HHX, My )i — HY(OX, M) or/ H' (X, My tor —

— HX(X,M,) — 0.
Knowing the group HY(0X, M,)tor/H (X, M)ior would allow us to
draw information about the map

HY (X, My )ine/ HH (X, My )i — HY (0X, M) ior/ H (X, M )ior

which gives us congruence of cuspidal forms to Eisenstein series modulo
p-powers.

Example 6.3. For case n =10, we know the 5 and 7 torsions appear
in H'(OX, My)ior but not in H' (X, M,,)ior or H*(X, M,,). Therefore
applying Proposition allows us to recover the famous conguences
m(p)=p° +p°(=p+p®), mods,
and
T(p)=p" +p(=p+p"), mod7,
where T is the Ramanujan-t function. As for the case of n = 22, the
Hecke eigenform is defined over the number field

K :=Q[a]/(a* — a — 36042).
And we get an eigenform
f(q) = g+ (—24a + 552)¢* + (1152 + 169164) > + (—25920a + 12676288)¢°+

Note that the primes £ = 5,7,11,13,17,19 are all good primes, i.e,
we get a congruence of Hecke eigenform to Eisenstein series. For { =
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5,7,11, we have several (-torsion classes in H (DX, My, )ior, hence we
get several congruences. Consider the case ¢ =5, let £ = l1ly in K such

that o« = 2mod [; and o = 4mod ly. Then for f(q) = Z a:q’,

a, = PP+ =p* +p3  modly

a, = PP+ p® =p +p, modl,.
And for ¢ = 13,17,19, consider the case ¢ = 13, it splits into two
primes i K. In fact, let £ = 31y such that o = 3mod ;. Then we get

for fa) = Y
ap, = p? +p'%  modls.
And we get no congruence modulo .

Example 6.4. The reader familiar with classical results on congruence
of Ramanujan-t may observe that we only get congruence modulo 5 in
the above example, but indeed we have

7(p) = p+p'°, mod25.
This could be explained as follows. The Hecke-module
Hl(X, MBO)int,! Rz L

contains an eigenform

f = Z a’iqia
=1

with
ap =p +p'°  mod25.
This is explained by the fact that the image of f under the natural map

Hl <X7 Mn)int,!/H!l (Xa Mn)int — H1<8X7 Mn)tor/Hl (X7 Mn)tor

is a 25-torsion( as we said before, we leave the determination of the
image of the above map for another paper). Finally, a classical result
of Serre(cf. [?] §1.3) tells us that we have a congruence

A =f, mod?25,

where A = ZT(n)qn is the modular form of weight 12.
n=1

Example 6.5. Our final ezample concerns the case of n = 34, we have
HY (X, Mas)ior = (Z/4)% & (Z/3)%* & (2/2)%?,
HX (X, Ms1) =Z/8 B ZJAd (Z)3)%2 @ (Z,)2)%*.
In particular, we know that 5 € T(34). And we find a Hecke eigenform
f= Zaiqi € Zs[[q]] with
i=1

a, = p? + 9 mod?25,
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for all primes p.
We have the following general results

Theorem 6.6. Let n > 0 be even. Then for ¢ € T(n), any {-torsion
class gives rise to a congruence between some cuspidal form of level one
and Eisenstein series modulo £.

Remark: Sometimes even the primes that are not good with respect
to n contribute to congruence. But this requires the determination of
the image of H'(0X, M,,)ior in H>(X, M,,). We leave this to the next

paper.
Remark: Tt remains to determine the Hecke module stucture on H* (X, Mn)tor
and H*(X, M,,). One could also attach Galois representations to the
torsion classes we constructed. We plan to return to these questions in

the next paper.

7. STIRLING NUMBERS OF THE SECOND KIND

Theorem 7.1. Assume p > 3 be prime. Let p be prime and § > 0. We
have

n
Valp({pé - 1}) >0 —1—val,(n+1).
We recall the following results concerning Stirling number of the
second kind

Proposition 7.2. (¢f. |?| Theorem 5.2) Let p be odd and m > 1,n >
p™. Then we have

m—1

n—p
n ( p;bl_pm )modpm, ifn=1modp — 1,
pm - p_l

Omod p™, otherwise .

Lemma 7.3. We have

L) = s o0
pm—1 P

Proof. This follows from the fact that

oo n . Xpm
2 {pm}X S I-X)(-2X) - (1 prX)

n=pm

and the right hand side equals to

xpm-1 i
X(1_X)(l_QX)...(l_(pm_l)X), mod p™.

We also need the following property of binomial coefficients.
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Lemma 7.4. We have

val ( (" - pm)) > m — val,(n),

n
and for 1 <n < p™,

val ( (p:>) > m — val,(n).

Proof. Let m > 1 and n > 1. We have

n n!
=m—val,(n)+ Y (val,(p™ + i) — val,(i)).
1<i<n
Note that we have
val,(p™ + 1) — val,(i) = 0, if val,(i) <m.

Therefore,

D (valy (" + 1) = val, (1))

1<i<n

= Y (aL(e"(1+j)) - val,(p"))

0<j<n/p™
= > (ah(l+) —val()))
0<j<n/p™

= Valp(jmax) 2 07

where jyay is the maximal integer satisfying 0 < j < n/p™. Similarly,
P pret -1 —2)---(p" —n+1)
Valp(( n >) vl nl )
=m+ Y (val,(p" — i+ 1) = val,(i)).
2<i<n
And
val,(p™ — i 4+ 1) = val,(i — 1), for 2 <4 < p™.
This shows that
val,( (p >) > m — valy(n).
n
0

Remark: We thank Robin Bartlett for helping us with the proof of the
lemma.

Proof of Theorem [7.1 According to Lemma we know

1
=) e
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First of all, we assume that p is odd. Then applying Proposition [7.2]
1
we known that {n + } = 0mod p° if n #Z 0 mod p — 1, from which we

p5
Valp({n —{; 1}) > 4.
p

If n = Omod(p — 1), let n = a(p — 1) +p° — 1. Then by the same
proposition, we get

n+1— 5—1 _
n+1] —pfi —1 o a—l—p51—1 a4y’
5 = 1 pd = mod p°.

p Tp—1 a

Applying Lemma [7.4] we know

5—1 _
valp((a +p 1)) > —1—val,(a).

a

deduce

If val,(a) < 6, we know further that
val,(n + 1) = val,(a(p — 1) + p°) = val,(a).

If val,(a) > ¢
val,(n+1) > 4.

This shows that

{ " 1} >§—1—val,(n+1).

pé_

We finish this section with the following proposition
Proposition 7.5. Let v > 1 and p is prime. We have
val,((1—p") —1) > val,(j) + 1.
The equality holds whenever p > 2 orp =2 and v > 2.
Remark: We learn the proof from Carlo Pagano.

Proof. We assume that either p is odd and i = 1 or p = 2 and i = 2.
Consider the following filtration of subgroups on Z,

1+p°Z,:=U, 22Uy D -+

with U; = 1+ pi°+in. Then Z, acts on U; via taking powers, i.e, for
s € Zy and a € Uy,

os(a) = a’.
Note that ¢, satisfies the following properties

(1): ¢81 (a)¢52 (a) = ¢81+82 (a),
(2): 51 (ds,(a)) = ¢y, ().
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We claim that ¢4(U;) = Ui yva,(s), in particular, ¢, is an automorphism
of Uy if val,(s) = 0. By property (1) and (2), we only need to check that
¢s is an automorphism of Uy for s = 1,--- ,p — 1 and ¢,(U;) = Us41.
Indeed, for 1 <i,5,k <p—1,

(L+jp) =1+kjp' +---€U;
and

(L+p)P =1+4p" + > (e)fpf.
2<U<p

By Lemma [5.20, we know that

valp((i)) >1,0=1,2,-,p— L
Therefore, we have for 1 < j7 <p—1,
val,((1+jp' )Y —1) =i+ 1.
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