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Abstract

This paper develops a method to carry out the la\gasymptotic analysis of a class
of N-dimensional integrals arising in the context of the sdethjuantum separation
of variables method. We push further ideas developed in dnéext of random ma-
trices of sizeN, but in the present problem, two scalg®t and /N naturally occur.
In our case, the equilibrium measureN$-dependent and characterised by means of
the solution to a Z 2 Riemann—Hilbert problem, whose larbebehavior is anal-
ysed in detail. Combining these results with techniqguesotentration of measures
and an asymptotic analysis of the Schwinger-Dyson equatirthe distributional
level, we obtain the largét behavior of the free energy explicitly up tf1). The
use of distributional Schwinger-Dyson is a novelty thabal us treating sticiently
differentiable interactions and the mixing of scalg¢blLand ¥N, thus waiving the
analyticity assumptions often used in random matrix theory
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An opening discussion

The present paper develops techniques enabling one to @atrithe largeN asymptotic analysis of a class of
multiple integrals that arise as representations for theetadion functions in quantum integrable systems sokvabl
by the quantum separation of variables. We shall refer tgémeral class of such integrals as the sinh model:

N N
W] = f [ T4 sinhbrws(va — yo)l sinhfrewaya — yo)l} - | [& W) - dVy .
a=1

RN a<b

Wheng = 1 and for specific choices of the constants w, > 0 and of the confining potentidV, 3y represents
norms or arises as a fundamental building block of certainsgs of correlation functions in qguantum integrable
models that are solvable by the quantum separation of Varmabthod. This method takes its roots in the works
of Gutzwiller [54, 55] on the quantum Toda chain and has besmldped in the mid '80s by Sklyanin [79, 80]
as a way of circumventing certain limitations inherent te #igebraic Bethe Ansatz. Expressions for the norms
or correlation functions for various models solvable by tfuantum separation of variables method have been
establishede.qg. in the works [6, 38, 39, 51, 66, 67, 81, 84]. The expressiontaioed there are either directly of
the form (1.9) or are amenable to this form (with, possiblghange of the integration contour frd#' to &’™N, with

% a curve inC) upon elementary manipulations. Furthermore, a degeapraf 3y arises as a multiple integral
representation for the partition function of the six-vigneodel subject to domain wall boundary conditions [62].
In the context of quantum integrable systems, the nurhbef integrals definingy is related to the number of
sites in a model (as.g. in the case of the compact or non-compact XXZ chains or thiedategularisations

of the Sinh or Sine-Gordon models) or the number of partitsse.g. in the case of the quantum Toda chain).
From the point of view of applications, one is mainly intdegkin the thermodynamic limit of the model, which
is attained by sendinjl to +co. For instance, in the case of integrable lattice discridisa of some quantum
field theory, one obtains in this way an exact and non-peativd description of a quantum field theory in-11
dimensions and in finite volume. This limit, at the levelsgf translates itself in the need to extract the large
N-asymptotic expansion of y up to o(1). Itis, in fact, the constant term in the expansiomngzn[W’]/3n[W])

with W’ some deformation oV that provides one with the correlation functions of the utyileg quantum field
theory in finite volume. These applications to physics dtutst the first motivation for our analysis. From the
purely mathematical side, the motivation of our works stéms the desire to understand better the structure of
the largeN asymptotic expansion of multiple integrals whose analgsisiands to go out of the scheme of the
p-ensembles.



As we shall argue in § 2.1, it is possible to understand thgelbrasymptotic analysis of the multiple integral
3n[W] from the one of the re-scaled multiple integral

N N
ZN[WA] = f 1_[ { sinhfrw1 Tn(Aa — Ap)] sinh[rwa Ta (1a — Ap)] }ﬁ : ]_[ e NTWWN(ta) . gNy

RN a<b a=1

ThereTy is a sequence going to infinity with whose form is fixed by the behaviour @ (x) at largex, and:
Wn(E) = TRt W(Tné).

The main task of the paper is to develop an fective method of asymptotic analysis of the rescaled
multiple integral Zn[V] in the case whenTy = N%, 0 < o < 1/6 and V is a given N-independent strictly
convex smooth potentiaV satisfying to a few additional technical hypothesis.

The treatment of the class ®f-dependent potentialgy which would enable one to deduce the lahge-
asymptotic expansion gf[W] will be the matter of a future work.

Prior to discussing in more details the results obtainetimpaper, we would like to provide a brief overview
of the developments that took place, over the years, in thiedfdargeN asymptotic analysis dfl-fold multiple
integrals. This discussion serves as an introduction towsrideas that appeared fruitful in such an asymptotic
analysis. More importantly, it will put these techniguesdmtrast with what happens in the case of the sinh model
under study. In particular, we will to point out the techiiaapects which complicate the larfeasymptotic
analysis ofsny[W] and thus highlight the features and techniques that areimewr analysis. Finally, such an
organisation will permit us to emphasise the matfiestences occurring in the structure of the lalkjasymptotic
expansion of integrals related to the sinh-model as condparthes-ensemble like multiple integrals.

The paper is organised as follows. Section 1 is the intrédinethere we attempt to give an overview of the
various methods used and results obtained in respect tactiry the large number of integration asymptotics of
integrals occurring to random matrix theory. Since we Hgaely on tools from potential theory, large deviations,
Schwinger-Dyson equations, and Riemann-Hilbert techesgwhich are often known separately in several com-
munities but scarcely combined together, we thought usefuilve a detailed introduction for readers with various
backgrounds. In Section 2, we state and describe the reifitned in this paper. In Section 3 appearsfitst
part of the proof we carry out theasymptotic analysis of the system of Schwinger-Dyson ieqsatubordinate
to the sinh-model. It relies on results concerning the sieer of the master operator related with our problem. It
is a singular integral operator whose inversion enablesameng other, to construct &irdependent equilibrium
measure. Theecond part of the proois precisely theconstruction of this inverse operatoit is carried out in
Section 4 by solving, foN large enough, an auxiliary»22 Riemann-Hilbert problem. The inverse operator itself
and its main properties are described in Section 5. tihhe part of the proofconsists in obtainindine informa-
tion concerning the large N-behaviour of the inverse opmraSection 6 is devoted to deriving uniform larte-
local behaviour for the inverse operator. In Section 7 wédboin the results established so far to carry out the
largeN asymptotic analysis of single integrals involving the mseeoperator. Finally, in Section 9 we establish
the largeN asymptotic expansion of certain bi-dimensional integralsesult that is needed so as to obtain the
final answer for the expansion of the partition function. Plager contains four appendices. In Appendix A we
remind a few useful results of functional analysis. In ApgigrB, we establish the asymptotic analysis for the
leading order InN[W] by adapting known large deviation techniques. Then, inéxgjix D, we derive an exact
expression for the partition functioB@n[Ve] wheng = 1 andVg is a Gaussian potential. We also obtain there
the largeN asymptotics ofZn[Vg]. This result is instrumental in deriving the asymptotiparsion ofZy[V]
for more general potential, since the Gaussian partitioctfan always appears as a factor of the latter. Finally,
Appendix E recapitulates all the symbols used in the papgnesbasic notations are also collected in § 1.4.



1 Introduction

1.1 Beta ensembles with varying weights

One of the simplest and yet non-trivial examples of\afold multiple integral are provided h§-ensembles with
varying weights:

N
0 - fl_[|/la_/lb|ﬁ'ne_NV(/la)'dN/l- (1.1)

N
RN a<b a=1

B > 0is a positive parameter andis a potential growing diiciently fast at infinity for the integral (1.1) to be
convergent. This partition function arises when integiqtbver the spectra of random matrices drawn from the
so-called orthogona3(= 1), unitary g = 2) or symplecticg = 4) ensembles. The aforementioned three cases are
very special, since they feature a determinantal offildfastructure unknown for genegaland they can be solved

in terms of orthogonal or skew-orthogonal polynomials [7Rpr generaBB > 0 and polynomiaV, the partition
function (1.1) can be interpreted as the integral over tleetspm of a well-tailored family of random tri-diagonal
matrices [40, 68]. Independently of these interpretati@ﬁ) can also be thought of as the partition function
of a classical system dfl particles at temperatugg® that interact through a a two-body repulsive logarithmic
interaction and are placed in an overall confining poteifial

Universality

The-ensembles have been extensively studied for more than &8,ysee.g. the books [4, 29, 72, 76]. The
statistical-mechanics interpretation @&ensembles makez'(Nﬁ) and its associated probability distribution a good
playground for testing the local universality of the distiion of repulsive particles [48]. The physical idea
behind universality is that the logarithmic repulsion dies the local behaviour of the partide3he universality
classes should only depend Brand the local environment of the chosen positionRonFirst results of local
universality in the bulk where obtained by Shcherbina argtlrd75] at3 = 2. Then, aB = 2 and for polynomial

V, Deift, Kriechenbauer, McLaughlin, Venakides and Zhou][86tablished the local universality in the bulk
within the Riemann-Hilbert approach to orthogonal polyiasmwith orthogonality weight V™ on the real
line. These results were then extended by Deift and Giogvadl, 2, 4} for the bulk [32] and then for the edge
[31] universality. The bulk and edge universality for gexig > 0 were recently established by various methods
and under weaker assumptions. Bourgade, Erdds and Yawhuitlaxation methods so as to establish the bulk
[18, 20] and the edge [19] universality in the presence oegerc potentials. Krishnapur, Rider and Virag [68]
proved both universalities by means of stochastic operatthods and in the presence of convex polynomial
potentials. Finally, the bulk universality was also essli#d on the basis of measure transport techniques by
Shcherbina [78] in the presence of real-anaytic potentiaiiée universality both at the bulk and edge was derived
by Bekerman, Figalli and Guionnet [8] f@ potentials withk large enough.

Leading order of Z(Nﬂ): the equilibrium measure and large deviations

The leading asymptotic behaviour of the partition functﬁjﬁ) takes the form :

nZ§) = -NAeVied + o) with &9 = [VO9d(9 - £ [ k- yidudu) . (12)

X<y

“By local we understand looking at intervals shrinking wihso that these contain typically only a finite number of péetidn the
N — oo limit



In these leading asymptotics, the functio6&? is evaluated at the so-called equilibrium meagLipa probability
measure oiR that minimises the functional®. This minimiser can be characterised within the framewdrk o
potential theory [69] and arises in numerous other branohesthematical physics. In particular, it exists and is
unique. We stress that the leading order (1.2) depengsomty via a rescaling of the potential.

We shall begin the present discussion by describing, on adtiedevel, the mechanism which gives rise to
(1.2). For this purpose, observe that the integranﬁ'@f can be recast as

N
1
exp{ - N2EOILYY) where L) = NZ% (1.3)
a=1

is the empirical measure whil& refers to the Dirac mass at For finite but largeN, A — 8(/3)[L(|\f)] attains its
minimum at a pointyeq = (Yeq: - - - » Yeqn) Whose coordinategeq:1 < - -+ < yeqn are bounded, uniformly iiN,
from above and below. This minimum results from a balarmstween the repulsion of the integration variables
induced by the logarithmic interaction and the confininguratof the potentiaV/. It seems reasonable that the
main contribution to the integral, namely the one not inrigdexponentially small corrections, will issue from
a small neighbourhood of the poigt, (or those issuing from permutations of its coordinates) lagmice yield,

to the leading order i, In Z(Nﬁ) = —NZ(SW)[LE\T‘*‘*)] +0(1)). As a matter of fact, theeqa are distributed in

such a way that they densify on some compact subsRtasfd in such a way that, in fadlg «d converges to the

probability measurgeq.

This reasoning thus indicates that the leading asymptotitrsz(ﬁ) issue from a saddle-point like estimation
of the integral (1.1). This statement can be made precid@milhe framework of large deviations. Ben Arous
and Guionnet [5] showed that the sequence of probabilitysomes associated Wilﬂ(Nﬁ) satisfies a large deviation

principle with good rate functio8®)[u]. Their framework shows that, in fadig\f) converges almost surely and in
expectation towards the equilibrium measug

The properties of the equilibrium measuig, have been extensively studied [34, 69, 77]. One can prove tha
if VisC*fork> 2, thenueqis Lebesgue continuous withe¥~2 density. Besides, ¥ is real-analytic, the density
is the square-root of an analytic function, hence its suppamsists of a finite number of segments, calteds
Critical points of the model occur when the topology of thppart is not stable under small perturbations of the
potential, i.e. one component of the support splits in twm tuts merge, or a new cut appears. When this is not
the case, we say that the potentiabjscritical.

A remarkable feature of this model is that the densityiofcan be built in terms of the solution tosaalar
Riemann—Hilbert problem for a piecewise holomorphic fiowd having jumps on the support pf;. Such
Riemann—Hilbert problems can be solved explicitly leadimg one-foldintegral representation for the density.
These manipulations originate in the work of Carleman [2B some aspects have also been treated in the book
of Tricomi [82]. The endpoints of the support, however, hawvde determined by non-linear (and sometimes
transcendental) consistency relations. We stress thatetlyeexistence of ane-foldintegral representation with
fully explicitintegrand tremendously simplifies the analysis, be it intiebacerns the description of the properties
of ueq, Or any handling that actually involves the equilibrium s@e.

The all-order large-N expansion

The motivation to study all-order asymptotic expansion$n(it(£) whenN — o initially came from physics
and the study of @quantum gravity [21, 49] partly since the ¢beients in the all order asymptotic expansion of

5The Lebesgue measure does not participate to the settitgsadduilibrium: the aforementioned terms induce®@@ behaviour in
the light of (1.2), while on compact subsetsidf, the Lebesgue measure produces at most &'P¢entribution, withc depending on the
size of the compact set.



Z(Nﬁ) provide solutions to many problems in enumerative geonmttgpological strings, and also because of the
richness of the algebraic structures in which those expaadit. Going beyond the leading order demands taking
into account thef@ect of fluctuations of the integration variables aroundrtlaegeN equilibrium distribution. The
most dfective way of doing so consists in studying the so-callediioher-Dyson equations associated v@fﬁ),
which are, in fact, sometimes referred to as "loop equatiofise Schwinger-Dyson equations consist of a tower
of equations which relate multi-point expectation valuttest functions versus the probability measure induced
by Z(ﬁ). In the case of analytic interactions, it is possible toddtrce a collection of fundamental objects, the
n-point correlatorsn = 1, 2, . ... These are specific expectation values whose knowleddwe artalytic setting, is
enough for computing all the expectation values related ti¢ given model. Their use constitutes an important
technical simplification of the intermediate analysis.

The calculation of the first sub-leading correction to (h&3%ed on the use of Schwinger-Dyson equations for
correlators was first carried out in the seminal papers of mmy Chekhov and Makeenko [3] and of these authors
with Kristjansen [2]. The approach developed in these saakowed, in principle, for a form&) order-by-order
computation of the largé asymptotic behaviour to\IZ). However due to its combinatorial intricacy, the approach
was quite complicated to set in practice. In [43], Eynardpsed a rewriting of the solutions of Schwinger-Dyson
eqguations in a geometrically intrinsic form that strongisnglified the structure and intermediate calculations.
Chekhov and Eynard then described the corresponding disgatics [24], and it led to the emergence of the
so-called topological recursion fully developed by Eynand Orantin in [45, 46]. It allows, in its present setting,
for a formal yet quite systematic order-by-order calcolatof the coéficients arising in the larghl asymptotic
behaviour of thg8-ensemble partition functions, just as numerous otheairtss of multiple integrals, seq.
the work of Borot, Eynard and Orantin [14].

We have not yet discussed the problem of actually provingtigtence of an asymptotic expansion oﬂﬁ)
to all algebraic orders i, namely the fact that

K
InZ® = > NZFEPIV] + O(NX) (1.4)
k>0

for any K > 0 and with cofficients being somg-dependent functionals of the potentidl The existence and
form of the expansion up to o(1) when= 2 was proven by Johansson [61] for polynom¥alinder the one-cut
hypothesis, this by using the machinery of Schwinger-Dysguations ana priori bounds for the correlators
first obtained by Boutet de Monvel, Pastur et Shcherbina. [48len, the existence of the all-order asymptotic
expansion g8 = 2 was proven by Albeverio, Pastur and Shcherbina [1] by combiSchwinger-Dyson equations
and the bounds derived in [28]. Later, within the Riemanitb&it problem approach, Ercolani and McLaughlin
[42] established the existence of the all order asymptogmaesion ap = 2 in the case of potentials that are a
perturbation of the Gaussian interaction. In particulais tvork proved that the céigécients of the asymptotic
expansion coincide with the formal generating series ematimg ribbon graphs of [21] — also known under the
name of "maps". Finally, Borot and Guionnet [16] systeneatiand extended to gi > 0 the approach of
[1], hence establishing the existence of the all-orderelddcgasymptotic expansion OZ(NB) at arbitrarys and for
convex real analytic potentials. Though this phenomendhnat occur in the present article, let us mention for
completeness that, whesq is supported on several cuts, the form (1.4) of the asyngpégpansion is not valid
anymore, and oscillatory terms hh have to be included. When adopting the physical picturs,dfict takes its
roots in the possibility the particles have to tunnel frone @at to another [11, 44]. For real-analytiff-oritical
potentials and general > 0, the all-order asymptotic expansion was conjectured 4h §hd established in [15].
We refer the reader to the latter reference for a deepersfigmurelative to the history of this problem.

8Namely based, among other things, on the assumption of tigeexistence of the asymptotic expansion.



Generalisations

It is fair to say that presently, there exists a pretty goodeustanding of the largl-asymptotic expansions jh
ensembles. The main remaining open questions concern soemt@on of the asymptotic expansion uniformly
around critical points\iz. when the number of cuts changes) and the possibility to i@ regularity of the
potential, for instance by allowing the existence of Fisktartwig singularities. What we would like to stress is
that the techniques of asymptotic analysis described saréadfective in the sense that they allow, upon certain
more or less obvious generalisations of technical detadating various instances of other multiple integrals.

The framework of small enough perturbation of the Gauss@artial is, in general, the easiest to deal with.
Asymptotic expansions for multi-matrix models have beetaioied in such a setting. For instance, the expansion
including the first sub-leading order was derived for a twatim model by Guionnet and Maurel-Segala [52],
the one to all orders for multi-matrix models by Maurel-Sadd@1] and to all orders for unitary random matrices
in external fields in [53] was then obtained by an approprataptation of the analysis of Schwinger-Dyson
eqguations.

Another natural generalisation Bfensembles consists in replacing the one-patrticle vanyatgntialN - V by
a regular and varying multi-particle potential

N r N2_p
N V(e = DT — > Vp(dip.o i) (1.5)
a=1 p=1 P i1<-<ip
ia=1,...,N

Whenr = 2, such interactions were studied by Gotze, Venker [50] aeadkgr [83] where it was shown that
their bulk universality corresponds to the universalitygss ofg-ensembles. In fact, at= 2 and wherg = 2,

the structure of such models becomes determinantal in #@adrases where the two-body interaction takes the
form:

Vo(d1, 42) = In (M) _

1.6
FRR (1.6)

It is well known that, then, the associated multiple intégyian be fully characterised in terms of appropriate
systems of biorthogonal polynomials in the sense of [65]is for this reason that such multiple integrals are
referred to as biorthogonal ensembles. The d4ag = A% for 8 = 2 is of special interest in that such a setting
allows one to push the calculations even further. Borod#] {#as able to establish certain universality results
for specific examples of confining potentidls Furthermore, it was observed, first on a specific example by
Claeys and Wang [27] and then in full generality by Claeys Rothano [26] that the biorthogonal polynomials
can be characterised by means of a Riemann-Hilbert probldowever, for the moment, the Riemann—Hilbert
problem-based machinery still did not lead to the asymp®®taluation of the associated partition functions

For generat, Borot [13] has shown that the formal asymptotic expansidhepartition function subordinate
to multi-particle potentials is captured by a general@atf the topological recursion. The existence of the all-
order asymptotic expansion was established by the authdtfs/] under certain regularity assumptions on the
multi-particle interactions. Note that for perturbatiasfsthe Gaussian potential of the form (1.5) the hypothesis
of [17] are indeed satisfied.

1.2 p-ensembles with non-varying weights

In all the examples of the multiple integrals discussed gdtia interaction potentidl is preceded by a power of
N. This scaling ensures that, for typical configurations ef.tks, the logarithmic repulsion is of the same order

"Although, even in these two cases, some partial progresbdws achieved g = 2 where one can build on the Riemann—Hilbert
approach [9, 25, 33]



of magnitude inN than the confining potential. As a consequence, with ovelming probability wherN — oo,
the integration variables remain in a bounded region anibidt typical spacing IN. The scheme developed in
[1, 16, 17, 36] for the asymptotic analysis was adapted sghiticular tuning of the interactions witthand, in
general, breaks down if the nature of the balance betweentractions changes.

Serious problems relative to extracting the laij@symptotic behaviour already start to arise in the case of
non-varyingweights,i.e. for multiple integrals:

N N
f [ [va=yoff [ ™0 dVy. (L.7)
a=1

RN a<b

Indeed, consider the integral (1.7) fdrlarge and focus on the contribution of a bounded domaiR™f In this
case, the logarithmic interactions are dominant in resfgetiie confinement (and this by one orderNit the
dominant contribution of such a region is obtained by spatiey,’s as far apart as possible. Increasing the size
of such a bounded region will increase the value of the domtinantribution, at least until the confining nature
of the potential kicks in. Hence, to identify the configusatimaximising the value of the integral, one should
rescale the integration variablesyas= Ty1, with Ty — co. The sequenc@&y is chosen in such a way that the
2-body interaction and the confinement ensured by the patdrave the same order of magnitudeNnviz.:

W(TnA) = NVu()  with V() = Veo(d) - (1+ 0(1)) (1.8)

for some potential/,, and pointwise almost-everywhere In These new variablesare typically distributed in a
bounded region and have a typical spaciriy.1

The simplest illustration of such a mechanism issues francése of a polynomial potenti(1) = zggl Cal?,
¢y > 0. In this case, the sequeritg takes the fornTy = N9 Note that, up to a trivial prefactor, the two-body
interaction — |48 is invariant under dilatations. As a consequence, for pmiyial potentials, the asymptotic
analysis can still be carried out by means of the previouecdbed methods [35], with minor technical compli-
cations due to the handling ofN-dependent potential. Although illustrative, the polynahtase is by far not
representative of the complexity represented by workintip won-varying weights. Indeed, the genuinely hard
part of the analysis stems form the fact that, in principiehie expansion (1.8):

¢ the remainder may not be "Siciently" uniform ;

¢ the non-varying potentiddV may have singularities in the complex plane. This last stemaeans that
the singularities of the rescaled potenti&| given in (1.8) will collapse, with &-dependent rate, on the
integration domain.

In this situation, the usual scheme for obtaining sub-legdiorrections breaks down. So far, the laNj@symp-
totic analysis of a "non-trivial' multiple integral of thgpe (1.7) were carried out only whe¢h= 2 and this
for only a handful of examples. Zinn-Justin [85] proposed\&fold multiple integral representation of the type
(1.8) for the partition function of the six-vertex model ts8 massless phase and subject to domain wall boundary
conditions. By using a proper rescaling of the variablegyested in [85], Bleher and Fokin [10] carried out the
largeN asymptotic analysis of the associated multiple integraéhiwithe Riemann—Hilbert problem approach to
orthogonal polynomials. The most delicate point of thealgsis was to absorb the contribution of the sequence of
polesén/N,n=1,2,..., of the rescaled potential that were collapsingRonn fing they obtained the asymptotic
expansion of the logarithm of the integral up to o(1) coiimets.

To conclude, it seems fair to state that despite the coradtkedevelopments that took place over the last
20 years in the field of largbl asymptotic expansion dfl-dimensional integrals, the techniques of asymptotic
analysis are still far from enabling one to grasp the laxdgasymptotic behaviour of multiple integrals lacking the



presence of a scaling of interactions. Such integral atite gaturally in concrete applications. For instance, it
is well known that correlation functions in quantum intdgeamodels are described IN+fold multiple integrals
[58, 59, 60, 64] or series thereof [63]. Usually, for reasstesnming from the physics of the underlying model,
one is interested in the large-behaviour of these integrals and, in particular, in the taisterm arising in
their asymptotics. However, for most cases of interestgthen N-fold integrals have a much too complicated
integrand in order to apply any of the existing methods ofyais

1.3 The integrals issued from the method of quantum separatin of variables

In the present paper, we develop the main features of a thibatywould enable one to extract the lafge-
asymptotic behaviour out of the class of multiple integthist naturally arises in the context of the so-called
guantum separation of variables method:

N N
W] = f [ T4 sinhbrwy(a — yo)l sinhfrewa(ya — yo)l} - | [& W) - dVy . (1.9)
a=1

RN a<b

Independently of its numerous potential applications tgspts, should one only have in mind characterising
the largeN behaviour ofN-fold multiple integrals, it is precisely the class of intaty described by (1.9) that
constitutes naturally the next one to investigate and wtdled after thgg-ensembles issued ones (1.1), (1.5).
Indeed, on the one hand the integrand in (1.9) bears certaiotiwral similarities with the one arising s+
ensembles. On the other hand, it brings two new featuregshietgame. Thereforgn[W] provide ones with a
good playground for pushing forward the methods of asynptntalysis ofN-fold integrals and learning how
to circumvent or deal with certain of the problematic featumentioned above. To be more precise, the main
features of the integrand [ W] being an obstruction to applying the already establishethods stem from the
presence of

e a non-varying confining one-body potenti&t

e atwo-body interaction that has the same lowd. (Whent, — Ap) singularity structure as in thg2ensemble
case, while breaking other properties of the Van-der-Mdntlraction such as the invariance under a re-
scaling of all the integration variables.

Although, the tools of asymptotic analysis discussed presly break down or have to be altered in a significant
way, a certain analogy with matrix models gh@nsembles persists. Indeed, upon a proper rescaling spttie

of Sub-Section 1.2, one can show that the integral localisesconfiguration of the integration variables in such
a way that these condensate, in the lagémit, with a densitypeq. In fact, we show in Appendix B that it is
possible to repeat, with some modifications, the largealieni approach tg-ensemble integrals so as to obtain
the leading asymptotic behaviour ofsg. However, in order to go beyond the leading asymptotic bielawof
the logarithm, one has to alter the picture and work diregtlihe level of the rescaled model

N N N
ZN[V] = fﬂ { sinh[rwiN?(1a — Ap)] sinh[rwaN* (14 — /lb)]}ﬁ . n {e—N“"V(/la)} . 1_[ di, . (1.10)

BN a<b a=1 a=1

This integral is related tgy[W] by a rescaling of the integration variables. The expondstfixed by the growth of
the original potentialV at infinity. Finally, the potential/ should depend ol and correspond to some rescaling
of the original potentialV. In fact, the main result obtained in the present paper dettisthe largeN asymptotic
expansion of the rescaled partition functigg[V] and this in the case where
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e O<a<1/6;
¢ the potentiaV is smooth, strictly convex, has sub-exponential growthiamttindependent.

Per se the application of our technique and results to computiregasymptotics of the original integral[W]
would demand to take il dependent potential and study[Vn], which is technically more involved. However,
this problem isnot conceptually dierent from the one studied in this paper. Therefore, théngette shall
discuss is more fit for developing the method of asymptotadyasis of this class of integrals. We shall address the
guestion ofN-dependent potentialéy related to specific applications to quantum integrable rsddea separate
publication.

Within our setting, in order to grasp sub-leading correwito InZy[V], one faces severalfliiculties:

(i) owing to the scalingN®, the nature of the repulsive interaction betweenitfi® changes drastically between
N = co andN finite. Therefore, one has to keep track of the transitiorcafes between theger-seleading
contribution — which feels, féectively, only the brutéN = oo behaviour of the two body interaction — and
the sub-leading corrections which experience the two-biodyactions at all scales.

(i) The presence of two scaldsandN® weakens a naive approach to the concentration of measures.

(i) The derivative of the two-body interaction possesses &taf poles that collapse down to the integra-
tion line, hence making the use of correlators and compleiabies methods to study Schwinger-Dyson
equations completely ifikective.

(iv) The master operator arising in the Schwinger-Dyson egusiis arN-dependent singular integral operator
of truncated Wiener—Hopf type. One has to invert this operafectively and derive the finéy-dependent
bounds on its continuity constant as an operator betwearespd sifficiently differentiable functions.

(v) The largeN behaviour of one point functions, as fixed by a successfgelr analysis of the Schwinger-
Dyson equations, is expressed in terms of one and two dimmalsintegrals involving the inverse of the
master operator. One has to extract the la¥gasymptotic behaviour of such integrals.

The setting of methods enabling one to overcome these pnsbt®nstitutes the main contributions of this
work.

First, in order to strengthen the concentration of measames in fact, ectively absorb part of the asymp-
totic expansion into a single expression, one should wotk Widependent equilibrium measures, that is to say
equilibrium measures associated with a minimisation gobbdf a quadratitN-dependent functional on the space
of probability measures dR. The density of such aN-dependent measure can be expressed as an integral trans-
form whose kernel is given by a double integral involving slodution to a matrix % 2 Riemann—Hilbert problem.
This very fact constitutes a crucialffirence with the matrix model case in that, in the latter céedensity of
equilibrium measure solves a scalar Riemann—Hilbert prabhence admitting an explicit, one dimensional in-
tegral representation. On top of improving numerous boutgsuse of suciN-dependent equilibrium measures
turns out to be crucial in order to push the asymptotic expansf In3y[W] up to o(1)

Second, theper semachinery of topological recursion mentioned earlier ksedown for this class of multiple
integrals. In order to circumvent dealing with the collaygsf poles, we develop a distributional approach to
the asymptotic analysis of Schwinger-Dyson equations. latter demands, in particular, to have a much more
precise control on its constituents.

Third, the inversion of the master operator is based on hagglf the inverse of the operator driving the
singular integral equation for the density of equilibriuneasure. Obtaining find\ dependent bounds for this
operator demands to go deep into the details of the solufitimea? x 2 Riemann—Hilbert problem which arises
as the building block of this inverse kernel. We develop méghies enabling one to do so.

11



Finally, the precise control on the objects issuing fromv@olger-Dyson equations yield, through usual in-
terpolation by means dfvarying potentials, amN-dependent functional of the density of equilibrium measur
— itself also depending oN — as an answer for the larg¢-asymptotics of IrZy[V]. Setting forth methods for
the asymptotic analysis of this functional demands, agaivery fine control of the inverse build through the
Riemann—Hilbert problem approach. We develop such methiadsarticular, by describing the new class of
special functions related to our problem.

Putting in perspective the bi-orthogonal ensembles.

At this point, we shall make several comments in respect acettisting literature on bi-orthogonal ensembles.
Indeed, the applications to the quantum separation of bl@sacorrespond to settimgjto 1 in 33[W] and hence
Zn[V]- In this case, these multiple integral corresponds to artiiegonal ensemble. As such, they can be
explicitly computed, at least in principle, by means of tlgetem of bi-orthogonal polynomials associated with
the bi-periodic functions™®2Y, @2y and in respect to the weight ¥ supported orR. As shown by Claeys
and Wang [27] for a specific degeneration (which corresptiadgcally to sending one of thes in (1.9) to zero)
and then in full extent by Claeys and Romano [26], such a systf bi-orthogonal polynomials solves a vector
Riemann-Hilbert problem. Furthermore, the non-lineaegést descent approach [35, 36] to the uniform in the
variable large degrel-asymptotics of orthogonal polynomials can be generalisstith a bi-orthogonal setting,
leading to Plancherel-Rotach like asymptotics. In prilgifpy adapting the steps of [42], one should be able
to derive the largeN asymptotic expansion of the integra| in presence ofarying weights,viz. provided the
replacementV — NV is made. However, such a results would by no means allow arafoeasy generalisation
to non-varying weights. Indeed, as we have argued, in thevaoying case, one rather needs to carry out the
largeN analysis of the rescaled mod&|[V]. However, starting from such a multiple integral would isnfhat
one should study the system of bi-orthogonal polynomias®eiated with the functions™®«Y, g@N'@2y This
presence oN® introduces a new scale M to the Riemann—Hilbert analysis, what would probably dedreaguite
non-trivial modification of the non-linear steepest desceethod.

On top of all this, one needs to construct the equilibrium saea For similar reasons of absorbing part of
the asymptotic expansion, this measure will have to issua the samdéN-dependent minimisation problem and
hence correspond to ti-dependent equilibrium measure that we construct in thesptepaper. However, if one
goes into the details of the work [26], one observes thatetlaeghors provide a one-fold integral representation
for the density of the one-cut equilibrium measure arisim@irorthogonal ensembles. The kernel of this trans-
form involves the inverse of an explicit and basic transesta function. Although extremelyffective in the
varying case, such an integral representation appedtgdtiee in the analysis d\[V]. Indeed, then, one would
have to manipulat®&-dependent versions of this inverse and, in particulagiahiniform inN local behaviours
thereof. A priori, since this inverse does not seem to admit an explicit sekpansion or a manageable integral
representation, such a characterisation appears to e apritplicated. Furthermore, the transform constructed
in [26] does not exhibit explicitly the factorisation of sape root singularities at the edges - in contrast to the
case of the one-fold integral representation arising ansembles. This means that, just as in our setting, one
would have to extract the square root behaviour by hand. eftver, although one dimensional, we believe that
this transform, in the present state of the art, is much Ifest&ve then ours, at least from the point of view of our
perspective of asymptotic analysis. In fact, when spesgdlito the construction of the equilibrium measure, the
2 x 2 Riemann-Hilbert analysis we use enable us, among otheggthio provide the leading, up to exponentially
small corrections iN, behaviour of the inverse of thié-rescaled map built in [26]. Thus, indirectly, our approach
solves such a problem.
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1.4 Notations and basic definitions

In this section, we introduce basic notations that we stsadltiroughout the paper.

General symbols

e 0 and O refer to standard domination relations between ifumt In the case of matrix functioi (2) and
N(2), the relationM(z) = O(N(2)) is to be understood entry-wiséiz. Mk(2) = O(Njk(2)).

e O(N~) means O~X) for arbitrarily largeK's.
e Given a sefA C X, 1, stands for the indicator function &, andA°® denotes its complement .
e A Greek letter appearing in bold,g. A, will always denote ailN-dimensional vector:
A= (A,...,An) €RN. (1.11)
and d2 denotes the product of Lebesgue measmg‘;sl da,.
e givenx € R, | x] denotes the integer satisfying] < x < [x]+ 1

e Throughout the file, the curvé, will denote the curve depicted in Figure 4 appearing in § Btiis curve
is such that 2 = dist(R, €7g) > 0. Throughout the text, this distance will always be dendteds.

I, is the 2x 2 identity matrix whilec* ando3 stand for the Pauli matrices:

. (01 _ _ (00O (1 0
0'—(00),0'—(10) and 0'3—(0_1). (1.12)

Functional spaces

e M(R) denotes the space of probability measure®oihe weak topology oM*(R) is metrized by the
Vasershtein distance, defined for any two probability mesguandu, by:

Dvlu,v] = sup f(&) d@ua — 2)(€) , (1.13)
feLipp1(R) ¥

where Lip ;(R) is the set of Lipschitz functions bounded by 1 and with Lipscconstant bounded by 1. If
f is a bounded, Lipschitz function, its bounded Lipschitzmas:

(€ - 1)

= (1.14)

IflleL = IfllLe@) + sup
&#neER

e Given an open subsét of C", O(U) refers to the ring of holomorphic functions @h If f is a matrix of
vector valued function, the notatidne O(U) is to be understood entrywiséz. Y a, b one hasf;, € O(U).

e CX(A) refers to the space of function of clas®n the manifoldA. CX(A) refers to the spaces built out of
functions inCX(A) that have a compact support.
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LP(A, du) refers to the space gi"-power integrable functions on a satin respect to the measuge
LP(A, du) is endowed with the norm

ol

oy = { [ 1700Pcu09)” (1.15)
A

More generally, given an-dimensional manifoldA, WP(A, du) refers to thep™ Sobolev space of ordér
defined as

n
WP(A. du) = {f cLP(Ad) : 0...0%f cLP(Ady). Y ar<k with ae N} . (1.16)
(=1
This space is endowed with the norm
n
||f||W£(Ad#) = max{lla;"(‘} 0 flleady * & €N, £=1,...,n and satisfyingz a < k} . (1.17)
=1

In the following, we shall simply writéP(A), Wlf(A) unless there will arise some ambiguity on the measure
chosen orA.

We shall also need thé-weighted norms of ordef for a functionf € W;*(R"), which are defined as
¢

1| fllwee &)
NOL] = ZN+ (1.18)
p=0

In particular, we have the trivial bounﬁ,(\f)[f] < €||f||W§o(Rn). Also, the number of variables dfis implicit
in this notation.

The symbolF denotes the Fourier transform bA(R) whose expression, versu$n L2(R) functions, takes
the form

Flel() = f &) €1dk . (1.19)
R

Givenu € MY(R), we shall use the same symbol for denoting its Fourier foans viz. 7 [u]. The Fourier
transform orL2(R") is defined with the same normalisation.

The s" Sobolev space oR" is defined as
12
Hs(R") = {ueS’(R”) LU gy = f(1+|Zt§|2) S|7—'[u](t1,...,tn)|2-d”t < +oo}, (1.20)
R a=1

in which 8’ refers to the space of tempered distributions. We remintdgivan a closed subsét C R",
Hs(F) corresponds to the subspaceHi{R") of functions whose support is containedrn
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e The subspace

xm = e s [ utrHItee L - o (1.21)

R+ie

in which A C R is closed will play an important role in the analysis. It idided in terms 0ofy11, the (1, 1)
entry of the unique solutiog to the 2x 2 matrix valued Riemann—Hilbert problem given in Sectioh 4.

e Given a smooth curvg in C, the spaceM,(L2()) refers to¢ x ¢ matrices with cofficients belonging to
L2(%). It is endowed with the norm

Miagey = { [ M9 Man(9 ci(9)] (122)
T ab

and* denotes the complex conjugation.

Certain standard operators

e Given an oriented curvE C C, —X refers to the same curve but endowed with the opposite atient

e Given a functionf defined onC \ %, with £ an oriented curve i€, we denote -if these exists- Hy(s) the
boundary values of (2) onX when the argumergtapproaches the poiste X~ non-tangentially and from the
left (+) or the right ) side of the curve. Furthermore, if one deals with vector atrim-valued function,
then this notation is to be understood entry-wise.

e H* = {ze C : Im(x2) > 0} is the uppetower half-plane, anR* = {ze R : +z > 0} is the closed
positivgnegative real axis.

e The symbolC refers to the Cauchy transform &n

L) = f 16 o (1.23)

s—-1 2ir
R
The + boundary valueg€.. define continuous operators bly(R) and admit the expression

CLIfI() = % N %f% (1.24)
R

e Given a functionf supported on a compact sa&tof R", we denote byf, an extension off onto some
compact seK such thatA c Int(K). We do stress that the compact support is part of the datheof t
extension. As such, it can vary from one extension to anoth@wever, the extensiof is always assumed
to be of the same class &sFor instance, iff is LP(A), W/'(A) or CX(A), thenf. is LP(K), WP(K) or C¥(K).
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2 Main results and strategy of proof

2.1 A baby integral as a motivation

The purpose of this section is to provide an example, in Téradt.1, of the leading large-asymptotic expansion
of In3n[W] where3n[W] is the unscaled partition function defined by (1.9). We ks argue that the largs-
asymptotic behaviour of (1.9) — whose integrand does notmigexplicitly onN — can be deduced from the one
of the rescaled model (2.47) — whose integrand dependscikptin N— that we propose to study.

Let Equy) the functional, defined il U {+oo} for any probability measurg € MY(R):

(w1 + w
eomlil = [ catdu® - P [ piquercutn @)
Theorem 2.1 Let W be a potential such that
|§|”m IE7TW(X) = ¢g>0 forsomeq>1, (2.2)
—+00
E(ply) is a lower semi-continuous good rate function, and

L InanW] ,
lim - inf & . 2.3
N—+4o00 N2+ yeMl(R) (pIY)[M] ( )

This infimum is attained at a unique probability meas,ugéy). This measure is continuous with respect to the
Lebesgue measure and has density

o(q — 1)lga2

(ply) .
© = 2nB(w1 + w2)

a1 (€) - (2.4)

yéﬁ’;y) is supported on the intervah ; b], with (a, b) being the unique solution to the set of equations

bt = gt = Perr o) (‘“1q ) (2.5)
We have, explicitly:
g+l
o Ingn[W] 1 (7B T 20°-9q+6
Jm T (Cg)d ( q (w1 + wz)) 21 (2.6)

The proof of this proposition is postponed to Appendix B, &oitbws similar steps toge.g, [4]. We now
provide heuristic arguments to justify the occurrence afling in N in this problem. Just as discussed in the
introduction, the repulsivefiect of the sinh-2 body interactions will dominate over thafgtung efect of the
potential as long as the integration variables will be ledain some bounded set. Furthermore, in the same
situation, the Lebesgue measure should contribute to thgrad at most as an exponentialNih We thus look for
a rescaling of the variablgg = TnAa Where the &ects of the confining potential and the sinh-2 body inteoasti
will be of the same order of magnitude W This recasts the partition function as

N . B N
W = (Tn) f [ [{sinhlzw1Tn(da - Ab)] sinh[zw,Ta(ta = )1} [ [{e™™) dVa, 2.7)

RN a<b a=1
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Taking into account the large-variable asymptotics of theptial, we have:

N
D IW(Tnda) ~ TN, (2.8)

a=1

where the symbok means that for a "typical” distribution of the variabl{eﬁ}’l\', the leading inN asymptotic
behaviour of the sum in the right-hand side should be of tlderoof the left-hand side. Similarly, assuming a
typical distribution of the variable{sla}Q' such that most of the paifg,, Ap} satisfy Tn|1a — Ap| > 1, one has

N
> BIn{sinh[rw1Tn(Aa - Ap)] sinh[zwz Tn(da = Ab)]} ~ CN?Ty . (2.9)

a<b

Thus, the confining potential and the two-body interactidlhgenerate a comparable order of magnitudéias
soonaN?-Ty = Ty N, ie.

1

Ty = N&T. (2.10)

Theorem 2.1 indeed justifies that the empirical distribmm%) of 15 = Nq_Tllya concentrates around the equilib-
rium measure, with a large deviation principle governedhgyrate function (2.1).

This observation implies that, in fadty[Vn] with V() = N~ a1 -W(Nqul/l) is the good object to study in that
it involves interactions that are already tuned to the prgpale inN. Due to the relationy[W] = Na1 - ZN[VN],
one readily has access to the lafgexsymptotic expansion gk [W].

2.2 The model of interest and our assumptions

It follows from the arguments given in the previous sectioat dfectively, the analysis of the unrescaled model
boils down to the one subordinate to the partition function

N N
ZN[V] = f [ ]{sinh[zwiN®(4a - Av)] sinh[zwaN*(Aa - ab)]}ﬁ [] e NVUa) L gN ) (2.11)
R

N a<b a=1

with & some parameter — equal to(d — 1) in the previous paragraph — akda potential that possibly depends on
N. Due to such anféective reduction, in this paper, we shall develop the getienaalism to extract the largbt
asymptotic behaviour. Therefore, we shall keep the conitglex minimum. In particular, we shatiot consider
the case oN-dependent potentials which would put the analysi&@iV] in complete correspondence with the
one of3n[W]. Indeed, this would lead to numerous technical complicain our arguments, without bringing
more light on the underlying phenomena. By focusing on (R W& believe that the new features and ideas of our
methods are better isolated and illustrated. We shall parate the peculiarities of the modgI[W] of (1.9) and
investigate its asymptotic behaviour upd@) in a future publication.

In the present paper we obtain the lafgdexsymptotic expansion of I[V] up to o(1) under four hypothesis

¢ the potentiaV is confining,viz. there existg > 0 such that

lim suplg"MOV(E) = +o0; (2.12)

[€]—>+00

e the potentiaV is smooth and strictly convex dn;
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e the potential is sub-exponential, namely there exists0 andCy, > 0 such that

Vé€R, sup V(€ +m)| < Cu(VE)I+1), (2.13)
ne(0 e

and given any > 0 andp € N, there exist€, , such that
veeR,  [VM(g)|eO < Cp. (2.14)

e the exponentr in N* is neither too large nor too small:
O<a<1/6. (2.15)

The first hypothesis guarantees that the integral (2.11pikdefined, and that th&'s will typically remain in
a compact region oR independent oN. It could be weakened to study weakly confining potentiashé price
of introducing more technicalities, similar to those athg@ncountered fg8 ensembles — seeg.[56].

In the second assumptiol, could be assume@* for k large enough. The convexity assumption guarantees
that the support of the equilibrium measure is a single sedfini principle, the multi-cut regime that may arise
when the potential is not strictly convex can be addresseathpgrting the ideas of [15] to the present framework.
We expect that the analysis of the Riemann-Hilbert probleniné multi-cut regime is very similar to the present
case, but with a larger range of degrees for the polynomegidom appearing in the solution (5.14). Though it
would certainly represent some amount of work, the ideasaveldp here should also be applicable to derive the
fine largeN analysis of the solution of the Riemann-Hilbert problemhia bulk and in the vicinity of all the edges
of the support of the equilibrium measure.

The third assumption is not essential, but allows some dicgtion of the intermediate proofs concerning the
equilibrium measure and the large deviation estimatgs,Theorem 3.7 and Corollary 3.10. It is anyway satisfied
in physically relevant problems.

In the fourth assumptiong = 0 can already be addressed with existing methods [17]. Tiperulimit
a < a* = 1/6 has a purely technical origin. The value @f could be increased by entering deeper into the
fine structure of the analysis of the Schwinger-Dyson equnatand by finding more precise local and global
bounds for the larg&l behaviour of the inverse of the master operatfy', in more cunning norms. Intuitively,
the genuine upper limit should ke = 1, since in thex > 1 case, we reach a regime where the particles do not
feel the local repulsion any more. However, obtaining ngcapic estimates is usually diitult question — fop
ensembles, it has been addresagdin [19, 20]. So, one can expect important technicéidilties to extend our
result to values of increasing up to 1.

This set of hypothesisfters a convenient framework for our purposes, enabling usdasfon the technical
aspectsij — (vi) listed in § 1.3 without adding extra complications.

2.3 Main results: asymptotic expansion oZy[V] atg =1

We now state one of the main results of the paper, namely tge{é asymptotic expansion of the partition
function Zy[V] which holds for any potentid¥ satisfying the hypothesis stated above

Theorem 2.2 The below asymptotic expansion holds

[2/a]+1 o
In (—Zsl[\l\gc\s/]l\l] )Iﬂ:1 = _NZ@ pZ:;) I\I1|7([I\p/] + N*.Jp- (SZ[V, VG;N](bN) - IV, VG;N](aN))

+ No - (SAV: Vel (o) + SV, Vel (an) + o(1) . (2.16)

8See e.g. the expression of tNe= co equilibrium measure (2.29). Its proof is given in Appendix C
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The whole V-dependence of this expansion is encoded in dfficiemts-6,[V] and in the functiorf2[V, Va:n](€).
Jo and Xp are numerical cogiicients given, resp., in terms of a single and four-fold irakgAlso, the answer
involves the Gaussian potential

mB(w1 + wg) - [£2 ~ (an + by + O(N™))¢]
Ven() = .

1
by —an + —
N N N“pz;ﬁnwp

(2.17)

1 w1W?2 .
(wp(w1+w2)) + O(N™)

and sequencesyaand hy that are given in Theorem 2.5. If we denotg ¥ V + Vg, the cogficients©,[V] take
the form

by
-1 - —\77
BVl = s [ Vi (V)@ (218)
an

when p= 0 and, for any p> 1.

bn

BolV] = Upas f Vi(©) - V2e) de (2.19)

an
- %{(_ﬁ (VR Dan) - (V) Dan) + (~1° (V) ibn) - (vm<s+1><bN)} :
stt=p-1 =
s(>0

The cogficientsTs, are defined by:

jSt+l +1 gl 9" gSLH(—r 1
Tse = 2n ri(s+¢+1-r)! 'F(R : ) =0 GyuSHiri—r ) =0’ (2.20)
! =N Ou Ry (=p) =0 oy Ry (k) /ln=
R, is theH* Wiener—Hopf factor ol/7[S](1), with S defined i1§2.42), that reads
A w2 il w1 i Iﬂ(Zb:j) ) .Iﬂ(ZELj) )
R(1) = . (=) P 1 T 2.21
l( ) 277ch1+a)2 (a)1+a)2) (w1+a)2) l_(l/l(a)1+w2)) ( )
2nwiw2
The functiorg) describing the constant term is defined as
V(&) — V() V(&)
QU Ve: = — In( — ) 2.22
The V-independent cgiieient ]y in front of the term N reads
+00 ;
duJ(u), _, . f 2sinh[1/(2w1)] sinh[1/(2w)] € da
b = ———(uS S th J(u) = -— . (2.23
0 f 2r WS+ SW) - with (W) S0y + w2) @ogan)] 2 - &2
0 g
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Finally, the numerical prefactoX is expressed in terms of the four-fold integral

No = —wlzwzfduz‘jr(u)fdvau{s(u).(r[V;“]—r[V;“])}

R ul

didu  p(wi + wy)

(2ir)? (A + WR (DR (1)
vl

T J AXHi X-y
~dedyeM Hy GX{S(X - y) (I(X) - r(y) - m)} . (224)

The integrand oy involves the functiom which is given by

2 w1w?2
ca(X) + co(¥)| = p_ '\ 2nw pl (wp(w1+w2))]

) = 1+ 278(w1 + w2)0(0) (2.25)

with

gx ap 1 ) da

- 2.26
2|71'\/a)1+a) f A aap R () 2ix ( )
reg

p(X) =

The result folB # 1 contain two more terms, and is given in the body in the artioy Proposition 3.20, in terms
of N-dependent simple and double integl‘a@. The final form for the asymptotics up ¢§1) of these extra terms
can be worked out following the steps of Section 9, althougtdecided to leave it out of the scope of this article,
sinceB # 1 does not seem to appear in quantum integrable systems.

2.4 Main results: the N-dependent equilibrium measure and the master operator

It is not hard to generalise the proof of Theorem 2.1 to thegmesetting so as to obtain the below characterisation
of the leading inN asymptotic behaviour faZy[V].

Theorem 2.3 Let &, be the lower semi-continuous good rate function
1
Eeltl =5 f V() +V(€) — np(w1 + w2)I€ —nl) du(€)du(n) . (2.27)

Then, one has that

_InZy[V] )
lim = — inf &Eulu]. 2.28
NL+c>o N2+a yEJ\/[l(R) [#] ( )

The infimum is attained at a unique probability measugg This measure is continuous with respect to the
Lebesgue measure, and has density

V7€)

peclX) = 2nf(w1 + w2)

* a5 () (2.29)

supported on the intervdh; b], with (a, b) being the unigue solution to the set of equations

V/(b) = -V'(a) = nB(ws +wy) . (2.30)

20



One has, explicitly,

_InZy[V] V@+V) (VO)Ab-a) + V@)Y d
lim = — .
N—+oc0 N2+a 2 47Tﬂ(0-)1 + (-‘)2)

(2.31)

The strict convexity oV guarantees that the density (2.29) is positive and thaadires a non-zero limit at the
endpoints of the support. This behaviouffelis from the situation usually studiednensembles with analytic
potentials which leads to a generic square root (or invaysarg root) vanishing (or divergence) of the equilibrium
density at the edges.

Note that the functio&,, defined in (2.27) arises as a good rate function in the largiatign estimates for the
empirical measure(l\f), c.f. (1.3). In fact, a refinement of Theorem 2.3 would lead to tleenprecise estimates

INZN[V] = —NZ" & [ueq] + O(N?). (2.32)

Thus, in respect to the usual varying weightnsemble case, there is a loss of precision Ny & factor. This, in
fact, takes its origin in that the purely asymptotic ratechion &, [ueq] does not absorb enough of the fine structure
of the saddle-point. As a consequence, the remaindsf)tixes both types of contributions: the deviation of
the saddle-point in respect to its asymptotic position drdfluctuation of the integration variables around the
saddle-point.

The fine,N-dependent, structure of the saddle-point is much betfguoed by theN-dependent deformatién
of the rate function€.,:

entd =5 |

This N-dependent rate functions appear extremdlgative for the purpose of our analysis. Namely, it allows
us re-summing a whole tower of contributions into a singtenteThe use o€y should not be considered as a
mere technical simplification of the intermediate stepss,iin fact, of prime importance. The use of the more
classical objecE., would render the analysis of the Schwinger-Dyson equatiopsssible. This fact will become
apparent in the core of the file. Here, we only state the imgr@nt provided by the use of the finileminimiser
of En:

2
V) + V() ~ Lo in{ [ ] sinhlaN"aps - n)]}] du(€)du(n) - (2:33)
p=1

InZy[V] = -N?* inf &\[u] + O(NY™?). (2.34)
HEMLR)

As usual, this minimiser admits a characterisation in teofresvariational problem:

Theorem 2.4 For any strictly convex potential V, the N-dependent ratefionEy admits its minimum oM (R)
at a unique probability measum\é'}'],). This equilibrium measure is supported on a segniaqt by] and corre-
sponds to the unique solution to the integral equations

2

V@ - & [ n{] [sinixNwpe - 0]} i) = € on fawibu] (2.35)

p=1

2
V@ - f [in{[ [sinhlaNcope - nl} i) > ) on R\lavib.  (236)
p=1

%The property of lower semi-continuity along with the facati&y has compact level sets is verified exactly as in the cagg of
ensembles, so we do not repeat the proof here.
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with CQ(\'],) a constant whose determination is part of the prob(@m35)(2.36) The equilibrium measure admits a
densnyp(N) which isC¥2 in the interior]ay; by[ if V is CX. Finally, one has the behaviour at the edges:

ped(©) = O(E-aw), ped(©) 5 OV —8). (2:37)

The proof of the proposition above is rather classical. liofes, for instance, from [17, Section 2.3] in
what concerns the regularity, and from a convexity argunaéneady used in [14, Lemma 6.2] in what concerns
connectedness of the support and the strict inequality .B6§2 Elements of proof are nevertheless gathered in
Appendix C. In fact, regarding to the equilibrium measure,ca&n be much more precise wheris large enough:

Theorem 2.5 In the N — oo regime, the equilibrium measu;éﬂ):

e is supported on the single interviy ; by] whose endpoints admit the asymptotic expansion

k
an;¢ 1 be
ay = a+ Z W + O(W) and by = b+ Z N&Y (N(k+l)a) , (238)

where ke N* is arbitrary, (a, b) are as defined ii2.30)while
2 -1
bn;1 { 1 w1W2 } V(@) - {V"”(b)}
1 = In . : 2.39
(o) 250" o ) | v v (259
e is continuous in respect to Lebesgue. Its densiﬁ;@'}%vanishes like a square-root at the edges:

S0 - (Ve ONT)Y ey (V) £ O
a (), N(ﬂﬁm) E-an, peq(f) N(ﬂﬁ\/jm) by — &, (2.40)

and there exists a constantx0 independent of N such that:

o8 le=an o) < CIV lloan ) (2.41)
This density takes the forpﬁN) = W\[V’'], with Wy as defined in{2.44)

If the potential V defining the equilibrium measures satisfies CX([ay ;bn]), then the density is of class
C*2onJay ; bnl.

Note that the characterisation/sifg”}q) in the theorem above comes from the fact that it is solutidghessingular
integral equatiorSy [p(N)](g) = V’(¢) on [ay ; bn], where

by 5
Snl1E) = f SN -mleGhdy  and  S(E) =  prwpcotanhmwpe] . (2.42)
an p=1

The unknowns in this equatiopg?, an, bn) should be picked in such a way théﬂ) has mass 1 oraj ; by] and

is regular at the endpoinggy, by. Thus, determining the equilibrium measure boils down tansarsion of the
singular integral operata$y. In fact, the singular integral operatSt also intervenes in the Schwinger-Dyson
eqguations. The precise control on its invel$g, — defined between appropriate functional spaces — playsatru
role in the whole asymptotic analysis.
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These information can be obtained by exploiting the fact the operatotSy is of truncated Wiener—Hopf
type. As such, its inversion is equivalent to solving & 2 matrix valued Riemann—Hilbert problem. This
Riemann—Hilbert problem admits a solution féddarge enough that can be constructed by means of a variant of
the non-linear steepest descent method. By doing so, wébbrécadescribe, quite explicitly, the inverd#’y by
means of the unique solutignto the 2x 2 matrix valued Riemann—Hilbert problem given in SectioB. AVe
will not discuss the structure of this solution here andchagtrefer the reader to the relevant section. We will,
however, provide the main consequence of this analysisan explicit representation for the operatidgfy. For
this purpose, we need to announce fhat the (1 1) matrix entry ofy, is such thaf - u/? - y11(u) € L*(R).

Theorem 2.6 Let0 < s< 1/2. The operatorSy : Hg([an ; bn]) — Xs(R) is continuous and invertible where,
for any closed AC R,

X = Herdm : [ )P THIN e e = o) (243)

R+ie

is a closed subspace ofst?\) such thatSy(Hs([an ; bn])) = Xs(R). The inverse is given by the integral transform
‘W which takes, for He C1([an ; bn]) N ¥s(R), the form

da du e N"(E-an)

NZQ
WAHIE) = 5 f o |

b
(i1 -5 v} [andso2one) . .49
R+2ie R+ie an

In the above integral representations the parameter 0 is small enough but arbitrary. Furthermore, for any
H e C1([an ; bn]), the transformtWy exhibits the local behaviour

WnIHI(é) o CiH'(an)vé—any  and  WN[H](&) o CrH’(bn) Vb — €. (2.45)
— -0y
where G r are some H-independent constants.

Note that, within such a framework, the density of the efquitim measur@g}'q) is expressed in terms of the

inverse ago(eﬁ) = Wn[V’]. In this case, the pair of endpointay by) of the support opéﬁ) corresponds to the
unique solution to the system of equations

bN bN
d o e
f Wh[V]E)de =1 and f “’;f“(“) f N BN\ () = 0. (2.46)
T
an R+ie an
The first condition guarantees théﬁ) has indeed mass 1, while the second one ensures that itsydearsishes
as a square root at the edgegg by. Using fine properties of the inverse, these conditions eaestimated more

precisely in the largéN limit, hence enabling one to fix the largéasymptotic expansion of the endpoiakg by
as announced in (2.38)-(2.39).

2.5 The overall strategy of the proof

In the following, we shall denote by () the probability density oiRN associated with the partition function
Zn[V] defined in (2.11):

N N
pN(d) = z—?v] [ [{sinh[rwiN*(1a - av)] sinh[rwsN*(4a - ab)]}ﬂ [] e NV | (2.47)
N a<b a=1
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pn(A) gives rise to a probability measufg on RN. We also agree that, throughout the filéj) refers to the
empirical measure

N
1
LW = NZ% (2.48)
a=1

associated with the stochastic vecior

Definition 2.7 Letvs,..., v, be any (possibly depending on the stochastic vettoneasures ang a function in
¢ variables. Then we agree upon

<J/>V1®W®W = <¢’(€1, e 7§€)>

V1Q-+-Qve

= PN[fl//(fl,...,.f[) dV1®"~®dVg] (2.49)
R

whenever it makes sense. We shall add the superscript V wdrethe functional dependence of the probability
measure on the potential V needs to be made clear.

Note that if none of the measures ..., v is stochastic, then the expectation verBysn (2.49) can be omitted.

The Schwinger-Dyson equations constitute a tower of egustivhich relate expectation values of functions
in many, non necessarily fixed, variables that are intedre¢esus the empirical measure (2.48). More precisely,
the Schwinger-Dyson equations at lekglk > 1) yield exact relations between various expectation wbfea
function ink variables and its transforms, this versus the empiricalsomea The knowledge of these expectation
values, yields an access to the derivatives of the parfitioction with respect of external parameters. For instance
if {Vi}; is a smooth one parameter family of potentials, then

S InZN[VE] = —NZH6Vy) (2.50)

Vi
Lo
The exponenY; appearing in the right-hand side is there so as to emphdsisthe expectation value is computed
in respect to the probability measure subordinate td-thependent potential;.

Thus the problem boils down to obtaining dfstiently precise control on the behaviourNhof the one-point
expectation values. This can be achieved on the basis ofefutanalysis of the system of Schwinger-Dyson
equations associated with the present model. Since thikimeay does not simplify much in the = 1 case, we
do this for generagB. The result for some ghiciently regular functiorH and potentiald/ satisfying to the general
hypothesis, is our Proposition 3.19.

IntheB = 1 case, Proposition 3.19 reads:

b
1
—N2+"<H>\L/%) = —N fH(g)-wN[V'](g)dg + 53alH, V] + 0(1). (2.51)
an

and the proof shows that the remainder o(1) is uniforraliandV provided thatH is regular enough and thet
satisfies to the hypothesis given in (2.12)-(2.14). Furttee, the expansion (2.51) involves

by
SHV] = [ WA[alSON =) - GulH. Ve @) (2.52)
an
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with

WnIHIE) — WnIHI#)
WNIVIE)  WNIVIm)

Gn[H.V]En) = (2.53)
Note that, in (2.52), the indicates the variable of the function on which the operatéy acts. Given sfiiciently
regular functionsH, V, we obtain in Section 9 and more precisely in Propositiord 9t largeN asymptotic
behaviour of34[H, V]. We then have all the elements to calculate the |aMgesymptotic behaviour of the partition
function Zy[V]. For this purpose, we observe that, whge 1, the partition function associated to a quadratic
potential can be explicitly evaluated as shown in PropmsiD.2. One can also showf( Lemma D.1) that there
exists a unique, up to a constant, quadratic poteMig| such that its associated equilibrium measure has the
same supporigy, by] as the one associated Wlth V Thep= (1-t)Ve.n +tV is a one parametérsmooth family

of strictly convex potentials, an@ﬁzq v, = (1- t),ue aven T ty(N) Furthermore, if follows from the details of the
analysis that led to (2.51) that the remainder 0(1) will betonm int € [0;1]. As a conseguence, by combining
all of the above results and integrating equation (2.50) gwee get that, in the asymptotic regime,

Zy[V] « .
(o) = N f [ OM(E) iy (©) + N 2o+ (S Venl(Dw) — 1V Venl(aw)

+ No- (SVIV: Venl(bn) + S0V, Vanl(an)) + o(1). (2.54)

The constant, andXy were defined respectively in (2.23) and (2.24), wiijés as given by (2.22).

Note also that the first integral can be readily evaluate@dgiration of rational functions in t) on the asymptotic
level by means of Proposition 7.6. It produces an expansitminverse powers dll and, as such, does not
contribute to the constant term unless of the form 2n for some integen. Note that it is this integral that gives
rise to the functional6p[V] in (2.16). Finally, the answer for the lardé-asymptotic behaviour of the partition
function Zn[Ve:n] =1 can be found in Proposition D.2.

Forp # 1, (2.51) is modified by the addition of two more terﬁsﬁﬁ) and3qg. Their largeN behaviour can
be determined without fliculty — but with some algebra — along the lines of Section AR &9. Then, to arrive
to a final answer foZy[V]s.1 similar to (2.54), we would need to compute exactly the partifunction for the
Gaussian potentialn[Ve;n]g21. We do not know at present how to perform such a calculatidrusTwe would
be able to derive the asymptotic behaviour of the partitiorcfion at8 # 1 up to a universali,e. not depending
on the potentiaV, function of3. However, since the valugs# 1 do not seem to appear in quantum integrable
systems, we shall limit ourselves in this article to the tesuProposition 3.20 for the cage+ 1.

3 Asymptotic expansion ofin Zy[V] - the Schwinger-Dyson equation approach

In the present section we develop all the necessary toolst@ the largeN asymptotic expansion for E[V]

up to o(1) terms, in the form described in (2.51). The asytipExpansion we obtain contairié-dependent
functionals of the equilibrium measure whose lalj@symptotic analysis will be carried out in Sections 7-9. We
shall first obtain soma priori bounds on the fluctuations of linear statistics around threans computeds

the N-dependent equilibrium measqné?. In other words, we consider observables given by integmeagainst
products of the centred measure:

Definition 3.1 We define the centred empirical measure as:

LY = 1O, 0 3.1)
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Then we shall build on a bootstrap approach to the SchwiBgeon equations so as to improve thespriori
bounds. We shall use these improved bounds so as to iddmtifgading and sub-leading terms in the Schwinger-
Dyson equations what, eventually, leads to an analogug, atl, of the representation (2.51) which will be
given in Proposition 3.19. Finally, upon integrating thiatien (2.50) so as to to interpolate the partition function
between a Gaussian and a general potential, we will gédtiependent larg& asymptotic expansion of Iay[V]
in Proposition 3.20.

For simplification, we use the notation:

B

SNE) = 5 | sinh(rwiN"¢) sinh(rwaN"8)] (3.2)

for the two-body interaction kernel, and we introduce tffeaive potential associated to tNedependent equi-
librium measure:

Vier(@ = V(&) - 2 f s -l - (3.3)

By the characterisation of the equilibrium measure (Th@o24), V.. = 0 in the supportdy ; bn], while
Ve > 0 outside §y ; by].

3.1 A priori estimates for the fluctuations around 0y
The model provides a natural way of comparing two probahitieasures:

Definition 3.2 If u,v € M1(R), we set:
Du,v] = - f SN —m) d(u - v)(E) dlu—v)[@) , (3.4)

with sy as given in(3.2). D?[u, v] is a well-defined number iR U {+co}.
The notation is justified by the proper®? > 0 following from:

Lemma 3.3 We have the representation:

2
21, ] = B ¢ } RN
] = | (g 2 oo i | el 57 (35)
where¥ [u](¢) is the Fourier transform of the measyze

Proof — Direct given the formulaF [ fi](¢) = —(7/¢)( cotanhfryp/2t] — 2t/np) with
fi(X) = In|sinh¢x)| — t|x| + In 2. [ |

Definition 3.4 The classical positionsi’\kfor the measurgez%) are defined by

o
'N:fdygﬁ)(y) for ie[1;N] and N=ay , N=hy. (3.6)
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Our first task is to derive a lower bound for the partition fumie (2.11), by restricting to configurations of
points close to their classical positions:

Lemma 3.5 Zy[V] > exp{ N2+08|\|[/1(N)] + O(N1+Q)}.

We stress on this occasion that using Melependent rate functiafiy allows the gain of a factor/N in the re-
mainder with respect to the leading term, while usiligwould lead to a weaker estimateN¥) for the remainder.
This is of particular importance to simplify the analysisSshwinger-Dyson equations that will follow.

Proof — It follows from the local expressions obtained in Sectlorhéttu(N) is continuous with respect to
Lebesgue measure with density bounded by a conMantiependent oN, as shown in (2.41). This ensures that
1
N N : .
=)z . Pel0; N-1]. (3.7)

We obtain our lower bound by keeping only configurations in

Q = {1eRN : suplty—xN ).
a

%l < 2uN
Let o be someN-independent-neighbourhood ofdy ; by]. SinceV e C1(R), it follows that

VL= (o) . IV llLe (o)
_ Ny| < ”—‘Tf _ Ny _ 17 TLge)
|V(/la) V(xa)| < TIMN viz. V(x3) AIMN

forae [1; N]and for anyd € Q. Thus, upon a re-centring &' of the integration in respect &, we get

N N 2
+a 7 . ﬂ
Zn[V] = ]—[ {e‘Nl V(Kg‘)} e S IV ot X f dNy - 1_[ { 1_[ sinh[rwpN®(va — vy + XN — X't;')]}

< -V(4a) (3.8)

= [-1/(4MN), 1/(4|\/| N)]N a<b " p=1
: N
_N1ta N Nl . X N
> ]—[ {e N V(Xa)} g an IVl o ]—[€2N snOg ) X f dNyl_[ |§|< 1 (Va)} (3.9)
" a<b V1<--<VN a=1

We remind thaty has been defined in (3.2). The second line is obtained by kg®epily the configurations where
i - vj is increasing, and then using that sinh is an increasingtifumcFinally:

N

o o N e 1/ 1\
ZaV] = n{e—m V(Q)},e—“‘l—an ||Loo(gf>,1—[ezN () | NI(M) ' (3.10)
a=1 a<b

We rewrite the first product involving the potential by comipan between the Riemann sum and the integral:

1 Nl
NV = [VOUE «on Ionl = FIEE - bn -2, (311)
a= R

It thus remains to bound from below tfeexponent part. Using thak, is increasing oriR*, we get:

XNl
N-=1 a+l “b+1
[ v 0au008lle) = Y. [ [ Byt y)snty— 0 duee) e
X<y ab=0 N

N-1 N-1

N-—
< NiZ 2, 0= + sl - ) 5. (312)
b=a+ a=0



The first sum can be recast as

N-1 N N-1 N
D, 2L SO =x) = ) D s ) + ZsN(xb X) - ZsN(xa+1 . (3.13)
a=0 b=a+2 a=1b=a+1

It follows from (3.7) and fromx} — x| < [by — an| < C for someC > 0 independent o, that:

N _ - a N _ yNy —
0<r;1_z?1\|x1|s|\,(xa+1 )l = NO(InN + N%) and 1;23\)](|3N(xa X))l = O(1). (3.14)

Hence, it follows that

N2 [ suly- 9l o) < o) + S st~ (3.15)
X<y a<b
thus leading to the claim. [

We now estimate the fluctuations of linear statistics bygisin idea introduced in [70].
Definition 3.6 Given a configuration of point$; < - - - < Ay, we build a sequencé, < - -- < Ay defined as
Ti=A and ks = A + max(dees — Ay, e N7 (3.16)

Further, for anyd € RN, we associate avectdre RN by ordering thet's with a permutatior-, apply the previous
construction to obtain a N-upl@, and put them in original order with the permutatiort’. The corresponding

empirical measure is:
N
@_1
N =N 2%
a=1
and we denote ﬂ?u the convolution of Lf) with the uniform probability measure da; e-("N?/N].

The new configuration has been constructed such thaf,#adk,
|:ik —7g| > g N)? , |/lk - /lg| < |ij —:l'g| and |/lk —:l'k| <(k-1)- g (n N)? . (3.17)

The advantage of working Wlth“) is that it is Lebesgue continuous; as such it can appear iarthenent oEy

or ©2 and yield finite results. The scale of regularisateof” N? = N-INN js somewnhat arbitrary, but in any case
negligible compared tdl=.

Proposition 3.7 Assume that

e the patrtition function &[V] satisfies a lower-bound of the form

ZN[V] 2 exp{ - N#E[uly] + on}.  on = O(NZ*); (3.18)

e the potential is sub-exponential, viz. there exésts0 and G, > 0 such that

VXeR, sup [V/(x+1)| < CV(|V(X)| + 1) . (3.19)
te[0 ;€]
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Then, given an® < n < 1, we have for all € RN that
() < exp{ - N DL, ] - o - NP =) [Vear@aBye) + Ot} (.20
R

The ¢fective potential M. has been defined i8.3) while D2y, v] is as given in3.2).

Proof — The partition function takes the form:

Zn[V] = f d“1 exp{—NM( f V(x)dL‘N”(x)—zdiag[L‘d’l)}, Saiaglt] = f (X = Y) du(X)duy) -
RN

X#Y

wheresy defined in (3.2). We are going to estimate the cost of repgplciﬁ by LE\,A.)U in the above integration. We
start with the term involving the potential. Since we assdiviesub-exponential, we have:

‘ f V) dLO(x) - f V() dLO (%)

N
< %;1 S;N)lz) .sup{lv’(ﬁa+ t) :te [O (e(am N)lz)]}

NCV

onN? f |V(X)|dL“)(x) + 1) (3.21)

Further, sincé/(xX) — +o0 when|x| — oo, there existﬁ:éﬁ > 0 such that
VX €ER, Cli(1+ Vner(¥) = Cu(IV(XI+1) . (3.22)
As a consequence,

2+ W N3+aC/
exps —N V(X dL’(X) ¢ < exp

i [awafe]-n [veade). 629

Now, let us consider the term involving the sinh interacti8mcesy is increasing o™ and the spacings between
A,'s are larger than those between thés, it follows thatZdiag[L(l\f)] < Ediag[LE\f)]. Furthermore, we have:

Sl L] — Zaing L) = f AP () L) f dPufsn(x-y) - su(x-y+ N "V (U - w)))
X#y [0:1]2

1
- N f d2u sy[NLe N (4 — w)] . (3.24)
[0;1)?

WhenN is large enough, we can use the Lipschitz behavioigyasn [e=" N)Z/Z, +oo[ for the first term. Indeed:

2
5,001 = ﬁ”—;p cotanhfwpN?|x] < ¢/ N~ N’ (3.25)
p=1
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for somec’ > 0. Besides, we exploit tha, is increasing to bound the second term. This leads to:
[Saiag L] - ZaiaglLGL]| < C(N7*Y) + C'N"@) (inN)?. (3.26)

Since the measur‘e( 4 Is continuous with respect to Lebesgue, it is not any moreseary to take care of the
diagonal smgularlty |rsN and we obtain:

exp{ - N2+“( f V(x)dL (x) —zdiag[l_(,@])} < exp{ - N2+“8N[Lg;)u] + O(N(In N)2)} (3.27)
R
X exp{e (NN)? N3+e 7 f Ve ()AL (x)}.

Slncey('\') is also continuous with respect to Lebesg&@[,u%)] is finite and we can expand the first term
arounduly:

EnlLD,] = Enluld] + 22D, W) + f a1 ?, ueq))(x){V(x) 2 f AV ) s (x - y)}

We recognize in the last integrafy.ef(X) + C(N) integrated against a measure of mass 0. So, we can omit the
constaniCeq, and sinceV/y.ex = 0 on the support qi(N) we actually find:

ENLD ] = EnlulD ] + DL, WD + f Vier (09 AL, (%)
R

If we plug this relation in (3.28), we obtain a similar bouna bow withVy.e¢ having the prefactor
N2 — e (MNP’ N3+eCr < (1 - )N2*, this for any 0< i < 1, provided tha is large enough. n

In order to bound the one and multi-point expectation vahresin particular the various terms arising in the
Schwinger-Dyson equations, we introduce the exponerg@llarisation of a function:

Definition 3.8 Given a function f in n variables, its exponential regulatisn with growthx is defined by

Klflr,....&0) = ([ |eV@) - f(e,.... &) (3.28)

a=1

n
We also denotM(l\T_)K the (un-normalised) measure @\ whose density readsyfl) [] €V (notice that the
; a=1
exponential factor onlyf#ects n variables out of N).

We will use repeatedly the transformation:
MO (K] = (F) . (3.29)

In this respect, prior to establishing the simplagiriori bounds on the multi-point expectation values, we need
an easy bound on the total massM)fﬂ)K

30



Lemma 3.9 For any x > 0 and positive integer githere exists ¢, Cp, > 0 such that, for any n< np and any
measurable se® c RN that is invariant under permutations of coordinates, itdwl

PR < (Cn)"-Bal] + Oe™M™) - expl - N** nf DL 1)) (3:30)

Proof — We first claim that the constamg(\'q) arising in the minimisation problem for the equilibrium rseee
(2.35) is bounded iN. Indeed, it follows from (2.35) that

bn 2
cly - f V@l - L [ in{[ [ sinhlrwpNee - ]} 4l @dlden) (3.31)
an fawbnz Pt
Therefore, we have:
1 2
CEF| < IVIIsqaniony + CIV I ay i) f x| In [ ] sinnlreopN (e - 1| dedi (3.32)
[an ;bn]? p=1

where we have used thﬁﬁ,ﬂ) is a probability measure and that its density is bounded b41§2 The double
integral remaining in (3.32) can be bounded byNwndependent constant. Such bounds are obtained by using
that the function

2
@) = 5| In{[ [ sinhirwaN @1 - rw1 + wi (333)
a=1

approaches 0 pointwise e [ay — by ;by — an] \ {0} and is bounded agn(é)| < C(1 + |Iné€]). Since the
endpointsay andby are bounded iN in virtue of (2.38), we can apply the dominated convergeheerem to

(&) — gn(€ —n) on [an ; bu]?.
The confinement hypothesis (2.12) on the potential implieskistence of > 0 independent ol such that:

Y& e R\ [, 1], VN;eff(f) > @ > Ezl (3.34)

where the #ective potential is defined by (3.3).
The left hand side of (3.30) can be decomposed, by invokiagymmetry of the integrand, into pieces where
the variables are either outside or inside the segment]|

n
dla pu(d) Lo(4) [ [ V0.
a=1

[arfeosss- 50 [ Tl [ flof ]
RN B

p=0 (-t )P a=1 [t{n-p a=1+p RN-n a=1+n

Sincepn(A) is the density of a probability measure B, the termp = 0 corresponding to all variables ir{] t]
is bounded as:

f ﬁd’la f ﬁ d1a pn(4) 1a(2) ﬁekvua)
a=1

[—tgn a=1 RN-n a=1+n

< @Vl ropy[Q] . (3.35)
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For the other termp > 1, we rather take advantage of:

N
N @) < [ e INH Ve (da) exp{ NZ+e |nf DZ[L“)U, gﬂ)]} (3.36)
a=1

which follows from (3.20) withy = 1/2 given in Proposition 3.7. Indeed, we have:

n

’ f ﬁd/la f l_[ dda f n dia pn(Q) 1Q(A)nd<V(/la)

([~t:H]e)P a=1 [—t:"P a=1+p RN-n a=1+n

N-p

=PIVl ) — N2 inf o D2[ LD, 8] { e—%N1+"vN;eﬁ(§)+KV(§)d§}p ‘ { f e—%NWVN;eﬁ(f)dé:}

[-t:]° R
(3.37)

Further, in virtue of (3.34) we have, fdf large enough,

[-tst]e [-t;t]e [-te

The integral oveR in (3.37) is bounded uniformly by a constaff sinceVy.er > 0 andVy.ex grows at least

linearly at infinity. All-in-all, for anyp > 1, (3.37) is bounded bpNe*N"" = o(e=*N"""). Summing up over

p €[0; n], we see that the upper bound fpr= 0 obtained in (3.35) dominates the sum, whence the result.
]

Corollary 3.10 Letx > 0. There exist constants,C- 0 depending on n and such that the below bounds hold
for any f satisfyingi([f] € W)°(R")
a— 1/2 1/2
(.. ..,fn)>®2£<NA)| < Ca{NTIKL flwg ey + N2 IR oy - I IS e} - (3:39)

Proof — Using the trick (3.29) and decomposiuﬁﬁ) = L(A) + (Lﬁ - L(‘) L), We can write:

Do = D) D, M(N[ P 3 [T fn>1_[d£“> &) [ ] d(L(N?L—L‘@)(aa)] + (Dgn s -

=1 i1<<iy a=1
=1 #1,...,6
(3.40)
Sincey’s are not far fromiy’s according to (3.17), we can bound for ahy n— 1,
n P
\M(N”?Kﬂ,[wﬂﬂ[f](gl,.. &)]‘[ou:“’ @) [ ] dei - L@)(fia)]\
.
N(N-1) e (N
< @O K oy s S (3.41)
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The first factor comes from the geometric bound (3.9) on thgtjma function of the measur&gly.,.,, while in
the second factor, we used the sub-exponential hypotH&4id)(to get rid of the operatd,. .

As a consequence, the first sum in (3.40) will only give risgHg| f]llwgrn) - O(N™) corrections. This being
settled, Proposition 3.7 ensures the existendd of 0 and a constar® > 0 such that, foN large enough:

En[Qun] = O(eCMN™) with  Qun = {1eRN : DZ[L(/{)U,/J((_:.?] > M/N}. (3.42)

This ensures that

< C' CR IRl iy €M 4 (- dag, Yoo )

|<f>®; 0 (3.43)

Finally, using Cauchy-Schwarz inequality to make the disted appear:

(F 2ot 0 g0 0| = \M(N)K+K |05, f T[m[f]](sol,...,son)l_[ﬂfi IGea)- (z::;n]
g {f |T’[7(K+K,[f]](g01,...,50n)| . ((;::;n}i .C". ME\T)KH([:LQ%/' D [L(/l)u’ (eﬁ)]] (344)
J {ZN% pzlcotanh[za)pl\la]}

The last factor, because it is evaluated on the complemegitypg, is at most O~"2). The Fourier transform
part of the bound can be estimated with the bound:

]

i=1

-1

2 n n
B 1/2
cotan < C N%gpi|) < (CN® n(1+ ) 3.45
Ny pZ’i Pl 1_1[< o) < N {1+ 2] (3.45)

Hence, there exists a const&jt > 0 such that:
|<f>®;£g)| < Cj N(a_l)n/2(||7<K+K'[f]”Hn/z(Rn) + ||7(K[f]”W8°(Rn))- (3.46)

where theéWg’ norm is nothing but th&* norm. In order to bountfK..« [ f]llk, & by theW norms (c.f. their
definition (1.17)), we observe that:

”(]<K+K’[ f]HZHn/Z(Rn) < ”(]<K+K’[ f]”Hn(R") : ”(]<K+K’[ f]”LZ(R”) . (347)
TheL?(R") norm is bounded directly as:
K ere [Flll2@ny < K [LllLzgny - 1FL FTIwe oy - (3.48)

Finally, in order to bound| %[ f]llH,&n), we remark that (3 it < 4"(1 +t?)", so that:

n 12 2n n
(1+{Z¢§} ) < CZ P(¢3, . .., 92) (3.49)
a=1 k=0
for some symmetric homogeneous polynomial of degree
Puel, o0 = DL P @@l with  py = 0. (3.50)
ki +-+-+kn=k
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This ensures that

n n
2
||7(K+K’[f]||2Hn(Rn) < C Z Z p{ka} f| l—[ alf(z : (]<K+K’[f](€:l’ sy fn) : dnf
k=0 ki +---+kn=k a=1
< C 11K 2 oy - 1Ly - (3.51)

To get the last line, we have repeatedly used the sub-expahbypothesis (2.14). As a consequence, for some
constantC’

1 1
”(]<K+K'[f]”Hn/2(Rn) < C, : ||7(K[f]||\7Vﬁ°(Rn) : ”(]<K[f]”\7\/8°(Rn) . (352)

Inserting the above bound in (3.46), we obtain

1 1
[(Dgp ml = CoNEDZ IR NG oy I T ey (3.53)
what leads to the desired form of the bound on the ave(rag%n £ ]
1N

3.2 The Schwinger-Dyson equations

In the present section, we derive the system of Schwingasebyquations in our model. The operator

UNIGIE) = () - (V'(€) — SnIS1E)} + Snl¢ - po1(E) , (3.54)

with Sy defined in (2.42) will arise in their expression, and play @@l role in the largeN analysis. 2y (and
Sn) are invertible and all the informations on the inversescdntained later in Proposition 8.2 (the inverseSaf
is denotedWy, see § 5.4).

Since we will be dealing with operators initially defined amé€tions in one variable but acting on one of the
variables of a function in many variables, it is useful toddiuce the

Definition 3.11 Given an operatoO : Wy'(R) — W;"(R") acting on functions of one variable agde W7’ (R"),
Ox[#] refers to the function

Ok[¢](€1’ L fn+t’—1) = Ok[¢(§la LN} é‘:k—la *7 §k+f’ L] §n+f—l)](§k’ LN §k+f—1) ) (355)
in which* denotes the variable @f on which the operato®y acts.

For instance, according to the above definition, we My [¢](é1, - .., &n) = UN[P(x, &2, . .., En)](ED).

Definition 3.12 If ¢ is a function in n> 1 variables, we denoté, the djferentiation with respect to thep
variable. We also define an operataf® : W (R") — W°(R™) by:

E(p)[‘lj](fl’ (RN gn) = ¢(€:1’ ) é:p—lv gl’ é:p’ e gn_l) ’

Proposition 3.13 Let ¢, be a function in n real variables such thi#g[¢n] € W°(R"), cf. (3.28) for somex > 0
that can depend on n. Then, all expectation values appedrithgw are well-defined. Furthermore, the ledel
Schwinger-Dyson equation takes the form:

1

(b0 + §<DN o Uygal)

1-8

+ —_—
LPeLY N1+e

1-8

N 1+a

(@rUNToD), 0 + (O1UN'[91]) 0 = 0. (3.56)
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There, Dy corresponds to the non-commutative derivative

2
DAAE) = { Y propcotantinop (e -l - 00 - 6. (357)
p=1
In their turn, the Schwinger-Dyson equation at level n takesform:
1 < 1
_ = -1 1 o qf-1
<¢n>® w = N2+a;(H(p)o(uN;l[apd’n])gLﬁ) + 2<DN;1 (L(N;l[¢n]>§£%)
(1-5) 1S (z0gqyt (1-5)
+ N1+ < [¢n]> (N) Lf\f) + N2+ ;(“ : O(LIN;l[ap¢n]>#$)'§£$\P + N1+ < 1Uy; 1[¢n]>® W -
(3.58)

Proof — Schwinger-Dyson equations express the invariance of agrat under change of variables, or equiv-
alently, integration by parts. Although the principle ofridation is well-known, we include the proof to be
self-contained, following the route of infinitesimal chanof variables. Lep®,a = 1,...,n+ 1 be a collection
of smooth and compactly supported functions. We introducedeformation of the probability densityy given

in (2.47) by setting:

N N
ple () = z ! [ sinh[rwiN“(la - Ab)] sinh[rwzN" (e — )]} [ [N Vit | (3.50)
a<b a=1
where:
n+1
Vi) = V) + 2096 - [ 696 didn). (3.60)
a=2

The new normalisation constan({e;}) in (3.59) is such thap(l\{fa}) is a still a probability density oRN.
We then defineGy(u) = u + t¢®(u). Sinced4M(¢) is bounded from below, fot small enoughG: is a

diffeomorphism ofR. Let us carry out the change of variablés = Gi(us) and translate the fact th@f\{fa}) is a
probability measure. This yields

N N
1= f PP W] [dta = f (™ (Gi(A), . Gan)) | | Gila) da (3.61)
RN a=1 RN a=1

As a consequence, the change of variables yields, to thefdst int:

N N
- | dNﬂ{l ) 8aa¢(1>ua)}{1 = INPY” (Vi) (la) ¢<”(ﬂa)}
RN a=1 a=1

N 2
{1 + N [ 3 Brep cotanhkwpN® (1a - )] |[ ¢ (4a) - ¢(1)(/1b)]} el + o). (3.62)

a<b p=1
Identifying the terms linear ihleads to:

({Ea) (l ﬂ) €
—<¢(1)51[V({6a})]>L(NA) <DN[¢’(1)]>L(A)®L(A) e . (0 ¢(l)>|(_{u) = 0. (3.63)
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The superscript{€,}) is there to emphasise that the averages should be takesp@cteto the probability measure
associated with the-deformed density (3.59). We then centralise the empimgahsures in respect ui.'ﬁ")
By using the integral equation satisfied by the density ofdbeilibrium measure/’(¢) = SN[p(N)](g) for
£ € [an ; bn], we obtain:

({fa}) €a
—<(L(N[¢(l)]> @ - 6a(<¢(l)al¢(p)>ﬂ(e’g) + <¢(l)al¢(p)>(£{u)}))

1
<Z)N[¢(1]>Lu);£u) + (Nl+f)(<(91¢(l)> N + <(91¢(1)>( (4)) = 0. (3.64)

Sendingey’s to zero in this equation leads to the desired form of thenoher-Dyson equation at level 1. In order
to get the Schwinger-Dyson equation at lemelve should compute theg derivatives of (3.64) evaluatedat= 0.
However, first, it is convenient to multiply the above eqoatby Zn({€a})/Zn[ V] SO as to avoid dierentiating the
{ea}-dependent partition function entering in the definitiortlod densitypﬁfa})(/l). Doing so, however, produces
additional averages in front of the averages solely invig\the non-stochastic measufgs:

n . 1 n+1 n+1 .
—(Un[s™)(&) g¢( >(§a)>g§iﬁ) - ;W(gl) 916 (£1) ]‘[¢( &P)) &
#p
M T 4@ L A-Byy T 4@

+ —(DN[¢ |G fz)]_lqs (§a+1))n+z o e (0197ED) - ]_[¢ (fa_l) o

1K " TT @0 L A-Byy @ T 4@
+ WZZ<¢ (£1)019 (§1)>u(e'§)<l_£¢ (&5 )>n1 o " N <51¢> (§1)1_£¢ (é:a)>?§_£(l) =0

pP= a= a= N
#p

(3.65)

To any¢ € R™1, we associated the vectsf? € R" by ¢ = (&1,...,&p 1,1, &p, . . ., €n-1), WhoSe components
arise in products of the typg™1 ¢@ (). The representation
#p
bn

2
UNBI(E) = SEV'(©) + f {Zﬁmpcotanr{mpN“@—n)]}«zs(n)—¢<§)>péﬂ><n) dy (3.66)
av Pl

readily shows that the operatctéy andDy are both continuous as operatdg’(K) — W (K) for any compact
K ¢ R. This continuity along with the finiteness of the measBggis then enough to conclude, by density
of CY(R) ® --- ® CZ(R) in C(R"), that equation (3.58) holds for all functiogg € C(R"). Eventually, the
assumption of compact support can be dropped. Indeed, givep, € C°(R"), the Schwinger-Dyson equation
at level 1 can be recast as

1 e (= -
ME\T;)K'[ f«m [Unal¢n]] ®54 d‘E('\f)] - NZwe Z Mf\rl];x’l)[ f:(p) [7('(, [Fpnl de\/‘l) ® (@5 dL(I\f))]

p=2

+a

M(n+l)[ [ KelDuatn ”+1d1:“>] =By [ [ [alqsn]dL”)@(@azd!:“))] (3.67)
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with the measureM(”) introduced in Definition 3.8. It is readily seen due to the-sMponentiality hypothesis
(2.14) that given & « < ' andgy, such thatK,[¢n] € W°(R"), we have:

1K [ Unalgn]llwg ey < ClIKénl] llwg zn) (3.68)

and likewise forDy;1. Thus, sinceki[¢n] € W°(R") can be approached W;°(R") norm by functionsk[¢]

with yn € CZ(R"), it remains to invoke the finiteness of the measM‘;{E’K, S0 as to get (3.58) in full generalitm

It follows from the form taken by the Schwinger-Dyson eqoas that, if we want to solve these equations
perturbatively we should, in the very first place, constthetinverse to the operat@y. This should be done is
such a way that one can control explicitly or at least in a gaahle way, its dependence Nnand its possible
singularities. Indeed, the building bIocksﬂK,1 exhibit, for instance, square root like singularities a&té¢mdpoints
of the support4y ; by] of the equilibrium measure. In § 8.1, we shall constructgular representation fdﬂ,(ll.
By regularity, we mean that the various square root singidarpresent in its building blocks eventually cancel
out, hence showing thziml[H] is smooth as long ad is. Then, in § 8.2, we shall provide explichi-dependent,
bounds on th&V*(R) norms of(L{,Ql[H]. These will play a crucial role in the largg-analysis of the Schwinger-
Dyson equations.

3.3 Asymptotic analysis of the Schwinger-Dyson equations

The asymptotic analysis of the Schwinger-Dyson equatidld$heavily on a family ofN-weighted norms that
we introduce below.

Definition 3.14 For any¢ € W°(RP), the N-weighted © norm of order¢ is defined by

t’ 00

k=0

This notation does not specify the number of variables sifice this is usually clear from the context.
The weighted norm satisfies the obvious bound:

NP < - il - (3.70)
and, respectively, the operators offdrentiation and "repetition of a variablet?) are bounded as :

NT9pg] < N N 4] NMOEP9] < N{lg] - (3.71)

Also, it is important to introduce a specific function thdbeis one to control the dependence on the potential in
the various bounds that issue from the Schwinger-Dysontiemsa

Definition 3.15 The orderf estimate of the potential V is defined as
{
max{ [T GV Tz ery 3 k=2 +1

V] = =l &= — (3.72)
{ min(L, infra V@), V(B + 9 = V'O IV/(@- €) - V/(@)}

wheree > 0 is small enough and fixed once for all, whike> 0. We also remind thai, is the exponential
regularisation of Definition 3.8.
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Sincex only plays a minor role due to the sub-exponentiality hypetb (2.14) in the estimates provided by
n[V], we chose to keep its dependence implicit. Note also tleattmstants,[V] satisfy

ne[V] - ng[V] < neppia[V] . (3.73)
Lemma 3.16 Let« > 0. There exist constants,G Cp,; > 0 such that, for any satisfying

K/€[¢] € 25+1(Rn)
o £ ¢(&, 60, ..., En) € Xs([an ; bn]), 0 < s< 1/2, that is to say®

; x11(w) f P&, &o, ... &) N EDNGe — 0 almost everywhere i, ..., &) € R™ (3.74)

R+tie

we have the bounds:

NQFAUKIA| < Cog - el VTN - (NP N[5 4] (3.75)
N Dnaldll] < Co- (NN ML) (3.76)

Note that the above lemma implies, in particular, a bounchemteighted norm aDy;.1 o (Lll(l_ll:

N[ Kl Ona 0 Ulel]] < Chp - meealV] - N - (INNYPS - NI 9] (3.77)

Proof — We first focus on the norm oK [Dn:1[4#]]. In order to obtain (3.76), we bound

n+1 n+l
Okn+1(§n+1) = 1_[ 3;: WK[DN;l[d’]](fl’ O a§n+1) With Z ka < 4 ka eN (3.78)
a=1 a=1

by different means in the two cases of intergit, N?|¢1 — &| > (In N)? andN?|é; — &| < (In N)2.
We first treat the casi®|¢1 — &] > (In N)2. Observe that fofN?£| > (In N)?, we have:

VE20,  |0HS(N"4))| < 6r0CH + (1-r0)cy N NN < ¢/(InN)? (3.79)

for some constants,, whereS is defined in (2.42) and, o being the Kronecker symbol. Therefore:

2
Ok <= D) ]_[( )|6p18p2¢ka(1,§3,...,§n+1)—¢{ka}(§z,§3,...,§n+1)]|-cwz-(InN)2
Pat+la=Ka a=1
a=12
max(ky ko)
< C.Nmaxtukle . n N)2 N~ max |43
(nN) ; max [931q01.&3,n,a)

< C-Ne.(nN)2- NO[5G[¢]] (3.80)

101t is straightforward to check by carrying out contour defiations that, for functiong decaying sfficiently fast at infinity in respect
to its first variable, the condition (3.74) is equivalent tddnging toXs(R).
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where, in the intermediate calculations, we have used:

n+1

W&o ... = [ [oe{Kdolén ... &)} - (3.81)
a=3

We now turn to the case whef'|é1 — &3] < (In N)?. Observe that for ang € N and|N%¢| < (In N)?, the function
S, with S(X) = xS(X), satisfies

28

¥e20,  |9L{S(NE)Y < 6roN*¢[S(N%¢) - NE

1+28] + (1-600) NSliwrzy < cN*(INN)? (3.82)

for some constantsy. Starting from the integral representation

Okys (Xne1) = f Sf,aga;g{am{ka}(fl+t<§z—§1>,§3,...,§n+1>-§<N“<§1—§Z)>}, (3.83)
0
we obtain:
()(3e) Sz -
O < >, T f (1= )PP (O] P g (¢ + U2 — £0). €5, nvn) - (INN)P -
"
ki +ko+1
<

CN&Hd(nN)2 " N7 max |(@5¢w))(. €3, - > €nva)]
= nelér ié2]

IA

CN@(InNy? - NED[9¢ [g]] - (3.84)

Putting together (3.80) and (3.84) and taking the suprennen{&,} such thaty,, ky < ¢, we deduce the desired
bound (3.76) for the weighted norm &iy.

The bounds for the weighted norm M[‘L{N;ll[qs]] are obtained quite straightforwardly by using ¥W"(R)
bounds orK,[y], given thatK,[¢] € W, , (R), as derived in Proposition 8.2. [

With the bounds on the action of the operattﬂ}l§.11 andDy:1, we can improve tha priori bounds on the
centred expectation values of the correlators through gstrap procedure.

Proposition 3.17 Leta < 1/4 and pickk > 0. There exist an increasing sequence of intedesg,, positive
constants(Cp)n, such that, for any r= 1 and ¢ € Xg([an ; bn]) in the sense of3.74) and satisfyingK,[¢] €
Wi (RM), cf. (3.28), we have:

< Cn i [V] - NP [K gl @2 (3.85)

(8 0
The whole dependence of the upper bound on the potentialdniaioed in the constant; [V], and we can take:

_ /(@) _ n (@ _ »q
My = £, q”‘1+l1—4aJ’ 69 = 29+ q) +3(F - 1). (3.86)
Proof — The proof utilises a bootstrap-based improvement otpeori bounds given in Corollary 3.10. Namely,
assume the existence of sequenggs— 0, xy € [0; 1], and constant€, > 0 independent o, and integerg,
increasing witm, such that, for any such thatX,[¢] € W;:(R”):

[ g | < Come VT NEPITGIGNN - (- on + NTD). (3.87)
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We will establish that there exists a new consta@jis> 0 and integers;, = 2(n.1 + 3 such that, forK,[¢] €
W2 (R"):
4

(A ’ a—
[ o] < Co VI MEPIIGION - (- + NTeD) (3.88)
where
#hy = 2y (INNYT2 max(Nopy s N2 25 Ne L) (3.89)

Before justifying (3.89), let us examine its consequendé® bootstrap approach can be settled if

%y = N2y (3.90)
Assuming momentarily thaty = N7, when O< a < 1, the range ofr andy ensuring (3.90) is:

a<y<l-a what implies @ < 1/2.. (3.91)

The ratey, at whichzx/xn goes to zero increases whemuns frome to 1/2, is maximal and equal to/2 - «
wheny = 1/2, and then decreases whemcreases between2and 1- a.
Thea priori estimate proved in Corollary 3.10 gives:

1 1
|<¢>®; o] < C,G-II‘KK[¢]II\§VSO(Rn)-II‘KK[qb]II&VSQ(RH)-N(a—l)”/2 < Ch- N[5 [l N2 (3.92)

Therefore, the assumption (3.88) is satisfied wjjh= N~ for y = 1/2 - «, and the ordet,, = n for the weighted
norm. The bootstrap condition (3.91) then implies: 1/4, and in this case, we find:

(1-4a)

wy <un(NN)AN—"2 | (3.93)

Now, we can iterate the bootstrap until the first term in (3188comes less or equal than the second term
N(@-Dn_ This is obtained in a number of stepsdetermined by the equatidd—(1/Z-0nN-(1-4a)dn/2  N(e=D)n
therefore:

=1+ | (3.94)

1-4a

The order of the weighted norm appearing in the bound ofrtlp@int correlations at step of the recursion

satisfie® = 2¢4D + 3, with initial conditionc® = n. The solution is

n+1
9= 29N+ g +3(F-1). (3.95)
Therefore, we get at the end of the recursion:

< Co- N NI ma= G (3.96)

[(Dgpco

We shall now justify the claim (3.89). Starting from (3.8We bound(¢>)®nLu) given by the Schwinger-
1N
Dyson equations of Proposition 3.13, using the norms of gegaiorsi{y.1 andDy obtained in Lemma 3.16. We
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stress that it is indeed licit to apply the bound (3.75)‘&qq|‘1 for, if ¢ satisfies the condition (3.74), then so do the
functionsdpg with p = 2,..., n. Respecting the order of appearance of terms in (3.58), wé ge

(In N)Zr NG D] (it - + NODED)

|<¢>®; ] < < Cnl 1[V] Nz

- Cnfml[V]nwl[V]N“(In N)reatS . N IIG[9]] - (- e + NOHDD)

+ Crg, ,[V]ng, 1+1[V] (In N)21+3 . NG ] - (it e + NODED)

Nl+a

+ C(ng, 2[\/])2 (|I’] N)Z{’n 2+2 N(2£n 2+l)[7( [4]] - ( xN 4+ N(”‘Z)(“‘l))

N2+

+ cn[n[V]n[nﬂ[v NG - (- en + NP (3.97)

for some constant > 0 depending om and« only. Note that terms integrated against the probabilityasouee
yeq) have been bounded by means of sup nhorms. The maximal powdrsud exactly as in (3.89) — since we
assumeyy — 0, the powers arising in the first line are negligible comgarethose in the fourth line. We can
then use (3.73) to bound the productsigiV]’s in terms ofn,, [V] for a choice:

O > max(26n-1 + 2,201 + 3,201 + 3,200-2 + 2,200+ 3) . (3.98)

Since {n)n is increasing, we can také = 20,1 + 3, and we indeed find (3.88) fod large enough. Note that,
the new sequencé)), is, again, increasing. Then, the maximal power dlloccurs in the second line, and is
(In N)?0+1+5 = (In N)*+2, So, we have fully justified (3.88). [

The improved estimates on the multi-point correlators &resat all that is needed for obtaining the lafge
asymptotic expansion of general one-point functions up(d 8+) corrections. Prior to deriving such results,
we still need to introduce an operatgm mapping any functioWy’(0), O a bounded open subsetli, onto a
function belonging tcts([an ; bn]) in the sense of (3.74).

Definition 3.18 Let Xy be the linear form on W([an ; bn]):

iN¢
Xll+(o)

R+ie

Xn[4] = Bt f N D) ) i (3.99)

Then, we denote @N the operator
Xn[gle) = 6(€) — Xn[g] (3.100)
and also define:
UL =UloXn, Wn=Wnodn. (3.101)
It follows readily from the identity
f x11(4) - l_iﬂ : % = y11+(0)  with Xy = N%bn-an), (3.102)

R+ie

The third and fifth line are absent in the ca&e- 1, and it gives a larger range af > 0 for whichny can be chosen so that the
bootstrap works. But, eventually, this does not lead to@ngter bound because we can only initialize the bootstraptivé concentration
bound (3.10) i.epy = N~W2-9),
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that Xn[¢] € Xs([an;bn]) in the sense of (3.74). The proof of (3.102) follows frone thse of the boundary
conditions e"N"®v=an)y 5. (1) = y11.-(1), 1 € R the fact thaty1; € O(C \ R) and thaty11(1) = O(4|"Y?) at
infinity.

Likewise, by using the bounds (7.23) obtained in CorollaByi¥is readily seen that

MO Kl XnI9] < C- NPIK 1] - (3.103)

Proposition 3.19 Given anyk > 0, and anys satisfyingK.[¢] € W;°(R), we have:

1-— ~
@) g = S (il g +

—_B)2 ~ -~ 77
N %(amﬂ(gﬁlﬂﬁz[ﬂw[Wﬁl[fl’]]] )

SNZa <E(2)[52WN;11[DN [(L(Nl[d’]]]] >u(e'§)
Ry
A-BP ), 71pq. i [, V]
+ W<617/{N1[81WN1[¢]]>#$) + W . (3104)
The remaindebn[¢, V] is bounded as:
lonle, V1| < C - [V]- NO[K 1] - N&L (In Ny (3.105)
for a constant C> 0 that does not dependent @mor on the potential V, and the integers:

¢ = max(3nz + 5,8m, + 18), ¢ = max(4ng + 9, 14mp, + 37), ¢ = max(14m, + 17,6mg + 16)

given in terms of the sequeng®,), introduced in(3.86)

Proof — The strategy is to exploit the Schwinger-Dyson equationgetdid of expectation values of functions
integrated against the random measuﬁ%\. This can be done by replacing them approximately by integra
against a deterministic measure of a transformed functiprio corrections that we can estimate.

Let ¢ be a sificiently regular function of one variable. Since the signemaure[j(l\f) has zero mass, it follows

that(¢) . = (XN[S]) ,w- We can use the Schwinger Dyson equation at level 1 (3.58héfunctionXn[4],
N N
and apply the sharp bounds of Proposition 3.17 to derive:

1-8

|<¢>£§\‘A) - W <alﬂ':|1[;€N[¢]]>/l(eﬁ) < C- n2m2+2[V] . N,(\|2m2+3)[7<l<[¢]] . N3a—2(|n N)2mz+5 ) (3106)

Above, we have stressed explicitly the composition of theratmrﬂgll with Xy. This bound ensures that

|1—ﬂ (1-p)?

W(alﬂﬁl[(ﬂ >£§\‘A) _ W(alﬂﬁl[alﬂﬁl[‘p”) < C’.n4m2+7[V] -NI(\I4IT12+9)[7<‘K[¢]].N40—3(|n N)6m2+l4 ‘

(3.107)

)
where we remind thaﬂ;,l = fL(,Ql o XN. Equation (3.107) can be used for a substitution of the teopational

to (1 - pB) in the Schwinger-Dyson equation at level 1 (3.56), and we ge

1-B,s o7 (A-B 15 F7-115 01
Oy~ NEa O, — [y (AT g

< € tmp7 V] NG IHGIG]] - N 3(InN)E™24 . (3.108)

1 —
- 5(Dne (Uﬁl[dl])@zm)
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In order to gain a better control on the term involvifiy, — which is a two-point correlator — we need to study the
Schwinger-Dyson equation at leuvel= 2 (3.58). Given a dfticiently regular functiony, in two variables, using
the sharp bounds of Proposition 3.17, we find:

<l//2>®2£%) - N;L+a<E(2)[62{{K‘;11[w2]]>/1$) - ]|;|l+€<(alﬂ 1[‘//2])> Q@L%)

< CnamgealV] - NE™ [ Klw2l] - N*~3(In N)2™*5 . (3.109)

We apply this estimate to the particular choice:

Vot &) = DNIUMAEL &) (3.110)
Thanks to the bound (3.77) on the norn1o o(l/{,:ll and the sub-multiplicativity (3.73) of the[V]'s, we deduce:

<l//2>®2£%) - Ng-+a< (2)[62(LIN =) Wz]bﬂ(erg) - ]|;|1+€<(61(MN 1[‘//2]» W8 @ £

< C- a7 [V] - NG OK[g]]- N3 (InN)O™*H18. - (3.111)

This can be used for a substitution @f,) = (Dy o ‘LI,;}) in the left-hand side of (3.108). Before performing
this substitution, we still need to control the term in (3 L¥hich is proportional to (+ B). This is a one-point
correlator for the function:

0@ = 3t [ TRk, 1) ) (3.112)

Applying the one-point estimate (3.106) to the function along with the bounds (3.75)-(3.76) for the norms of
ULt andDy;, we find:

< C - ngmparalV] - NI Kg]] - N3 (In N)M™37 - (3.113)

1
|<l//1>£%) - N1+’f <51(UN1[1//1]> (N)
This leads to:

1, — Q=87 71 4 e
‘(¢2)®2£(NA) - N2+a<:(2)oazﬂN;ll[lﬁz]>#%) - W<61WN;1182[WN;12W2]Duéﬁ)®u(e'§)

< C-ngmraalV] - AT EK [T N3 (In N M (3.114)

The result follows by substituting this inequality in (380 [

3.4 The largeN asymptotic expansion ofn Zy[V] up to o(1)

We can use the largd-analysis of the Schwinger-Dyson equations to establiskexiience of an asymptotic
expansion up to o(1) of IBA\[V]. The codficients in this asymptotic expansion are single and doulégials
whose integrand depends dh We will work out the largeN asymptotic expansion of these ¢oeents in
Sections 7-9. Prior to writing down this largé-asymptotic expansion, we need to introduce several single a
double integrals that will enter in the description of theule We also remind the notatiol/y = Wy o Xn
where Wy is the inverse oSy (cf. (2.42)), studied in Section 5.4. Givéh G suficiently regular ondy ; bn],
we define the one-dimensional integrals:

bn

3[H.G] = f HE) - WNIGIE)-ds,  SDIH.G] = f WNIG’ ](6)55{

an

WnIHI()

‘WN[G’](é‘)} € Gl
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and

— [ WnIH]
3@ ( : W [al(’W N[G '] )](g)
IGIH.G] = f’WN[G ](g)ag{ WAGTD }dg. (3.116)
an

We also define the two-dimensional integrals:

bn —_— P
e - P S T o
and
bn
1 , ’
SelH.6] = 5 [ dedn WAG(E) - Wa[G )
an

X000 [ 1
O WNIG(E) - WNIGT(n)

Wit 0 @N;Z[S(Na(*l — %)) - {

WnIHI(x1)  Wn[HI(x2) }](5 n)}
WNIGT(x1)  WNIGCT(x2)/ |77

(3.118)

Above, = refers to the variables on which the operators agtyiz. =, to the first, resp. second, running variable
on which the product of operatofid’y.1 - ‘W2 acts. The subscrigt reminds that the terms concerned are absent
in the cases = 1.

Proposition 3.20 Let Vig:n(1) = gnd? + ty4 be the unique Gaussian potential associated with an edjiifio
measure supported diay ; bn] as given in Lemma D.1 and assume that o < 1/6. Then there existé € N
such that one has the large-N asymptotic expansion

1 1
|n( ZN[V] ) N2+a/ f\ss[atvt’ Vt] dt — N(l ﬂ) ft‘( ) atvt’ Vt] Ldt - } de[atVty Vt] - dt
Zn[VeiN] J o

_(@-p2

Ne {°(2)[atvt,vt] + Jgp[0Vi V] - dt + O(N®~H (InN)?) . (3.119)

0

Proof — The result follows from (2 50). Indeed, the remarks abov&4pallow to identify the equnlbrlum
measureagz'l),vt =(1- t)'“g?veN + tluqu forallt € [0, 1]. One can then use Proposition 3.19 to expa?am) Lo

along with the representation fGiJlN on the support of the equilibrium measure which reads

~_ Wn[HIE)

U 1 H — . 3.120
Taking these data into account, it solely remains to writerdexplicitly the one and two-dimensional integrals
arising in Proposition 3.19. ]

Note that the factorﬁs’gz_’g[atvt,vt] and3q[0:Vt, Vi] are preceded by the negative powelof'. Still, it does
not mean that these do not contribute to the leading coniitnu.e. up to o(1), to the asymptotics of the partition
function. Indeed, the presence of derivatives in their giased integrands generates additional powetd“of
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4 The Riemann—Hilbert approach to the inversion ofSy

In the present section we focus on a class of singular integration driven by a one parameteregularisation
of the operatoSy. More precisely, we introduce the singular integral opmTal.,

b
S,€) = SE) - Liyy i
Sl = £ S,(N"(e- o) -ci where { T (4.2)
5 XN = N (by - an)

This operator is a regularisation of the opera$gy in the sense that, formallyyn..o = Sn. This regularisation
enables to set a well defined associated Riemann—Hilbebigmmy and is such that, once all calculations have
been done and the inverse$k;, constructed, we can take sepd- +co at the level of the obtained answer. It is
then not a problem to check that this limiting operator doeleéd provides one with the inverseS\.

We start this analysis by, first, recasting the singulargrsteequation into a form where the variables have
been re-scaled. Then, we put the problem of inverting thecaeded operator associated Wik, with a vector
valued Riemann-Hilbert problem. The resolution of thistaeproblem demands the resolution of & 2 matrix
Riemann—Hilbert problem for an auxiliary matjix We construct the solution to this problem, félarge enough,
in 8 4.4 and then exhibit some of the overall properties ofsihiationy in 8 4.5. We shall build on these results
So as to invertSy;, and thenSy in subsequent sections.

4.1 A re-parametrisation of the problem: a vector Riemann—Hlbert problem
In the handlings that will follow, it will appear more convent to consider a properly rescaled problem. Namely
define

a

e() = ¢((+N"ay)N™) and  h(£) = 2inp

H((& + Nan)N™) . (4.2)

It is then clear that solutions t8;,[#](¢) = H(£) are in a one-to-one correspondence with those of

XN

Fulil® = £ S(e-neta) 5 = e @3)
0

For anyN andy > 0, the operatory;, is continuous as an operator
Ny - Hs([0;Xn])  —  Hs([=vXn5vXn]) € Hs(R) . (4.4)

Indeed, this continuity follows readily from the boundesinef the Fourier transforsi[S,] of the operator’s
integral kernelc.f. Lemma 4.2 to come.

First, we shall start by focusing on spaces with a negatidexrs < 0 and going to construct a class of its
inverses

Fn ¢ Hs[=7%v&])  —  Hs([0:%n]) - (4.5)

What we mean here is thaier se the operator is non-invertible in that, as will be inferfeaim our analysis, for
-k<s<—-(k-1)

dimkern,, = k. (4.6)
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In fact, the analysis that will follow, provides one with aotbugh characterisation of its kernel. Furthermore,
when restricting the operata¥y;, to more regular spaces likes([0;Xn]) with s > 0, we get that the image
Ny [Hs([0; Xn])] is a closed, explicitly characterisable subspack gf—yXn ; (¥ + 1)Xn]), and that the operator
becomes continuously invertible on it.

In the following, we shall invert the operatory;, by means of the resolution of an auxiliari2 Riemann—
Hilbert problem and then by implementing a Wiener—Hopfdasation. The analysis is inspired by the paper of
Novokshenov [73] where a correspondence has been buileketgingular integral equations on a finite segment
subordinate to integral kernels depending on tlfiedénce on the one hand and Riemann—Hilbert problems on the
other one. The large parameter analysis is, however, new.

In fact the very setting of the Riemann—Hilbert problemdshanalysis enables one to naturally construct
the pseudo-inverse ofy;, - i.e. modulo elements of kgfn;, ] — when the operator is understood to acttn
spaces witinegativeindex s < 0. The inversion of#y;, understood as an operator bi3 spaces wittpositive
index s > 0 goes, however, beyond, the "crude" construction issuiog the Riemann—Hilbert problem-based
analysis. Itis, in particular, based on an explicit charasation, through linear constraints, of the image space
Ny[Hs([0;XN]]) ], s> 0. For O< s < 1/2, which is the case of interest for us, we show that,[Hs([0; Xn]) ]
coincides withXs([—yXn ; (v + 1)Xn])-

Lemma 4.1 Let he Hg([0; Xn]), S< 0. For any solutiony € Hg([0; Xn]) of (4.3), there exists a two-dimensional
vector functiond € O(C \ R) such thatp = F[(®1),] and® is a solution to the boundary value problem:

o (®y), € F[Hs(R*)] for a € {1, 2}, and there exists G 0 such that:

Yu>0, Vae{l2), f|(Da(/lii,u)|2~(l+|/l|+|y|)25-d/l < C. 4.7
R

e We have the jump equation fax, (1) = G, (1) - ®_(1) + H(A) for 2 € R, with:

ei AXN 0

G)((/l) :( 1 ?[Sy](/l) _e—i/lYN

0
R ) and  H(Q1) = _e N Th [(A) ) : (4.8)

Conversely, for any solutio® € O(C \ R) of the above boundary value problem,= 7 [ (®1), ] is a solution
of (4.3).

We do remind that denotes the uppéower boundary values oR with the latter being oriented fromoo
to +oo ; h, denotes any extension bfto Hs(R) ; 7[S,](4) refers to the Fourier transform of the principal value
distribution induced b5,

VXN
F1S,1(1) = f S(©) &¥de . 4.9)

—YXN

Proof — Assume that one is given a solutigrin Hs([0 ; Xx]) to (4.3). Then, le , yr be two functions such that

suppfr) = [Xn;+eo[ . suppL) =]- ;0] (4.10)
and

XN q

Fsie- o) 3 — 0 = wu(®) + vl @11)

0
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Then, by going to the Fourier space, we get:

B FIS1) - Flel() — FIhl(D) = Flyal(D) + Fly2l() . (4.12)

By Lemma 4.2 that will be proved below[S,] € L*(R). Henceyr € Hs(R") whereas) € Hg(R™). Then, we
introduce the vectors

Fild) = (e-“%@[g;]u)) and - F() = (Z[fff]]&))) (4.13)

where we agree upapg, (£) = ¢(¢ + Xn). Since[F1], € F[Hs(RY)], resp.[F,], € F[Hs(R7)], itis readily seen
that

Fra(d) = (1—id)%-[F1],0)  resp  Fpa(d) = 1+id)°-[Fi],() (4.14)

defines a holomorphic function d@ii*, resp.H-, with L?(R) +, resp.—, boundary values oR. The Paley-Wiener
Theorem A.4 then shows the existenceCa# 0 such that:

Yu >0, Vael{l, 2}, f|[FT/l]a(/l + i,u)|2 A4+ ) da < C. (4.15)
R

In other words the function:
o = FT'1H+ + Fi'lH_ (416)

solves the vector valued Riemann—Hilbert problem.

Reciprocally, suppose that one is given a soluficio the vector-valued Riemann—Hilbert problem in question.
Then, setp = F(®;1),]. We clearly havey € Hs(R™), but we now show that the support gfis actually
included in [QXn]. Let (,,-) be the canonical scalar product bAR, C). If pr is a€*™ function with compact
support included inXy, +oo[, we have:

(or, ) = (FLorl, Flel) = (€™ Florl(L - %)%, (L+i%)%(@1)-) , (4.17)

wherex denotes the running variable. But this is zero since (4)%(®1)- € FL?(R7)], whereas, by the Paley-
Wiener Theorem A.4, N*F[pr](1 — i*)"S € F[L?(R™)]. Finally, the fact thatp € Hs([0;Xn]) satisfies (4.3)
follows from taking the Fourier transform of the second laighe jump equation (4.8) fob. ]

For further handlings, it is useful to characterise theritistional Fourier transforni[S, ] slightly better.

Lemma 4.2 The distributional Fourier transfornd [S,](1) defined by4.9) admits the representation

FIS,)(1) D% iy AN o wp
I = R + (@9 4 W) 4 ry(1)  where kv =- ) =P cotanhkwyyXy] (4.18)
2inp A ] 2
sinh[—/l(;)1 il w2)]
w1
RW) = ——— 1 2 — (4.19)
Zsmh[ﬂ]smh[z—wz]
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and
r (/l) ~ 22: (n.a)p)z i/wp{ e—i}yYN ~ ei/lyYN } . el/lf d-f
MET L - eer) ) AsintPlrwn(é —yxn)]  sintPlrwp(é +yx)]) - 2

(4.20)

Besides, fotm A = € > 0 small enough, there exists & 0 independent of N such that, uniformlyReAa € R:

IrN(@)| < Ce ™2 - exp{ — yXn( 27 min[wy, wo] — €)} . (4.21)

Proof — One has that

X
N 2

lim > f Twp cotanhfrwp(§+iet)]-el2iﬂ

p=1 ec{+1}

F1S,1(4) 1
5 "~ 324 (4.22)

—YXN

1 Twp ) ¥ de
= 30, et [ cotanttrute sien)- S5
pefl,2 r
ecl+ P

wherel'y = [-yXn; ¥YXN] U [yXn + i/wp; —yXN + i/wp], Wwhere the second interval is endowed with an opposite
orientation. It then remains to add the counter-term:

7ra)p

rn(d) =

e f —I/WXN (cotanhfrwpyXy] + cotanhfrwp(€ - yXn)])
0

+ e”VXN(cotanh[rwpyYN] — cotanhfrwp(é + yYN)])} : elszSc . (4.23)

to form a closed contoffp. Upon integrating by parts, we find the expression (4.20) f@r). Then, we pick
up the residues surrounded Ey, and we also write aside the term behavingét/1) whend — co. This leads
to the appearence @f; in (4.18). The bounds on the linkn 4| = € > 0, with e small enough are then obtained
through straightforward majorations. [

The resolution of the vector Riemann—Hilbert problem docan be done with the help of a matrix Wiener-
Hopf factorization. In order to apply this method, we firseddo obtain at-factorization of the matrixs, given
by (4.8). This leads to an 2 2 matrix Riemann—Hilbert problem that we formulate and spfer N suficiently
large, in the next subsections.

4.2 A scalar Riemann—Hilbert problem

In order to state the main result regarding to the auxiliasy2matrix Riemann—Hilbert problem, we first need
to introduce some objects. To start with, we introduce aofémdtion of R(1) that separates contributions from
zeroes and poles between the lower and upper half-plareE*. In other words, we consider the solutiorio
the following scalar Riemann—Hilbert problem, depending o 0 small enough and given once for all:

e v € O(C\ {R +ie}) and has continuous-boundary values oR + i€ ;

whena — oo non-tangentially t® + ie ;

wo | (CIDE@ o) itmas e
T -iE @+ oY) ifima<e
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e v, (1) R = v (1) for AeR+ie .

This problem admits a unique solution given by

_ [ RMY) ifIma>e
v(d) = { R(1) iflmi<e (4.24)
where
2 i1
i v o e M5
R = - . vorT o, 42 )“.1( 1 )“.2 - 4.2
T(/l) A w1+ w2 (w1+w2 w1 + w2 F(l— I/l(a)1+cu2)) ( 5)
2nwiw?
and
2 i1
L (5
A wp \Fei( w1 \Ze p=l \2Wp
R0 = () (e e 2 26)
21\wr + wy \w1+ w2 w1 + w2 F(M(wl + wz))
2nwiw?
Note that
R(0) = —iVor+wz  and (/IRT(A))Mzo = ivVor+ . (4.27)
Also, R; andR; satisfy to the relations
Ri(-1) = A1 R(1) and (RT(A*))* = 11 R(1) . (4.28)
FurthermoreRy,; exhibit the asymptotic behaviour
Ri() = (—i))72-(L+0@h) for 41— oo (4.29)
AeH*
R() = -i(i)? (1 +0@Y) for 1 — oo (4.30)
AeH~

as it should be. The notatiohand | indicates the direction in the complex plane whBfg have no pole nor
zeroes.

Preliminary definitions

We need a few other definition before describing the solutiaine factorisation problem fds, . Let:

(o0 -1 [ -1 RWew
RT (/l) - ( 1 _R(/l)ei/U(N ) and Rl (/l) - ( 0 1 > (431)
as well as their "asymptotic" versions:
(oo) _ O —1 (00) _ —1 O
RT = ( 1 0 ) and Ri = ( 0o 1] (4.32)
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We also need to introduce

1 0 1-R(A) o
1 2 ) - —IAXN
Mi(2) = [_ 1- R i, 1] and  My()) = [ A R DU ¥ )
v2(1) - R(1) 0 1
wherev is given by (4.24), and:
PLr(d) = I + ky A1 DN o
Pr(l) = 1o + RBoY0)r1(0)  and L) = T2+ €T , (4.34)
A PL;L(/l) =l + kN A1 e_l(y_l)AXN O

in which T1(0) is a constant matrix that will coincide later with thew@lat O of the matrix functiofl, cf. (4.49).

1 KN
UZ(O) 1+ KN/(a)l + wz) ’

0r = (4.35)

4.3 The auxiliary 2 x 2 matrix Riemann—Hilbert problem for y: formulation and main result

The factorisation problem for the jump mati&, corresponds to solving the 2 2 matrix Riemann-Hilbert
problem given below. This problem is solvable féilarge enough.

Proposition 4.3 There exists plsuch that, for any N> Np, the given belov2 x 2 Riemann—Hilbert problem has
a unique solution. This solution is as given in Fig. 2

e the2 x 2 matrix functiony € O(C \ R) has continuous-boundary values oR,;

—sgr(Rep) - ™ 1

PL;T(/l)'( 1 ())-(—i/l)_g_z3 -(Iz + )% + O(/l‘z)) AeH*

e x(1) = o
PL;l(/l)-( ‘01 Sg“Rell)'e ! )-(M)—”—Sé%ffs.(|2 + 8 ou) aew

for some constant matrjx;, whenid — oo non-tangentially tR ;
* x+(1) = Gy(1) - x-(1) for AeR.

Furthermore, the unique solution to the above Riemann-ddilproblem satisfiedety(1) = sgn(lm(1)) for any
1€ C\R.

The existence of a solutignwill be established in § 4.4, by a set of transformations:
x Vw11 (4.36)

which maps the initial RHP faog, to a RHP forll whose jump matrices are uniformly close to the identity when
N is large, and thus solvable by perturbative arguments [He 3tructure ofy in terms of the solutiorT is
summarized in Figure 2. The uniquenessyafollows from standard arguments, seg. [30], that we now
reproduce.

Proof — (of uniqueness)
Define, fori € C\ R,

d(1) = detf()]Ls () — deth()]1x-(1) . (4.37)
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Sincey has continuous--boundary orR, it follows thatd € O(C \ R) has continuous boundary values oR as
well. Furthermore these satisfly (1) = d_(1). Finally, d admits the asymptotic behaviodl) = 1+ O(171). d
can thus be continued to an entire function that is boundédfiaity. Hence, by Liouville theoremd = 1. Let
Y1, x2 be two solutions to the Riemann—Hilbert problem forSincey» can be analytically inverted, it follows
thaty = x,* - x1 solves the Riemann-Hilbert problem:

e y € O(C\ R) and has continuous-boundary values oR;

e (1) =12 + O(11) wheni —  non-tangentially t;

e v (1) =x-(1) for AeR .
Thus, by analytic continuation throughand Liouville theoren) = |, hence ensuring the uniqueness of solu-
tions. ]
4.4 Transformation y ~» ¥ ~» IT and solvability of the Riemann—Hilbert problem

We construct a piecewise analytic matixout of the matrixy according to Figure 1. It is readily checked that
the Riemann—Hilbert problem fgris equivalent to the following Riemann—Hilbert problem ¥r

e ¥ € O(C* \ Zy) and has continuous boundary valuesgn;

0

e The matrlx( S AL L k(g + w))

) [W(0)] " - (1) has a limit whent — 0 ;

e ¥(1) =1, + O(171) whena — oo non-tangentially t&y ;
e ¥V, (1) = Gy(V)-¥Y_(1) for Aely;

where the jump matriy takes the form:

ei/l)_(N B
for 1 ¢ FT Gl}l(/l) = Iy + m o, (438)
2 —iAXN
forael Gy(1) = Iy + % s, (4.39)
andfori e R +ie
1 —v (Dv_()e N
Gy(1) = 2 + rg((j)) : gt 1 : (4.40)
v (v (1) B

The motivation underlying the construction¥fis that its jump matriXGy not only satisfie6Gy — I, € /\/(2((L2 N
L°°)(2~y)), but is, in fact, exponentially ilN close to the identity

Gy = Lallatyizzey + IGw = lallapis(zey = OE™N), (4.41)
with

% = (by —an) - min{}eirrmrlum Al; 2y(wminfwy, wg] - €)} . (4.42)
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®

®
()7 - R P - x(D)

M) - [u(D]7 - Ry(2) - P - x(2)

M) - [u()]7* - R - PLL(A) - G - x (D)

M) - [w()]7 - R - PL(A) - x ()

W1 - (RE) - PR () - x (D)

®

Figure 1:Xy =T’y UT'| U {R + i€} is the contour appearing in the Riemann—-Hilbert problemifol’;,; separates
all the poles ofR"1(2) from R (they are indicated bg), and is such that digt¢,;,R) > ¢ for somes > 0 but
suficiently small.

Note that we have a freedom of choice of the cuvgs, provided that these avoid (resp. from belatove) all
the poles oR1(1) in H*/~. As a consequence, we have the natural bound:
inf ima < 22 (4.43)
Aelury w1 + w2
These bounds are enough so as to solve the Riemann—Hillobtepr for¥. Indeed, introduce the singular
integral operator on the spagd,(L?(Zy)) of 2 x 2 matrix-valued_?(Zy) functions by
) 3 , (Gy — I2)(t) - IT(t) dt
Cy, M@ = lim j; ) — 5 - (4.44)

ze—side ofZy

SinceGy — |, € /\/(2((Lc>o N L2)(2~y)) andXy is a Lipschitz curve, it follows from Theorem A.3 thé‘é;) is a
continuous endomorphism oWl>(L%(Zy)) that furthermore satisfies:

|||C(2;)|||M2(L2(E\y)) < CeN. (4.45)
Hence, since
Gy -l € M(LA(Zy)) and CL[12] € Ma(LA(Zy)) (4.46)

provided thaiN is large enough, it follows that the singular integral etprat

(-] = 1 (4.47)
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admits a unique solutiof_ such thafll_ — I, € Ma(L?(Zy)). The bound (4.41) also implies that:
”H_ - |2||M2(L2(Z\P)) S 1 (448)
for N large enough. It is then a standard fact [7] in the theory ehiRinn—Hilbert problems that the matrix

(Gy — |2)(t) IL(t) dt
" 2in

() = (4.49)

is the unique solutlon to the Riemann—Hilbert problem:

e IT € O(C\ Xy) and has continuous boundary values oBy ;

e TI(A) = I, + O(A17Y) whena — o non-tangentially t@y ;

o II,(1) = Gy(d)-TI_(A) for1e Xy .
We claim that for any open neighbourhobdof Zy such that disfy, dU) > § > 0, there exists a consta@t> 0
such that:

YieU max [I1(2) — I2] CL%ENQ (4.50)
’ abe(1,2} 2lap = 1+14 '

Indeed, we can write:

Gy ~ I2)ant) dt

max [I1(2) — | < max -
(D) = T2l t— A 2in

a,be{1,2} a,be{1,2}

2y

2 1/2

|Gy — 12)an®)|” ot

+ § I = 2l pp(ecsy)) - (f > : 2) . (4.51)
Al ¥ It -2 (2n)

The second term is readily bounded with (4.48) and the fadﬂMhath; is exponentially close to the identity
matrix. For the first term, we study the asymptotic behavfu®y — 1, with help of § 4.2:

[ > p — 12)al ¥ : ) .
if teT, UT; I(Gy — 12)an(t)| CceRetl. g% N (4.52)
if teR+ie, Gy — 12)ap(®)l < Clt™t- —%fN . (4.53)

For the contribution o +ie, we split [Gy — 12](t) = Cy -t~ +O(t"2). We compute directly the contour integral of
the term int~1, and find the bound bound n@(“:Cl}l]ab . /1‘1| if Im A > €, and 0 otherwise. Hence, it is bounded
by c1/(1 + |]) for some constart; > 0. The contribution of the remaind@&(|t|~2) to the contour integral can be
bounded thanks to the lower bound dist(1) > c,/(1+|1]) for some constart, > 0. Collecting all these bounds
justifies (4.50).

The Riemann—Hilbert problem foF andIT have the same jump matri@y, but ¥ must have a zero with
prescribed leading cdiicient at1 = 0, whileII has a finite valu€I(0). We then see that the formula:

IA

A

Y(1) = II(4) - Pr(1) (4.54)
with:
1 KN
UZ(O) 1+ KN/((U]_ + a)z)
yields the unique solution to the Riemann—Hilbert problem¥. Tracking back the transformatiofib > ¥ ~»

X, gives the construction of the solutignof the Riemann—Hilbert problem of Proposition 4.3, sumaediin
Figure 2. This concludes the proof of Proposition 4.3. [

Pr(A) = I + %~H‘1(0)0-‘H(0), and g = (4.55)
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PLr(D) - (R™) - [w()] ™ - T1(D) - PR(Y)

PLA(A) - R7HA) - [v()]77° - My(A) - TI(A) - PR(A)

Gy () - Puyy() - Ry(A) - [()]™7° - M) - TI(A) - Pr(A)

PLL(D) - R (D) - ()] ™7 - M) - TI(A) - PR(4)

PLy() - RE - [u()] ™7 - TI(2) - Pr(Y)

Figure 2: Piecewise definition of the matpix The curved;,; separate all poles of — R™1(1) from R and are
such that disf{(;,;,R) > § > € > 0 for a suficiently smallé. The matrixIT appearing here is defined through
(4.49).

4.5 Properties of the solutiony

Lemma 4.4 The solutiony to the Riemann—Hilbert problem given in Proposition 4.3 #@drthe following sym-
metries

W) = (5 S 3] ae ) = (5 ) (g 7). @se

where* refers to the component-wise complex conjugation.

o3 ino
2

Proof — SinceG, (-1) = e'TG);l(/l)e‘ * | the matrix:

2) = M) €7 (=) (4.57)

is continuous acrosk and thus is an entire function. The asymptotic behaviolE(@j wheni — ~ is deduced
from the growth conditions prescribed by the Riemann—Hilpeoblem €¢f. Proposition 4.3):

E() = id-ot —i(y1-0t + 0" x1) + O(7Y). (4.58)
SinceZ(1) is entire, by Liouville theorem this asymptotic expressi® exact, namely

EQ) = id-0t —iyr1-0" + 7" x1). (4.59)
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Observe that

X1-0" + 0"y = ( LYB]ZI [t/:([ii]l ) . (4.60)

By expanding the relation dgg(1)] = 1 for A € H" at largeAd, we find that the matrix is actually traceless.
Finally, the jump condition at = 0 takes the form

x-(0) = o3-x+(0). (4.61)
Using this relation and the expression Bgiven in (4.59), we get:

“iy+(0) = —iX+(O)-( LVB]H va]ﬂ) e, [xaly =1 (4.62)

sincey, (0) is invertible. This proves the first relation in (4.56).drder to establish the second one, we consider:

B = x UD€ T () (4.63)

With the relation(G,(1*))" = G;l(/i) and the complex conjugate of the asymptotic behaviouy fane shows

thatZ is holomorphic orC \ R, continuous acrosg and hence entire. Furthermore, since it admits the asyioptot
behaviour

B = &7 (1 + oY), (4.64)

ino3

by Liouville’s theoremZ(1) = e 2. n

Lemma 4.5 The matrixy admits the larget, 1 € H* asymptotic expansion

- K(2) - xx —i0" - xu1
o (_ 12+
xQ) = (-7 0" + kéo iV , (4.65)

where(yk)k is a sequence of constatx 2 matrices, withy_; = 0 andyg = I, and:

—sgn(Ret) ™ 0
KO = —%N -sgn(Rel) €™ — 1 —jky - sgn(Rel) 40X (4.66)
In particular, we have:
W) > —— > [ - sgn(Re) €™ (s — ilxielza] (4.67)
(-7 iz 1
VD) = —— 3 2] - sgnRe) ™ hucalie - iludzz]. (4.68)
(-i)" iz 1

Note that one should understand the mafrix occurring in(4.68)asy_1 := 0. We also remind they1]21 = 1.

Proof — It is enough to establish th&t admits, for any, the larged asymptotic expansion of the form:

k
(1) = Z/l_[ Iy + ApgII(2) with  ApgII(2) = O(
=0

1
W) foranys >0 and TIlp=1,. (4.69)
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Indeed, once this asymptotic expansion is establishetlfohe results fol follow from matrix multiplications
prescribed on the top of Figure 2.

Equation (4.50) shows that the expansion (4.69) holdk fer0 uniformly away fromXy. This is actually
valid everywhere, for the jump matri@y(1) is analytic in a neighbourhood &fy and asymptotically close t
at largea in an open neighbourhood &fy, c.f. (4.52)-(4.53).

Now assume that the expansion holds up to some &rdeonsider the integral representation (4.49)foe
recall that {I_ - I,) € L%(Zy) andGy — |, decays exponentially fast alofig U T';. Thus, standard manipulations
give an asymptotic expansion of the form:

f (Gw—lz)(t) TL(t) dt ZT 1 (4.70)

FTUFl

It thus remains to focus on the integral B ie. We can first move the contour Bo+ i€’ for some O< €’ < ¢,
and insert the assumed asymptotic expansion at é&rder

f (Gw—lz)(t) T(t) dt
" 2ir

R+ie
(Gy —I2)(t) - TT,  dt Gy - |2)(t) AgI(t) dt
-1 2 2in

R+Ie R+ie’

(4.71)

Mx

It follows from (4.20) that we can decompogg(d) = r{()év™ + r()(1)e ™, with r{?(1) bounded im
away from its poles. This induces a decomposit®n— 1, = (Gy — 12)*) + (Gy — 1)) onR +i€’. Inspecting
the expression (4.40), we can convince oneself that théﬂa(ﬂ)«ves‘ga C H* going toco when®R(t) — +oo,
t € ¢5, and such that:

Gy — 12)M(1) - I,
- (t-2A)
e (Gy - 12)®)(t) decays exponentially fast inwhent — co along6¢; .

ot

has no pole betweeR + i€’ and%&,

Therefore, we obtain:

Gy - 1)) -, dt Gy — 1)) -1, dt Gy — 1)) - T, dt
tl(t — A) "2ir J t(t—2) " Jin + ( Tt-2) o 4.72)

R+ie
Gy Gy

and the properties of this decomposition ensure the existefian all order asymptotic expansionAnt when
A — oo. It thus remains to focus on the last term present in (4.74) 5B 0 but small, we write:

Gy - | < T
f( i3 2)(t) AgTI(t) ZC:t _ _Z/iml ftg(G\P—lz)(t) ApgTI(t) - — > % (4.73)

=0

R+ie’ R+ie’

The decay ato of AjgIl and Gy — I2) guarantees the existence of an asymptotic expansion &fsheerm in the
right-hand side, this up to a(@*-2) remainder. Finally, we have:

Gy — o)1) - ApgII(t) dt |/1|1 2 (it
A T()] = tk+1( —’ f 4.74
AT () ‘11 B -y 2| A (4.74)

R+ie’ R+ie
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where we used the assumed bound (4.69\f@iI(t) and theO(1/t) decay (4.53) foGy — I,. The growth of the
right-hand side at large is then estimated by cutting the integral into pieces:

s C A2 t|-1-9) if |Ret| <] /2
A — .
|t|1|‘5|m < CIdt-at if 11/2 < |Ret| < 3|1 /2 (4.75)
C[t|(+9) if |Ret| > 34]/2

for someC > 0 independent oft andt. The integral ovet of the right-hand side on each of piece is finite, and
collecting all the pieces, we gatT(1) = o(1) whent — co. [
5 The inverse of the master operator

5.1 Solving A\, [¢] =hfor he Hg([0;Xn]), -1 <s<0

With the 2x 2 matrix y in hand, we can come back to the inversion of the integralaipery., according to
Lemma 4.1.

Proposition 5.1 Assume-1 < s < 0, and he Hg([0;Xn]). Any solution ton,,[¢](€) = h(£) is of the form
¢ = Wyn[h] where

%;Zo[he] = ¢_1[(* - Z0) X114+ + C+[fl;zo] + X124+ 'C+[f2;zo] + 9 'Xll;+] . (5.1)

Above) € C and 3 € C\ R are arbitrary constants. We remind that is the upper boundary value gfonR, C
is the Cauchy transforr(iL.24), C.. its + boundary values and,his any extension of h to R).

f120(4) — aidXN . (/l_ZO)_lX12;+(/1)
( fZ?ZZZ(/l) ) = €7 ( —x11:+(4) ) . (5.2)

The transforrri%%;Zo is continuous on KR), -1 < s< 0:

%02l @) < Cn IINelle@e) » (5.3)

the continuity constant ¢being however dependent, a priori, on N. Finally, whea @([0 ; Xx]) the transform
can be recast as

— da duy e iE-Xnp () — b )
7ot =[5 [ e i et - xt) - [ - o
R+2ie/ R+ie’ 0
+ 0 f e—”fmu)-d%. (5.4)

R+ie’

wheree’ > € is arbitrary but small enough and such that zy > €’ in the case whenyz H*.

We stress that the integrals, as written in (5.4), are to leratood in the Riemann sense in that they only
converge as oscillatory integrals.
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Proof — The proof is based on a Wiener-Hopf factorisation. For thenexat, we only assume that< 0. Let®
be any solution to the vector Riemann—Hilbert problemd&ooutlined in Lemma 4.1. Then, define a piecewise
holomorphic functioriy’ by

-1 _ A +
o - {x_lwcbw Ry aem 5
¥ (AP - HQA) A€H

where, for someg € C\ R

(D) dt

(A —2z0)s f zgily(t( ) )
O1; Ls— 1(t) dt
2in(t — )

H() = with ( 91(1) ): Y - H) (5.6)

(/1 ZO)LS lf 92(/1)

Above, taking into account that< 0, we have set
Oax(t) = (t—20)7°ga(t) with (s=k for —k<s<-(k-1). (5.7)

It follows from the asymptotic behaviour fgt. (1) at larged thatg; € ¥ [Hs-1/2] andgz € F[Hs.1/2]. Recall that
Theorem A.1 ensures that theboundary valueg .. of the Cauchy transform oR are continuous operators on
H.(R) for any|r| < 1/2. Thus,C.[01,.] € Hsk-1/2(R) as well asC.[02,.-1] € Hsik-1/2(R), which implies:

Ha: € F[Hs,(R)]  with sy = s—1/2 ands; = s+ 1/2. (5.8)

Equation (4.7) ensures that, uniformlygn> 0,

Vae (1,2}, fh’au + i,1)|2 1+ + u)*dr<C . (5.9)
R
The discontinuity equation satisfied dyalong with ﬁa;+ - ﬁa;_ = (, guarantee thdl’y, € O(C \ R) admits

7 [Hs,(R)] + boundary values that are equal. Then, straightforward pogations show that, in fack( is entire.
Furthermore, for any € N such thats, + £ > —1/2 and for any > |Im 2z, we have:

9Ta(2) = Z f(f Ta(d+ieu) dia . (5.10)

A+ieu — 7)1 2in

Thus

1 (L+ 1+ )= 1/2 25 4|2

¢ = 2 Sa

ptrata] = Tmax( [ ) ([ i @ b+ d) 6.1
where the last integral factor is bounded. So far, the pat@menvas arbitrary. We stress that the consi@rin
(5.9) is uniform inu. Thus takingu = 2|7 and assuming thad| > 1/2, we find:

—2% 1/2
oira@] < carsea (| (+2) ) (5.12)

R [(1-1)2+ 1)
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In particular, reminding the values &f in (5.8), we find thatX17,(2) andd%T1(2) are entire and bounded, so
they must be constant. These constants are zero due to.(bl&@ge, there exist polynomialy € Cy_1[X] and
P, € Cyx_2[X] such that

T(2) = ( 28 ) . (5.13)
Reciprocally, it is readily seen that the piecewise analytictor
D) = x(1)-HQ) + x(ﬁ)-( g;g ) with Pae Cya[X] for —k<s<—(k—1) (5.14)

provides solutions to the Riemann—Hilbert problemdor
From now on, we focus on the cake= 1, i.e. h € Hs([O;Z(L\I]) for -1 < s < 0. Then, it follows from
Lemma 4.1 that any solution t&y.,[¢] = htakes the fornp = #j.;[h.], with:

T[ %;Zo[he]](/l) = (Dl;+(/l) = )(11;+(/1)'(/1_20)C+[f1;zo](/l) + X12;+(/1)'C+[f2;zo](/l) + 19'X11;+(/1) (5-15)
with faz,’s given by (5.2).

It is then readily inferred from the asymptotic expansionfat 1 — oo given in Lemma 4.5, and from the
jump conditions satisfied by, that indeedD;., € ¥ [Hs([0; Xn])]. Also the continuity o [H.(R)] with |7| < 1/2
of the+ boundary valueg .. of the Cauchy transforntf. Theorem A.1, ensures that

D14 llFths@) < Clihellngw) » (5.16)

which in turn implies the bound (5.3).

It solely remains to prove the regularised expression (&#)enh € C1([0; Xy]) itis clear thath € Hg([0 ; Xn])
for any s < 1/2. We chose the specific extensibn = h. Then, it follows from the previous discussion that
%;ZO[h] € Hg([0;XN]). The integral in the right-hand side of (5.4), consideiredhe Riemann sense, defines a
continuous function on [OXN], that we denote momentariI%;zO[h]. Now, for anyf € C*([0; Xn]), starting with
the expression (5.1) fo#., [h], we have:

(. Zolt]) = (FIf],014) = f FLE(-A) - @1 () dA = f FIFU-A) - 02()dd (5.17)
R R+2ie’
= f (FIe2*11(D) - Fle 2 Faz (DA = (F, Vol - (5.18)
R

in e represents the running variable in respect to which thei€owansform. There, we have equal%;zo[h] =
Y.L for h e C1 N Hg([0; %]). n

A priori, the solutions#.,[h.] given in (5.4) has two free parametatsandz,. This "double” freedom is,
however, illusory.

Lemma 5.2 Given .7 € C \ R and® € C, there exists € C such that#.,, = #jy 2.

Proof — By carrying out the decompositioh—zp = 1 —u + u -z in the first term present in the integrand of
(5.4), we get tha¥y.;, = #y(z);00

Nz) = O - fX12(ﬂ)'7;[fle]z(:)-e‘f‘ N %

(5.19)

R+ie’
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andco means that one should serg— co under the integral sign of (5.4). [ ]

Hence, with the above lemma in mind, we retrieve that theederh#y., is one dimensional when considered
as an operator ohlg([0;Xn]), with -1 < s < 0. The above lemma of course implies that we can chagse
arbitrarily in (5.4). It is most suitable to consider the gfie form of solutions obtained by taking — 0 with
Imz < 0. Forh € CY([0;%n]), this yields a family of solution parametrized Bye C:

~ d duy e iAé-iuxy o d
e =[5 [ et e + o [ e S 620

R+2i¢/  R+ie R+ie’
It is possible to find real-valued solutions.té;,[¢] = h by takingh purely imaginary:

Lemma 5.3 Let® € iR and let he C1([0;Xy]) satisfy i = —h. Then(#3[h.])* = #s[h].

Proof — From Lemma 4.4, we havey11(-1) = (y11(1*))" andy12(=1) = (y12(1%))*. Hence, under the assump-
tions of the present lemma

da f Qu g+ g?eére sy { A - 2i¢

ey = [ 5 s+ 2 Yol + )

2ir u—-A+ie u—ie
R R
+ x11(—u +i€)y12(-A + 2i€)  F[W ] (~u + i€) — o f Uy (-1 + i€) d . (5.21)
~Fh] v R

The change of variableg,(u) — (-4, —u) in the first integral and +— —A1 in the second integral entails the claim.
[ ]

5.2 Local behaviour of the solution%[h] at the boundaries

In the present subsection, we shall establish the localviimiraof %[h](g) at the boundaries of the segment
[0;Xn], viz. whené — 0 oré — Xy, this in the case whertee CY([0; %Xn]). We shall demonstrate that there exist
constant<y, Cy,, affine in® and depending oh, such that#[h] exhibits the local behaviour

Pylhl(€) = 07% +0() for €0 and  Z[h(E) = f& +O(L) for &= (%) . (5.22)

VXN =€

Let us recall that our motivation for studyir@; takes its origin in the need to construct the density of equi-
librium measurepgﬂ‘) which solveSSN[ng',)] = V’ as well as to invert the master operattdi, arising in the
Schwinger-Dyson equations described in 8 3.2. The denagyalsquare root behaviour at the edges what trans-
lates itself into a square root behaviouréat 0 andé = Xy in the rescaled variables. Having this in mind, we
would like to enforceCy = Cx,, = 0. For this purpose, we can exploit the freedom of choosinghis is however
not enough and, as it will be shown in the present sectionyderaio have a milder behaviour %[h] at the
edges, one also needs to impose a linear constraimt lorfact, we shall see later on that the latter solely traesla
the fact thah € A\, [Hs(R)] with 0 < s < 1/2.

This informal discussion only serves as a guideline andvatitin for the results of this subsection, in partic-
ular:
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Proposition 5.4 Let

gl = f e_ZXlez(u)-ﬂh](m-di. (5.23)

R+ie

Then, for any ke C*([0; Xn]) such that

st = f e () - FING) - K = o (5.24)

R+ie
we have# s,m[h] € (L1 N L=)([0; Xn]).

Prior to proving the above lemma, we shall first establishan@ characterising the local behaviour at 0 agd
of functions belonging to the kernel ofy., .

Lemma 5.5 The function

W= [eMxuGy  saisties SO =0 £l (5.25)
R+2ie/
and admits the asymptotic behaviour
1 1
= + 0O(1) when & —0* and = —— +0(@1) when &— (Xn) . (5.26
¥(£) W= 1) 3 ¥(£) N 1) &§— (Xn) . (5.26)
Proof — One has, fok €]0; X[ and in the distributional sense,
B du d/l g e T[Sy](y) =% _ 1
INy[Yl(é) = f Pinp X1lq+ )'W
B f du d/l e FS,](1) Xll(/l)e'” N dy(2)
B 2inB i(A—p)

du e"/‘ CFS,1(u) da y11(2) €4
P —Zinﬁy { —x11+ (1) + o —i(/l 0 }
R R-ie

- f dﬁ{m;—(u)e‘”‘f + é"ﬁ“‘f))(zl;+(u)}- (5.27)
R

Note that, in the intermediate steps, we have usedythat(1) = € y11. (1), and deformed the integral over

to the lower half-plane. Further, we have also used that

F1S,1(1)
2inB

Observe that, when @ & < Xy, the functionu - y21. (u)e™ (respectivelyu — yo1.. (u)€“On=9) admits an

analytic continuation to the lower (resp. upper) half-glainat is Riemann-integrable &+ it (resp.R + it), this
for anyt > 0, and that decays exponentially fast wherm +o0. As a consequence,

xo1-() + €%y, (2) = x11+(A) . (5.28)

d . .
V& €]0; %l f E“(e"“fm;_(y) + @O o1, (W) = 0, (5.29)
R
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which is equivalent to/n., [¥](¢) = 0
From the larget expansion of/(1) given in Lemma 4.5, we have fdre R + 2ie,

Rel) ePN + |
W) = (D) + Sgn((_m))l/z = o). (5.30)
Hence,
¥ sgn(Rel) =8 da e da
o = [wer 3o [SEVETD 2, [ (531)
R+2ie/ R+2ie’ R+2ie’

By dominated convergence, the first term is O(1) in the lgmit 0*. The second term is also a O(1). This is most
easily seen by deforming the contour of integration intoaplm H, around R* + 2i€¢’, hence making the integral
strongly convergent, and then applying dominated convege Finally, the third term (5.31) can be explicitly
computed by deforming the integration contouri®™*:

(5.32)

e Al —_1+°°{ 11 }e—tdt T2 1
Cio T ES \C0? T Ce 0 2 e i

Similar arguments ensure that the first and last term in g4 a O(1) in th& — (Xy)~ limit. The middle
term can be estimated as

R+2i¢/

fsgr(Re/l) AGn-6) dl e 2n=9)e sgn@) €1 da
— (-id)z 2 Pz SV NE — i1+ 2¢/ (R — &)Y?
e 20n-)¢ et i
= + O(VXn—¢). (5.33)
m/ Xn =& (t+2€¢(Rn - &)Y? \/ﬂ(XN — &)
Putting together all of the terms entails the claim. [

Before carrying on with the proof of Proposition 5.4 we stidled to prove a technical lemma relative to the
large-1 behaviour of certain building blocks &;[h].

Lemma 5.6 Let he CP*1([0;%n]). Then, the integrals

_ x1a() - FLh](w) - €™ du , _[1 ifa=2
salty = [ RS it = { g o) (539
R+ie
admit theld| — o0, Im A > 2¢’ > 0, asymptotic behaviour:
P (1/2)(/1) p w(l)
F1alhj(A) = —A"taah] + Z—m + Z 2+ O trei2)y (5.35)
i1 (— i)k il
where
k-1 L
w2 = ik—fh<k-f-1><iN){sgn(ReA) &% [y sulia + i[xf+1_52a]2a} : (5.36)
=0

and w(l) are constants whose explicit expression is given in the abtiee proof .
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Proof — The regularity ofh implies the following decomposition for its Fourier traosh:

XN

p o

h® (%) 4% — h® (o —1)p+1 .

Fh) = - ) RV 2 (- )p+1 fh(pﬂ)(t)elf#d‘f' (5.37)

Py (=) (i)™ o

It gives directly access to the largeexpansion:

P )
- T
oasl) - TIG) = ) e + R (5.38)

k=1

The remainder isR(l‘;)(p) = O(u"3/2) wheny is large, wherea¥ ¥ (1) remains bounded as long as Anis
bounded. Explicitly, these functions read:

k-1
T = Zi“(h(k-l-”(O)—émh(k-l-”(m){—sgn(Reu) &N [ s laa — i[xf+1_52a1a2} (5.39)

=0

whereym, are the matrices appearing in the asymptotic expansign sfe (4.65). The integral of interest can be
recast as

P (k) —iuX P
T (,u)e HXN du 1 f (p) e Ou
hi(1) = 2 T R P g N -
S1al(4) kz_; (i) V2K - 2)  2in T A6+1 H R (W) i
T R+ie - R+ie’
p+1 p(P)
f H Ria W) iy G (5.40)
AP — Q) 2in
R+ie’

In virtue of the bound orR(lg), the last termis a Q‘p‘%). In order to obtain the asymptotic expansion of the first
term we study the model integral

(c1sgn(Reu) — Coe M) (k1 €N — kp)  du

HA) = G- ) 2ir

R+ie’

(5.41)

where ImA > €’ while ¢;, ¢, andka, k» are free parameters. By deforming appropriately the caafave get that:

cisgn(Rel)e™ — ¢ sgrReu d
I = K= 2 ((_M)dek 2 - ok : 1';(2 " ) B 2_;[; (5.42)
T 4eD (= i)™ u = 2)
+00
) t—k—l/Ze—tT(N dt e—i,uT(N -k d
+ ClKl(—l)ka - — + Ck2 95 + : % (5.43)
- T —i — T
o ey (T - A)
cisgn(Rel) €% — ¢, > ~(g+1) | (@ ~(p+2)
T - Z;)a LD 4+ a7 P2A Mi(2) - (5.44)
g=
The constant_(kq) occurring above is expressed in terms of integrals
+00
sgnReu) - u4* d . g Ot gL 4k g
Lff) = —Ci1k2 %—” + Crkp(—i)Kd f k2. e N Z 4 ok —lllz R
P G S (miwt? 2
-I'([0;i€']) € -I'(iR7)
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(5.45)

and the remainder function reads:

/l-sgn(Re,u)-pp”‘k d/l = o é - @ iHxN ’up+1k d/l

Al Mk(A) = c1k2 - (Cipt2 "% (- |,u)l/2(/u ) 2in

-I([0;ie']) I'(iR)
e q- tp k+1/2 | —tXN dt
+ Cuka(=i)KP f ) - — . (5.46)
If we define:
P k1 tk—Cp(k—(-1)
~1) _ C1 = —[xt-6pl1a k1 — —I""h (Xn) } 547
e éko{ PR S (5:47)
we obtain:
P (K (,) itiX P w20 p ~@)
T () e'xn @) W,
Z i )1(/l21) K- Zm Z( )12, 1K + Z/lqu o3 . (5.48)
k=1 pYier K =0
Furthermore, the above relation and equations (5.34) ad@)%ensure that
f RGeS = gl + 7 (5:49)
2ir

R+ie
Hence, putting all the terms together, we arrive to the esjoan(5.35) with the constants glven by
® _ =@ kP . H g 550
Ya T Pka T 1R (e " 2ir == (5.50)
R+ie’
[ ]

Proof — (of Proposition5.4). Givenh € C([0; Xn]) and foré& €]0; Xn[, we can represeﬁ% as an integral taken
in the Riemann sene

Tl = [ e[yl sl - xiold) sl 2 (5.50)
2r

R+2ie/

where we remind that?1,[h](1) have been defined in (5.34). Using the asymptotic expassibhemma 4.5 for
x and those of Lemma 5.6 foi714[h], we can decompose:

XN L
2 (D) Fa2hCD) — o) sulhi() = flz[h]-sg”(T?j)f/z - 2{31)[312

wiz”(isgn(Re) € + i} w2 ()
i

(5.52)

+0(17%?) .

2The fact that the integral (5.51) is well-defined in the Riemaense will follow from the analysis carried out in thisqfto
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As a matter of fact, the cdigcient of 1/(—iA) in this formula vanishes, as can be seen from the expres§to86)
for «{:1?. Besides, integrating the(1-%/2) in (5.51) yields a contribution remaining finite fit= 0 and¢ = Xy,

that we denot@/oc[h] e C%[0;%n]). Eventually, the fect of the first line of (5.52) once inserted in (5.51) is
already described in (5.32)-(5.33). All in all, we find:

lfll[ hl | =
O(+vX + #5h)(€) . 5.53

Since we haveZ[h](¢) = %[h](g) + 9w(£) in terms of the functiony of Lemma 5.5, we deduce that:

#elhl() = flz[h]{

— BZ
Tl =~ + 0(S=5 + 71h() (5.54)
and this function is continuous on [8y] if and only if .#1;[h] = 0. [

5.3 Awell-behaved inverse operator oSy,

Since,in fine, we are solely interested in solutions belongingltbn L*)([0 ; Xy]) we shall henceforth only focus
on % s nh] and denote this specific solution &, [h]. Furthermore, we shall restrict our reasoning to a class
of functions such that#1;[h] = 0. We now establish:

Proposition 5.7 Let0 < s< 1/2. The subspace
2= O+ DRD) = {ne Hll=7%; 0+ D) © Sl = O] (5.55)
is closed in H([—yXn ; (y + 1)Xn]), and the operator:
Fiy  Hs([0;%]) — Sy [Hs([0; D] = Za([~yRn: (v + DRn) (5.56)
is continuously invertible. Its inverse is the operator
My © Zs([=vXn (y + DXn]) — Hs([05%Xn]) (5.57)
On functions ke C([0;Xn]), it is defined as:

da du g iA-iuxn
21 f 2ir p-2
R+2ie/ R+ie’

iy 1) = fena(xaa - & - xastisa 7RG (5:58)

For h e CY([0;%Xn]), Wiy [N](€) is a continuous function off ; Xy], which vanishes at least like a square rooDat
andXy. The operator#y., extends continuously tofJ0;Xn]), 0 < s < 1/2 although the constant of continuity
of #n., depends, a priori, on N.

Comparing (5.58) with the double integral definiig,., in (5.20), one observes thafy in front of y11(1) is
absent and that there is an additional pre-faggarin front of y12(2).

Proof — Continuity of/y;, .
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Takeh € CY([—yXn ; (¥ + 1)%n]). We first establish tha#i., [h], as defined by (5.58), extends as a continuous
operator fromHg([—yXn ; (¥ + 1)Xn]) to Hg(R). We observe that:

x12(1 + 2i€’)

T2 Wy = xaa(+2€) - ClraeF [he]l(d +i€) = ===

Clx117 [he1](2 +i€) (5.59)
with he(¢) = e €% h(#),
Yua(u) = (u+i€) yuu +i€)e @ and  Yio(u) = yao(u + i) e WHOMN (5.60)

It thus follows from the growth at infinity gf1, andy 12 and the continuity o (R), |r] < 1/2, of the transforms
Ce, WhereC[ f](12) = C[f](1 +i€’), cf. Proposition A.2, that

Iy [NllHgwy < C{||C€’[:Y\12'T[hf']]“?'[Hs-l/z(R)] + ”CE'L?“'T[hf’]]”?[Hsuz(R)]} (5.61)
< c'{ 022 Flhelll ey * ||j(‘11.7—'[h€/]||¢[HH/2(R)]} (5.62)
< C'hellbgm)y < C7 Ny —yxa ;(r+1%0]) - (5.63)

Proof — The spac&s([—yXn ; (¥ + 1)Xn])-
Givenh € Hg([—yXn ; (¥ + 1)Xn]), we have:

1/2
| 7ulhl| < (f(l + ) a1 )P dﬂ) NPl gy s+ D)%) - (5.64)
R
As a consequences;; is a continuous linear form oHg([—yXn ; (¥ + 1)Xn]). In particular, its kernel is closed,
what ensures tha?’s([—yXn ; (y + 1)Xn]) is a closed subspace BE([—yXn ; (y + 1)Xn]). We now establish that:
yN;y[Hs([O;)_(N])] C Zs([-vxn; (y + 1)XN]) - (5.65)
Lety € CX([0;%Xn]) and defineh = Niyle]- Then, using the jump condition (5.28):

F1Sy1(w)

Al = [ dnen [ €™ ) 52
0 R

& = [ ane) [ (xan (™ 4 xox, (0)) c (5.66)
0 R

and this quantity vanishes according to (5.29). The equalin then be extended to the wholetf([0; Xn]),
0 < s< 1/2 since.%1; and-%y., are continuous on this space a@t{[0; Xn]) is dense irHs([0; Xn]).

Proof — Relation to the inverse.
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By definition, for anyh € (Hs N CH([—=yXn ; (1 + ¥)%n]), we have:

da du g i -iuXn

Tranl@) = [ 55 [ g {5 ezt — ez} - 7o)
R+2i¢’ R+ie’
o [ L) [EE v F i)
R+2i€/ R+ie’
~iAE—iuRn
- [ 5 [ ot et - vasea) - 7T

R+2ie/ R+ie’

( gi .Ag)mzﬂ(ﬂ)) ( f ;" I ) - FINNG) = FahE) . (6.67)

R+2ie’ R+ie’

=0

In the last line, we used the freedom to add a term propottiona 1[h] = 0, so that the combination retrieves the
announced expression (5.58). The continuity of the lineactional 71, on H¢([0; X\]) is proven analogously to
(5.64), hence ensuring the continuity of the oper%@gz[h] Since both operatoréhy;,, andyﬂylz[h] are continuous
onHs([0; Xn]) and coincide ore! functions which form a dense subspace, they coincide on ittadar s([0 ; Xn]).
From there we deduce two facts:

o we indeed have#y.,[#4,[h]] = h, as a consequence Ofy.,[# s m[h]] = h. This shows that the reverse
inclusion to (5.65) holds as well.

e The function”;,[h] is supported on [0Xn] (and thus belongs téis([0; Xn])) since Lemma 4.1 ensures
that 7 s, [h] is supported on [0%n] this for anyh € Hs([—yXn; (¥ + DXn]) € He([—yXn; (v + 1)Xn])
withO<s<1/2and-1<7<0.

Proof — Local behaviour fo€*([0;%n]) functions.
It follows from a slight improvement of the local estimatesréed out in the proof of Proposition 5.4 that,
givenh e CY([0;%n]), we have:

Wylhl@) = CO+C e+ 0@ #ylhlEe) = CO+Cl2 Ry —¢+0Gn - ¢)

form some constan@(a) with a € {0, 1/2}. It thus remains to check thé:l(LO) = (0) = 0. It follows also from the
proof of Proposition 5 4 tha#;, [h] is, in fact, continuous oi®. Since supb///N,y[h]] [0;Xn], the function has
to vanish at 0 an@y so as to ensure its continuity. Thenﬁlﬁt(,)) = Cg)) =0. u

5.4 W\y: the inverse operator of Sy

In order to construct the inverse 6y, we should take the limif — +co in the previous formulae. It so happens
that this limit is already well-defined at the level of thewtan to the Riemann—Hilbert problem fgras defined
through Figure 2. More precisely, from now on, jebe as defined in Figure 3 where the matfrixs as defined
through (4.47)-(4.49) with the exception that one shoutitige— +co in the jump matrices fo¥ (4.39)-(4.40).
Note that, in this [imit,Gy = |, onR + i¢, viz. ¥ is continuous acrosk + ie. Then, we can come back to the
inversion of the initial operatafy in unrescaled variables — compare (4.1), (4.2) and (4.3).
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R1(A) - [u()]7 - M) - TI(2) - Pr(A)

R [u(D)] 77 - TI(2) - Pr(A)

Figure 3: Piecewise definition of the matgiaty — +o0). The curved’;,; separate all poles af — AR(2) from
R and are such that di$tf,;, R) > ¢ for somes > 0 but suficiently small.

Proposition 5.8 Let0 < s < 1/2. The operatotSy : Hg([an ; bn]) — Hs(R) is continuous and invertible on
its image:

Xs(R) = {H € Hs(R) f x11()F [HI(N? p)e M40 - % = 0}- (5.68)

R+tie

The inverse is then given by the operatidfy : Xs(R) — Hg([an ; bn]) defined in(2.44)

da du e N"AE-an)

NZQ
WO = 5 [ 5 [ 50
R+2ie R+ie

fena(nazi) -5 G} e FHING) (5.69)

with y being understood as defined in Figure 3.

Proof — Starting from the expression for the inverse operata#tg, and carrying out the change of variables,
one obtains an operatd#’n., which corresponds to the inverse of the operdgy,. Then, in this expression we
replacey at finitey by the solutiony aty — +c0, as itis given in Figure 3. This corresponds to the operdy,

as defined in (2.44). One can then verify explicitly on thegmal representation fol/y by using certain elements
of the Riemann—Hilbert problem satisfied pyhat the equatio®n[Wn[H]] = H does hold ondy ; by]. All the
other conclusions of the theorem can be proved similarlyrép@sition 5.7. ]

We describe a symmetry of the integral transfoi#fy that will appear handy in the remaining of the text.
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Lemma 5.9 The operatorWy has the reflection symmetry:
WhIH](an + by =€) = —=WN[H"](¢) (5.70)
where we agree upon’H¢) = H(an + by — £).

Proof — It follows from the jump conditions satisfies lyyand from Lemma 4.4 that, for € R,
X1 (=) = €N yap () and yize(-1) = €V ()12 (1) - Axaz(A)) - (5.71)
Upon squeezing the contours of integration in the integrptesentation fold/y to R we get, in particular, the

boundary values gf1,. It is then enough to implement the change of variableg,;) — (-4, —u, by + an — 77)
and observe that, all in all, the unwanted terms cancel out. [
In the case of a constant argument (which clearly dm¢delong toXs(R)) the expression folVy simplifies:
Lemma 5.10 The functionWy[1](¢) admits the one-fold integral representation
N? x12.+(0) X11(4) _ineag-ay) 94
1) = ——5= INTAEaw) . = 72
WNILIE) g e - (5.72)

R+ie’

Proof — Starting from the representation (2.44) we get, for amyay ; bn|[,
N da du e N"E-an)d g 1 e
—_— _— . — . (1 - TUXN . 7
oI f 2in ) 2in p-a {’u 1 xa2() — ~ )(11(/1))(12(/1)} ( ). (5.73)
R+2ie R+ie

One should then treat the terms involving the function 1 attfearising in the right-hand side fiierently. The
part involving 1 is zero as can be seen by deformingutiegral up to+ico. In what concerns the part involving
e "X we deform theu-integral up to—ico by using the jump conditions 8™y 14, (1) = x1a_(1). Solely the
pole atu = 0 contributes, hence leading to (5.72). [

Wn[1l(©) =

6 Local behaviour of Wy[H](¢) in &, uniformly in N

In this section we derive a local (i), uniform (in N), behaviour of the invers&{/y[H](¢). This will allow an
effective simplification, in the larg&t limit, of the various integrals involvingd/y[H] arising from the Schwinger-
Dyson equations of Proposition 3.13. Furthermore, thesa lsymptotics will provide a base for estimating the
Wy’ norms of the inverse of the master operatéy, cf. (3.54). In fact, such estimates demand to have a control
on the leading and sub-leading contributions issuing ffidfy in respect toA” norms. We shall demonstrate in

§ 6.1 that the operato/y can be decomposed as

The operatorWey, represents an exponentially small remaindefg norm, while the three other operators
contribute to the leading order asymptotics whién— co. Their expression is constructed solely out of the
leading asymptotics il of the solutiony to the Riemann—Hilbert problem given in Proposition 4.3.

In 8 6.2 we shall build on this decomposition so as to show thette arise two regimes for the large-
asymptotic behaviour o#/y[H] namely when

e £isinthe "bulk" of [ay ; bn], i.e. uniformly in N away from the endpointay andby.
e £is close to the boundariegiz. in the vicinity of the endpointay (respby).

In addition to providing the associated asymptotic exparsi we shall also establish certain properties of the
remainders which will turn out to be crucial for our furthamrposes.
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6.1 An appropriate decomposition of Wy

We remind that any functiol € C*([ay ;by]) admits a continuation into a functia®(Jay — ;b + 7[) for
somen > 0. We denote any such extension lHy, as it was already specified in the notation and basic de&finiti
section. In the present subsection we establish a decotignotiat is adapted for deriving the local and uniform
in N asymptotic expansion foWy.

In this section and the next ones, we will use extensivelyfidhewing notations:

Definition 6.1 To a variable& on the real line, we associaterxs N%(by — &) and ¥ = N%(¢ — an) the corre-
sponding rescaled and centred around the right (resp. kft)ndary variables. Similarly, for a variablg, we
denote g and y _its rescaled and centred variable.

Definition 6.2 If H is a function of a variablet, we denote W(¢) = H(ay + by — &) its reflection around the
centre offay ; bn] (as already met in Lemma 5.9). This exchanges the role oéthard right boundaries. If H is
a function of many variables, by’"Hve mean that all variables are simultaneously reflected i an operator,
we define the reflected operator by:

O[H] = (O[H"])" (6.2)
Definition 6.3 Let cgsgg) (resp.%&;&) be a contour such that:
e it passes betweek andI'; (resp.I')).
e it comes from infinity in the direction of angt&3™/# and goes to infinity in the direction of angi&/4.

These contours are depicted in Figure 4, and we deggfe = dist(%%),R) > 0. We also introduce an odd
function J by setting, for x O:

e da
JX) = fR(/l)Z_izr' (6.3)
2l

Proposition 6.4 Given any function He CX([ay ; bn]) with k > 1 belongingXs(R) (the image ofSy, see(5.68)),
the functionW[H] is C*"Y(Ja ; bn[) and admits the representation

WNIHIE) = WRHIOR &) + WodH(©) + WUIHIOLE) + WegHIE) (6.4)
with:
N« _
WolHIO = 5= f [He(& + N™y) — Ho(&)] 30) - dy . 6.5)
R
WRIHI(x &) = —;—; [Ho(& + N™y) — Ho(&)] 30) - oy, (6.6)
bn
N2 da du gx iN® (n—bn) H.(é)
A ﬂm—mww){f Hfmer™ iy - w—N}
Ged g o
WUHI(6E) = —WrIH (X ax + by - £). 6.7)
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poles & zeroes oft — R|(1)

poles & zeroes oft = ARy (1)

Figure 4: The curvesﬁgg.

The remainder operatai/ex[H.] reads:
(WeXp = (WE\T-F) - ((WE\T-F))/\ + (Wres - ((Wres)/\ + A(WE\T_) - (A(WE\T_))/\ N (68)

where the operators/l/(l\l“) and A(WI(\I*‘) are given by

WEIH) f f e Tk aN){‘I‘ () W12(u) — & - W1 (u)w (/l)}H()
N = dn _ 11 12\f) — 5 - T11 12 n
27r,8 e 2ir e 2ir 3 (W= DR (DR () A

AWEIHIE)

da fd” e IN®AE-bn)+HN (- bN){ B o () W15() — \Pll(/l)‘Pzz(#)}H('?)

28 J 2in J 2in )T - DRIR )
W ooey
(6.9)
while ‘W,gsis the one-form:
N T30 (e @) [
@ T112(0)0r P11 iN% u(-an)
WiedH] = — f fdnH(n)e' pur=an) (6.10)
© 2rB Ry (0) 2im Ry (u)

The piecewise holomorphic matri#(u) corresponds to the solution to the Riemann—Hilbert probfem¥ de-
scribed in Section 4.4 in which we have taken the lymib +co.
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In the expressions above, we have used an extersjoof H whenever it was necessary to integréteover
the whole real line, but we can keépwhen only the integrals oveny ; by] are involved — e.g. in (6.9). The
decomposition given in Proposition 6.4 split#'y into a sum of four operators. The operaftdry, takes into
account the purely bulk-type contribution of the inversamely those which do not feel the presence of the
boundariesay, by of the support of the equilibrium measure. This operatosdu single out a specific point but
rather takes values which are of the same order of magnitudeghout the whole of the intervady ; by]. In their
turn the operatord¥r,. represent the contributions of the righft boundaries of the support of the equilibrium
measure. These operators localise, with exponentialgioegion their respective left or right boundary. Namely,
they decay exponentially fast kg, whenxg,. — +oo. This fact is a consequence of the exponential decay at
+oo Of J(X) in what concerns the first integral in (6.6) and an immedietend of the second one which follows
frominf{lma, A€ %&]’} > 0.

Proof — We remind that since we are considering the» +oo limit, the matrix¥ has no jump acrosR + ie. A
straightforward calculation based on the identity:

_p-1 i AXN —1
x() = ( Rr@e R () -¥(1)  valid for A betweerR andT; (6.11)
-Ry(2) 0
shows that, for suchi's andu’s,
NZQ Nl e
28 g N Ak-an) {Xll(/l))(lz(ll) - % ')(11(/@)(12(/1)}9IN Hr=tn) - = Z Kee(Ap &) . (6.12)

€1,626{+}

The above decomposition contains four kernels

N2 @iNTA(E—an)+iN"p(-bu) u
K—(ulémn) = 20 ROOR () {‘le(ﬂ)‘f’zz(ﬂ) - 1‘1’21(#)‘1’22(/1)}, (6.13)
N2 g iINTA(¢-bn)+iIN"u(n-an) u
Ko €)= 5o =—popmes—{Pul¥al) - Prueve@]. 6149
N2 @INA(E—by)+iNpu(-bu) u
KUl = —50 g —{¥ul¥2l) ~ {¥al¥u0).  (6.19)
N2 g iN“A(¢é-an)+iNu(n—an) u
Ker(ulém) = “ o8 ROORL () {\P21(/1)\P12(ﬂ) - Z\Pll(ﬂ)\PZZ(/l)}- (6.16)

The labeling of the kernelk,, .,(4, 1 | £, 1) by the subscripte, e refers to the half-planeB x H in which
they are exponentially small wheé¥h — oo, provided that the variablesn € [ay ; by] are uniformly away from
the boundariesy or by.

One should note that the above kern€ls., have a simple pole at = 0. In particular,

P10)  neuran N2 - 0r - TT12(0)
Res(K_,(Lu|&ndla=0) = KW dNui-aw , 6.17
SUSER ) = Rw 2 R (D)o ®17)
Wor(t)  inewrobyy N2 - 6r - T112(0)
Res(K__(1ulé&nmdla=0) = —HI28E dNur-bu) . 6.18
ek ulén ) R 2 R (D) (6.18)

Furthermore, the kernels are related. Indeed, accorditigetdefinition of¥ in terms ofy in Figure 1, we have
for A betweerl’| andR:
_Rll(/l) R?l(/l) g iAxN

X() =( 0 R() )-‘P(/l) (6.19)
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and by invoking the reflection relation fgrobtained in Lemma 4.4, we can show that:

0 A 1 -2
Y(-2) = ( -t O)-‘P(/l)-( 0 1 ) . (6.20)
The above equation ensures that
K—+( - /17 —H | an + bN - 67 an + bN - T]) = K+—(/lvll | 67 77) s (621)
K——( - /17 —H | an + bN - 67 an + bN - T]) = K++(/lvll | 67 77) . (622)

The decomposition (6.12) of the integral kernel allows aeasting the operatdi/y as:

WaIHIE) = > WEDHE) (6.23)
E]_,EzG{il}
where
bn
—_— d/l d KEJ_EZ /17 k

R+2ie R+ie an

The next step consists in deforming the contours arisingpéndefinition of‘NM?(NE“Z)[H]. We shall discuss these

handlings on the example GT/(N‘”[H]. In this case, one should deform théntegration taR — 2ie. In doing so,
we pick the residues at the polestat 0 andA = u leading to

bn
T = Wed) + [ [nkarenno) + [ f o f L 0.

R an R—2ie -

It remains to implement the change of variablég — (-1, —u) in the last integral and observe that

N2 @Nu@m-£) )
K, A&, = ?ﬁw since deW(1) =1, (6.25)
S0 as to obtain
WIHIE) = WiedH] + WRIIHIE) - W [H (an + by —4) | (6.26)

with “W,es being given by (6.10) and
) NZQ N N
WyHIE) = 25 J[J(N (n— &) H(n) dy (6.27)
aN

with the functionJ given in (6.3). A similar reasoning applied to the caseT/Bh‘)[H](g) yields
WOMHIE) = ~WEH @ + by - &) = WiedHT . (6.28)

Hence, eventually, upon deforming the contoursﬁ@ or‘ﬁr(e_g in the(Wl(\f’E’) operators,

WNIHIE) = WEIIHIE) - WEDH @ + by - &) + WEIIHIE)
- (W(NJr_)[HA](aN +by =€) + WiedH] — WiedH"] + (Wl()?()[H](f) . (6.29)
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The operatoﬂd/l(\l“) appearing above has been defined in (6.9) whereas

(bf(+) (‘ﬂr(eg) an
At this stage, it remains to observe that
WOIHIE) = WRIHIOR) + AWLTHIE) (6.31)

whereA W is as defined in (6.9), while

by -
da f d,u Nd H(n)ep/lx+|N"y(n—bN)

(0) - - il
WrTHI) = 27rﬂ 2ix J 2ix )" (- DR DR (1) (6.32)
Ged G ™
As a consequence, we obtain the decomposition:
WIHIE) = WOIHIW) + WRIHIE + WRIHIR) + WeulHIE) , (6.33)

where we have sew(o)[H](x) (W(O)[H/\](X) In order to obtain the representation (6.4) it is enougiméoi-

porate certain terms present‘W [H](g) into the R and L-type operators. Namely, we can rec ?()[H](g)
as

2« N
WOLH(E) = Zr—ﬂ f IN(7 - &) [H@) - HETdn — NTHE)leo(xe) — 0o(x)]

— WdHI(©) - N[ooe) — 00(x)] Hele) — —{ f f } He( + N7y) = Ho(&)] J0) dy .

There, we have introduced

! e da . AP ¢
QO(X) = M f /lR(/l) ﬂ l.e QO(X) = - (634)

vl

The representation (6.4) foWn[H] follows by redistributing the terms. This decompositidscaensures that
Wn[H] € C¥1(ay ; bn]). Indeed, this regularity follows from the exponentiatdg of the integrands in Fourier
space whe#g €]ay ; by[ and derivation under the integral theorems.

[ ]
Note that the integral defining, in (6.34) can be evaluated explicitly leading to:
L L _ 21wy wp
—_ e w1+u)2
o00(X) = -In — | (6.35)
27T2ﬁ 1 + e_ 2’(2‘):14—3;22 + Iﬂwi-#w%

In particular, it exhibits a logarithmic singularity at tbegin meaning thafl(x) has a 1x behaviour around 0.
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6.2 Local approximants for Wy

In this subsection, we obtain uniform — in the running vaeab asymptotic expansions for the operat®tiy,
Wr and Weyp. In particular, we shall establish that4fis uniformly away fromby (resp. an), Wr (resp.
W) will only generate exponentially small (i) corrections. Finally, this exponentially small bound vaibld
uniformly after a finite number of-differentiations. Prior to discussing these matters we neautrmdiice two
families of auxiliary functions o™ and constants that come into play during the descriptiohesd behaviours.

Definition 6.5 For any integerf > O:

(X = Zﬂiﬁ f y 3(y) dy . (6.36)
It’+1 ei/lx
0 = f zlnuMRT(u)(ﬂ DR’ (6:37)
<[(+) R—-ie
il 8t 1
U = 2inﬁ€!W(R(a))M 0 (6-38)

Note that 4, = 0 since R is an odd function — given (#.19).

For ¢ = 0, this definition ofop coincide with (6.34), whose explicit expression is (6.3B)deed, we remember
from § 4.2 thatt means that we can move the contour of integration pvep to +ico without hitting a pole of
R;l(,u). According to (4.27)u Ry(1) has a non-zero limit whep — 0, so we just pick up the residue at= 1
which leads to the expression (6.34). For 1, the functionw, is continuous ak = 0. Furthermore, for any
¢ > 0, 0¢(X) andwp(X) decay exponentially fast mwhenx — +co. Indeed, it is readily seen on the basis of their
explicit integral representations that there exits- 0 such that:

lo(X)| + |we(X)] < CoeC*  fore>1. (6.39)

Proposition 6.6 Let k> 0 be an integer, He C%*1([ay ; bn]), and define:

- k 6) K. 400
WrHI(xe) = SEHON ooy - 3O 5 4 31 EO0

-0(X) . (6.40)

f _ b 0 ~ NE-1)a . 21 ~ N(-1)a
k
H©®
WoalHIO) = 3, N (6.4)
These operators provide the asymptotic expansions, umiforé < [ay ; bn]:
WRIH (%R, &) = WriHI(X®.&) + AigWrIH](XRr.€) » (6.42)
WiHe](€) = Whokk[HI(€) + ApgWok[He](é) - (6.43)
The remainder ir{6.42)takes the form:
A WRIH( &) = ROHA( &) + Z X2REE THI() (6.44)
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with R(O%k][H J € WIRT x [an ; bu]) andR(lfi])t,[H ] € W)(R"), and the more precise bound:

CeC'x
. k+1
mef0ikl,  max {J9PRG) 0. &) + PR THIOR) < T IHE ey (6.45)
te[0; K]
for some CC’ > 0 independent of N and H. The remainder(@43)is bounded by:
||A[k](ka[He]||Wﬁ1°([aN :ba]) <C N_ka ||H£k+1)”W$(R) . (646)

Proposition 6.7 Let k> 0 be an integer, and H C%*([ay ; bn]). The operatorWey, takes the form:

WelHI(€) = RO IHI(XR.€) + Z X5 2R, THIOR)

+RO HIOL ©) + Z XH2REA. [HI(XL) (6.47)
with R®__ [H] € W (R* x [an ; bn]) andRY2) - [H] € W(R*), and the more precise bound:
expR/LL" "¢ k ! expR/L;¢L ¢ k !
. P4>(0) P4(1/2) ~C'N® g (k+1)
vme |[0: k]la pe?'(])a)r%]l {|6§ReXpR/|_[He](XR/L,§)| + |G§ReXpR/L g[He](XR/L)|} < CN™e ”He ||W,‘§1°(R)
e[ 0; k]

(6.48)

for some CC’ > 0 independent of N and H.

The idea for obtaining the above form of the asymptotic exjmans is to represerd in terms of its Taylor-
integral expansion of ordde. We can then compute explicitly the contributions issuirggf the polynomial part
of the Taylor series expansion fét and obtain sharp bounds on the remainder by exploiting thetste of
the integral remainder in the Taylor integral series. Irtipalar, the analysis of this integral remainder allows
uniform bounds for the remainder as given in (6.45), (6.48) @.48). The reason for such handlings instead of
more direct bounds issues from the fact that the integralsamipulate are only weakly convergent. One thus has
first to build on the analytic structure of the integrand sacasbtain the desired bounds and expressions and, in
particular, carry out some contour deformations. Cleatgh handlings cannot be done anymore upon inserting
the absolute value under the integral sign, as then theramidgs no more analytic.

Proof — We carry out the analysis, individually, for each operator.

The operator Wy

The Taylor integral expansion &f up to orderk yields the representation

k (p)
WadHIE) = )5 T o [ YPInd - A WalHae . (6.49)
p= R
where
MWl HIO) = 5 f a2V f Yy HED(E N ) (650
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In the first terms of (6.49) we identify:

fyfxy)dy 1 (L

1

R()

=2nB¢'u, , 6.51
— )Mo 50U (6.51)

and we remind that this is zero whéiis even. Finally, we get that the remainder §*afunction of&, and:

IHED e
el KL Il WodH i ) < i) f <o) 2L (6.52)

27rﬁ
SinceJ decays exponentially ab (see (6.34) and (6.35)), the last integral gives a filkitdependent constant.

The operator Wgr

The contribution arising in the first line of (6.6) can be teshanalogously tdd, what leads to

+00
a

HO@)

k
"5 ) JO) [He( + N™y) — H(&)] dy = ;N@ e gy @00 + A WRIHI(x.8) (6.53)
with
A WOHI(x &) = ZﬂﬁNka f dy y<*13(y) f @V e Nty (6.54)

SinceJ decays exponentially at infinity, we clearly have:

@ oxe IHE Pl
max |ap Al WRIHI(Xr,€)| < Ce &% —— (6.55)

pe[0; m N Kk-m)a
for some constant§, C’ independent oH andN. We remind that th&-derivative can act on both variablésnd
Xr = N¥(by — £).
We now focus on the contributions issuing from the secongl ¢ifi(6.6). For this purpose, observe that the
Taylor-integral series representation fétyields the following representation for the Fourier tramsf of H:

bn

f Hme N =™ dy = Fr[H](u) + FaxlHel(w) + FalHI(w) , (6.56)
aN

where we complete the integral ove[; by] to ] — oo ; by] in the first term, while the two last terms come from
subtracting the right and left contributions:

k . p+1 an
FidHG) = - ) () HOGD L ARG = (RGO (657)
p=0 M —00
and
FarlH() = f dy f ad- ‘) &N -00) () _ by HOD by + 17— b)) (6.58)
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Thus,

bn

N2 da du dix _

- i Y H —IHYR
2np 2im f 27 (1 — )Ry ()R (1) (me " Rdnp
Ged G ay

K HO
Z F,L(f(?)li) 0e(¥) + Lag[Fax[He] + Fa[HJI(x) . (6.59)
=0

L, is an operator with integral kernel — see later equatior6}6.6
-1
Ry ()R, (1)

which satisfies the assumptions of Lemma 6.8 appearing bd&lognce, Lemma 6.8 entails the decomposition:

Ao(d,p) = (6.60)

k

LaglToudH + FoHAI) = ) (X2 Lagel FoudH] + FolHII0)
=0

+ (A Lag)[FaxHe] + Fa[H]l(X) (6.61)

in which both L. [Fax[He] + Fa[He]](X) and Qg Lag)[F2x[He] + F3[H.]](X) belong tow,°(R™) and are as
given in (6.68)-(6.69)
By using the bounds:

el HE e . 1 ¢

|F2uHel(w)| < N2 since n < for pe %), (6.62)
and
[FalH(w)| < c—”'tllllt;;@ Legimal (6.63)
we get that there existd-independent constan® C’ such that
i g IHE e
max 02 - {(€7 Lage + Ay Lno)[FarlHel + Fa[H(xw))| < Ce® QNTm)a() (6.64)
te[0; K]

We have relied on:

Lemma 6.8 Let A(4,u) be a holomorphic function of and u belonging to the region of the complex plane
delimited by’fgg) and %E;g) and such that it admits an asymptotic expansion

k _ 1/2
Ac(u) . |Ae()l = O(|u*?)
A, p) = + AgA(A, 1) with . (6.65)
;, li(a - is)] ARAQ P = O k32 |u2)
Then, the integral operator gm- L*(459) = {f : u uf(u) € L*(45))
_ d/l A(/1 ) gx
LAlTI = 27r,8 f 2ir f 2ir u—A fw) (6.66)

(5(*‘) (g( )
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can be recast as
k
09 = > x* 2Ly [f1(0) + A LalF1(9) . (6.67)
=0

where the operators

N2« di  (du Ax()et f(u)
LAkl fI®) = — — | = . . -, (6.68)
Ak ZTﬁF({]R[)ZIﬂ%IZIJT [X(u — i) — /l](|/1)[+§
N> rdd  (du A[klf\(ﬂ H) jax
ARLALTIY) = = [ ——— Tl () (6.69)
,BW£2| w£

are continuous as operatoys- L“(‘ﬁ,g‘g) — W°(R"). Note that, abovel(iR") corresponds to a small counter-
clockwise loop aroundR™*.

Proof — It is enough to insert the largeexpansion ofA and then, in the part subordinate to the inverse power-law
expansion, deform the-integrals tol'(iR + is), translate by+i¢ and, finally, rescale bx. The statements about
continuity are evident. [

The operator Weyp (Proposition 6.7)

The analysis relative to the structure®f,,[H.] follows basically the same steps as above so we shall nail det
them here again. The main point, though, is the presence efgonential prefactor €\ which issues from the
bound (4.50) odl - I,. [
6.3 Large N asymptotics of the approximants of Wy

The results of Propositions 6.6 and 6.7 induce the repratsent
WN[H](E) = Wrk[HI(XR, &) + Wokk[HI(€) — Wri[H](X, an + by — &) + AgWn[He](€) . (6.70)

with all remainders at orddeare collected in the last term. In this subsection, we sleaivd asymptotic expansion
(in N) of the approximantsWpkk and Wry in the case when their unrescaled variaplscales towardsy as
& = by — N7 x with x being independent df. We, however, first need to establish properties of certaxiliary
functions that appear in this analysis.

Definition 6.9 Let¢ > 0 be an integer. As a supplement to Definition 6.5, we introgfareany integer? > O:

(=X (=x¥)Pws(X) (=X)PUsi1 Us+
b = era() — (730000 - S;g i A w( = S; £ (671)
s,p=0 spz0
and:
ag(X) = bo(X) + up(X) , ag(X) = M for¢>1. (6.72)

ag(X)
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It will be important for the estimates of § 8.2 to remark tlat/'2ag(X) is @ smooth and positive function:

Lemma 6.10 Let£,n,m > O be three integers such that-hm. There exist polynomials;.p, of degree at most
n+ ¢ and functions mn € Wy (R*) such that, for any » O:

a(X) = VX pomn(¥)e™* + X™ fomn(X) and a(X)-a(X) = VX Pemn(¥)e* + X" frmn(X) . (6.73)

The functiomg(X) is positive for x> 0 and satisfies

1 X
ao(X) xioﬁ m + O(X) (674)

Finally, one has, in the %> +oo regime,
a(X) = up + O(e™*) , ao(X) - ag(X) = u(X) + O(es) (6.75)

and the bound on the remainder is stable with respect to foriler diferentiations.

Proof — By using the integral representation (6.3) for the functipmwe can readily recast,(x), for x > 0 as:

(6.76)

o) = i+l X 65( 1 )d/l

278 J A A\RQ)) 2in

The u-integral arising in the definition (6.37) of can be computed by moving the contour of integration gver
up to+ioco, and picking the residues at= 2 andu = 0:

0 (X) i£’+1 ei/lx da i€+l ei/lx af ( 1 ) da
[ =

2 J 2emey 2 T W 00 = o JAR® ad\w- DR
g ied

u=02im

The first term can be related to the functiansand ws of Definition 6.5 by ary-fold integration by parts based
on the identities:

1 d" ((-1) g 1l . 05 (1
v gl o gwle) - 2 3™ Tulag ) ©77)
spz0

Namely, we obtain — writing the identity fdr+ 1 instead of — that:
_ ){’+l
¢+ 1)

0r+1(X) — 1r11(X) =

o) - Y S 6.79)

sp>0

According to Definition 6.9, we can thus identify,1(X) = by(X) — in this proof, we will nevertheless keep the
notationt,. Hence, it remains to focus an(x). Computing the’™-orderu-derivative appearing in its integrand
and then repeating the same integration by parts trick, airothat:

s (XY 65[ 1 g 9P (1 yda
e = 218 H;):t, S!p!r!ﬁ(RT(,u))w:o(j;T.ﬁ{Ri(/l)}ﬂ' (6.79)

¥
(bﬂreg
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In the second integral, let us move a bit the con%@g toa contour‘gr(;g?o which passes below 0 while keeping

. Doing so, we pick up the residue at O:

the same asymptotic directions +)

fé_ ﬂ{i}ﬂ_ﬁ_"{i} +fé_ 8_"{;}0'_1 (6.80)
A 0AP\R()) 2in — 9AP\R;(A) )10 1 4P\ \R(Y)) 2ix '
) G0

We observe that there exist constacyg such that:

1P 1y _ N Cpq AP R
1 c’)/lp{Rl(/l)} - qzzml [i(/l_ig)]q+1/2 p[R 1(2) , (6.81)

This decomposition ensures tmﬁq’])[le](/i) is holomorphic inH™, has a simple pole at = 0 and satisfies

APIR (1) = O(a-(+3/2),
Sinceg/2 is the distance betwe%(*) andR, we can choose this contour — for a fixgd such that the branch

cut of the denominators in (6.81) is located on a verticalliaé above‘ﬁr(;;o. This implies that the remainder in

(6.81) is holomorphic belomggo. So, in the second integral of (6.80), we obtain with the §tsh contributions
involving:

g di e sXxa2
£ [i( — ig)™2 2ir ~ iT(q+1/2) (682

reg

in which (after the change of variabie- —ix(1 — i¢)) we have recognised the Hankel contour integral reprasent
tion of {I'(q + 1/2)}‘1. In its turn, the contribution of the remainder in (6.81) ¢enwritten:

AP o1y G4 2 ('ﬂ) X\ (o ('ﬂ) X (-1 da
f d XA[”][RL ](/l)ﬂ - f(el " Z A[n] R (/l) i 0 A[n][Rl ](/I)Z_In' .
G Ged el
=0
(6.83)

Note that the last sum vanishes since we can deform the qootautegration to-ico providedm < n. Also, we
could deform%(” back to‘ﬁr(;g) in the first term since the integrand has no polg at0. All-in-all, we get

f&a_p{i}% _ _6_"{;} . Z Cpig & XY
o\ RS 2im — o R o T &4 T (@+1/2)
g )

N f AR ](/l)(e'ﬁx Z('X)_w) o (684)

¥

With the bound

g ’"Z‘l(ixr)!w

r=0

< XM (6.85)
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and theorems of derivation under the integral, we can cdecthat the last term in (6.84) is at le@st mtimes
differentiable and that it has, at least,matfiold zero atx = 0. With the decomposition (6.84), we can come back
to 7, given by (6.79). The second term in (6.84) — which contairivdéves of J/R; — can be recombined with
its prefactor — containing derivatives ofR; — by using the Leibniz rule backwards for the representatioine
derivative at 0 of IR = 1/(R;R)). Subsequently, we find there exist a polynonpal,, of degree at most + ¢
and a functionfy.m, € We2 1 (R*) such that

il iv\P C')S+l
T€+1(X) = \/)_(pé’;m,n(x)e_ﬂ 4+ xm f(’;m,n(X) - 2I7T_,3 S+Zp=€ (SS?)!D! 8/15+1{R2-/l) }|/1=0' (6.86)

The claim then follows upon adding up all of the terms. Fipdhe estimates at — +oo of a, follow readily
from the exponential decay at— +oo of the functionsy andw.
To compute the behaviour &t— 0, we remind that:

ao(X) = bo(X) +u; = 72(X) +ug . (6.87)

We already know from (6.86) thap(0) = 0, and we just have to look in (6.79)-(6.84) for the fiméent of v/X in
the case = 1. For this purpose, it is enough to write (6.79) witk: 1. Then, the square-root behaviour occur for
p=r =0ands=1inthe sum, and gives:

4 x1/2 gsx
ouE 2 4R
2inB - T'(3/2)

The codficientcy;1 is given by the largel asymptotics in (6.81), coming from that Bf (1) given by (4.30):

ag(X) = W)l=o + O(X) . (6.88)

Cor=-1. (6.89)

On the other hand, we know from (4.27) that:
D [ ——— (6.90)
Wy Wheeo = T, |

Therefore:

1 X
ao(X) = E m + O(X) . (691)

We finally turn to proving thatp > 0 onR*. It follows from the previous calculations that

1 1 ex_1 da
“® = sl m o | R B (6.92)

The integral can be computed by deforming the contour ugdeand, in doing so, we pick up the residues of the
poles located at

N
a2 dmenes s (6.93)
w1 + w2
All-in-all this yields
2wy ) (w1 + wy) - (_1)n—1 (- K)—n(l—x)
X) = (1 — e o™ with " = 6.94
2009 =, aon ) 0N = B Tl (=) (= (A= %Y

n>1
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andx = wz/(w1 + w2) < 1. By using the Euler reflection formula, we can reaagt into a manifestly strictly
positive form

- (w1 + wy) (sin[mm] )2 [(1+«n)-T(1+ (1-«)n) (6.95)
on = 2nfwiwz m nZ.nl- g% (1 - k)N - '
The asymptotics odp;, then takes the form
(W1+wg)  [2(1-«) (sin[mm] )2
o n—-+oo 2,80.)1(1)2 nn3 T . (696)

Thus the series (6.94) defining(x) converges uniformly foix € R*. Since the series only contains positive
summandsgp(X) is positive forx > 0. [

The main reason for investigating the properties of thetions a,(x) lies in the fact that they describe the
largeN asymptotics of the functiomVrk[H](X, bn =N~ X) + Whkk[H](bn —N~* X). In particular,ag(X) arises as
the first term and plays a particularly important role in thalgsis that will follow. Let us remind Definition 3.14
for the weighted norm:

CH ||W°°(R)

NPIHI = ) —=— (6.97)
k=0
Lemma 6.11 Let k> 0 be an integer, He C%*1([ay ; bn]). Define the functions:
k-1 (6+1)
WEIHIO) = HOMw0) + LIS (6.98)
Nt’a
, Y HED (by) (X
WEMHI) = H'(bn)uy + Z % : (6.99)

=1

The approximants at order KV gk [H](X, by — N~ X) and Wikk[H](bn — N7 X), admit the large-N asymptotic
expansions:

WriHIOx by =N = WEIHI(X) + AigWEIHI() . (6.100)
WorgHl(on = N7%) = WENHIX) + AgWETHI(X) - (6.101)
The remainders have the following structure:
AgWEIHI(X) = N‘k“-e‘gx{(ln RO [HI(X) + Rgzs)k[H](x)}, (6.102)
AgWEIHI) = N RO [HI(¥) (6.103)

WhereR(a) [H] e W*(R") fora=1,2,3. Fora= 1, we have:

IREIHI(0)] = O+ (6.104)
uniformly in N. Moreover, we have uniform bounds foz j0 ; eN?], namely forf € [O; k]:

OERDIHIOR)| < Cie - XL N MQTHEDT (6.105)

a=23  |[REMHI(xR)] < Cier N NPHI], (6.106)

where we remind = N*(by — &).
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Note that we can combine the operators into the asymptopiaresion

K y(e+1)
WEAHI) + WEAHI(X) = H’(bN)ao(X){l+;W}. (6.107)

Proof — The form of the largeN asymptotic expansion follows from straightforward maiggions on the Taylor
integral representation fai()(¢) arounds = by for £ € [0; k]. The control on the remainder arising in (6.100),
(6.101) and (6.107) follows from the explicit integral repentation for the remainder in the Taylor-integral series

1
as _ . Y (1=K (0% D0(9) < (1= DK (=X (x)
A WRTHI) = NkﬂfdtH(k YN tx){_ T A-ol }
0
k +
A WETHI) = N“”Z” ((k)k;lff dt (1 - ) “HE Dby - N tx) . (6.108)

and we remark thatg(Xx) — given by (6.35) — has a logarithmic singularity wher»> 0. The details to arrive to
(6.105)-(6.106) are left to the reader. [

Collecting the bounds, we have obtained in sup norms, we fipeiticular/y[H] is bounded whet is C*:
Corollary 6.12 There exists G 0 independent of N such that, for anydHC([ay ; bn]),

IWNIH]Iwe qan on) < CllHellwez) - (6.109)

7 Asymptotic analysis of single integrals
7.1 Asymptotic analysis of the constraint functionalsXy[H]
Recall that for anyH € C1([ay ; bn]) the linear formXy[H] defined in (3.99):

iN¢
X11 +(O)

R+IE

XN[H] =

X uale) f H ()& gy (7.1)

is related to the constrain#;;[h] defined in (5.24) wherél andh are related by the rescaling (4.2):

N y11.,. (0 @ )
);T—lﬂ’()XN[H] . h(¥) = 2N7rﬂ H(ay + N79%) . (7.2)

Julhl = -

In the following, we shall obtain the largg-expansion of the linear fora¥y[h] introduced in (3.99) and defining
the hyperplan&s where we inverse operators. We first need to define new cdastan

Definition 7.1 If p > Ois an integer, we define:

_ RO e RO 1L
- f R 2 - Rf R () 2in 73

The equality between the two expressionsSigfollows from the symmetry (4.28).
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Lemma 7.2 Let k> 1 be an integer, and H CX([ay ; bn]). We have an asymptotic expansion:

k-1

iP3
Xn[H] = ZJN—Q;’{H@(aN) + (-1PHPby)] + AgXn[H] . (7.4)
p=
where:
|AgXnIH]| < CN_mIIHIIW(;"([aN b)) - (7.5)

Proof — For A betweerl; andR, we decomposg into:

X)) = X8 + AP (7.6)

In terms of the various matrices used § 4.4, the main part is:

B e 1 1
D = R LI M- (124 T )= | TR T IR@ R 7.7)
- R(2) 0
and is such that the remainder is exponentially smal:in
_\—1
AP = ) -[em()  with  [sTI)(a) = (Iz + "7) -TI(2) - Pr(2) — 2. (7.8)

Indeed, the larg&d behaviour ofdr inferred from (4.18) and (4.35) as well as the estimate {db0the matrix
IT - I, imply that, fore’ fixed but small enough, and uniformly ihe R +ir,0< 1t < €’:

Ce#e N
L —F. .
[6Ma(d)] < =77 (7.9)

Furthermore, a direct calculation shows that

1 g

B [611]21(4)
AR () Ry(A)

Ry (1)

W) = ( Jpotuto) + , (7.10)
and taking into account the largebehaviour ofR;;; given in (4.25)- (4.26), we also get a uniform boundifer

R+ir,0<1t<¢€:

e\
(exp C e €
A € ——. 7.11
12| = (7.11)
In particular, this estimate (7.11) implies:
1 R,(0) NG
= — + O(e™*¢ . 7.12
x11:+(0) 2 ( ) (7.12)

The decomposition (7.6) in formula (7.1) induces a decoiitipos

Xn[H] = X@TH] + X&PIH) (7.13)
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where

. by
ey — _IN® (exp) IN“(7—bn)
X = = [l [ Hoe dy (714)
Z0) an

and¢) is a contour surrounding O from above, goingetan H™ along the raySe‘3% andte 7 and such that
max{Im(1) : 1€ ¥} = ¢. Note that we could have carried out this contour deformatimcel1(1) is
holomorphic in the domain delimited & + ie’ and¢’ ().

Since ford € €0, we have:

X o

b
. C e
’ f H(peN“ A b“)dn‘ < 2o Ml gao - (7.15)

it is readily seen that

|XE\|eXp)[H]| < C. N“e‘%'\'” ||H||L°°([aN ba]) - (7.16)
It thus remains to estimate
XEYH] = XBYH] + XETHA (7.17)
where
d e
iN® w1 -
X@IH] = ad H (1) N"H=bn) gy | 7.18
R TH] x11:+(0) J 2im uRy () ) 1 (7.18)
g o

and the second term arises upon the change of varighles+> (—u, an + by — ) in the initial expression. The
dependence il is implicit in these new notations. Note that we could defdh® contour fromR + i€’ up to
R —i¢ or%r(e‘g) since the integrand is holomorphic in the domain swappeceiwéen. Replacingl by its Taylor
series with integral remainder at ordemve get:

XETH] = XGIH] + A XETH] . (7.19)

The first term is:

k-1
H(® (by) du 1 . 2 (-i)PT H(p)(bN)
XSGIH] = iN® Y ———= | o= PNl oy = p 7.20
I Zop!xll;+(0)R_ i A Ri(O)Xm(O)Z (7:20)
~le -

where we have recognised the constantef Definition 7.1. The remainder is:

k-1 —XN
1 H® (by) du 1 .
A X(asH = - { e Pt ¢
W R)[ ] ix11:+(0) Z_:‘) pl NP 2im uRy (1) n n
) 6 o
G N k N®u(r-bn) 14(K)
| SR (ﬂ) dn(n b) ot (k 1)|é H®bn +tp—by))p . (7.21)
Gl

86



XS}?{H] yields the leading terms of the asymptotic expansion anced in (7.4). Hence, it remains to bound

A[k]X(F?S)[H]. The first line in (7.21) is exponentially small and boundsca term proportional thHllwe (fay ;on))-
The second line is bounded by

bn
dul 1 K =N [Im (r—bu)] —kar
N IR O) - IHIwe(fan b)) | 5 ——— [ dip (b — )< e N UMHD] < € N | H o g sbap) - (7-22)
k N PN 277k| |ﬂRT(,u)| k N
<0 )
reg
It thus solely remains to put all the pieces together. [

Using these estimates, we obtain the continuity of the fif@an Xy in sup norms:
Corollary 7.3 There exists G 0 independent of N, such that:

Proof — We have shown in the proof of Lemma 7.2 a decomposition:
XGH] = XEIH] + XEHA + x§PH] (7.24)

XS‘S)[H] is given in (7.18). It hagy11.(0) as prefactor, and we have seen in (7.12) that this qyasates the
non-zero value-2/R(0) up to exponential small (iN) corrections. So, we have the bound:

> W ([aw ;b)) ) lulllm | Ry ()l 27
7o

[XRTH]| <

(7.25)

where the inverse power ¢ifn x| and the loss of the prefactdt* resulted from integrating the decaying expo-
nential|eN"#(1-b)| over [ay ; by], given that Imu < O for u € %E;g) We conclude by combining this estimate with
(7.16) which shows that the remainder is exponentially kmal [

7.2 Asymptotic analysis of simple integrals

In the present subsection, we obtain the laxgasymptotic expansion of one-dimensional integrals innglv
“Wn[H]. This provides the first set of results that were necesse®y3.4 for a thorough calculation of the larfje-
expansion of the partition function.

Definition 7.4 If G and H are two functions ofay ; by], we define:

bn

3G H] = f G(©) - WIHI(E) ce (7.26)

an

where theW) is the operator defined i(2.44).

To write the largeN-expansion ofSs, we need to introduce some more constants:
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Definition 7.5 If s, ¢ > 0 are integers, we set:

+00

Tse = fXSb[(X) dx (7.27)
0
where the functiom, has been introduced in Definition 6.9.

Proposition 7.6 Let k> 1 be an integer, Ge C¥([ay ; bxn]) and H € C¥*1([ay ; bn]). We have the asymptotic
expansion:

b kel by

3Ol = w60 WO + 3 isluna [GOHENE &
aN p_ an
by [CDPHOY ) - GOy + (—1)f’H“’*”(aN)G(SRaN)]} + A (G, HI . (7.28)
sti=p-1
5,620

where we remind that u’s are the constants appearing in Diefin6.5. The remainder is bounded as
|AlgJ$[G, H]| < CN™ IGlIwe , an son) 1Hellwe, (faw :n)) (7.29)
for some constant G 0 independent of N, G and H.

Note that the leading asymptotics 8f[G, H], i.e. up to the o(1) remainder, correspond precisely to the
contribution obtained by replacing the integral ker8aN* (¢ —n)) of Sy by the sign function— which corresponds
to the almost sure pointwise limit @(N*(¢ — 7)), see (2.42) — and then inverting the formal limiting operato
The corrections, however, are already more complicatedegsstem from the fine behaviour at the boundaries.

Proof — Recall from Propositions 6.4 and 6.6 tld{y[H] decomposes as

WNIH]I(E) = WriHI(XR, &) + Whik[HI(€) — Wri[H (XL, an + by — &) + AgWnI[H(E) (7.30)

where
||A[k](WN[He]|||_oo([aN b)) = CN~ ka||H(k+1)”L ©(R) - (731)
This leads to the decomposition
34G.H] = SEIG.H] + QG H] - QG H" + AILG, H] (7.32)
where:
bn
WIGH = [ 66 WandHIE) e
an
XN
QG H = Nla G(bn — N™*X) - Wri[H](x, by = N"*x) dx ,
0
bn
MG = [ 6@ Al WaIHIE) . 7.33)
an
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Clearly from the estimate (7.31), there exist a cons@int 0 such that:
A3, He]| < €' N - [IGliL(ray s - IHEllogey - (7.34)

The asymptotic expansion GIS_’kk) follows readily from the expression (6.41) f6#’,«[H]. It produces the first
line of (7.28). As a consequence, it remains to focuggb Recall from Proposition 6.11 the decomposition

WrilHI(x by = N"%) = WEIHIX) + AgWEIHI(¥) (7.35)
and especially the bounds (6.104)-(6.106) on the remaimdgch imply:
|A[k]W(RaS)[H](X)| < CeX Inx- N ||HQ||W;11(R) . (7.36)

The contribution of the first term of (7.35) involves the ftinosb,. it remains to replac& by its Taylor series
with integral remainder of appropriate order so as to get

k-1

é 1 1 é
39IG.H] = Z N Z C _) HD(by) - GO (by) f X0, () dx + Ay SP[G, H] (7.37)
s€>0
where
k-1 XN 1
1 H(€+1) b
ApgSP(G, H] —= (kag)). f dxb(X) (-X)F L f dt (1 - t)< 2 Gk Dby — N~tx) (7.38)
=0 0 0
1 N
+ < f G(bn — N*X) - ApgWETH](x) dx . (7.39)

Clearly from (7.36), there exist8” > 0 such that:
ASEQIG.H]| < €7 N IHellwes, ) - 1IGIwe o ) - (7.40)

Moreover, one can extend the integration in (7.37) fronig];up toR*, this for the price of exponentially small
corrections inN. Adding up all the pieces leads to (7.28). [

In the case whe® = 1, i.e. to estimate the magnitude of the total integrafléfy[H], we can obtain slightly
better bounds, solely involving the sup norm.

Lemma 7.7 There exists G 0 independent of N such that, for anyd-C*([a ; bn]),

bn
an

Proof — Recall from Propositions 6.4 the decomposition:

< ClHellwg ) - (7.41)

WNIHIE) = WRIHI(XR, &) + WoHJ(€) — WRIHI (XL, an + by — &) + Weg[HI(E) . (7.42)
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We focus on the integral of each of the terms taken indivigu&Ve have:

bn B
Na
f WodHIO & = 5 f dy J(y) f [Ho(bn + ) — Hean + ] c, (7.43)
an R 0
thus leading to
bn
| [ WolHJ@ ] < ClHge - (7.44)
an
Next, we have:
f WrIHI O &) e = — oo f dy J(y) f de [Ho(€ + N"y) - He(@)]

fdyJ(y)fH(bwt) He(by — N7y + B)] ct

gxn _

by by
! 1yR } XR
2|7r,3 me f2|7r(,u A)Rl(ﬂ)RT(/l){ h fH (m)e " ™rdp + fH e dg} (7.45)

Ged G o o

The exponential decay dfat +oo ensures that the first two lines of (7.45) are indeed bounglédlllmenwso(]g) for
someN-independen€ > 0. The last line is bounded similarly by using

C’ [Hellwe ®)

N
nedg, | [rgemrorog < Sl -

It thus solely remains to focus on the exponentially smathté/e,,[H]. In fact, we only discuss the operator
W(|\|++) as all others can be treated in a similar fashion. Thankstbdlund (4.50) fof1(1) — I, and the expression
(4.54) of the matrix¥ in terms ofl1, we have:

e—zEN"
W) = 1y + o( 1+|ﬂ|) (7.47)

which( is)valid fora uniformly away from the jump conto®y (see Figure 1). Therefore, using the definition (6.9)
of Wy ™:

by
_ @ d/ld/,ll 1
WEIH < C”|Helwe @) 7N | . 7.48
U vl e (27)2 14— 1l IR (DR, () A (7:48)
an @)
reg
Adding up all the intermediate bounds readily leads to thétl [

By a slight modification of the method leading to Lemma 7.7 cae likewise control th&!([ay ; bn]) norm
of Wy in terms of thew;” norm of (an extension ofji.

Lemma 7.8 For any He C*([ay ; by]) it holds
IWNIHIqay o < ClIHwe@  and [[WedHllligag by < €N IHellwe) - (7.49)
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7.3 The support of the equilibrium measure

In the present subsection we build on the previous analgsés $0 prove the existence of the endpoiaig, by)
of the support of the equilibrium measure and thus the faatt th

PSE) = Lay oy (€) - WNIV'I(E) e (7.50)

where'W\ is as defined in (2.44).

Lemma 7.9 There exists a unique sequer(eq, by) — defining the support of the Lebesgue-continuous equilib-
rium measure which corresponds to the unique solution torttmémisation probleng2.35)(2.36) The sequences
an and by are bounded in N.

Proof — The existence and unigueness of the solution to the miniiois@roblem (2.35)-(2.36) is obtained
through a straightforward generalisation of the proofiagisn the random matrix case, segy.[30].

The endpoint of the support of the equilibrium measure shbalchosen in such a way that, on the one hand,
the density of equilibrium measure admits at most a squartlrehaviour at the endpoints and, on the other
hand, that it indeed defines a probability measure. In otlwedsy the endpoints are to be chosen so that the two
constraints are satisfied

bn
Xn[V] =0 and 3I4[1, V'] :f(WN[V'](f)df =1. (7.51)
a

The asymptotic expansion &y[V’] and 3g[1, V'] is given, respectively, in Lemma 7.2 and Proposition 7.6.
However, the control on the remainder obtained there dogsrmidkeonay andby. Shoulday or by be unbounded
in N this could brake the priori control on the remainder. Still, observe thataf(by) solve the system of
equations (7.51) thepi> Wy [V’](&) with Wy associated with the suppogy ; by] provides one with a solution
to the minimisation problem afy defined in (2.33). By uniqueness of solutions to this minatia problem,
it thus corresponds to the density of equilibrium measurs.af&onsequence, there exists at most one solution
(an, bn) to the system of equations (7.51).

Assume that the sequenag andby are bounded ifN. Then, the leading asymptotic expansion of the two
functionals in (7.51) yields

Vibn) + Viiaw) = O(N™) . 11 (VN -VO) | _ g
{ V/(b:) - V’(a:) uIl + O(N—(}j) VIZ ( 1 _1 )( V,(az) _V/(a) ) - O(N ) (752)

Note that the control on the remainder follows from the faett tay| and|by| are bounded by aN-independent
constant. Also,d, b) appearing above corresponds to the unique solution toygtera

V'(b) + V(& =0 and V'(b) - V'(a) = u;?. (7.53)

We do stress that the existence and uniqueness of this@olatensured by the strict convexity \6f

The smoothness of the remainder @&y (by) away from 0, the control on its magnitude (guaranteed by the
boundedness dy andby) as well as the strict convexity &f and the invertibility of the matrix occurring in
(7.52) ensure the existence of solutioag,(n) by the implicit function theorem, this provided thidtis large
enough. Hence, since a solution to (7.51) veithandby bounded irN does exists, by uniqueness of the solutions
to (7.51), it is the one that defines the endpoints of the sugbdhe equilibrium measure. [
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Corollary 7.10 Let the pair(a, b) correspond to the unique solution to the system
V/(b) + V'@ =0 and V(b) - V'(a) = u;’. (7.54)
Then the endpoint&y, by) of the support of the equilibrium measure admit the asyngpéxpansion

k— k-1
+ O(N™ ) and =y =
4 =0

an = + O(N7*) | (7.55)

Z|U

1(’:1
=oN

where a0 =aandlyo=b

Note that the existence and uniqueness of solutions to steray(7.54) follows from the strict convexity of the
potentialV.

Proof — The invertibility of the matrix occurring in (7.52) as web ¢he strict convexity of the potentigl ensure
that ay and by admit the expansion (7.55) far = 1, viz. up to QN~) corrections. Now suppose that this
expansion holds up to@~ 1), |t follows from Lemma 7.2 and Proposition 7.6 that the asiatip expansion
of Xn[V’] andJ4[1, V'] up to QN~K?) can be recast as

( XN[V'T- Tt ) _ ( V/(bn) + V'(an) + Brx-alV'] + Tt ApgXnlV] ) .

7.56
Je[1, V'] - ugt V/(bn) - V'(an) + Box-a[V] + Ut Apg6[1, V'] (7.56)

In this expression, we hagy® - AgXn[V']| + |ur? - AggSs[L, V]| < CN™ sinceay and by are bounded
uniformly in N, while

( Brya[V] ) ~ kz—i i( iP-TpTot (V(p+l)(aN) + (_1)pv(p+l)(bN))
Baya[V'] NPe (Ups1 + -Io,p—l)uzl VP (by) - (Upy1 + (_1)p-io,p—l)ull - V(Prh(ay)

) . (7.57)

We remind thall, was introduced in Definition 7.1y, in Definition 6.5, andTo  in Definition 7.5.

Since bothB1x-1[V’'] and B2x_1[V’] haveN~ as a prefactor, by composition of asymptotic expansiorseth
exist functionsBp.¢(bn:1, - - ., Bnie-1 | an;t, - . ., @ne-1), indexed byp € {1,2} andf € [1; k- 1], independent of
k, such that

k-1
Brk-1[V’] ) 1 ( Bre(bn:ts - -, Bnge—1 | an;t, -, @nge-1) ) —ak
’ = —_— ’ ' ' ' ’ + O(N™*) . 7.58
( Bok-1[V’] ; Née \ Bar(bn;t, ... bne-1 | an;z, - - -, ange-1) (N (7.58)

As a consequence, we have the relation:

k-1

1 1 V'(bn) - V'(b) ) -1 ( Bre(bn:t, - - -, BNce—1 | @nct, - - s anie-1) ) ke
= Y = Suon: | | ' O(N™ ) . (7.59
( 1 -1 )( V’'(an) - V'(a) ; Née \ Ba(bn:t, ... bne- | an;t, ..., ane-1) + o ) (7:59)

This implies the existence of an asymptotic expansioaoiindby up to a remainder of the orde(®¢). m

8 The operator U}

Let us remind the definition of the operatdté, andSy:

UNElE) = 6@ (V@) - SN + Snle - o818 (8.1)
by 5

SnlolE) = f SIN“¢E-mletdy  and S = prwpcotanhmwpe] . (8.2)
an p=1
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and the fact thatW’y defined in 8 5.4 is the inverse operator8Q. We also remind that the densib)ga') of the
N-dependent equilibrium measure satisfies the integraltequa

véelan;bnl,  SnlpV1E@) = V'(©) . (8.3)

This makes the first term of (8.1) vanish ke [ay ; bn], but it can be non-zero outside of this segment.

In this section we obtain an integral representation foirrtiierse oft/, which shows that/y![H] is smooth
as long adH is. Then, in § 8.2, we shall provide explichl-dependent, bounds on tNé&°(R) norms of(L{,Ql[H].
This technical result is crucial in the analysis of the Sclger-Dyson equation performed in § 3.3.

8.1 An integral representation for 2/

Proposition 8.1 The operatorl{y is invertible on(¥sN CH)(R), 0 < s< 1/2, and its inverse admits the represen-
tation

VnlHIE)
VNIVIE)

whereVy = VR + Vi with

URTHIE) = (8.4)

bN bN
WiHie = [ SIS and IR = [ Vien) - WalHIn & . 65)

an

and the integral kernel of the operatdr[,f] reads:

bn

2] B SreglN(s—1)] — Sreg[N*(€ —1)]
e = | (-9 V- abn -9

ds  with  Seg) = SE) - ? . (8.6)

Finally, we have that, for ang € [ay ; bn], VN[V'](€) # O.

Note that the above representation is not completely fit id@iaing a fine bound of the/;*(R) norm of%(,(ll[H]
in the largeN limit. Indeed, we will show in Appendix C that’n[V’](¢) > cy > 0 for N large enough. Unfor-
tunately, the constary — 0 and thus does not provide an optimal bound forWj&R) norm. Gaining a more
precise control oy (eg its dependence dd) is much harder, but a more precise control is one of the dignés
that are necessary for obtaining shaialependent bounds for e (R) norm of(Lll(ll[H]. We shall obtain such
a more explicit control oy in the course of the proof of Theorem 8.2.

Proof — GivenH € (Xs N C)(R), let ¢ be the unique solution to the equatiGR[#](£) = H(&) on [ay ; bn].
Reminding the definition aBy in (2.42), it means that, faf €]ay ; bn[:

bn

{H(f) ~ [Swale - ot dn} | ©.7)

aN

bn
¢l dn  _ _ N
C-nin Uu(é) where  U(4) = 2B
an

As a consequence, the function

bn
1 (o) o
a2 J z-n 2in

F(2 = with g = +(@z-an)(z-bn) (8.8)

solves the scalar Riemann—Hilbert problem
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e F € O(C\ [an;bn]) and admitst LP([ay ; bn]) boundary values fop €]1; 2[ ;
e F(2 = O(z})whenz - oo ;
e F.(X)—F_(X) = U(X/9:+(x) foranyx €lan; bn[ -

Note that the_P character of the boundary values follows from the fact tlodith p and the principal value integral
are continuous orel ; by]. The former follows from Propositions 6.4-6.6 whereasl|titer is a consequence of
(8.7). By uniqueness of the solution to such a Riemann—Hillm®@blem, it follows that

b
B U(s) ds )
an

By using that, foe €]ay ; bl

by
1 ds
() = 4:(®-(F+©® + F-(9))  and — .= =0, (8.10)
aJNC G(9-(s-¢) in
we obtain that:
20(g _ _
o) = INTE—aON -8 ) e (8.11)

2123
with the expression oV given by (8.5). Further, given arye R \ [an ; bn], we have:

bN )
SMAO) = [ SedN e~ mlstdn + TLAIFE). (8.12)
aN
It then remains to use that, for suék
AT d 1
s
|eoea®-® (849
an
S0 as to get the representation
Sl = HE) - T v (8.14)

We can now go back to the original problem. lgetbe any solution tcl{n[¥] = H. Due to the integral
equation satisfied by the density of equilibrium measureapit by], it follows that, for anyé € [ay ; bn] such
that Wn[V’](¢) # 0,

_ Wh[HIE)
Y(é) = W@ (8.15)
and we can conclude thanks to the relation (8.11).4®R \ [ay ; bn], we rather have:
o) - SUWNIHI® - HE) 6.16)

SnWNIVIIE) - V'(©)

94



at any point where the denominator does not vanish. It thityseemains to invoke the relation (8.14). Note that
222853 (£)
VN2 (¢ — ay)(bn — &)
It is shown in proof of Theorem 2.4 given in Appendix C, poiiib,(thatp(eﬁ)(g) > 0 for & €]ay ; bn[ for N
large enough and that it vanishes as a square root at the. eBgahermore, it is also shown in that appendix,
Equation (C.8), thaV¥’(¢) — Sn[WnI[V’]](€) # 0 onR \ [an ; bn]. Thus the denominator in (8.4) never vanishes

and thus holds for any € R and anyH € ¥sn CL(R). The result then follows by density &fs N CL(R) in
XN CY(R). n

WNIVIE) = (8.17)

8.2 Sharp weighted bounds forZ/y!

The aim of the present subsection is to prove one of the mgsbritant technical propositions of the paper,
namely sharfN-dependent bounds on tN&*(R) norm of‘L(I(ll[H]. Part of the dfficulties of the proof consists in
obtaining lower bounds fo#/\[V’] in the vicinity of ay andby as well as in gaining a siiciently precise control
on the square root behaviour @ y[H] at the edges.

Proposition 8.2 below is the key tool for the larijeanalysis of the Schwinger-Dyson equations. We insist
that although our result isfiective in what concerns our purposes, in@t optimal. More optimal results can
be obtained in respect to loc#l;° norms,viz. W;*(J) with J being specific subintervals &, or in respect to
milder ones such as thNt,p(R) ones. However, obtaining these results demands nifoeseon the one hand and,
on the other hand, requires much more technical handlings $o make the best of them when dealing with the
Schwinger-Dyson equations. We therefore chose not to kefituther in these technicalities.

Before stating the theorem, we remind the expression fowtiighted norm (Definition 3.14):

lIllwee (r)
Nt’a

¢
NO[g] = . (8.18)
k=0

and thead hocnorms on the potential (Definition 3.15):

max{ ]£[ IFLV Tl oy é ka = 20+ 1
n[[v] _ a=1 a=1 ) (819)
{ min (L. infia V(@)1 V' (0+ ) = V') V'(a- ) - V@)

for somee > 0 small enough but independentdf We also remind thak,[H] is an exponential regularisation of
H, see Definition 3.8.

Proposition 8.2 Let¢ > 0 be an integer, and ¢, « be positive constants. There exist a constant-@ such that
for any H and V satisfying

o Kie[H] € Wy, | (R) and K/ [V] € Wy, ,(R) ;
* [IVilwgqa-s:b+s) < Cv for somes > 0 where(a, b) are such thatay, by) st (ab);
—+00
e He Xg([an;bn]) ;
we have the following bound:

| [URMH] < Cp-mg[V]- NG (n Nyt A@OD g6 TH]] (8.20)

]||w;°(R)
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Proof — As discussed in the proof of Proposition 8.1, the opemgﬁ= can be recast as

Sn[Wn[HIIE) — HE)
SNWNIVIIE) - V'(©)

Therefore, obtaining sharp boundsuml[H] demands to control, with glicient accuracy, both ratios appearing
in the formula above. Observe that the same Propositionrl lim particular, equations (8.11)-(8.14) ensure that,
givene > 0 small enough an#l of classCk*1, the functions

Wn[H](E) Sn[Wn[H]](&) - H(#)
ar(é) Or(é)

Wn[HIE)
WnIV'I(E)

UHIE) = Ly o) €) +  Lay bje(©) - (8.21)

and ¢ (8.22)

&
with:

ar(E) = VNe(by — &) = x/? (8.23)

are respectivelgX([by —e ; by]) andCX([by ; bn +€]). A similar statement holds at the left boundary. Furtheren
the same proposition readily ensures that both functioeslaarlyC+! uniformly away from the boundaries.

The largeN behaviour of both functions in (8.22) is not uniform &nand depends on whether one is in a
vicinity of the endpointsay, by or not. Therefore, we will split the analysis féiin one of the four regions, from
right to left on the real axis:

IEU = by + e(INN)? - N7 +oof (8.24)
1FY = oy by +e(nN)?-N] (8.25)
IR~ by = e(InN)2- N ; by] (8.26)

189 = [an+e(nN)?-N";by - e(INN)?-N™] . (8.27)

Indeed, the behaviour on the three other regions:

Jf\lf;m) = [an;an + e(INN)2-N7?] (8.28)
gL = Tay — e(InN)Z - N7 ; ay] (8.29)
Jﬂl_;out) = ]-oco:ay—e(INN)2-N] (8.30)
can be deduced by the reflection symmetry
WNIHI(E) = ~WylH"](an + by &) (8:31)

from the analysis on the local intervals (8.24)-(8.26).

The proof consists in several steps. First of all, we bounedN{IEf’(Jﬁ)) norm of the functions in (8.22), this
depending on the interval of interest. Also, we obtaiwer bounds for the same functions with < V’. Finally,
we use the partitioning & into the local intervals (8.24)-(8.26) so as to raise thallbounds into global bounds
on U MH] issuing from those orWn[H] - o5t and{Sn[Wn[H]] - H} - g5t
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Lower and upper bounds onJI(,\T;OUt)
Let us decompos8 given in (8.2) into:
S(X) = Seo(X) + (AS)(X), with S (X) = Br(w1 + w2)sgn) (8.32)

We observe that whefie JI(,\T;O‘“) andp € [ay ; bn] one avoids the simple pole in the kernel functi@{N® (¢ — n)]
of the integral operatafSy. Besides, the decomposition (8.32) has the property tbagry integer > 0, there
exists constants, C; > 0 independent ol such that:

veeITO, vpelayibn],  [9UAS)IN(E - )] < Co NN (8.33)

We have proved in Lemma 7.7 and 7.8 that

b
| f WAHIO & < ClHdwsey  IWalHgaumg < ClHwee (8.34)
an
for someC > 0 independent oN. Subsequently:
ISMWNIHT] ooy < 60 ClIHdlIwgey + Ce N &SN ey TH]Ls o o) (8.35)
< 60C NO[K[H]] + C)NEDe g o N (o a ) NO[IGIH]] . (8.36)

We have used: in the first line, the estimates (8.34) ; in therstline, the definition (8.18) of the weighted norm,
and we have included exponential regularisationsijiawhose only &ect is to change the value of the constant
prefactors. Sincea, bn) — (& b) in virtue of Corollary 7.10, we can write fa¥ large enough:

IKASNIWNIHI] = Rl growy < Ce- N NO[GH]] . (8.37)

Indeed, a bound from the left-hand side is obtained by adtie@/;” norm ofH to (8.36), which is itself bounded
by a multiple of NN [7G[H]].
Thanks to the decomposition (8.32) using that §gng) = 1 for & € Jﬁ;(ouo andy € [an;by], as well as the
exponential estimate (8.33) and thebound of Wy from Lemma 7.8, we can also write:

bn

SNIWNIVTIE) - V'(€) = 7B(w1 + wp) f WNIVIE) d = V() + O™ |V weqay o)) - (B-38)
=V'(b) an

-1
The identification of the first term comes from (3.3). Furthee have foi¢ — b| < e and¢ € J{FoU:

, , , " e(nN)? e V”(b)
V®) - V@l > lg=bl- inf V@) = S=G=VI0) = 5 =5

(8.39)

To obtain the last bound we have assumed ¢habs small enough — but still independenthdf and made use
of |b — by] = O(N™) as well as oi|V||W§<»([a_5;b+5]) < +oo andN large enough. Finally, it is clear from the strict
convexity ofV that in the caséb — & > €:

eV(b+e-V(b

V(D) =Vl = V'(b+e) - V(D) > 5 NG

(8.40)

97



where the last inequality is a trivial one. Therefore, in aage, folN large enough:

€
4N«

The combination of the numerator upper bound (8.37) apptidd = V' (using that the weighted norm is domi-
nated by theV> norm) and the denominator lower bound (8.41) implies tlatahyx > 0 such that both sides
below are well-defined:

IKASNIWNIVT] = VTl s o NEDECp IVl )
< .
[SNIWNIVIIE) - V(@) min{infecazn V()] IV/(b+ €) - V'(b)l}

Implicitly, we have treated from (8.41) like a constant.

[SNWNIVT] - V(@) 2

min{f Ei[r;f;b] V(). IV'(b+e) - V(b)) . (8.41)

(8.42)

Lower and upper bounds onjﬁk)
Consider the decomposition 64’y from (6.70):

WNHI(E) = Whik[HI(E) + AigWokk[He](€) + WRIH](XR)

— WR[H"](xL, by + an — &) + Wex[He](€) . (8.43)
From the expression oW« in (6.41), we have the bound:
. (k-1)rpy(s+1)

IWhik[H] Iy o0y < Cice T Ny THP (8.44)

and recollecting the estimates of the other terms from Ritipas 6.4 and 6.6, we also find:

||A[k]ka;k[He] + Wr[H:] — (WR) [H.] + Wey[H.]

< e N IHE D ey . (8.45)

oo (5 (0K)
WrOn)

with the reflected operatdWQe as introduced in Definition 6.2. We do stress that, in thegresontext,H.
denotes a compactly supported extensiofidfom [ay ; by] to R that, furthermore, satisfies the same regularity
properties a$i. All in all, the bounds (8.44)-(8.45) yield

IWNIHIE o0y < G+ max NPTHET] (8.46)

Besides, fok = 1 we have from (6.41):
Whork[V'1(€) = V7€) . (8.47)

The constanti; was introduced in Definition 6.5, and according to the exgioesof R(1) in (4.19), it takes the
value:
1
= >
2nB(w1 + w2)

So, using the bound (8.45) far= 1 and¢ = 0 to control the extra terms i’y in sup norm, we get

" 0. (8.48)

’ . 17 C ul . ’”
WAV 2w inf V7€) - FiVelge = 5 - inf (V7€) (8.49)

where the last lower bound holds fidrlarge enough. The above lower bound leads to
”(kaﬂ([v ]”W?(Jg\l‘)k)) Cf : ”V ||W;o+£+l(J§\l‘3k))

< 1 1
WALV V)

(8.50)
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(R;in)
Lower and upper bounds onlJy

In virtue of Lemma 6.11 and Proposition 6.6, givea N*, we have the decomposition
WNIHIE) = (W + WEDIHIOR) + QridH (%, €) (8.51)

Qri[H (%R &) = A WETHIOR) + Agg WETHIOR) — WrilH (XL, bu+an—€) + AgWh[H.](€) (8.52)
whereA; g Wn[H.] has been introduced in (6.70). We remind from (6.107) that:

(as) (as) RV < H(r+1)( N)
(WE) + WEDIHI(xR) = H'(ba)ao(xR) + Y = (a0 - ar) (XR) (8.53)
r=1

For any integers, ¢ such thah > ¢ + 2, Lemma 6.10 applied td&,(m,n) < (r,£ + 1, n) tells us:

0¥ Po+Ln(XE T + X2 o1 (), (00~ a)(¥)

VX o o VX

for some polynomialgy.1,n(X) of degree at most + k and functionsf,1n € W;° ([+1)(R+). We therefore get:

= Pre+1n(X)€ + x+1/2 freein(X)  (8.54)

[oR WSS + (wg?jg)[H]||W?(J(NR;m)) < Oe - N (In N2+ v D1 (8.55)
In this inequality, one power dfl* pops up at each action of the derivativexaf= N*(by — £). Furthermore, by
putting together the control of the remainders in Propmsi6.6 and Lemma 6.11, we get that:

k
QRuHJ0R &) = > (O + AXTE) 4 f(xe) (8.56)

m=0

where, for any x ¢ < k, the functionfy satisfies:
0RO < Cier X NERT NOHED] - (In(xg) % + 1) (8:57)

Since the functlonsfw(as) (Wl()"fflz)[H] -g5t and'Wn[H] - g5t are smooth orj(R ™ s0 must b&rk[H.] - ggt. As
a consequence, we necessarily he[ﬁrh = 0. The properties of the remainders then ensure that, fobany < k,

|C(k;1,<q2) < Cigm- N7 . ||H£k+l)||w;;,°(R) : (8.58)

Thus, all-in-all, by choosing properly the compactly suped regular extensiohl, of H from [ay ; by] to R we
get

" - WN[H]lye geimy < Ce- (I NY?*E N NREDIAGTH] (8.59)

upon choosind = ¢. This holds for any > 0, the right-hand side being possibiyo.
In what concerns the lower bounds, observe that

W0(XR) v VE(by) al(XR))
o1+ o e

—l/2 ((W(as) +"W(asi)[H](XR) - (8.60)

as well as

2 + 1% + X2 0®)| < C N (ke + DIV lwgy + N7 (In XR€ O+ IV lwe)) - (8.61)

99



These estimates imply, fod large enough:

WAV o00), (ny°
@ | VO - Ve (8.:62)

The functionx — ag(X)/ VX is bounded from below of*, cf. Lemma 6.10 andaf, by) — (a,b) in virtue of
Corollary 7.10. As a consequence, for any potentiauch tha11|Ve||W«3>o([a;b]) < C, there existdNg large enough
andc > 0 such that

|’WN [V'1(¢)
ar(£)

We can deduce from the above bounds that, forgay&'™,
-1 , )

”qR (WN [V ]”W;O(JE\‘R,m))
GRHE) - WNIV'IE)

> eint (V@) (8.63)

A\ 00 Rii
” ||W2{’+1(JE\I m))

C, - (In N)*+1. Nfo . —_2ta¥N 7
< 4 (n ) inf[a;b] {V’/(é‘:)}

(8.64)

(Rext)

Lower and upper bounds onJy

Let us go back to the vector Riemann—Hilbert problem disetiss Lemma 4.1. The representation (4.11) and
the fact that the solutiof to this vector Riemann—Hilbert problem allows one the rstauction of the functions
W1 andy, arising in (4.11) through (4.16). Using the reconstrucfimmula (5.14) withP; = P, = 0 andzy = o
and applying the regularisation trick exactly as in (5.678,get¢ € [by ; +ool:

J AN (bn—€)=iuN? (bn—17)
sulwiiHe) = N[5 [ f RO S frarnali) - &) - 6.65)

R+2ie R+ie

The local behaviour of the above integral representationbesstudied with the set of tools developed throughout
Section 6. We do not reproduce this reasoning again. Adlinve obtain:

||qR K [Sn[WN[H]] - ]”W;Q(Jg\lRiexl)) < Ce(In N)2€+1 . NE+Da .NI(\|25+1)[7(K[H]] (8.66)
and, for any e 1%,
[GR™() - ISNIWNIVIE] = V'())] > cinf V" (bu) (8.67)

provided thaiN is large enough. Likewise, we have the bounds:
-1 11 _ \// o , .
”qR WK[SN[(WN [V ]] \ ]”W(:O(JE\JRYE t)) - C[ ‘ (|n N)23+1 ‘ N&Y . ”(]<K[V ]”W;?A(JE\JR t))
0RHE) - (SnWNIVIT -V} infra:ny (V"))

(8.68)

Synthesis

Let us now write:
: ) Sn[WnIHIIE) - HE) Wn[HIE)
URTHI) = ZR{SN[WN V@ -vE %O T v

ORH(E) - {SNIWNIHTIE) — HE)
O2(E) - {SNIWNIVIIE) - V' (9)}

Ly (€)

Wn[HI()
WnIV'I(E)

. 1J&A;ext)(§)} + . 1J§\l‘)k)(§) , (8.69)
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The piecewise bounds (8.37)-(8.42) §fi°"Y, (8.46)-(8.50) o™, (8.59)-(8.64) ori¥, (8.66)-(8.68) o™,
and those which can be deduced by reflection symmetry on tae tther segments defined in (8.28)-(8.30), can
now be used together with the Faa di Bruno formula

(X ) fME) -g0@)\n
d-f[( )(g) nJ;::{’ Zgy::n m! a() {nJ j! g(f) } 670

to establish the global bound. Note that, in the intermediatunds, one should use the obvious property of the
exponential regularisation:

p
Kdfa-e- ol = [ [ Keplfal - (8.71)
a=1
The details are left to the reader. [ ]

9 Asymptotic evaluation of the double integral

In this section we study the lardé-asymptotic expansion for the double integral in:

Definition 9.1
3g[H.V] = f Wi 0 Xn[0:{S(N(€ - ) - GnXNIH] VI(E 9} (€) dé . (9.1)

with

WnHIE) — Wn[H](#)

ONIRVIED) = 306 T W)

(9.2)

We remind that * indicates the variable on which the operdtéyg acts. The asymptotic analysis of the double
integral 34,3 arising in theg # 1 largeN asymptotics ¢f. (3.118)) can be carried out within the setting of the
method developed in this section. However, in order to kéepdiscussion minimal, we shall not present this
calculation here.

In order to carry out the largit-asymptotic analysis d¥q[H, V], it is convenient to write down a decompo-
sition for Gn[H, V] ensuing from the decomposition 8y that has been described in Propositions 6.4 and 6.6.
We omit the proof since it consists of straightforward alggbmanipulations.

Lemma 9.2 The functiongn[H, V](¢, 1) can be recast as

GNH.VIE D) = GoHVI(E ) + GEIH. VIOR, YRi €.7)
Q(as)[HA VAl(xL, Y an + by — & an + by — ) + AgGn[H, VIE n) . (9.3)

The functions arising in this decomposition read

Whkx[H](é)

Goal M VIED) = 75- T

- Een, (9.4)
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and

WEIHI)  WEAIVIX) (WS + WEIIHIX)
(as _ bkk T _ Eon )
e vieren = {5E - e W W Yool - (%2y)- 9

Finally, the remainden\yGn takes the form

A WNIHIE) — AlgWhIV'1(E) - M} ~ (eon)

1
A H V() = ——
MGNIR,VIE ) wbk;k[vq(f){ WAV
+ A[k]gﬁ‘s)[H,V](xR, YR E 1) — A[k]gf\‘l"‘s)[HA,VA](xL,yL; ay+by—&an+by—1n). (9.6)

The reminder\jy Wy of order k has been introduced (6.70), while

Wn[H](E)

WNIV'I(E)

WIHIE) WRdVI(9 } ( £ )

Wn [V’](f)] ' (WEL+ WEDIVIN) Xy

ARGETH. VIO Y &) = {A[k]w‘s%](x) A WEV() -

1
Whokk[V'1(¢)

- | A WARHI® - (g WV
(9.7)

The local right boundary remainder arising above is defined a
AWNr = WN - "W(Ff;f) "Wéisﬂ (9.8)

Note that the two termg(as) present in (9.3) correspond to the parts@f that localise at the right and left
boundary. The way in WhICh they appear is reminiscent of yimensetry satisfied byWy:

Wh[Hl(an + by - €) = ~WN[H]() . (9.9)
Lemma 9.3 The double integralig[H, V] can be recast as
Sa[H, V] = Sap|Gok[H, V1| + Sap GieplH. VI + GieplH" V|
+ Jar|(Gokk + GRDIH VI + (Gokk + G H" V]| + AgSa[Xn[HL V|, (9.10)
The bulk part of the double integral is described by the fiomet
_N2

4nB

[an ;bn]?

JINU(€ = 1)) - (0 — INS(NY(€ - n))F(£, 1)} dédn . (9.11)

SapklF] =

The local (right) part of the double integral is representesd

b
N ~ dé:eMNa(bN—f) LN (b N
SorlFl = 5 o [ f SRR ) @ adS N ~ )R] (9.12)

W g
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Finally, Ay 34 represents the remainder which decomposes as

AgSa[H, V] = ilA[k]Sd;p[H,V] (9.13)
=

A SaalH,V] = f Wexg| (SN (€ - %)) - (Gn — AgGn)[H. VI(E, )} (€) dé (9.14)
et

AgSa2[H. V] = fN’WN[ag{S(N“(f—*))'A[k]QN[H,V](f,*)}](f)df (9.15)

AwgSaalH, V] = - f WNILI(E) - Xn|elSIN(£ = #)) - GnIH, VI(E, #)}|(€) . (9.16)

AwSaaH V] = \st[@aS{H VD" + (GEIHN VA (9.17)

whereWey, is as defined ir§6.33)

Proof — We first invoke the Definition 3.18 of the operatli§; so as to recas¥q[H, V] as an integral involving
solely Wy, and another one containing the actionXyf. Then, in the first integral, we decompose the operator
Wy arising in the "exterior" part of the double integf&i[H, V] as Wy = (’Wg)) + ’Wl()?() + W(LO) + Wexp), Cf.
(6.33). Then, it remains to observe that

bn by
f WOL0:{SIN"(€-))-Gn[H. VI(E 9} |(x) & = f WR[OASIN(E=5))-Gn[H", VA€, %)} (0R) d (9.18)

and that
~Sapk| (GERIH VD] = San GERIH", V1] . (9.19)

Putting all these results together, and using that the ilm&& i «[H, V] andg(as)[H V] solely involve derivatives
of H which implies:

Gokk[XNIHL V] = Goe[H,V]  and (as)[XN[H] V] = (as)[H V], (9.20)

we obtain the desired decomposition of the double integral. [

9.1 The asymptotic expansion related t&y.px and Igr
Once again, we need to introduce new constants:

Definition 9.4 If £ > Ois an integer, we set:

~ Juur _ (" I(U) S(u)uPD
Jop = IW [US (u) + S(U)] du and Jops1 = fm du (9.21)
R R

where the function J comes from Definition 6.3 and S is thegkefiSy and appears lately i1(8.2).
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They are useful in the following:

Lemma 9.5 Assume Fe C%*2([ay ; by]?) and antisymmetric viz. €,7) = —F(n,£). We have the asymptotic
expansion:

k

1 _
SaodF] = ~N"Jo- Tered FIQ) — ). w1 TEAFIO) + 221 TS IFIO)f + ON2) (9.22)
=1
in terms of the integral transforms:
2bn-I9 2bn -8
Tever FI(9) = éfF[(v+s)/2,(v—s)/2]dv and  ToddlFI(s) = fas{s‘lF[(v+s)/2,(v—s)/2]}dv.
2an-19] 2an-|s]

(9.23)

The integral transform@eyven 7odq Can be slightly simplified in the case of specific examplefeffunctionF. In
particular, if F takes the fornf (&, ) = g(&€) — 9(n) for some sfiiciently regular functiorg, then we have:

2bn
Teed F1(0) = f GW/2)dv = 2g(bn) - glan)] - (9.24)
2an

Proof — We first implement the change of variables

{u N(¢ - n) i e {§ (v+N™u)/2
v = &+ o n

(v—N"u)/2
in the integral representation 0.,k F]. This recasts the integral as

(9.25)

N2 XN 2bn—|UIN~Y N N

~ B « V+UN™ v—-uN™“

SandFl = ~3 [awx [ afsw FAEF— ]
—XN 2an +|UN-@

= —NT (J(U) [US’(U) + S(U)] Tever{F](UN_Q) + N_aJ(U) . US(U) . Todd[F](UN_a))dU (926)

Both J(u) - uS(u) andJ(u)[uS’(u) + S(u)] decay exponentially fast at infinity. Hence, the expanstB2) readily
follows by using the Taylor expansion with integral remantbr the function¥ everyodd FI(UN~*) aroundu = 0,
and the parity properties feveryodd F1- [

Lemma 9.6 Let F(x,y; &, 1) be such that
o F(xy:&.m) = -F(y. X1.4) ;
e the map(x,y; &, 1) — F(X,Y;&,n) is C3(R* x R* x [an ; bn]?) ;
e F —and any combination of partial derivatives of total ord#rmost3 — decays exponentially fast iny

uniformly in(¢&,7) € [an ; bn] , Viz.

4
max{|aﬁla§’zagsa§4F(x,y;g,n)| : Zpa < 3} < Ceeminty) (9.27)

a=1
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e the following asymptotic expansion holds uniformly(xny) € [0; eN®], for somee > 0 and with a djfer-
entiable remainder in the sense (&.27)

k .
f(x, Cy eemin(ey)
F(x,y;bn = N™*x by — N7?y) = Z [( y) + (kN(Tl)a) , (9.28)
=1
where f € C3(R* x R*) for £ € [1; k] while
max{|8§6§fg(x,y)| : p+q<3 and ¢e[1; k]l} < Ceemintey) (9.29)
Then, denoting (&, 17) = F(N¥(by — &), N¥(by — 1); £, 17), we have an asymptotic expansion:
k du J(u)
SasdFal = - ) wo f f dv (S - 1LV 1/2, v+ u)/2]} + O( ) (9.30)
=1 ¥ W
Note that, necessarilyiy are antisymmetric functions ok(y).
Proof — The change of variables
u = N*E¢-mn) - & = bv-NT(v-u)/2
{ Vo= Ne@y-£-m) % g = by-NTU(veu)y2 (9.31)
recasts the integral as
XN q J( ) 2XN—|ul
- e u J(u v-uv+u  v-u v+l
SapF] = —N f " f dv 8U{S(u) Flo— b~ e BN = o ]}. (9.32)
—XN ul

At this stage, we can limit all the domains of integrationuglv| < eN?, this for the price of exponentially small
corrections. Then, we insert the asymptotic expansior8f@&ad extend the domains of integration up-te this,
again, for the price of exponentially small corrections] are get the claim. [

Very similarly, but under slightly dierent assumptions on the functién we have the larg& asymptotic
expansion of the right edge double integral.

Lemma 9.7 Let F(x,y; &, i) be such that

o F(Xy;&,m) =-F(y, xn,8);
o the map(x,y; &, 1) = F(xy;&,7) is CAR* x R* x [an ; bn]?);

e F decays exponentially fast inwthis uniformly in(¢,n) € [an ; bn] and for any combination of partial
derivatives of total order at mo& viz.:

max{|apla§’23 PF(xy &) - Z Pa < } < Ceominky) (9.33)
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e the following asymptotic expansion holds uniformly(xny) € [0; eN®], for somee > 0 and with a djfer-
entiable remainder in the sense (&.33)

k
fx Ce (XK +yK+ 1
FOY b = N x by = Ny) = >° & « y) o("(N(Ti’;)), (9.34)
=1

where f e C3(R* x R*) for £ € [1; k] while
max{|6§8§fg(x,y)| . p+q<3 and Ce[l; k]l} < COK Y +1). (9.35)

Then, we have the following asymptotic expansions

Kk +00

~ _ (Zﬂ'ﬁ)_l X—i

wﬂ%]—;N@mj‘L[muﬂmﬂmw)éﬁwwﬂxwvwme+% ) @30
R e

The function ky occurring above is as defined in the previous Lemma.

Proof — The change of variables= N*(by — &) andy = N¥(by — 1) recasts the integral in the form

(Zﬂ'ﬁ)_l . i AX—i . —-a —-a
Sar[F f f i ,u)Rl(/l)RT(y) TG (S(x —y) - F(X,y; by — N7, by — N™?y)ldxdy .

Ged g

We can then conclude exactly as in the proof of Lemma 9.6. [

9.2 Estimation of the remainderAyq3q[H, V].

Lemma 9.8 Letk> 1be an integer. Given{> 0, assume V strictly convex, smooth enoughlmmNgo(R) < Cy.
There exists G 0 such that, for any H= Xs(R) smooth enough, the remainder integfal; 3q[H, V] satisfies:

A SalH, V]| < C© N [V - IHelwes o a2 - (9.37)
Proof — It follows from Lemma 6.11 and 6.10, as well¥8(by) # O by strict convexity, that:
(Wher + WEIIHIX)
bk:k (9.38)

FWWﬁ+W@WM

is smooth a = 0. As a consequence, the function

(€.1) = Go[ H. VI(E. 1) + GEH. VIOR, Yri £.7)
A WEHID  WEIVIOR) (WS + WEDIHIOR)

Woe VI W V1D (W T WENV o)

(£ o n) (9.39)

is smooth in £, 77) Furthermore, it follows from Theorem 8.1 th&t §) — Gn[H, V](£, 1) is smooth ondy ; by]
as well. Smceg )[H V](Xr, Yr; &, 1) is smooth iné — resp.n — as soon as the latter variable is away friognor
ay, it follows that @c n) = AGnlH, VI(£,7) is smooth as well.

106



The remainde\yGn described in (8.36) involves the remaindeig W(abk studied in Lemma 6.11, and
(A Wn)r defined in (9.8) and for which Proposition 6.6 and Lemma 6]$tb provide estimates. Using the
properties of ther's obtained in Lemma 6.10 and involved in the asymptotic esp of the (as) quantities, it
shows the existence of constanjfg c(l/ 2 and of functionsfk € W5 (R*) bounded uniformly ilN and satisfying

fruk(X) = O(x™1/2) such that

fm;k(XR)
Nka

1
AgGnIH VI n) = N—MZ(C(O) Xe + C 2 X V2) + - (% © Yr) (9.40)
=0

for (X, YR) € [0; €] SinceAngGn[H, V](£, 1) is smooth, we necessarily have tis 2 -0forte [0; m]. The
representation (9.40) thus ensures that

t’ p n
max max A H,V
0<f+6|})<n (XRe ) |(9 WGNIH.VIE. 77)| NG
€[0:€]?

e[ V] - Helwes, @) - (9.41)

Here, the explicit control on the dependence of the bound andH issues from the control on the remainders
entering in the expression faj Gn[H, V].

Similar types of bounds can, of course, be obtained fory() € [0;€]?. Finally, as soon as a variable, beit
or n, is uniformly (in N) away from an immediate neighbourhood of the endpagtaindby, we can use more
crude expressions for the remainders so as to bound deesaif the remaindekqGn[H, V]. This does not spoil
(9.41) and we conclude:

C
£ aP e L
onax - max |90nAGNIH. VIE )| < o - e V] - IHelhwg e (9.42)

e[an ;bn]?

Having at disposal such a control on the remaintigign[H, V], we are in position to bound the double integral
of interest. The latter decomposes into a sum of four terms

4
ASdH V] = )" AggSap[H, V] (9.43)
p=1

that have been defined in (9.14)-(9.17).

Bounding A[k]Sd;l[H, V]
Let
(€.1) = 0SIN(6-n))-Gu[H. VIEm)] and Agt(€.n) = de{SIN“(€-n))- AGn[H, VI 1)} . (9.44)

Observe that giveré(n) — f(&, n) suficiently regular, we have the decomposition:

bN bN bN {f
f Wexgl F(6,9)](©) & = f Wed f(an, )](€) d¢ + f d f d) Wexgldy T 9)1©) (9.45)
an an an an

The latter ensures that

N
| f(WeXp[f(é:’ *)](é:) d‘f| < ||(Wexp[f(aN’ >l<)]|||_1([a,\‘ b)) + (bN - a-N) [SUE)) ] ||Wexp[anf(777 *)]”Ll([aN o))
USICNRYN

aN
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(9.46)
The two terms can be estimated directly usinglthdound (7.49) obtained in Lemma 7.8. For the first one:
[ Wesel f(@n [l 1oy oy < C1& Ife(@n, #liw(ey < Cre™ N [1flle o) (9.47)

for someCy, C, > 0 independent ol and f, and likewise for the second term. But Mtg"(Rz) norm of f, is also
bounded by a constant times W&’ ([an :bn]?) norm of f, and we can make the constant depends only on the
compact support of the extensidn Therefore:

[ Wexel f@ns | 1a by < C1€ 2 Ml ey w2 (9.48)
for someC;,C/, > 0. Takingf = 7 — Apqr to match the definition (9.14) afq34:1, this implies:
A SaalH V| < ChemN {iitlhwg ay iong2) + 1A T o ionid) | - (9.49)

It solely remains to bound thé/>°([an ; bn]2) norm of r andApgr. We remind that, fog € [ay ; by], we have
from the definition (9.2) and the expressiorﬂaﬁﬁl given in (8.21):

GNIH, V() = URTHIE) ~ UNTHI() - (9.50)

By invoking the mean value theorem and the estimate of Piopo$.2 for W;° norm of(ngll[H], we obtain:

o Gn[H. V], n) )i s s
”THW(SO([aN ;bN]Z) < CN (‘f’ 77) = T < C'N ||7/{N1[H]||W;°2([aN b ) (951)
n W2, ([an ibn]2) :
< Cz} . (|I’] N)2[+5 . N([+4)a -ng+2[V] 'N[(\]2€+5)[7(K[H]] (9.52)
< Cf - (NN NG IV - el ) (9.53)

where the last step comes from domination of the weightechrimy theW* norm of the same order — and the
exponential regularisation can easily be traded for a cathpaupported extension up to increasing the constant
prefactor. Similarly, in virtue of the bounds (9.42), we:get

AR Tl a2 < € - NEB9% o[V - HC e,

S(®) - (9.54)
Putting these two estimates back in (9.49) with 2, we see that:

|AggSaalH. V]| < Cp - NS @ N iy [V - [Hellwe

max k,5;+4(R) :

(9.55)

which is exponentially small wheN — oo.

Bounding A[k]Sd;z[H, V]

Ar3d;2[H, V] has been defined in (9.15) and can be bounded by repeatingetieus handlings. Indeed, using
(7.49) on theL.! norm of Wy and then following the previous steps, one finds:

|A[k]3d;2[H,V]| < NAng Tl [y or1?) (9.56)
with Apqr defined in (9.44) and boundedW;> norms in (9.54). Hence, we find:

|AggSaalH, V1| < € N qy V] - Hellwe, (=) - (9.57)
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Bounding A 3g:3[H, V]
This quantity is defined in (9.16), and it follows from the &&ip expression forWy[1](£) given in (5.72) that

Xll(/l) —|N",1($ an) . di
f ; 5| (9.58)

|AigSaaH. V]| < C N*lITllwe (ray ibn]?) - lr12:4(0)| - Ion —anl - sup
£efan ;bn] oY

wherer is as defined in (9.44). The decomposition (7.6)f@nd its properties show the existenced®p€C’ > 0
such that:

Yi1eR+i€, 1) < Clav2, and  |y12(1) < Ce N | (9.59)
Hence, by invoking the bounds (9.53) satisfiedrbwe get:
A[k]Sd;g[H,V] <C’. Nsa : (In N)S : e_Na[%E,_E,(bN_aN)] 'nZ[V] : ”HQHW;“(R) . (9-60)

Sincex. > 0 is bounded away from 0 whet — 0 according to its definition (4.42), we also haye- €’xy > 0
uniformly in N for some choice o€’ small enough but independent lgf

Bounding A 3g:4[H, V]
This quantity is defined in (9.17), and it involves integvatbf:

TL(En) = O:{SIN(€ - 1) - GEH. VI(XL. yi; by +an — & by +an — 1)) (9.61)

whereg(as) was defined in (9.5). It only involves the operat (as) and(WS"i), whose expression is given in

Lemma 6.11. Let us fix > 0. Straightforward manipulations show that, fori) € [an + €; bn]?, we have:
|[rL€m)| < CN3*e @My V] - [Hellwe@y < C-N¥ - e N [V - [Heliwe @) (9.62)
which is thus exponentially small iN. Similar steps show that, for
€n) € {[an+e;bn] x[an;an + el U{lan;an + €] x[an +e;bu]} U {[an;an + €] x [an;an + €]}, (9.63)
we have:
[rL@m)| < C N [VIIHllwge ) - (9.64)

Here, the exponential decay Mwill come after integration of_ as it appears in (9.17). Indeed, giveniny O
and Imu < 0 we have:

N b
] f é“Re-iﬂerL@,n)dfdn]SCN%-EC’N”nk+1[V] Hlhv =) f g ANTEn=mAN ) gy g
aN+e
an+e an+an+e
+ CN®1y1[V] ||H||Wm(R){ f d f dy + f d f iy + f f dgdn}e Im AIN® (o ~)-1m N (1)
an+e
CNSQe—C’N”
< V] ”H”le"(R)'—M.#l . (9.65)
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Note that, above, we have used that for %E:g) andu € Cgr(e‘g) we can bound:
ImaAt <cda™,  Imul™ < cplul™ (9.66)

for some constart; > 1. Hence, all in all, we have:

S 1 [V H hwee
< C//N&ye—c N f|d/1| f |d,u| . + ke (R)
e = Al - AR (DR ()l

Sar(GEH. VY]

Gog g
< C”N¥e N V] HIwe) - (9.67)

Then, putting together all of the results for eagly Iq., for p € [1; 4] entails the global bound (9.37). [

9.3 Leading asymptotics of the double integral
We need to introduce two new quantities before writing domasymptotic expansion of the double integral
Definition 9.9 We define the function:

_ 019 ~ bo(9as ()

«(X) m (9.68)
and the constant:
%o = - [ S [wadsw- (554 - 45)
R Jul
LA (L (e [ i - el -
"2 |7 (j)' e TR OR G Of &P, S(x - Y09 ~ )] ~ x+ ylaxdy (9.69
%og  Greg

Proposition 9.10 We have the large-N behaviour:

’

N . [H(by)  H(aw) H' v H' v N
3d[H.V] = 2% N '{v"(b:) - V,,(a:)} + 8o+ {(5) O + () @0 + A3HV] - (9.70)

and the remainder is bounded as:

C
A3[H. V] < <5 ol Vel - Hellwg @ - (9.71)

Proof — We first need to introduce two universal sequences of poly'miemg({xp}i) and Qf({yp}‘l’; {ap}i). Given
formal power series

f@=1+) &7 and o@=1+) o7 (9.72)
=1 >1

they are defined to be the dieients arising in the formal power series

2. 1+ > 2({fpl)7Z  and 98 _ 1+ > ool (F)) Z . (9.73)

f@ =1 f@ =1
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Note that

QgpIiTpl) = D gr-2s{fpl}) (9.74)

r+s=¢
r,s>0

where we agree upon the conventien = 1 andgp = 1. This notation is convenient to write down the laifge-
expansion oGpkk — defined in (9.4) — ensuing from the lareexpansion of Wy provided by Lemma 6.11.
We find, uniformly in €, 7) € [ay ; bn]%:

k=1

GrdHVI(E ) = > AL TED o (9.75)
&
where
Gbk;e[H, VI(€,1m) = aoke[H, VI(€) — dbkie[H, VI(1) (9.76)
with
_ H© HEDE) v . VEDE) Upiq
Soke[H, V1) = V,,(é,)'Qz({ FE u }f{ Ve }[) (9.77)

Also, in the case of a localisation of the variables arobgdwe have:

G H. V(b — Nx, by — N2y) = T (En) Z ({ e e {V(p”)(bw) up() })

V”(b ) H'(bN) Up V”(bN) u;

k
C(xey)+ o(—x ,\T(k{kl): 1) . (9.78)

Finally, we also have the expansion,

3 OV of -cmmW)

(as)[H V](X y;bn = N7*X, by = N7%) = N

(9.79)
=1

where®gr.[H,V](Xy) = are[H, VI(X) — sr¢[H, V](y) and

3 1 \/(q+2)(bN) ug(X) H(5+1)(bN)
rAHVIO) = s m;;[fpm({ ) }q) O
m,s>0
L GO » ({v<q+2><bN) uq<x)})
V7 on) by \L V7BN) U S
m,s,p=0

HEDy ) V(o) V2 oy)
<ol | e, {rendaad) ) e (.80)

We can now come back to the double integsal It has been decomposed in Lemma 9.3. If we want a
remainderApgJIq decaying withN, we should také = 6 in Lemma 9.8. Then, up to QI(*), we are thus left
with operators3g.pk andJq.r, and Lemmas 9.5 and 9.7 describe for us their asymptoticnsiqua knowing the
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asymptotic expansion of the functions to which they areiafdplHere, they are applied to the various functions
involving Gk andg(as) whose expansion has been described in (9.78) and (9.79neas £xpression shows, in
order to get3q up to OQ\I ), one just need the expressionsagf.o[H, V](¢) from (9.77) andyr1[H, V](X) from
(9.80). These only involve the universal polynomiglsand Q1, whose expression follows from their definitions
in (9.73):

Pi({fa}) = -1 Qg {fi) =g f1. (9.81)
Therefore, we get

il H VIO = D an vy = 2O (W) 982

V7 (£) ' Up
and we recognize in the prefactor of the second equatiorutiaionc(x) of Definition 9.9. Finally, we remind that
we take the remainder at order 6. The claim then follows upon recognising the constyirom Definition 9.4
in the computation of the leading term by Lemma 9.7. [

A Several theorems and properties of use to the analysis

Theorem A.1 (Hunt, Muckenhoupt, Wheeden [57]) The Hilbert transform, defined as an operator
H o LPR,wW(X)dX) — LR, w(x)dx)

is bounded if and only if there exists a constant © such that, for any interval £ R:

|I|fw() |I|fw(x)} <¢C (A1)

In particular, the operators "uppdower boundary valuesC. : F[Hs(R)] — ¥[Hs(R)] are bounded if and
only if|g < 1/2.

A less refined version of this theorem takes the form :

Proposition A.2 For anyy > 0, the shifted Cauchy operato, : f — C,[f] with C,[f](1) = C[f](1 + iy) are
continuous o1 [Hs(R)] with |§ < 1/2.

Theorem A.3 (Calderon [22]) LetX be a non-self intersecting Lipschitz curvedmnd G the Cauchy transform
on L3(z, ds):
f(s) ds

< 5 €0C\3). (A.2)

elimdy  GI@ - [
z
For any f e L2(Z,ds), Cs[f] admits 12(Z, ds) + boundary value€y..[ f]. The operator<sy..[ f] are continuous
operators on B(Z, ds) which, furthermore, satisfgs., — Cs._ = id.

Theorem A.4 (Paley, Wiener [74]) Let ue L?(R*). ThenF[u] is the 1?(R) boundary value o of a functiont
that is holomorphic orfl*, and there exists a constantx0 such that:

Yu >0, f[a(ai i -di < C (A.3)
R

Reciprocally, every holomorphic function GronH* that satisfies the bounda.3) and admits B(R) + boundary
valuesl, onR, is the Fourier transform of a function @ L2(R*), viz.T(2) = F[u](2), z€ H*.
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B Proof of Theorem 2.1

We denote byy the rescaled probability density &\ associated withy, namely

NeaN N . N . .
(@) = ~— [ [{sinhlrwiN(la — )] sinh[rwaNa(la - ap)]f [ [€ WV with aq =
3N a=1

a<b

E

=

q_

To obtain the above probability density, we have rescalatiénvariables in (1.9) ag = N%1, with the value
of aq guided by the heuristic arguments that followed the statéroé Theorem 2.1. We shall denote By
the probability measure oM*(R) induced bypy, viz. the measurable sets M*(R) are generated by the Borel
o-algebra for the weak topology, and for any open subsatiR), we have:

Pn[O] = pr(/l)dN/l. (B.1)

iLWeo)

The strategy of the proof consists in proving thag is exponentially tight and then establishing a weak large
deviation principle, namely upper and lower boundfag on balls of shrinking radius this for balls relatively to
the bounded Lipschitz topology, sea.[4].

B.1 Exponential tightness

Lemma B.1 The sequence of measuf@g is exponentially tight, i.e.:

lim suplim supN =2+ |n P\[KE]| = —co . (B.2)

L—>+c0 N-oo

where K = {ue MY(R) : [|x9du(xX) <L}
R

Proof — By the monotone convergence theorem,

f|x|q du(X) = sup [ min(x%, M) du(x). (B.3)
MeN
R R

The left-hand side is lower semi-continuous as a supremusn eidntinuous family of functionals oM, (R).
Thus, K| is closed as a level set of a lower semi-continuous functior. anyu € K, we have by Chebyshev
inequality:

All-MiME < g [ K < o (B.4)
[-M;M]e

As a consequence,

Kee () {u e MU(R) : u[[-M; M]°] < %} . (B.5)
MeN
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The right-hand side is uniformly tight, by construction asdlosed as an intersection of level sets of lower semi-
continuous functions oM*(R). Thence by Prokhorov theorem, it is compact. Ksis closed, it must be as well
compact.

We now estimatePy[KF]. We start by a rough estimate for the partition function. oidws by Jensen
inequality applied to the probability measurerdt

N e—W(/la) da a

) (B.6)
a=1 f eWda
R

that
N e_W(/la)d/la
In[sn[W]] > Nin| f e"Wda| + f > BIn{sinh[rwi(la - )] sinh[rwa(la = )]} | [ ——
pn a<b a=1 fe_W(/l)d/l

e W(1)-W(12) g 1102,

( fervvwda)z

(B.7)

> Nin| f e—Wwou]ﬁN(N—z‘l) f In{ sinh[xwy(l — A2)] sinh[zwa(l — A2)]} -
RZ

As a consequencegy > &N’ for somex € R. It now remains to estimate the integral arising from thegnation
overK?. Using thatsinh(2)| < el we get:

N N
1_[ { sinh[rw1N"(4a — Ap)] sinh[rwaN (1 - ab)]}ﬂ < ]_[ exp{mB(wr + wa)N| 2 — A}
a<b a<b
N N
< | | expfnBlws + w2N“(1al + 16D} < [ | expfnB(ws + 02N} . (B.8)
a<b a=1
Hence,
) N
Pn[KE] < N NaaN f ]—[ exp{B(wr + wz) N |45 - WIN"25)} - dNa (B.9)

=1
{Lideke}

Sincel¢)td |§|—> 0 there exists a consta@te R such that
—+00

Cq ¢l
2

Y& ER, mB(w1 + w)|é] < +C. (B.10)
Likewise it follows from (2.2) that given any > O there exists, € R* such that

VEER,  —Cql+e)ld -1 < ~W(E) < —Cq(1-€)|&% + 7 . (B.11)
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In the following, € will be taken small. Taking into account thatq = aq + 1, (B.10) and the upper bound of
(B.11) lead to:

N
Pu[KE] < eNNeaN f l_[exp{N“q”C + %N“q+ll/la|q+76 ~ Cq(1— €)N%a |/la|q}-d'\'/l

=1
{Leke) *

N «N2+CN2Z+d 7, N N Nag+L| 3, Cq(1—4e) ) N
< NoaNgN™ e f (]—[e—f% el )exp{—TN +“qf|x|quN (x)}-d pl
e R
N
< quNeC’Nz*"q+TEN—[Cq(1—4€>/21LN2+"“( f e‘fcq“a|qd/1) (B.12)

for some constar®’ > C andN large enough. As a consequence,

lim supN~(2*2a) InP\[KE] < C - Leg(1 - 4e)/2,

N—+co

and this upper bound goes @0 whenL — +co. [

B.2 Lower bound

In the following we focus on the renormalised measureAdi(R) defined a®Pn = 3n[W] - Pn. We will now
derive a lower bound for th@y volume of small Vasershtein balls, in terms of the energyctiomal &y of
(2.1), namely:

Br(w1 + wy) |

> & -l (B.13)

Epylu] = f E(£, 1) du(&)du(n), E¢.n) = %(Ié’lqﬂnlq)—

Lemma B.2 Let Bs(u) be the ball inM(R) centred atu and of radiuss in respect to . Then, for anyu €
ML(R), it holds

lim inf lim inf N=C+) InPy[Bs()] = —Eqpiylul (B.14)

Proof — Letyu € MY(R) ands > 0. If [|X%du(X) = +co, thenEy)[u] = +oo and there is nothing to prove.
Thus we may assume from the very beginning tﬁz{mq du(X) < +oo. If M > 0 is large enough, we have
u([-M; M]) # 0, and we can introduce:

_ L mom-u
(S VEIVS)

which is now a compactly supported measure. We will obtaénltver bound forPy[B;(u)] by restricting to
configurations close enough to the classical positiongyafand only at the end, see how the estimate behaves
whenM — oo. For any given integeN, we define:

(B.15)

X
NM _ ) a
Ya e [1,NJ, Xg' ' = inf {xeR : fd,uM > N 1}. (B.16)
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WhenN — oo, Lf\’I‘N’M) approximategy for the Vasershtein distance, so there exitsuch that, for anyN > Ng,
we have the inclusion:

Q1= {AeRN : Vae [LNL |- 4| <672} © {1eRN : Dygun, L) <o} (B.17)

Subsequently:

a<b a=1

_ N g N .
Pr[Bs(um)] = NN f n{sinh[nwlN“q(/la—/lb)]sinh[ﬂsz“q ua—abu} [T dva. (B.18)
Qs

It follows from the lower bound

. eX x|
— B.1

|sinh(x)] > 2 T+ 1X (B.19)
from the lower bound fow in (B.11), andjaq = aq + 1, that:
_ eN(agInN+7e) N N N 8
PrIBsW] > —pmgy— fexp{nﬂ(w1+w2)N“q > e = dpl-Ns*1cy(1+e) >’ |/1a|q} [ T{on(a-aw)} -dVa.

Qs a<b a=1 a<b
(B.20)
where we have set
N |2 N |2
gn() = e reo A (B.21)

1+ 7wiN% 2] 1+ mwoNea [

Now, we would like to replace, by xX*M. Since the configurations € Q; satisfy|x)™ — 1, < §/2, we have:

S a2 NN -1)5 + M - X (B.22)

a<b a<b

Sinceq > 1, we also deduce from the mean value theorem:

el < M L pum) 4 5)0-2 (B.23)
a 2 a
and thus
0 q _
~1A+ Ml = (L +e) M + & he.s M) hes(X) = 7%(1 +€) - (IX+6/2%" (B.24)

These inequalities yield the lower bound:
Pn[Bs(w)] > exp{C NZ—N2+%(5{C'+ f hes@dLE @ +E@ILY T+ecq f ¢ dLE\)j(N'M)(f))}'GN,(S (B.25)

for some irrelevantN ands independent, constan® C’ > 0. Furthermore, the fact@y s reads

N
Gus = [ [ lontto-ap - da (8.26)

Qord a>b
5
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inwhich@@=0;n{d1eRN : A3 <+ <Ay}

To flnd a lower bound foGy s, we can restrict further to configurations such that= A, — x';"'v' increases
with a € [1, N], and satisfief;| < 6/(2N) and|ua,1 — Ug| < 6/2N for anya € [1, N — 1]. Using that¢ — gn(€)
is increasing orR ., we have:

N-1 N
Gns 2 f [ THon(uar - ua)™2 - dVu > f [ JHonua)P®20 . dNy (B-27)
[-s/2.5/2N &L [0.5/2NN 32

Now, using an arithmetic-geometric upper bound for the d@nator ingy(Vv), we can write:

Naq+1 _
We0,6/2N],  gn(v) > —— Y122 s SNt 2 (B.28)
26

for some irrelevan€C’ > 0 independent of provided that < 1. So, we arrive to:

N-1
_ 5/2N)25(N-a+1) = N2
G > C Na/q 1\8N(N-1)/2 . ( > eC N<In N B.29
'\'5—2N ( y IaZZIZB(N—a+1)+l_ (B.29)

for someC’ > 0 independent of. Hence, ultimately
P[Bs(u)] > €N '”Nexp{—N2+“q[6(C’+ f hg(;(f)dLE\TN’M)(g))+8(p|y)[L%N’M)]+€Cq f Bk dL(NX“’M)(g)]} (B.30)

To establish the desired result (B.14), we only need to focuthe last exponential. i is aC?* function of p real
variables, we denote:

g™ () = min[#(); glleg-mmp| (B.31)

which has the advantage of being bounded and Lipschitz.eSifcis supported on4M ; M], so must be the

classical positionx';"'\", and we can apply the truncation to all the functions agaitéth LE\TN’M) is integrated. In
particular, we make appear the truncated functional:

el = [ EMe ) dutelcut) 6.3

The advantage is that now, all functions to be integrated.iaschitz bounded. Sinc&y (um, LE\TN’M)) — O0when
N — oo, we get:

In Pn[Bs(w)] S

liminf
N—oo N2+(lq

s(c+ f hes(€) dum(©)) — Efh lam] — ecq f (max(él. M) dum(€) . (8.33)
The right-hand is anfeine function ofe, and at this stage, we can sentb O:

lim inf N” (@+a0) In Py [Bs(um)] = 5 C+fh05(§) d,uM(f)) Eeply)[um] - (B.34)
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Now, for any fixeds, there existdVls; such that, for anyM > Mg, Dy (u, um) < 8, and consequently:

liminf N-@*8) In By [Bys(u)] > —5 (c + f Poa(€) dina(8)) - Epmplin] (B.35)

N—oo

We could replacaSEr';’l')]/) by Eply) here becausgay is supported on{M; M]. Now, we can consider sending
M — oo. Since we have the bound:
Ve nEeR, E.n) <C (1+1€7+ ), hos < C'(1+1¢9) (B.36)

and we assumed thg(tlg|q du(é) < +00, we get by dominated convergence:

N—oco

liminf N~(+2a) In Py [Bas(u)] > —6 (c + f ho (&) d,u(f)) ~ Epiyly] - (B.37)

Last but not least, sending— 0, the first term disappears and we find:

lim inf lim inf N=(+) InPy[Bas(u)] > ~Epiy ] - (B.38)

B.3 Upper bound

In this paragraph, we complete our estimate by an upper boarke probability of small Vasershtein balls:

Lemma B.3
lim suplim supN~=2*2) InPy[Bs(u)] < ~Epiy)[4] (B.39)
0—0 N—oco

Proof — Letu € MY(R). In order to establish an upper bound, we use [8iah(x)| < €% and the upper bound in
(B.11) for the potentialV. This makes appear again the funct&ygy of (B.13):

N

Pr[Bs(u)] < eNean N+ f exp{—N2+“q(—2cqe f 0 dL(N”’+8<p|y>[L(N”])}l_[e‘“”‘*”c‘*"”a"*-dNA (B.40)

a=1
L eBs(u)

where we have put aside one exponential decaying withettatensure later convergence of the integraMif 0,
let us define the truncated functional:

Eiplyy [l = f EMIEn) du@du(n),  E™ = min[M; E ) - cqe (k1% + In)] (B.41)

SinceEM s a Lipschitz function bounded by, with Lipschitz constant bounded I M*~%/9), we deduce the
following bounds when the eveh Y ¢ Bs(u) is realised:
Mebry (D {M.e}
€y [Ln'] = Egpy ]| <C M, (B.42)
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for some constar€ > 0 independent o, 6 ande. Therefore:

N
Pn[Bs(w)] < exp{C’N INN + N%*2[CM - 6 — agg’l';;}[ﬂ])} : ( f g Cac d/l) (B.43)
R
It follows that:
lim supN~%**% In Py [By()] < CM - 5 - Epiu] (B.44)

N—oo

We observe that EIM€ is an increasing function af. We can now let — 0 by applying the monotone conver-
gence theorem:

lim supN~** In Py [By(u)] < C M- 5 - 1] - (B.45)

N—oo

Then, sending — 0 erases the first term, and finally lettif) — oo using again monotone convergence:

lim suplim supN~2*%) In Py [B;(u)] < —Eqiy[u] » (B.46)
6—0 N—oco
Notice that monotone convergence proves this last indgualen in the case wheégpy)[u] = +oo. u

B.4 Partition function and equilibrium measure

By applying the reasoning described in [37], to the lowerrusu(Lemma B.2) and upper bounds (Lemma B.3),
along with the property of exponential tightness (Lemma)Bake deduce thag ) is a good rate function for
large deviationsi.e.

for any open sef2 ¢ MY(R), lim inf N~ |nPy[Q] > - inf Epiy)[1] -
—+00 HE

for any closed seF ¢ MY(R) lim supN=@*+) InPy[F] < — inf Epiy)[u] - (B.47)
N—-+o0 HE

These two estimates, taken far= F = MX(R), lead to

lim N=C) In3y = — inf  Epiylyl - (B.48)
ue ML(R)

N—oo MY(

The proof of the statements relative to the existence, @mgss and characterisation of the minimisefgf)) is
identical to those for the usual logarithmic energy [77] d @en simpler since there is no log singularity here.
The minimiser is denoteﬁgﬂ:y) and it is characterised by the existence of a conﬁé’fﬁ? such that:

Cqlél% = nB(w1 + wp) f E-ndum) = & fore, ply everywhere (B.49)

cE foranys e R (B.50)

v

Cqlé1% - 7B(w1 + wp) f i€ = 7l &Y ()

The construction of the solution of this regular integrali&iipn is left as an exercise to the reader. We only give
the final result in the announcement of Theorem 2.3. Actu#ily fact that (2.4) is a solution can be checked
directly by integration by parts, and we can conclude by uaitgss.

[ ]
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C Properties of the N-dependent equilibrium measure

We give here elements for the proof of Theorem 2.4, whichbéistees the main properties of the minimiser of:
2
1 B , o
entd =5 | [V(f) + V@) - 2 n{ [ ] sinhleN“wp(e - n)]}] Qe () 1)
p=1

among probability measugeonR, with N considered as a fixed parameter. As for any probability nreaguy
anda € [0, 1],
Enlap + (L - a)v] - aénlu] - (1- a)&nV] = —a(1 - @) D[ — v —v],

&En is strictly convex, and the standard arguments of potetitedry [69, 77] show that it admits a unique min-
imiser, denote;d:gﬂ,). More precisely, one can prove t has a continuous densmgz',) (as soon a¥ isC?) and

is supported on a compact Rf(since the potential here is confining for any given valu®pf priori depending
onN, seee.q.[17, Lemma 2.4]. What we really need to justify in our caséat:t

(0) the support oﬁgﬁ) is contained in a compact independeni\of

0) ,u,%) is supported on a segment ;

(i) p,(;'g") does not vanish on the interior of this segment and vaniskes Isquare root at the edges.

As a preliminary, we recall that the characterisation of eégeilibrium measure is obtained by writing that
8N[,u(eﬁ> +ev] > SN[;;Q}']‘)] for all € > 0, all measures with zero mass and such théw + ev is non-negative. The
resulting condition can be formulated in terms of tiieetive potential introduced in (3.3):

Vner(®) = Uner(§) - inf Uner.  Un() = V() - 2 f SN (€~ ) dugq) () (C-2)

with the two-point interaction kernel:

B
2Ne

The equilibrium measure is characterised by the condition:

sn(&) = In[ sinh(rw1N“€) sinh(rwzN€)] . (C.3)

Vnee(€) = 0, with equality,u%) almost everywhere (C.49)
Proof — of (0). Letmy > 0 such that the support pﬁg) is contained infmy, my]. For ¢l > 2my, we have an
easy lower bound:

Br(w1 + w2)

| f sN(g—n)dyéNq)(n)| > %In[sinh(nwlN“mN) sinh(rawaNmy)| >

where the remainder is bounded uniformly whdn— oo andmy — co. By the growth assumption on the
potential, there exists constadtC’ > € > 0 such that

V() = ClgMe + C’ (C.6)

Therefore, we can choose := 2my large enough and independentMfsuch thatVy.ex(£) > 0 for any|é| > m.
This guarantees that the supporw@g) is included in the compactjm; m] for any N.
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Proof — of (i).
We observe that sy is strictly convex:

a 2 wp)?
%(§)=—ﬁ';z o) . (C.7)

=1 (sinhﬂwp§)2

SinceV is assumed strictly convex apﬂ}',) is a positive measure, itimplies thé.«x is strictly convex. Therefore,
the locus where it reaches its minimum must be a segment.h8@ existsay < by such that §y ; bn] is the
support ofygﬁ',). This strict convexity also ensures that

Vie(€) > 0 forany  &>bn, V{g(é) <O forany ¢<ayn. (C.8)
Proof — of (ii).
This piece of information is enough so as to build the repriedmn:
P87(€) = WNIV'] - Liay iy €) (C.9)

for the equilibrium measure. Indeed, we construcg[H] in Section 5.4 so that it provides the unique solution
to:

by
vedavitnl N - M) = V©) (C.10)
aN
which extends continuously oay ; bn], and this was only possible whe¥fy[V’] = 0 in terms of the linear form
introduced in Definition 3.18. Since the equilibrium measexists, this imposes the constraint:

Xn[V]=0. (C.11)

Besides, since the total mass of (C.9) must be 1, we must aiso h

bn
fWN[V'] =1. (C.12)
ay

At this stage, we can use Corollary 7.10, which shows thatl}c(C.12) determine uniquely the largeasymp-
totic expansion ofy andby, in particular there exista < b such that &y, by) — (a, b) with rate of convergence
N~®. Besides, the leading behaviourfit— oo of Wy is described by Proposition 6.4 and 6.6. It follows from
the reasonings outlined in the proof of Proposition 8.2 that

o + ON™) £elan+ (Ianj)Z; by — (|nN|Z|)2]
3
AE© = WalVIE = | Vo) oo &) + O T By ) £ < o - (NN N b
3
V" (an) ao(N(¢ — an)) + o(('”N'Z') JN(E = aN)) £efay;an +(nNN)2- N]

(C.13)

Therefore, forN large enoughpgk'{)(g) > 0 on [an ; by]. The vanishing like a square root at the edges then
follows from he properties of th&s established in Lemma 6.10. In fact, one even has
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(N) 2\/1
. peq (é‘:) /2( 1) . -1/2 _ } Na// \Y/ (b) —a/2
lim ——— = N¥4V"”(by) - lim X 7“ag(X) + ON"¥)} = ———————=+ O(N"¥9). C.14
L e (bw) - lim x 20009 + ON™)} = — e + ON™') . (C.14)
This concludes the proof. [

D The Gaussian potential

In this appendix we focus on the case of a Gaussian potemtiaksatablish two results. On the one hand, we
establish in Lemma D.1 that, fd¥ large enough, there exists a unique sequence of Gaussiamtipb¥c.n =
gnA? + tyAd such that their associated equilibrium measure has sumi'é)rt: [an ;bn]. On the other hand
we show, in Propaosition D.2, that the partition functionaasated with any Gaussian potential can be explicitly
evaluated, and thus is amenable to a direct asymptotic sisaljhenN — oo.

Lemma D.1 There exists a unigue sequence of Gaussian potentials
Vg;N = g|\|/l2 + tN/l (D.l)
such that their associated equilibrium measure has supp@?t: [an ; bn]. The cogicients gy, ty take the form

2
w1w32

-1
ON = nﬂ(w1+w2){b|\| —aN + N~ )} + O(N_Oo) (D2)

1 | (
= mwp wp(w1 + w))

and

tn = —(aN +b|\|)gN + O(N_Oo) . (D3)

Proof — Let Vg(1) = g4? + t1 be any Gaussian potential. Since it strictly convex, alvjmes results apply.
Suppose tha¥s gives rise to an equilibrium measure supporteah-@ﬁ = [an ; bn]. This means that the potential
VG has to satisfy the system of two equations that are line®fin

bN bN
[wvaow =1 and [ Eig) [vemeN g = o. ©.4)
aN aN

R+ie’

It follows from the multi-linearity in ¢,t) of Vg and from the evaluation of single integrals carried out in
Lemma 7.2 and Proposition 7.6 that there exist two lineamfoy, L, of (g,t) whose norm is a Q) and
such that

2

g 1 1 w12 }
o ) LU T In + Ligit D.5
ﬂﬂ((ﬂl"‘wz) {( N N) N ;— (,Upﬂ' (wp(wl +Cl)2)) 1(g ) ( )
where we have used that
+00 1 5 1
w1
! 0( ) Zﬂﬁ(a)l + a)z) ;_ wpﬂ' (wp(wl + wZ)) ( )
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a formula that can be established with the help of (6.72) &r2R]. One also obtains that

2
0= —(g(by +an) +t) + Lo(g,t). D.7
N (glbn +an) +1t) + La(g.t) (D.7)
In virtue of the unique solvability of perturbations of laresolvable systems, the existence and uniqueness of the
potentialVg.y follows. [ ]

Proposition D.2 The partition function g[Vg] at8 = 1 associated with the Gaussian potentig(¥) = g1 + td
can be explicitly computed as

N/2 2442 2 2 N ,

N! Vg N 79wy + w2) _aN® 2 i

ZN[VG]Iﬂzl = W(W) eXp{ a9 + 12g N“(Nz_l)} l_[(l—e gN 7 wlwz)N I (D8)
j=1

Proof — We can get rid of the linear term in the potential by a trafnmhadf the integration variables. Then

2+at2

ZN[Velpo1 = exp{ }'ZN[\7G]|,B=1 where  Vg(1) = g1°. (D.9)

Further, the products over hyperbolic sinh’s can be recasia Van-der-Monde determinants

N N —n(w1+w2)N‘Y(N Aa
[ ]{sinhlrosN® (ta=p)] sinhlreooN® (a=2o)]} = | {5

a<b a=1

} ]—[dem [N 46D] | (D.10)

Inserting this formula into the multiple integral repretion for Zy[Vg]s=1 and using the symmetry of the
integrand, one can replace one of the determinantll!iymes the product of its diagonal elements. Then, the
integrals separate and one gets:

= NI a a +a
Zn[Ve)pr = m'deﬁv[ f o m(@1 )N (N-D1 2N [ (k-Lrwa(i-DI . a2y | (D.11)
R

The integral defining thek( j)" entry of the determinant is Gaussian and can thus be compTitéslyields, upon
factorising the trivial terms arising in the determinant,

N

—~ T N NI 22 Ne-1( 24 02)(2—1—N)2
ZnVelpr = (o) v | [€®0 @@V Dy, (D.12)
gN 2 -1
where
Dy = delN[exp{ gN“ Lwgwa(2k = N = 1)(2j - 1—N)}]. (D.13)

The last determinant can be reduced to a Van-der-Mondeethdee have:

2 N
Dy = exp{g—gwlwz(N—l)zN“ [Tie?s N N-0-D) deﬁ\l[exp 7 N Lorgon(k— 1)(] - 1)}]
j=1
2 N

ﬂ2 a— 7r2 a— 1
- exp{— g—gwlwz(N—l)zN“} : l_[(eZFN forwp(k-) _ 27N 1w1w2(1—1)). (D.14)
k>j
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In order to present the last product into a convergent forenfagtor out the largest exponential of each term. The
product of these contributions is computable as

N ”2 a— N-1 ;r2 a— 2
l_[(eZEN lwlwz(k—l)) _ ]—[eZEN tw1wok? _ exp{ﬂ_wlsza(N —1)(2N - l)} i (D.15)
39
k> k=1
where we took advantage of
N
N(N +1)(2N + 1
> = ( 23( ). (D.16)
p=1
Putting all of the terms together leads to the claim. [

The largeN asymptotic behaviour of the partition functiongat 1 and associated to a Gaussian potential can
be extracted from (D.8).

Proposition D.3 Assumé < @ < 1. We have the asymptotic expansion:

t2 (w1 + wo)? g

INZn[Vellpey = N2 [— 4 232722 1 N2 jp2 - NZo. 2
N Zn[Va]lg=1 [49 129 ] n 12w w2

2 3 2
+N2‘2"-i)2+(l—a)NlnN+N-ln( fe )

(27T2w1w2) Vwiw?o
o (w1 + wo)? a+5 1 12878 wiwo ,
- N .T.,.lnN.T+l—2n(—)+§(—1)+0(1). (D.17)

Proof — The sole problematic terms demanding some further analystie last product in (D.8). The latter can
be recast as :

N NN ey N o

_ _ Mo(e™Nn: e ) Mq(1; &™) ON®
I I 1-em)™ = : where - 2 D18
5:1( ) Mo(1; e ™) Mp(eNiv; e ) ™ gN T wiw2 ( )

andM(a, g) corresponds to the infinite produd (a; q) = [152,(1 - aqf)™*.
We will exploit the fact that asymptotics d¥;(a; e*) whent — 0" up too(1) can be read4® from the
singularities of the Mellin transform of its logarithm

00 +00
M (a;9) = fo InM,(a;e)t52dt  where InM,(&;q) = — Z 'In(1-ad). (D.19)
=1

The above Mellin transform is well-defined for Be& r + 1 and can be easily computed. For day< 1, we
have:

M@s) = > Y frr:m j; s lgtmey () £(s— 1) Lis1(a) . (D.20)
=1 m=1

Above, ¢ refers to the Riemann zeta function whereag4)iis the polylogarithm which is defined by its series
expansion in a variableinside the unit disk:

Lis@ =) é (D.21)

k>1
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Note that, when Re > 1, the series also converges uniformly up to the boundargenfinit disk. We remind that
the first two polylogarithms can be expressed in terms of efgary functions:

z
1-z

In both case$ < 1 ora = 1, M, (a; s) admits a meromorphic extension from Re 1 toC. When|a < 1 this
is readily seen at the level of the series expansion of th@quarithm whereas whea = 1, this follows from
Lis,1(1) = £(s+ 1). Furthermore, this meromorphic continuation is such Maa; x + iy) = O@eM), ¢ > 0,
wheny — +oco. This estimate is uniform foa in compact subsets of the open unit disk andxXdrelonging to
compact subsets @&. The same type of bounds also holds $o& 1, namelyMi, (1;x + iy) = O(eM), ¢ > 0,
wheny — +oo for x belonging to a compact subset®f This is a consequence of three facts:

Lio(@) = and  Li@ = -In(1-2). (D.22)

e I'(x +1iy) decays exponentially fast whéh — +oo andx is bounded, as follows from the Stirling formula ;
e |/(x+1y)| < C|x+ iy|® for somec > 0 valid provided thak is bounded [41] ;

e Liyiy(a) is uniformly bounded fox in compact subsets & andain compact subsets of the open unit disk,
as is readily inferred from the series representation (P.21

Thanks to the inversion formula for the Mellin transform
C+ioco d
S :
InM;(a,e) = f M (a; 9) > with c>r+1, (D.23)
T
C—ico
we can compute the — 0 asymptotic expansion of M, (a,e™™) — this principle is the basis of the transfer
theorems of [47]. To do so, we deform the contour of integrato the region Re < 0. The residues at the
poles ofii, (a; s) are picked up in the process. There are two cases to digngince the polylogarithm factor in

(D.20) is entire ifla] < 1, while fora = 1 one has Ld,;1(1) = £(s+ 1) what generates an additional polesat 0.
We remind that:

M9 = T -7 +06, &9 = oz +re+ OO (D.24)
whereyg is the Euler constant. Far< 1, (a; s) has simple poles &= 1+r ands=0:

Lio () r! =/(-nNIn(1-a)
s—(1+r) S
Notice that here € {0, 1} and the Riemann zeta function has the special vaj(@s= —1/2 and(-1) = -1/12.
Therefore,

M (a;s) = + 0(1), M (a;9) = + 0(1). (D.25)

r'Liz.(a)

e
InM;(a;e") = I

—(-nIn(1-2a) + o(1), T— 0" (D.26)

and the remainder is uniform faruniformly away from the boundary of the unit disk. Foe 1, i, (a; s) has the
same simple pole &= 1+ r with residuer! /(2 + r), but now a double pole &= 0:

Lo S (=) Ly r@2+r)
M (1;9) = ot t 0(1), M (L;9) = @+ + 0(2) (D.27)
and we remind the special valgg0) = —In(2r)/2. In this case, we thus have:
Mi(l;e) = “g(tz—z”) —f=n)int + Z(=r) + o(l) 70", (D.28)
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Collecting all the terms from (D.26)-(D.28), we obtain thsymptotics of the product (D.18) that are uniform in
a belonging to compact subsets of the unit disk:

N-1 _li(a-Nty 2
In[g(l—e‘TN)N_f] _ LTIZN2(6 ) + %(Lil(e_'\'m)—g)

(E _ i)m(l‘ e_NTN) » NI L1y 4 o). (D.29)

2 12 N 2

Here, we have used the special valfg) = 72/6. It remains to insert in (D.29) the value of the parameter of
interestry = N*1 272w w»/g, and return to the original formula. The announced resulifie Gaussian partition
function (D.17) follows, upon using the Stirling approxitioa N! ~ vV27rNN+*1/2e-N for the factorial prefactor.
We remark that forr > 1, Ty = 0 is not anymore going to 0 wheéxi — oo, therefore the asymptotic regime
will be different.
[ ]

E Summary of symbols

Empirical and equilibrium measures

Epylu] (B.13) energy functional for the baby integral of § 2.1

E,n) (B.13) its kernel function

el §B.4 minimiser of&py)

Enlu] (2.33) N-dependent energy functional

Eooll] (2.27) same one & = oo

Dlu,v] Def. 3.2 pseudo-distance between probability measudhscid byEy
yg\') (2.35)-(2.36) N-dependent equilibrium measure (maximise€&g

pgNZ) Thm. 2.4 density of:Jy

[an,bn] Thm. 2.4 support ofily

o Def. 3.4 classical positions faiy

VN:eff (3.3) dfective potential

L (2.48) empirical measure

p Def. 3.6 deformation oft enforcing a minimal spacing

Lf\f_)u Def. 3.6 convolution otﬁ“) with uniform law of small support
Lﬁ) Def. 3.1 centred empirical measure with respeqt‘(EEB

Mf\’l’)K Def. 3.8 probability measure including exponential regakion ofn variables

Partition functions

ZN[V] (1.10) partition function of the sinh model with potential
Ve.n LemmeD.1 Gaussian potential leading to suppant pn]
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Pairwise interactions

sn(€)  (3.2)  pairwise interaction kernel
S(¢)  (2.42) derivative ofIn|sinh@rwi€)sinh@rw,E)| viz. 20,sn(N~€)
Sreg(é) (8.6) S minusits pole at0
SN (2.42) integral operator with kern8I(N*(£1 — £2))
SNy (4.1) same one with extended support
iy (4.3) same one in rescaled and centered variables
Operators
K Def. 3.8  multiplication by a decreasing exponential
=P Def. 3.12 operator inserting a copy &f at positionp
U (3.54) master operator
DN (3.57) hyperbolic analog of the non-commutative deriativ
VN Prop 8.1  building block o/
Wn (2.44) inverse ofSy
XN Def. 3.18 linear form related t¢#1;
XN Def. 3.18 projection to the hyperpladg([ay ; bn]) = KerXy
UL, Wy (3.101)  operators composed to the right with
N (5.58) operatofWWy in rescaled and centered variables
Wz, (5.15) a pseudo-inverse ofy.,.
A1, 12 Prop. 5.4 functionals appearing in the inversion.,
F1a(1) (5.34) related functionals
wlgz), wlglg (5.36) functionals appearing in the largexpansion of the latter
H" Def. 6.2  reflection of the functiohl (exchanging left and right boundary)
GN (9.2) 2-variable operator related W'y
Teven Todd  (9.23) some evendd averaging operator

Decomposition of operators for asymptotic analysis

W) sW (6.1) leading and subleading terms#y whenN — co
Wr, W, (6.4) contribution of the righieft boundary toWy

Wrk Prop. 6.6 terms contributing to the latter up@N—+) . ..
Ay Wr Prop. 6.6 ...and the remainder

(W(Ff}i), A[k](ngﬁ) Lemma6.11 putting aside exponentially small term$fif
Wik (6.4) contribution of the bulk ta4/y

Whokk Prop. 6.6 the terms contributing to the latter ugN—+) . ..
Arg Whok Prop. 6.6 ...and the remainder

(Wg’l‘jl A[k]ng‘f;& Lemma 6.11 putting aside exponentially small terms in tH& bperator
Wexp (6.4) exponentially small contribution

(A WN)r (9.8) local right boundary remainder

Similar notations are used throughout Section 9 for the mgositions ofG and the various.
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Riemann-Hilbert problems

R()

KN

R4 (1)

o)

(]

x()

A5k

e
T/l

Xk
G

X
Y1)
I1(1)
AII(A)
Gy
e
Rg/i) @)
Rt
M1/1(2)

(4.19)

(4.18)
(4.25)-(4.26)
(4.24)

Lemma 4.1
Prop. 4.3

(7.7)

(7.8)

(4.65)

(4.8)

(4.55) and Fig. 1
(4.49) and Fig. 2
(7.8)
(4.39)-(4.40)
(4.42)

(4.31)

(4.32)

(4.33)

Pr(A), PLir/i(4)  (4.34)

Or

T(A)
H()
H(2)

(4.55)
(5.5)-(5.13)
(4.8)

(5.14)

reflection cocient

codlicient of 1/ term

Wiener-Hopf factors &{(1)

related, piecewise holomorphic function

A-vector in correspondence with solutions.gf;;,[ f] = g.

2< 2 matrix solution of the homogeneous Riemann-Hilbert gwbWith jumpG,
leading part of(1) whenN — oo

exponentially small part af(1)
matrix coéficients in the large expansion of/(1)
jump matrix of the Riemann—Hilbert problem®dfandy
X 2 matrix related tg/(2)
related:2 2 matrix
diference betweeH (1) minus identity
jump matrix of the auxiliary Riemann—Hilbproblem
rate of exponential decay Gfy — I,
some factors of the jump matrix
their non-oscillatory parts
some factors of the jump matrix
some factors in the auxiliary Riemann—Hilbert peot
a constant involved in the auxiliary Riemann—Hithi@oblem
polynomial remainder in the inhomogeneoierann—Hilbert problem
A-vector on the right-hand side of the inhomogeneous Rierdditiert problem
related quantity

Auxiliary functions, contours, and constants

k()

XR, XL
he
Greg

J(¥)
00(X)
oc(X)
@¢(X)

Up

e (X)
az(X),b¢(X)
Tp

by

Pr, Q
OR:¢> Obk;t

(5.41)

Def. 6.1

Figure 4

Def. 6.3 and Figure 4
Def. 6.3
(6.34)-(6.35)
Def. 6.5

Def. 6.5

Def. 6.5

Def. 6.9, (8.48)
Def. 6.9

Def. 7.1

Def. 7.5

Def. 9.4

(9.73)
(9.77)-(9.80)

model integral appearing in the asymptoticgfef(1)
reduced variables centered at the right and lefhtary
contours in the uppwer half-plane
contours betwden, andR
related to the Fourier transform giR(1)
proportional to a primitive d{x)
related to higher primitives
integrals ok’ J(x) from X to co
codficients in the Taylor expansion of R(1) at4 =0
related to th® order truncation of the Taylor series offL
combinations of the above, involved in asympgttWy
negative moments of B,
sh order moment of,

" order moments related thandS

some universal multivariable polynomial
a specialisation of the latter involving thactions above
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Answer for the partition function

J[H, G] Def. 7.4  bilinear pairing induced by

SS)[H,G] (3.115) related expression appearing onlyfot 1
i‘ssg[H,G] (3.116) related expression appearing onlyfgot 1
J4[H,G]  (9.1) related expression

Sap[H,G] (3.118) related expression appearing onlydot 1
QUV, Vo] (2.22) a functional appearing in the interpolation

(X) Def. 9.9 afunction involving the's andb’s appearing in expansion &f
No Def. 9.9 a constant involving integrals 8f S andRy,;, appears in expansion O
Norms

NI(\f)[qﬁ] Def. 3.14 weighted norms involving/° norms fork € [0; ¢]
ne[V] Def. 3.15 some estimates for the magnitude of potential

Miscellaneous

a(2 (8.8) squareroot
gr(2 (8.23) squareroot at the right boundary
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