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O. INTRODUCTION

We work over an algebraically closed field k. Throughout the paper a sheaf will be

a torsion-free coherent sheaf of rank at least 2 on IPz. For a sheaf E on IFz, we let X(E)

be the Euler-Poincare characteristic, and PE(n) := x(E(n)) the Hilbert polynomial.

Given a polynomial P E Q[n], we let Mp2 (P) (01' just M(P)) be the moduli space of

S-equivalence elasses of Gieseker-semistable sheaves with Hilbert polynomial P. The

Euler-Poincare characteristic, the rank and the slope J1-(E) of a sheaf E are determined

by its Hilbert polynomial. Therefore we will put X(P) := P(O), rk(P) := rk(E) and

p(P) := J.l(E) = deg(cl(E)jrk(E)) for any sheaf E with Hilbert polynomial P.

Let E be a sheaf with h2 (E) = O. Then elearly hO(E) ;?: X+(E) := max(x(E),O).

We will call E special if hO(E) > X+(E). If E is a semistable sheaf with J.l(E) > -3

then hZ(E) = 0. Vve let Sp(P) C lvf(P) be the elosed subset of special S-equivalence

elasses of sheaves, where a elass is called special if at least one of its representatives is

special. In fact, if we asslllne J.l(P) > -3, then Sp(P) has a natural scheme structure

(see lemma 1.3).

Theorem 1. ASS'lLme p(P) > -3. Then

(1) 1/ X(P) # 0, then Sp(P) has codimension at least 2.

(2) 1/ X(P) = 0, then Sp(P) is an irreducible reduced divisor or empty.

Theorem 1 is used in [LP) to give a new and simpler proof of the structure of the

Picard group of the moduli space lvl(P).

We will indeed prove a more general result dealing with moduli stacks of sheaves on

IPz, rather then with moduli spaces of semistable sheaves.

A sheaf E is called prioritary if Extz(E, E( -1)) = 0 (see [H-L]) , and it is called of

rigid splitting type (rst) if the restriction to a generalline I is rigid, i.e. if it splits as
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Eil = GIrl (O')EBa EB OPl (0' + l)EBb. It is easy to see that semistable sheaves and sheaves

of rigid splitting type are prioritary (cfr. e.g. [H-L), prop. 1.2). Let Prior(P) be the

moduli stack of prioritary sheaves with Hilbert polynomial P. Let Rst(P) C Prior(P)

be the moduli stack of rst sheaves and let U(P) C Rst(P) be the open substack of

sheaves E with h2 (E) = O. Let Sp(P) C U(P) be the closecl substack of special sheaves

(see lemma 1.3).

Theorem 2.

(1) If X(P) =I- 0, then Sp(P) has codimension at least 2 in U(P).

(2) If X(P) = 0, then Sp(P) is an irreducible reduced divisor or empty.

We will prove theorem 2 by descending induction on P using a degeneration argu­

ment. A similar induction was used in [H-L] to prove the irreducibility of Prior(P),

thereby giving a new proof of the irreducibility of M(P). Theorem 1 will be proved

from theorem 2 essentially by showing that in the moduli space of stable sheaves the

loeus of non-rst sheaves has codimension at least 2.

We would like to thank Barbara Fantechi for several very useful diseussions.

1. BACKGROUND MATERIAL

A versal family of sheaves on IP2 will be a flat family of sheaves [ with sluooth base S

such that the Koelaira-Spencer luap Ts,s -----+ Ext 1(Es, Es) is surjective at every point s E

S. If a family of prioritary loeally free sheaves is versal, then its restriction to any line 1is

also versal. To see this it is enough to check that the map H 1 (E(j)E*) -----+ H 1
((E(j)E*) 11)

is surjective and this follows from the prioritary eondition H 2 (E 0 E*( -1)) = O.

Proposition 1.1.

(1) Let E be a rst sheaf. If hO(E( -1)) > 0, then h2 (E( -1)) = 0 (hence h 2 (E) = 0).

(2) If E is rstJ then there exists an 11. such that hO(E(n)) = 11,2((11.)) = O.

(3) The Hilbert polynomial PE 0/ a prioritary sheaf is nonpositive (i. e. there exists

an 11. with FE(n) :S 0).

Proof. This follows essentially from the proof of proposition 1.3 of [H-L]. There (1) is

proved under the assuluption that E is generic prioritary, however the proof uses only

that E is locally free anel rst. If E is not Iocally free, one can use the exact sequence

o-----+ E -----+ E ** -----+ Q -----+ 0,
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where Q is a sheaf with O-dimensional support, hence has uo higher cohomology. (2)

follows directly frolll (1) anel (3) follows from (2) plus the fact that a generic prioritary

sheaf is rst ([H-L] prop. 1.2). D

\Ve will use algebraic stacks in the sense of Artin (Al, which is more general than that

of Deligne-Mumford [D-M]; our main reference will be [L-MB]. There exists a moduli

stack Coh(P) of coherent sheaves on IP2 with Hilbert polynolnial P, and there is a

universal sheaf over Coh(P) x IP2 . The prioritary sheaves fonn a smooth open substack

Prior(P) of Coh(P). For a snlooth scheme S, a smooth morphism S --+ Prior(P) is

the same as a versal faruily of prioritary sheaves on IP2 with base S. Local properties

of Prior(P) (in the smooth topology), like codimension of substacks, can therefore be

checked on versal families .

Notation 1.2. We elenote by M(P) the moeluli stack of semistable sheaves. We will use

the following notation: For auy locally closecl substack A(P) of Prior(P) we denote

A"(P) the open substack of stahle sheaves in A(P), Ao(P) the open substack of locally

free sheaves, A::;l (P) the open substack of sheaves with at IlIOSt one siInple singularity

and ua other singlliarities, Al (P) := A::;l \ An with the rcduced structure, A:2:1(P)

the closecl substack of sheaves having at least one silnple siugularity (with the recluced

structure), A>l (P) := A:2:1 (P) \ Al (P), we also denote A1,x(P), A:2:1,x(P), A>l,x(P)

the substacks of Al (P), A:2:1 (P), A>l (P) of sheaves with a simple singularity at x.

Für any locally closed subscheule A(P) of M(P) we define A 8 (P), Ao(P), A::;l (P),

Al (P), A:2:1 (P), A>l (P), Al!x(P), A:2: I ,x(P), A>l !x(P) corrispondingly.

By theoreme 3.1 and corollaire 3.2 of [H-L] the mocluli stack Priar'(P) is irreducible,

and the generic elelllent is locally free. In particular if Priar(P) contains the sheaf

Fo = 67j=l O(bj ), then it is recIuced to a point, as its tangent space at Fo has dimension

zero.

Lemilla 1.3.

(1) Sp(P) has a natural structure 0/ a closed substack 0/ U(P). For X(P) = 0 it is

either U(P) or a Cartier divisor or empty.

(2) 1/ f-l{P) > -3 then Sp(P) has a natural structure 0/ a closed substack 0/ M(P).

(3) The codimension 0/ Sp8(P) C M8(P) is the same as that 0/ SpS(P) c MS(P).

Praof. (1) Giving a substack structure to Sp(P) C U(P) is equivalent to giving, for

each fanlily of rst sheaves E with h2 (E) = 0, a subscheme structure to the locus of
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special sheaves, which is compatible with pullback. In fact it would be enough to do

this only for versal faInilies. We use the construction of UR] 7.6). Given a family E

over B x 1P2, B ascheme, we can eInbecl E into a locally free sheaf F, flat over B,

with uo higher direct images, so that the fibre hOIllomorphisms EI {b} XP2 ---+ F I{b} X IIl'2

are also injections. The cokernel Q of E ---+ F is flat over B and has no higher direct

iUlages. Thus Ir.F and 7r.9 are locally free, where 7r : B x IPz ---+ B is the projection.

The subscheme structure of the locus of special sheaves is given by the vanishing of

the maximal minors of the induced map Ir.F ---+ Ir.9. This subscheme structure is

independent of the choice of F (by the theory of Fitting ideals) and compatible with

base change. In case x(EI{b}X!F2 ) = 0, the sheaves 7r.F and 7r*9 have the same rank,

hence Sp(P) is either equal to U(P), or a Cartier divisor 01' empty.

(2) We have a natural morphism c : M(P) ---+ M(P): for a scheme T we have the

functor M(P)(T) ---+ HOIU(T, A1(P)), associating to a family of semistable sheaves on

1P2 parametrized by T the incluced Inorphism T ---+ M(P). By the sarne arguments as

above as in (1), the sublocus of M(P) of sheaves E in M(P) with HO(E) > X+(E)

carries a natural structure as a closed substack S of M(P). Let Sp(P) be the scheme­

theoretic image of S, i.e. the snlallest subscheme of A1(P), through which cis factors.

(3) The fibres of cIM'(p) : M8(P) --+ A1~(P) have all the saule dimension (Le. -1)

and SpS(P) is the preiInage of Sp8(P). Therefore (3) follows. 0

It is easy to see that Sp(P) is irreducible and reducecl if Sp(P) is (this follows from

the corresponding statement for the scheme theoretic image of scheInes).

Let E be a semistable sheaf with J1(E) > -3 and EBi Ei the gradecl object assoeiateel

to the Jordan-Rölder fil tration. Then 0 bviously hO (E) :::; L: hO(Ei), hence if E is special,

then EB Ei also is, and there exists aIl i o \vith Eio special.

Vve will show that, when X(P) = 0, Sp(P) C lvJ(P) is irreducible and that Sp(P) n
(lvJ(P) \ 1vJ~(P)) has codimension at least 2 in M(P). As M(P) is normal Sp(P) has

an inclucecl structure of a Cartier divisor.

Remark 1.4. Let F be a universal sheaf over Rsto (P +1) x IP z. Then R8t 1 (P) is canon­

ically isomorphie to the projectivization IP(F) (for the definition of the projectivisation

of a eoherent sheaf over a stack see [L-MBl 7.2.3.). In fact the universal sheaf E on

T = IP(F) x IPz can be defined by the exact sequence

°--+ E --+ p* (F) --t p~(Onr(:F) (1)) I~ --+ 0,



5

where Pl, PZ are the projections of IP(F) x IPz to IP(F) and IP Z1 P : IP(F) X lPz~ Rsto(P+

1) x IPz is the cOlnposition of PI with the projection rr : lP(F) ---t Rsto(P + 1) X f'Z, and

~ is the inverse image of the diagonal via the mapping IP(F) X f'z --t IPz X f'z which is

the product of pz anel the coulposition of P with the projection Rsto(P+ 1) X IP z ----t IPz.

Fibrewise, this exact sequence is just

o~ E ----t EH --+ kx ---t 0,

where E is a sheaf with a sinlple singularity at x and kx the skyscraper sheaf with fibre

k at x.

By [H-L] theorelue 3.1 anel corollaire 3.2 Prior(P) is irreducible and the generic

point of Prior(P) is locally free. Therefore Prior 2.1 (P) has at least codimension 1 in

Prior{P). By the salne argtuuents as in the previous paragraph R.st2:1 (P) is a f' r(P)-l­

bundle over the open substack of Rst(P +1) X IPz of (F, x) such that F is locally free at x.

In particular it is irreducible ancl Rst>l (P) has codiluension at least 1. Repeating this

argument shows that the generic element in Rst>I (P) has exact1y 2 sin1ple singularities.

By restrietion we have an isoluorphism U1(P) ~ IP'(Fluo(P+l) XP2) as hZ(EH) = 0 if

and only if hZ(E) = O. We also clenote by rr: U1(P) --+ Uo(P + 1) X IP'z the restiction

of the projection.

Every sheaf E has a graded resolution of length at IUost 1

n n+r
ffi A'1ffio--+ W O(aJ)--+ W O(bj) ----t E ---t 0
i=l j=l

where ai ~ ai+l, bj ~ bj +1 , r > O. The resolution is miniulal if the entries of !vI contain

no nonzero constants: this implies ai < bi+l (see prop. 2.3 of [H-L]). By leaving out the

corresponding summands we can always change aresolution to a luinimal resolution.

Definition 1.5. Given al ~ ... ~ an, b1 ~ ... ~ bn +r we call Rst((aJ),(bj )) (resp.

U((ad 1 (b j ) )) the locally closed substack of Rst (P) (resp. U(P)) of sheaves having a

graded resolution of type (*). (Here P(n) = L.: j (n+~+l) - L.:i (n+~i+l).)

Note that hO(E) is the same for all E E Rst((aj), (b j )), therefore U((ai), (b j )) is either

contained in or disjoint frolu Sp(P).

Lenlma 1.6. Ass'ltme (adi=l' (b j ) j!; f'ltlfill aj ::; bi+l for all i and that n > O. 1f

Rst( (ad, (b j )) is nonempty, then it intersects Rst 2: 1 (P).
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Proof. This is shown in [H-L] proposition 2.1 and proposition 2.6. There the assumption

is made that Rst((ai )(b j )) contains a generic priori tay sheaf E, such that (*) is a rninimal

resolution. In the proof it is however only used that E is rst and ai ::; bi+1 for all i. 0

Corollary 1.7. Every component 0/ Sp(P) intersects U~l (P).

Proof. Let U((ad, (b j )) i= 0 be contained in Sp(P) with ai ::; bi+1 for i = 1 ... n. If

11. = 0, then U((ad, (b j )) = Prior(P) = {EBj O(bj )} hence Sp(P) = 0. If 11, > 0

then 'Rst ((ai), (b j )) intersects 'Rst~l (P) by lernma 1.6. Furthermore U( (ai), (b j )) =
'Rst((ad, (b j )); in fact for some, and hence for all E E 'Rst((ad, (b j )) we have hO(E) > 0

(by speciality) hence h2 (E) = 0 by proposition 1.1. 0

Definition 1.8. Let A be an algebraic stack over k and !( and extension of k. A point

Xl E A(!() is called a generalization of x E A(k), if x lies in the closure of the image

of the morphisrn Spec(!() ---+ A given by Xl. We call Xl a generic point of A if this

morphism is dominant and separable (see also {H-L]).

Proposition 1.9. 'Rst(P) \ Rsto(P) is irreducible and a generic point lies in Rst1 (P).

For the proof we will need an elementary result [roln linear algebra.

LeIllIlla 1.10. Let 1/, vV be vector spaces 0/ dimension 11, and 11, + r respectively,

1/1 , • .• ,'In (resp. H/l , ... , H1n ) be flags 0/ linear subspaces such that di1n(Vi) = i (re­

spectively dim(vVd 2: i +1) /or all i. Let FL C Hom (11, VV) be the affine L'Icheme 0/ flag

maps (i. e. maps<p such that lp(Vd c llVi) having rank at most 11, - 1. For<p E FL, let

l(lp) := min{ildimlp(Vi) < i}.

Then every 4> E F L has a generalization 1jJ such that rk 1jJ = 11. - 1 and vVI( 1,0) n1jJ(1/) =
7jJ (1;').

Proof. We use descending induction on I := l(<p), the case I = 11, - 1 being trivial. Let

<p be such that either rk(<p) :::; 11. - 2 or Wj n lp(V) #- lp(Vi).

By assumption there exists VI E 1;' n ker <p, VI 1:. Vt-l i cornplete VI to a flag basis

VI, ... ,Vn of 11 (a basis such that Vl,'" ,Vi span Vi). If rk<p :::; n - 2, choose w E

W, \ <p(Vi)j otherwise choose w E VVl n <p(V), w t/:. <p(VI). Put

{
tw if i = 1

7jJt(vd =
<p (Vi) otherwise.

Then 7jJ t is a generalization of <p in F L and 1('l/J t) > 1(<p ). o
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Proo/ 0/ Proposition 1.9. The second assertion follows frolu the first as Rst] (P) is ir­

reducible and dense in 'Rst~] (P) by remark 1.4. So it is enough to provc that every

non-locally free sheaf in 'Rst(P) can be generalized to a sheaf having one simple singu­

larity (anel possibly others). Let E E 'Rst(P) \ Rsto(P). Choose x E Ir2 such that E is

not locally free at x, and let

n n+r

o-7 EB V(-ad~ EB O(-b j ) -7 E --+ 0
i=l j=1

be a minimal resolution (again ai ~ ai+l, bj ~ bj+d. Let H be the spaee of matrices

with polynomial entries

Let Ho C H be thc open subset of maps h, for which the induced lnap

EB O(-ai)~ EB O( -bj ) is injcctive and the cokernel Eh is torsion free. The Eh form

a flat faInily over Ho; as f E Ho and E is rst, for every generalisation h of f we have

that Eh is also rst.

Fix affine coordinates (y, z) in Ir2 such that x is the origin; to each section of OP2 (1')

we can associate an eleluent of V x , hence we can consider the quotients H' = H /m x

and H" = H/1n~, where n~x C Gx is the maximal ideal.

Let now Vi C kn (resp. Hri E kn +r
) be the subspace where at most thc first i

(resp. the first j, with bj > ai ~ bj-l) coordinates are nonzero. Then H' is naturally

isomorphie to F L, anel the natural projections H -+ H' , H --t H" anel H" -+ H

are (trivial) vector bundles. Let f', f" be the itnages of / in H', H".

By lemma 1.10 f' has a generalization 'ljJ with rank 'ljJ = Tl - 1, WI n 'ljJ(V) = 'ljJ(Vi),

where l = l ('ljJ ). Let h" be the generic point of the fibre aver 'ljJ of H" --+ H'. We will

prove that the maximalluinors of h" generate mx/rn; by constructing a 9 in the fibre

with the Sillne property. As dinl 'ljJ (Vi) = l - 1 = elim( lVI n 'IjJ (V) ), we can choose w 1, W2

in W, such that their images in Wt/(lVI n ~(1/)) are linearly independent. Let VI,' .. ,VI

be a flag basis of V such that VI E ker 1P. Define linear maps 1Pl, 'lj;2 : 11 --+ llV by

if i = 1

otherwise.

Then if gEH" is definecl by
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in suitable bases for V and TV we have

(

In-l 0)o y
9 = 0 z

o 0

heuce its maximal minors generate 7nx/rn~.

Let now h E H be the generic eielnent of the fibre of H -r H" over h". As 'IjJ has

rank n - 1 and the maxiInal minors of h" generate mx/1n~, Eh has a simple singularity

at Xi on the other hand h is a generalization of f as required. 0

2. PROOF OF THEOREM 2

We want to prove theorem 2 by descending induction on Pj Inore precisely we will

prove that if theorem 2 holds for P+ 1, then it holds for P. To start the incluction, note

that, given P, for large enough 7n the polynomial P+1n is positive. In this case U(P+1n)

is empty by proposition 1.1 and the theorem is trivial. So we assurne the theorem for

P + 1 and have to prove it for P. By coro11ary 1.7 each irreducible component of Sp(P)

intersects U?l (P). Therefore it is enough to prove the result for SP?l (P) C U?l (P).

Lemnla 2.1.

(1) Sp(P) C U(P) has codimension 2:: 1.

(2) Sp>l (P) C U>l (P) has codimensioll 2:: 1.

Proof. (1) VVe prove the result by clescending induction on P, the beginning of the

induction being again trivial. So we again have to show the result for U>l (P). By

reulark 1.4 we see that U>t (P) has at least codimension 1 in U>l (P) and thus it is

enough to show that SPI (P) C UI (P) has codimension 2:: 1.

Gase X 2:: O. By induction Spo(P) C Uo(P) has coclimension 2:: 1. Let rr : U1 (P) -r

Uo(P + 1) x lP2 be as in remark 1.4. If F E Uo(P + 1) is nonspecial, and E E rr- 1 (F, .'t),

then by the cxact sequence

o ---7 E ---7 F ---7 kx ---7 0

E is special if and only if the induced map HO(F) -r kx is the zero Inap.

As each F E Uo(P + 1) has at least one section, thc locus

No := {(F, x) E Uo(P + 1) x lP2 I a11 sections of F vanish at x}
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has at least codimension 1. Now for (F, x) rt No and F nOllspecial the codiInension of

SPl(P) in 7r-
1 (F, x) is at least 1, so (1) follows.

Gase X < 0. In this case SPI (P) C 7r-
1 (Spo(P + 1) x IP2 ), anel SPo(P + 1) has codi­

lnension 2:: 1 in Uo(P + 1) by induction.

(2) By reulark 1.4 the generic element of U>l (P) has exactly two simple singularities,

therefore it is enough to prove the result for U2 ,x(P), the stack of sheaves having exactly

two sirnple singularities, oue of which at x. Now again U2 ,x(P) is a Pr-I-bundle over

U1,x(P+ 1) x {IP2 \x} and by the proof of (1) we know that SpI,x(P+ 1) has codimension

at least 1 in U1,x(P + 1). Arguing as in the proof of (1) shows the result.

o

By part (2) of lemma 2.1 it is enough to prove theorem 2 for SPI (P) C UI(P).

Gase (1): X(P) > O.

For any (F, x) E Uo(P + 1) let eVF,x : HO(F, IP2 ) --+ F(x) be the evaluation rnap at

x. For i = 0, 1 let

with the reduced structure as a closed substack.

Lemma 2.2. Ni has codimension at least 2 - i for i = 0, 1.

Proof. As Sp(P + 1) has codimension at least 2 in Uo(P + 1) by induction, it is enough

to prove the result for (Ni \ Sp(P + 1)) x IP 2.

Case i = 0: No fibre of the projection No --+ Uo(P + 1) has dimension 2, and if the

the fibre over F has dimension 1, then hO(F) = hO(F( -1)), so F( -1) is special; in

fact h2 (F( -1)) is zero because hO(F) f. 0, applying proposition 1.1. So the locus of

nonspecial F such that the fibre of No over F has codirnension 1 belongs to the inverse

image of Sp(Q + 1) via the isomorphisnl Uo(P + 1) --t Uo(Q + 1), given by F M F( -1),

where Q is the polynornial defined by Q(n) = P(n - 1). So the result follows by lemma

2.l.

Case i = 1: Let F E Uo(P + 1) be a nonspecial sheaf such that the subsheaf spanned by

global sections is a subsheaf of rank 1, i.e. of the fonn O(l) 0Iz for Iz the ideal sheaf of

a zero dirnensional subscheme of IP2 . By taking double duals and using that F is locally

free we see that Tz = O~2' The inclusion OP2 (l) --+ F induces an isomorphisln of global
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sections. By hO (F) ~ 2 we see that 12: 1. As thc isomorphism HO (OP2 (I)) ---+ HO (F) is

induced by the inclusion above, we also have isomorphisms HO( OP2 (k)) ---+ HO(F(k-/))

for all k :::; I. By lemrna 2.1 we can assume that F(k -l) is nonspccial for k = -1, ... ,l.

So we have X(F(k -l)) = X(Op2(k)) for k = 0, ... ,I, in particular X(F(-1 -l)) :::;

0, X(F( -l)) = 1, x(F(1-/)) = 3. Thc Riemann-Roch theorem implies that the second

difference function of PF is the rank of Fand so F has to have rank 1. So we get a

contradiction. o

Let again 7f : Ur (P) ---+ Uo(P +1) X lPz be the projection. By induction S p(P +1) has

codimension at least 2 in Uo(P +1), so it is enough to prove the result for 7f -1 ( (Uo(P +
1) \ Sp(P + 1)) X IPz). For E E 7f-

1 (F, x) with F nonspecial we havc that E E Sp(P) if

and only if thc map HO (F) --+ kx induced by the exact sequence (**) is the zero rnap.

So for (F, x) E Uo(P +1) X lPZl F nonspecial, the codimension of SP1 (P) in 7f-
1 (F, x)

is °or 1 if and only if (F, x) E No (resp. Nt \ No); hence by lcnuna 2.1 thc proof is

complete.

Gase (2): X(P) = 0.

Either Sp(P) is equal to U(P), or it is a Cartier divisor (by lernma 1.3). Let Di

be irreducible Cartier divisors on an algehraic stack, aud asslune there is a substack Z

such that Di n Z is a nonempty divisor for all ij then one can see that D = I:: Di is a

reduced and irreducible divisor if D n Z iso This is easy if the stack is ascheine, and

the general case follows. "Ve will use this to prove case (2).

Let (F, x) E Uo(P + 1) X IP 2 such that F is nonspecial and its nonzero sections do not

vanish at x. The fiber of 7f : U1 (P) --+ Uo(P +1) X IPz over (F, x) is naturally isornorphic

to IP(F(x)); we have an exact scquence 011 T := IP(F(x)) X IP z

°--+ E: --+ F(x) 0 OT --+ p*(Ofil(F(x))(1))I!F(F(x))x{x} --+ 0,

where p is the proj ection to IP(F (x)). As F (x) 0 OT has 110 lligher cohomology on thc

fibres, by lemma 1.3 the (scheme-theoretic) intersection of Sp] (P) with IP(F(x)) is the

determinant locus of the mapping

induced by thc exact sequence (* * *). This mapping is isomorphie to 0lF(F(x)) --+
Op( F( x)) ( 1), where thc isomorphism P* (F (x) 0 OT) --+ Op( F(x)) is given by choosing a
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(nonzero) section of F, and it is nonzero because the section does not vanish at x. So

SP1(P) n rr-l(F,x) is a reduced, irreducible divisor.

It is now enough to prove that every component of Sp] (P) intersects rr- l (F, x) to

C01Uplete the proof; we will in fact prove that every component surjects on Uo(P +1) x JID2.

Note that if F is nonspecial in Uo(P + 1) then a nonzero section lnllst vanish in

codirnension at least 2; otherwise we would have a section of F( -1), hence hO(F) ~ 3.

So the locus

{(F, x) E Uo(P + 1) x JID21 either FESp(P + 1) 01' hO(F (1) I{ x}) = I}

has codimension at least two, and so the image of a component of SPl (P) cannot be

contained in it.

As out of this locus the intersection of the component with thc fibre has codinlension

one, and as each cOlnponent of Sp(P) is a divisor, the required surjectivity is proven.

Gase (3): X(P) < O.

From the injection HO(E) -+ HO(E**) it follows that SPl (P) C rr- 1(Spo(P+ 1) x JIDz).

So if x(P) < -1 then SPl (P) has codimension at least 2 by induction.

Assume therefore that X(P) = -1. Let Vsp(P + 1) C Sp(P + 1) be the loeus of

sheaves F such that hO(F) ~ 2. vVe note that Vsp(P + 1) has codilnension at least 2

in U(P + 1). To see this, arguing as before it is enough to provc that Vsp] (P + 1) has

coclilnension ~ 2 in U1(P + 1); but V S Pl (P + 1) is contained in the inverse image of

SPo(P + 2) x IFz, so by induetion we are done.

For F E Sp(P + 1) \ Vsp(P + 1) the nonzero seetions of F vanish in eodimension at

least 2. Therefore the loeus

{(F,x) E Spo(P + 1) x IFzl either FE Vsp(P + 1) 01' hO(F 0L{x}) = I}

has codimension at least two, and as the fibers of SPt (P) over its complelnent in Spo(P+

1) x JID 2 (which is a divisor in Uo(P + 1) x f z by incluetion) have eodimension one, the

result is proven. D

3. PROOF OF THEOREM 1 FROM THEOREM 2

By lemma 1.3 theorem 2 implies that theorem 1 holds for Rst 9 (P). We now want to

prove theorem 1 for MS(P) by showing that MS(P) \ RstS(P) has eodimension at least

2 in MS(P). Finally we will show that theorem 1 for JvJS(P) for all Pimplies theorem

1 for M(P).
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Lemma 3.1. lvl
lf
(P) \ Rstlf(P) has codimension at least 2 in lvIS(P).

Proof. We first prove that ]V!o(P) \ Rsto(P) has codimension at least 2 in Mü(P). By

the theorem of Grauert-Miilich [G-M) a stable bundle of rank 2 is rst, so we can assunle

the rank is at least 3. It is enough to show that in versal faInilies of stable bundles on IP 2

non-rst bundles occur in codimension at least 2. We assume that there exists a versal

faluily E of stable bundles on IP2 over a schenle 5, such that non-rst bundles oceur over

an irreducible divisor D. Let IPi be the space of lines in IP2 and r c IP 2 X IP~ the incidence

variety with projection P2 to Pi. Let [ by the pullback of E to r x 5. For every vector

bundle F on IP1 we have a locally closed subset ZF := {(I, t) E Pi x 5 I [t 11 ::: F} of

IP; x 5. ZF is smooth of codimension dirn(Ext~l (F, F)) or empty: in fact let U C IP~

be an open subset over which there exists a trivialization f : PI X U ---+ r n p2"l (U).

Then by the remarks before proposition 1.1 f*(E) is a versal fanlily of bundles on IP I

and thus ZF n U is sluooth of codimension di7n(Ext~l (F, F)) or empty.

As E is not rst over D, therc is a nonenlpty ZF1 with dirn(Ext~l (FI , FI )) = 1.

However the only possibility for such an PI is PI = O(a - 1) EB O(a)$r-2 EB O(a + 1).

So in particular if we put Fa := V(a)EBr then ZFa is open and dense in Pi x S. By [B]

the only degeneration G of PI with dirn(Ext~l (G, G)) :S 3 is G = O(a - 2) EB O(a + 2).

However this can only occur if the rank is 2, which we have excluded in our assuluption.

Hence after possibly replacing S by an open subset with nonempty intersection with

D , \ve can assurne that ZFt is closed. Hence (IP; x S) \ ZFa is snlooth along Pi x D,

hence IPi x D is a connected component. Let ltV be the union of the other cOlnponents

of (IP~ x 5) \ ZFa' The image 'lT(W) under the projection 7r to 5 is closed in 5 and

disjoint from D. For all t E S \ (D U 7r(W)) the restrietion of Et to every line is Fa.

Thus Et ::: 0 (a) r, W hieh is however not stable.

It is now enough to show that the complement of A;J{(P) nRst(p) has codimension at

least 1 in M{(P). If E is a stable (or simple) sheaf with exactly one siInple singularity,

then F = EU is prioritary. To prove this, take any Ene I containing the singular point

of E; then by the exact sequence

o---+ HOlll(F, F( -1)) ---+ HOIU( F, F) -+ Hom(F, Ftd

every nonzero element of Hom(F, F( -1)) induces a nonzero eleluent of Hom(E, E) vau­

ishing along I.

Therefore Mi (P) is an open substack of a IPr-}- bundle over Prior0 (P + 1) x IP2

and 'R8t~ (P) is the preimage of Rsto(P + 1) X IP 2. As the complement of 'Rsto(P + 1)
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in Prioro{P + 1) has codimension at least 1 (by (H-LL proposition 1.2), we get that

the complement of Rst:(P) in Mf(P) has codimcnsion at least 1j thc corresponding

statement for the moduli scheme follows from lemlua 1.3. D

Proolol Theorem 1. By lemma 3.1 theorenl 2 inlplies theorem 1 for lvI8(P). M(P) \

M8(P) is a finite union of locally closed subsets lvI({PihEI), where {PdiEI is a finite

set of polynoluials with ~i Pi = P anel Pi/r(Pd = P/r·(P). Al({Pi}iEd is the image

of the quasifinite morphism

Now by the remarks after lemma 1.3 if [EBiEi] is special, then EBiEi is special, and so

one of the Ei has to be special. By the condition Pdr (Pd = P/r (P) and lemma 3.1 we

see that Sp(p)nlvf({Pi}iEd has codimension at least 2 in A1({Pi}iEJ) for X(P) i:- 0

and codiluension at least 1 for X{P) = O.

This shows the theorenl for X(P) i:- O. If A1 8 (P) =1= 0, then Al(P) \ A1 8 (P) has at

least codimension 1 so by the previous paragraph and preview noelemma 1.3 the result

follows also in the case X(P) = O. Finally if M!J(P) = 0, then A1(P) is reducecl to a

point ([Dr-L] prop. 4.5 and thnl. 4.10) and by the previous paragraph Sp(P) = 0. D
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