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0. INTRODUCTION

We work over an algebraically closed field k. Throughout the paper a sheaf will be
a torsion-free coherent sheaf of rank at least 2 on P;. For a sheaf E on Py, we let v(E)
be the Euler-Poincaré characteristic, and Pg(n) := x(E(n)) the Hilbert polynomial.
Given a polynomial P € Q[n|, we let Mp,(P) (or just M(P)) be the moduli space of
S-equivalence classes of Gieseker-semistable sheaves with Hilbert polynomial P. The
Euler-Poincaré characteristic, the rank and the slope u(E) of a sheaf E are determined
by its Hilbert polynomial. Therefore we will put x(P) := P(0), rk(P) := rk(E) and
p(P) := pu(E) = deg(ci(E)/rk(E)) for any sheaf F with Hilbert polynomial P.

Let E be a sheaf with h?(E) = 0. Then clearly h°(E) > xT(E) := maz(x(E),0).
We will call E special if h°(E) > xT(E). If E is a semistable sheaf with u(E) > —3
then h%(E) = 0. We let Sp(P) C M(P) be the closed subset of special S-equivalence
classes of sheaves, where a class is called special if at least one of its representatives is
special. In fact, if we assume p(P) > -3, then Sp(P) has a natural scheme structure

(see lemma 1.3).

Theorem 1. Assume u(P) > —3. Then

(1) If x(P) #£0, then Sp(P) has codimension at least 2.
(2) If x(P) =0, then Sp(P) s an irreducible reduced divisor or empty.

Theorem 1 is used in [LP] to give a new and simpler proof of the structure of the
Picard group of the moduli space M(P).

We will indeed prove a more general result dealing with moduli stacks of sheaves on
P,, rather then with moduli spaces of semistable sheaves.

A sheaf E is called prioritary if Ext®(E, E(=1)) = 0 (see [H-L]), and it is called of
rigid splitting type (rst) if the restriction to a general line [ is rigid, i.e. if it splits as
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Ej = Op, ()% @ Op, (a + 1)®°. 1t is easy to see that semistable sheaves and sheaves
of rigid splitting type are prioritary (cfr. e.g. [H-L}, prop. 1.2). Let Prior(P) be the
moduli stack of prioritary sheaves with Hilbert polynomial P. Let Rst(P) C Prior(P)
be the moduli stack of rst sheaves and let U(P) C Rst(P) be the open substack of
sheaves E with h?(E) = 0. Let Sp(P) C U(P) be the closed substack of special sheaves

(see lemma 1.3).

Theorem 2.

(1) If x(P) # 0, then Sp(P) has codimension at least 2 in U(P).
(2) If x(P) =0, then Sp(P) s an irreducible reduced divisor or empty.

We will prove theorem 2 by descending induction on P using a degeneration argu-
ment. A similar induction was used in [H-L] to prove the irreducibility of Prior(P),
thereby giving a new proof of the irreducibility of M(P). Theorem 1 will be proved
from theorem 2 essentially by showing that in the moduli space of stable sheaves the
locus of non-rst sheaves has codimension at least 2.

We would like to thank Barbara Fantechi for several very useful discussions.

1. BACKGROUND MATERIAL

A versal family of sheaves on P; will be a flat family of sheaves £ with smooth base S
such that the Kodaira-Spencer map Ts , — Ext!(&,, £,) is surjective at every point s €
S. If a family of prioritary locally free sheaves is versal, then its restriction to any line ! is
also versal. To see this it is enough to check that the map H!'(EQE*) — H((EQE*)|;)
is surjective and this follows from the prioritary condition H*(E @ E*(—1)) = 0.

Proposition 1.1.
(1) Let E be a rst sheaf. If h°(E(—1)) > 0, then h*(E(—1)) =0 (hence h?(E) =0).
(2) If B is rst, then there ezists an n such that h°(E(n)) = h%((n)) = 0.
(3) The Hilbert polynomial Pg of a prioritary sheaf is nonpositive (i.e. there ezists
an n with Pg(n) <0).

Proof. This follows essentially from the proof of proposition 1.3 of [H-L]. There (1) is
proved under the assumption that E is generic prioritary, however the proof uses only

that F is locally free and rst. If E is not locally free, one can use the exact sequence

0— FE— E"™ —Q—0,
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where @ is a sheaf with 0-dimensional support, hence has no higher cohomology. (2)
follows directly from (1) and (3) follows from (2) plus the fact that a generic prioritary
sheaf is rst ([H-L] prop. 1.2). O

We will use algebraic stacks in the sense of Artin [A], which is more general than that
of Deligne-Mumford [D-M]; our main reference will be [L-MB]|. There exists a moduli
stack Coh(P) of coherent sheaves on P, with Hilbert polynomial P, and there is a
universal sheaf over Coh(P) x P;. The prioritary sheaves form a smooth open substack
Prior(P) of Coh(P). For a smooth scheme S, a smooth morphism § — Prior(P) is
the same as a versal family of prioritary sheaves on Py with base S. Local properties
of Prior(P) (in the smooth topology), like codimension of substacks, can therefore be

checked on versal families.

Notation 1.2. We denote by M(P) the moduli stack of semistable sheaves. We will use
the following notation: For any locally closed substack A(P) of Prior(P) we denote
A*(P) the open substack of stable sheaves in A(P), Ao(P) the open substack of locally
free sheaves, A< (P) the open substack of sheaves with at most one simple singularity
and no other singularities, A;(P) := A<; \ Ag with the reduced structure, As(P)
the closed substack of sheaves having at least one simple singularity (with the reduced
structure), As1(P) := A, (P) \ Ai1(P), we also denote A; o(P), A»12(P), A>1,(P)
the substacks of A;(P), A>,(P), A>1(P) of sheaves with a simple singularity at z.

For any locally closed subscheme A(P) of M(P) we define A*(P), Ao(P), A<:1(P),
A (P), A>1(P), As1(P), A1,2(P), A>1,2(P), A>1,:(P) corrispondingly.

By theoréme 3.1 and corollaire 3.2 of [H-L] the moduli stack Prior(P) is irreducible,
and the generic element is locally free. In particular if Prior(P) contains the sheaf
Fy = ®;=1 O(b;), then it is reduced to a point, as its tangent space at Fp has dimension

Zero.

Lemma 1.3.

(1) Sp(P) has a natural structure of a closed substack of U(P). For x(P) =0 st is
either U(P) or a Cartier divisor or empty.

(2) If u(P) > —3 then Sp(P) has a natural structure of a closed substack of M(P).

(3) The codimension of Sp°(P) C M*(P) is the same as that of Sp*(P) C M*(P).

Proof. (1) Giving a substack structure to Sp(P) C U(P) is equivalent to giving, for

each family of rst sheaves E with h?(E) = 0, a subscheme structure to the locus of
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special sheaves, which is compatible with pullback. In fact it would be enough to do
this only for versal families. We use the construction of ([H] 7.6). Given a family £
over B x P2, B a scheme, we can embed £ into a locally free sheaf F, flat over B,
with no higher direct images, so that the fibre homomorphisms &{yxp, — Fl3)xP.
are also injections. The cokernel G of £ — F is flat over B and has no higher direct
images. Thus 7, F and 7.G are locally free, where 7 : B x P; — B is the projection.
The subscheme structure of the locus of special sheaves is given by the vanishing of
the maximal minors of the induced map n,F — m.G. This subscheme structure is
independent of the choice of F (by the theory of Fitting ideals) and compatible with
base change. In case x(€|{3yxp,) = 0, the sheaves 7. F and 7.G have the same rank,
hence Sp(P) is either equal to U(P), or a Cartier divisor or empty.

(2) We have a natural morphism ¢ : M(P) — M(P): for a scheme 7" we have the
functor M(P)(T) — Hom(T, M(P)), associating to a family of semistable sheaves on
P, parametrized by T the induced morphism T' — M (P) By the same arguments as
above as in (1), the sublocus of M(P) of sheaves E in M(P) with H°(E) > xT(F)
carries a natural structure as a closed substack & of M(P). Let Sp(P) be the scheme-
theoretic image of S, i.e. the smallest subscheme of M(P), through which ¢|s factors.

(3) The fibres of c|ps(py : M*(P) — M*(P) have all the same dimension (i.e. —1)
and Sp’(P) is the preimage of Sp*(P). Therefore (3) follows. o

It is easy to see that Sp(P) is irreducible and reduced if Sp(P) is (this follows from
the corresponding statement for the scheme theoretic image of schemes).

Let E be a semistable sheaf with p(E) > —3 and €, E; the graded object associated
to the Jordan-Holder filtration. Then obviously h°(E) < 3" hO(E;), hence if E is special,
then € E; also is, and there exists an g with E; special.

We will show that, when x(P) =0, Sp(P) C M(P) is irreducible and that Sp(P)N
(M(P)\ M*(P)) has codimension at least 2 in M(P). As M(P) is normal Sp(F°) has

an induced structure of a Cartier divisor.

Remark 1.4. Let F be a universal sheaf over Rsto(P +4-1) x Po. Then Rsti(P) is canon-
ically isomorphic to the projectivization P(F) (for the definition of the projectivisation
of a coherent sheaf over a stack see [L-MB] 7.2.3.). In fact the universal sheaf £ on
T = P(F) x P2 can be defined by the exact sequence

0— & — p*(F) — pi(Opmm 1))z — O,
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where py, p2 are the projections of P(F) xP; to P(F) and Py, p : P(F)xP; — Rsto(P+
1) x P, is the composition of py with the projection m : P(F) — Rsto(P + 1) x Py, and
A is the inverse image of the diagonal via the mapping P(F) x P, —+ Py x P, which is
the product of p, and the composition of p with the projection Rsto(P+1) x Py — Ps.

Fibrewise, this exact sequence is just
0—FE — E"™ —k, —0,

where E is a sheaf with a simple singularity at z and k; the skyscraper sheaf with fibre
k at z.

By [H-L] théoréme 3.1 and corollaire 3.2 Prior(P) is irreducible and the generic
point of Prior(P) is locally free. Therefore Prior>;(P) has at least codimension 1 in
Prior(P). By the same arguments as in the previous paragraph Rst>1(P) is a P,(py_;-
bundle over the open substack of Rst(P+1) x P, of (F, z) such that F is locally free at <.
In particular it is irreducible and Rsts1(P) has codimension at least 1. Repeating this
argument shows that the generic element in Rsts; (P} has exactly 2 simple singularities.

By restriction we have an isomorphism U (P) o P(F|ugp+1)xp,) as h*(E**) = 0 if
and only if h?(E) = 0. We also denote by 7 : Uy (P) — Ug(P + 1) x P, the restiction

of the projection.

Every sheaf E has a graded resolution of length at most 1

n n+r
0 — P O(a:) L EPOB;) — E—0 (+)

where a; > ait1, bj > bj41, r > 0. The resolution is minimal if the entries of M contain
no nonzero constants: this implies a; < b;y1 (see prop. 2.3 of [H-L]). By leaving out the

. corresponding summands we can always change a resolution to a minimal resolution.

Definition 1.5. Given a1 > ... 2 an, b > ... 2 bpy, we call Rst((a;),(b;)) (resp.
U((ai), (b;))) the locally closed substack of Rst(P) (resp. U(P)) of sheaves having a
graded resolution of type (x). (Here P(n) = 3_; ("+b2j+1) -5, (YYTH)

Note that h°(E) is the same for all E € Rst((a;), (b;)), therefore U ((asi), (b;)) is either

contained in or disjoint from Sp(P).

Lemma 1.6. Assume (a;), (bj);-’:lr fulfill a; < bi4q for all i and that n > 0. If

Rst((ai), (b;)) 15 nonempty, then it intersects Rstyy(P).
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Proof. 'This is shown in [H-L] proposition 2.1 and proposition 2.6. There the assumption
is made that Rst((ai)(b;)) contains a generic prioritay sheaf E, such that (*) is a minimal
resolution. In the proof it is however only used that E is rst and a; < b;4; for all 7. O

Corollary 1.7. Every component of Sp(P) intersects Uy, (P).

Proof. Let U((ai),(b;)) # 0 be contained in Sp(P) with a; < bjpq fori =1...n. If
n = 0, then U((ai),(b;)) = Prior(P) = {P, O(b;)} hence Sp(P) = 0. Ifn > 0
then Rst((ai),(b;)) intersects Rst>;(P) by lemma 1.6. Furthermore U((a;),(b;)) =
Rst((a;), (b;)); in fact for some, and hence for all E € Rst((ai), (b;)) we have h%(E) > 0
(by speciality) hence h%(E) = 0 by proposition 1.1. O

Definition 1.8. Let A be an algebraic stack over £ and K and extension of k. A point
z1 € A(K) is called a generalization of « € A(k), if z lies in the closure of the image
of the morphism Spec(K) — A given by z;. We call z; a generic point of A if this

morphism is dominant and separable (see also [H-L}).
Proposition 1.9. Rst(P)\ Rsto(P) 1s irreducible and a generic point lies in Rst; (P).
For the proof we will need an elementary result from linear algebra.

Lemma 1.10. Let VW be vector spaces of dimension n and n + r respectively,
Viyeoo s Vo (resp. Wh,... W, ) be flags of linear subspaces such that dim(V;) =1 (re-
spectively dim(W;) > 14 1) for alli. Let FL C Hom (V,W) be the affine scheme of flag
maps (1. e. maps ¢ such that p(V;) C W;) having rank at most n — 1. For o € FL, let
I(¢) := min{i|dim p(Vi) < i}.

Then every ¢ € FL has a generalizati;m ¥ such that rkp =n—1 and Wi,y NY(V) =
»(V1).

Proof. We use descending induction on [ := {(p), the case | = n — 1 being trivial. Let
¢ be such that either rk(¢) < n —2or Win (V) # (V).

By assumption there exists v; € Vi Nkery, vi ¢ Vi_1; complete v; to a flag basis
v1,...,Up of V (a basis such that vy,...,v; span V;). If rke < n — 2, choose w €
Wi\ ¢(V1); otherwise choose w € Wi N (V), w ¢ p(V1). Put

tw if1=1

@(v;) otherwise.

1/%(”:') = {

Then v, is a generalization of ¢ in FL and {(¢;) > I(¢). a
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Proof of Proposition 1.9. The second assertion follows from the first as Rast; (P) is ir-
reducible and dense in Rst>;(P) by remark 1.4. So it is enough to prove that every '
non-locally free sheaf in Rst(P) can be generalized to a sheaf having one simple singu-
larity (and possibly others). Let E € Rst(P) \ Rsto(P). Choose z € Py such that F is
not locally free at z, and let

n n+r
f
0— @O(—ad-——}@@(—bj) — E—0
i=1 j=1

be a minimal resolution (again a; > a@it1, b; > bj41). Let H be the space of matrices

with polynomial entries
H=1{h=(hj) | hi; € H°(Op,(ai = bj)), hij =0if a; < bj, vk(hij(z)) <n-—1}.

Let Hy C H be the open .subset of maps h, for which the induced map
@O(—a.')—h) € O(—b;) is injective and the cokernel E), is torsion free. The E), form
a flat family over Hy; as f € Hp and E is rst, for every generalisation h of f we have
that E} is also rst. '

Fix affine coordinates (y, z) in P, such that z is the origin; to each section of Op, (1)
we can associate an element of O,, hence we can consider the quotients H' = H/m,
and H” = H/m?2, where m, C O, is the maximal ideal.

Let now V; C k™ (resp. W; € k"+’) be the subspace where at most the first ¢
(resp. the first j, with b; > a; > b;_1) coordinates are nonzero. Then H’ is naturally
isomorphic to FL, and the natural projections H — H', H — H” and H” — H
are (trivial) vector bundles. Let f', f” be the images of f in H', H”.

By lemma 1.10 f' has a generalization ¢ with rank ¢ =n — 1, Wi N (V) = (W),
where | = I(1). Let h” be the generic point of the fibre over ¢ of H” — H'. We will
prove that the maximal minors of h” generate m,/m?2 by constructing a g in the fibre
with the same property. As dim¥(V;) ={—1 = dim(W; N(V)), we can choose wy, w2
in W such that their images in W;/(W;N¥(V)) are linearly independent. Let vy,...,v;
be a flag basis of V such that v; € kert. Define linear maps 41, ¢2 : V = W by

w; fe=1

#1000 = {

0 otherwise,

Then if ¢ € H” is defined by
g =9y +yr + 22
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in suitable bases for V and W we have

In.y 0

| 0 v
y= 0 =z
0 0

hence its maximal minors generate m,/m?Z.
Let now h € H be the generic element of the fibre of H — H” over h”. As ¢ has
rank n — 1 and the maximal minors of h” generate m,/m?2, E) has a simple singularity

at z; on the other hand h is a generalization of f as required. a

2. ProoF or THEOREM 2

We want to prove theorem 2 by descending induction on P; more precisely we will
prove that if theorem 2 holds for P+ 1, then it holds for . To start the induction, note
that, given P, for large enough m the polynomial P+m is positive. In this case U(P+m)
is empty by proposition 1.1 and the theorem is trivial. So we assume the theorem for
P 41 and have to prove it for P. By corollary 1.7 each irreducible component of Sp(P)
intersects U1 (P). Therefore it is enough to prove the result for Spy,(P) C U1 (P).

Lemma 2.1.

(1) Sp(P) CU(P) has codimension > 1.
(2) Sps,(P) CU51(P) has codimension > 1.

Proof. (1) We prove the result by descending induction on P, the beginning of the
induction being again trivial. So we again have to show the result for U>,(P). By
remark 1.4 we see that U5 (P) has at least codimension 1 in U>»;(P) and thus it is
enough to show that Sp,(P) C Uy (P) has codimension > 1.

Case Y > 0. By induction Spy(P) C Up(P) has codimension > 1. Let 7 : U, (P) —
Us(P +1) x P, be as in remark 1.4. If F € Up(P + 1) is nonspecial, and F € 77! (F, z),

then by the exact sequence
0—)E—>F——>f;m—+0 (%)

E is special if and only if the induced map H°(F) — k; is the zero map.
As each F € Up(P + 1) has at least one section, the locus

Np := {(F,z) € Up(P + 1) x Py | all sections of F vanish at =}
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has at least codimension 1. Now for (F,z) ¢ Ny and F nonspecial the codimension of
Sp,(P) in m~1(F,z) is at least 1, so (1) follows.

Case x < 0. In this case Sp;(P) C 77 1(Spy(P + 1) x P2), and Spy(P + 1) has codi-
mension > 1 in Up(P + 1) by induction.

(2) By remark 1.4 the generic element of Us; (P) has exactly two simple singularities,
therefore it is enough to prove the result for Uz ;(P), the stack of sheaves having exactly
two simple singularities, one of which at z. Now again Uy »(P) is a Pr_;-bundle over
Up,o(P+1)x{P2\z} and by the proof of (1) we know that Sp; (P +1) has codimension
at least 1 in Uy (P -+ 1). Arguing as in the proof of (1) shows the result.

a

By part (2) of lemma 2.1 it is enough to prove theorem 2 for Sp,(P) C Uy (P).
Case (1): x(P) > 0.

For any (F,z) € Up(P + 1) let evp, : H*(F,Py) — F(z) be the evaluation map at
z. For 1 =0,1 let

Ni = {(F,:c) € Up(P 4+ 1) x Py | rk(evp,) < i}

with the reduced structure as a closed substack.
Lemma 2.2. N; has codimension at least 2 —1 for 1 =0, 1.

Proof. As Sp(P + 1) has codimension at least 2 in Uy (P + 1) by induction, it is enough
to prove the result for (N; \ Sp(P + 1)) x Pa.

Case 1 = 0: No fibre of the projection Ng — Up(P + 1) has dimension 2, and if the
the fibre over F has dimension 1, then h°(F) = h°(F(-1)), so F(—1) is special; in
fact h?(F(—1)) is zero because h°(F) # 0, applying proposition 1.1. So the locus of
nonspecial F' such that the fibre of Ny over F' has codimension 1 belongs to the inverse
image of Sp(Q@ + 1) via the isomorphism Up (P + 1) = Up(Q + 1), given by F — F(—1),
where @ is the polynomial defined by @(n) = P(n —1). So the result follows by lemma
2.1.

Case i = 1: Let F' € Up(P + 1) be a nonspecial sheaf such that the subsheaf spanned by
global sections is a subsheaf of rank 1, i.e. of the form O(I)®Zz for Tz the ideal sheaf of
a zero dimensional subscheme of P,. By taking double duals and using that F is locally

free we see that Tz = Op,. The inclusion Op, (I) — F induces an isomorphism of global
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sections. By h%(F) > 2 we see that [ > 1. As the isomorphism H%(Op, (1)) — H°(F) is
induced by the inclusion above, we also have isomorphisms H°(Op, (k)) — H°(F(k-1))
for all k < 1. By lemma 2.1 we can assume that F(k —1) is nonspecial for k = ~1,... 1.
So we have x(F(k — 1)) = x(Or,(k)) for k = 0,...,1, in particular x(F(—-1 —1)) <
0, x(F(=!)) =1, x(F(1-1)) = 3. The Riemann-Roch theorem implies that the second
difference function of Pr is the rank of F' and so F' has to have rank 1. So we get a

contradiction. . O

Let again 7 : Uy (P) — Uo(P +1) X IP; be the projection. By induction Sp(P + 1) has
codimension at least 2 in Up(P + 1), so it is enough to prove the result for 7= ((Uo (P +
)\ Sp(P + 1)) x Py). For E € n~!(F,z) with F nonspecial we have that E € Sp(P) if
and only if the map H°(F) — k, induced by the exact sequence () is the zero map.

So for (F,z) € Up(P +1) x Py, F nonspecial, the codimension of Sp,(P) in 7~ (F, z)
is 0 or 1 if and only if (F,z) € Np (resp. N \ No); hence by lemma 2.1 the proof is

complete.
Case (2): x(P) =0.

Either Sp(P) is equal to U(P), or it is a Cartier divisor (by lemma 1.3). Let D;
be irreducible Cartier divisors on an algebraic stack, and assume there is a substack Z
such that D; N Z is a nonempty divisor for all 7; then one can see that D = > D; is a
reduced and irreducible divisor if D N Z is. This is easy if the stack is a scheme, and
the general case follows. We will use this to prove case (2).

Let (F,z) € Up(P +1) x Py such that F is nonspecial and its nonzero sections do not
vanish at x. The fiber of 7 : U; (P) — Up(P + 1) x P; over (F, z) is naturally isomorphic
to P(F(z)); we have an exact sequence on T :=P(F(z)) x Py

02 €& - F('E) @ Or = p*(ou:(p(r))(l))!mp(;))x{x} — 0, (* * % )

where p is the projection to P(F(z)). As F(z) ® Or has no higher cohomology on the
fibres, by lemma 1.3 the {scheme-theoretic) intersection of Sp,(P) with P(F(z)) is the

determinant locus of the mapping

p(F(z) ® O1) = pu (P* (O () (L) B(F(2)) x ()

induced by the exact sequence (* * ). This mapping is isomorphic to Opr(z)) —

Op(F(x)) (1), where the isomorphism p,(F(z) ® Or) = Op(r(s)) is given by choosing a
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(nonzero) section of F, and it is nonzero because the section does not vanish at z. So
Sp,(P)Nr~1(F, z) is a reduced, irreducible divisor.
It is now enough to prove that every component of Sp,(P) intersects #~!(F,z) to
complete the proof; we will in fact prove that every component surjects on Up(P+1) x P,.
Note that if F' is nonspecial in Up(P + 1) then a nonzero section must vanish in
codimension at least 2; otherwise we would have a section of F(~1), hence h°(F) > 3.

So the locus
{(F,z) € Up(P + 1) x Py either F € Sp(P + 1) or h°(F ® I{,y) = 1}

has codimension at least two, and so the image of a component of Sp,(P) cannot be
contained in it.

As out of this locus the intersection of the component with the fibre has codimension
one, and as each component of Sp(P) is a divisor, the required surjectivity is proven.
Case (8): x(P) < 0.

From the injection H°(E) — H°(E**) it follows that Sp,(P) C #71(Spo(P+1) x Py).
So if x(P) < —1 then Sp,(P) has codimension at least 2 by induction.

Assume therefore that x(P) = —1. Let Vsp(P + 1) C Sp(P + 1) be the locus of
sheaves F such that h°(F) > 2. We note that Vsp(P + 1) has codimension at least 2
in U(P + 1). To see this, arguing as before it is enough to prove that Vsp,(P + 1) has
codimension > 2 in Uy(P -+ 1); but Vsp,(P + 1) is contained in the inverse image of
Spo(P + 2) x Py, so by induction we are done.

For F € Sp(P + 1)\ Vsp(P + 1) the nonzero sections of F' vanish in codimension at

least 2. Therefore the locus
{(F,z) € Spo(P + 1) x P2 | either F € Vsp(P + 1) or h°(F @ I(y) = 1}

has codimension at least two, and as the fibers of Sp, (P) over its complement in Spy(P+
1) x P, (which is a divisor in Up(P + 1) x P2 by induction) have codimension one, the

result is proven. )

3. ProoF oF THEOREM 1 FROM THEOREM 2

By lemma 1.3 theorem 2 implies that theorem 1 holds for Rst*(P). We now want to
prove theorem 1 for M*(P) by showing that M*(P)\ Rst*(P) has codimension at least
2 in M*(P). Finally we will show that theorem 1 for M*(P) for all P implies theorem
1 for M(P).
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Lemma 3.1. M°*(P)\ Rst*(P) has codimension at least 2 in M*(P).
Proof. We first prove that MJ(P) \ Rstd(P) has codimension at least 2 in MJ(P). By

the theorem of Grauert-Miilich [G-M] a stable bundle of rank 2 is rst, so we can assume
the rank is at least 3. It is enough to show that in versal families of stable bundles on P
non-rst bundles occur in codimension at least 2. We assume that there exists a versal
family £ of stable bundles on P, over a scheme S, such that non-rst bundles occur over
an irreducible divisor D. Let PP} be the space of lines in P and I' C PP, X P} the incidence
variety with projection p; to P}. Let £ by the pullback of £ to T' x §. For every vector
bundle F on Py we have a locally closed subset Zp := {(/,t) € Pj x S | &1 = F} of
P; x S. Z is smooth of codimension dim(Extp, (F, F)) or empty: in fact let U C P
be an open subset over which there exists a trivialization f : Py x U — I'N p{l(U).
Then by the remarks before proposition 1.1 f*(€) is a versal family of bundles on Py
and thus Zp N U is smooth of codimension dim(Extp (F, F)) or empty.

As £ is not rst over D, there is a nonempty Zp, with dim(Extp (Fy,Fy)) = 1.
However the only possibility for such an F} is Fi = O(a— 1) ® O(a)®™2 @ O(a + 1).
So in particular if we put Fy := O(a)®" then Zp, is open and dense in P} x S. By [B]
the only degeneration G of Fy with dim(Extp (G,G)) £ 3is G = O(a - 2) @ O(a +2).
However this can only occur if the rank is 2, which we have excluded in our assumption.
Hence after possibly replacing S by an open subset with nonempty intersection with
D, we can assume that Zg, is closed. Hence (P} x S)\ Zg, is smooth along P; x D,
hence PP; x D) is a connected component. Let W be the union of the other components
of (P3 x S)\ Zr,. The image (W) under the projection = to S is closed in S and
disjoint from D. For all t € S\ (D U n(W)) the restriction of & to every line is Fp.
Thus & ~ O(a)", which is however not stable.

It is now enough to show that the complement of M{(P)N Rst(P) has codimension at
least 1 in M{(P). If E is a stable (or simple) sheaf with exactly one simple singularity,
then F = E** is prioritary. To prove this, take any line ! containing the singular point

of E; then by the exact sequence
0 — Hom(F, F(—1)) — Hom(F, F) — Hom(F, Fj;)
every nonzero element of Hom(F, F(—1)) induces a nonzero element of Hom(E, E) van-
ishing along [.
Therefore M3(P) is an open substack of a P,_-bundle over Prioro(P + 1) x P
and Rst!(P) is the preimage of Rsto(P + 1) X P3. As the complement of Rsto(P + 1)
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in Priorg(P + 1) has codimension at least 1 (by [H-L|, proposition 1.2), we get that
the complement of Rst](P) in M{(P) has codimension at least 1; the corresponding

statement for the moduli scheme follows from lemma 1.3. O

Proof of Theorem 1. By lemma 3.1 theorem 2 implies theorem 1 for M*(P). M(P)\
M?*(P) is a finite union of locally closed subsets M({P;}icr), where {Pi}iecs is a finite
set of polynomials with ). P; = P and P;/r(P;) = P/r(P). M({P;}ier) is the image
of the quasifinite morphism

[TM°(P) — M(P); (Ei)ier = [@:E:].

Now by the remarks after lemma 1.3 if [@;F;] is special, then ®;E; is special, and so
one of the E; has to be special. By the condition P;/r(P;) = P/r(P) and lemma 3.1 we
see that Sp(P) N M({P;}icr) has codimension at least 2 in M{{P;}ic;) for x(P) # 0
and codimension at least 1 for x(P) = 0.

This shows the theorem for x(P) # 0. If M*(P) # @, then M(P) \ M*(P) has at
least codimension 1 so by the previous paragraph and preview noelemma 1.3 the result
follows also in the case x(P) = 0. Finally if M*(P) = @, then M(P) is reduced to a
point ([Dr-L] prop. 4.5 and thm. 4.10) and by the previous paragraph Sp(P)=0. 0O
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