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Abstract. We give a definition of arrangement of divisors on a surface
that generalize the notion of arrangement of lines on the plane. To
such an arrangement, we associate surfaces and we compute their Chern
numbers. Using the arrangement of the 30 elliptic curves of the Fano
surface of the Fermat cubic threefold, we obtain a surface with Chern
ratio 2 26

27
.
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0.1. Introduction. In the spirit of the construction of surfaces by arrange-
ment of lines on the plane done by of F. Hirzebruch, we give a definition
of divisor arrangement on a smooth complex projective surface S. This is
a given set Λ of curves L1, .., Lt on S and certain divisors H1, ..,Hk linear
combination of these curves. This definition leads to the construction of sur-
faces Sn = Sn(Λ) for any integer n > 1 prime to a certain integer m(Λ) > 0
associated to the arrangement.
When n varies, the ratio of the Chern numbers of Sn are arbitrarily close to
the ratio of the logarithmic Chern numbers of the divisor L =

∑
Li. This

is the same fact for the surfaces recently constructed by cyclic covering (G.
Urzua [13]).
This construction is done to obtain new examples of surfaces of general type
with high Chern ratios. Recall that the upper bound for the ratios of the
Chern numbers of a surface is 3 and we know only 3 arrangements of lines
on the plane that reach this bound [3]. More generally, it is a difficult talk
to construct surfaces with Chern ratio close to 3. We obtain:

Theorem 1. The Fano surface S of the Fermat cubic threefold possesses 30
elliptic curves that form an arrangement. The ratio of the Chern numbers
of the associated surface S2 is equal to 226

27 .

As a by product, we remark in paragraph 0.6 that our construction of surfaces
enables us to recover the following two apparently very different construc-
tions A) and B):
A) The surfaces Hn constructed by F. Hirzebruch by an arrangement of lines
of the plane.
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B) Some surfaces S×CC ′ (considered by Sommese [12]) where f : S → C is
a fibration and C ′ → C is a particular covering.

0.2. Definition of divisor arrangement. Let S be a smooth complex
projective surface. We denote by Div(S) the group of divisor on S.
Let L1, .., Lt be t ≥ 2 smooth curves on S. If H =

∑
niLi is a divisor, we

note vi(H) = ni the valuation at Li of H.

Definition 1. An arrangement Λ = Λ(Li, Hj) of the surface S is given by
the smooth curves L1, .., Lt (t ≥ 3) and effective divisors H0, ..,Hk (k ≥ 1)
such that:
a) A singular point of L =

∑i=t
i=1 Li is the tranverse intersection point of

exactly two curves Li, Lj . We denote by I denote the set of singular points
of L.
b) The divisors H0, ..,Hk are linearly equivalent and

Hi = v1(Hi)L1 + ..+ vt(Hi)Lt.

c) The divisors H0, ..,Hk are Q -linearly independents in Div(S)⊗Q.
d) For each curve Li, there exists a divisor Ha such that vi(Ha) = 1.
e) If Li and Lj cut each other in a point, then there exist 2 divisors Ha and
Hb such that:

vi(Ha) = 1, vj(Ha) = 0 and vj(Hb) = 1
or such that:

vi(Hb) = 0, vj(Hb) = 1 and vi(Ha) = 1.
f) The linear system generated by H0, ..,Hk is without base points.
We call L1, .., Lt (resp. H1, ..,Hk) the curves (resp. the divisors) of the
arrangement Λ = Λ(Li, Hj).

Remark 1. Let L1, .., Lt be curves and H1, ..,Hk be divisors which verify
hypothesis b),..,f), such that the intersection of any two curves Li, Lj is
transverse but for which there exist points in which 3 or more curves Li meet.
Let π : S′ → S be the blow-up of S at these points, L′i the strict transform
of Li and L′t+1, .., L

′
t+r the exceptionnal divisors of π, then Λ = Λ(L′i, π

∗Hj)
is an arrangement of S′.

0.3. Construction of surfaces by an arrangement of curves. Let us
consider a surface S and an arrangement Λ = Λ(Li, Hj). Let L be the
invertible sheaf L = OS(H1). Let us denote by s0, ..., sk the sections of L
such that (si) = Hk (where (u) is the divisor of a section u). These sections
define a morphism:

g : S → Pk

s → (s0 : ... : sk).

Let n > 1 be an integer. Let S′n be:

S′n = S×PkPk
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where the morphism Pk → Pk is the morphism

(x0 : ... : xk)→ (xn0 : ... : xnk).

We define below (definition 2) an integer m(Λ) ∈ N∗, named the number of
the arrangement, such that if n is prime to m(Λ), then S′n is irreducible. In
this case, we denote by Sn the desingularization of S′n and

f : Sn → S

the natural morphism. This is the surface that we will study.

Remark 2. The idea of this study was found in [5] where M.N. Ishida consider
S = P2 and L1 = H1, .., L6 = H6 the lines of the complete quadrilateral. But
our construction differs because it allows to use arrangement of curves Li that
are not linearly equivalent (see Theorem 3).

We have:

Theorem 2. Suppose that n is prime to m(Λ). The morphism f : Sn → S

has degree nk. It is ramified with order n above L =
∑i=t

i=1 Li and with order
n2 above the set I of singular points of L =

∑
Li. The Euler number of Sn

is:
e(Sn) = nk−2(n2e(S \ L) + ne(L \ I) + e(I)).

Let KS be a canonical divisor of S and Kn a canonical divisor of Sn, then

(Kn)2 = nk−2(nKS + (n− 1)L)2.

If e(S) 6= e(L), then the limit of K2
n

e(Sn) (where n varies among the integers
prime to m(Λ) > 0) is equal to the ratio

(KS + L)2

e(S \ L)

of the logarithmic Chern numbers of L.

Let us prove Theorem 2.
As a set, the surface S′n is :

{(s, (a0 : .. : ak))/ani = si}.

Let F = C(S) be the function field of S. For 1 ≤ i ≤ k, denote by fi ∈ C(S)
the rational function such that fi = si

s0
. The associated divisor of fi is

Hi−H0. We want to compute the degree of the smallest field F ′ that contains
the nth roots of f1, .., fk. To this aim, we use the following Proposition:

Proposition 1. ([6], Appendix, Thm 10.3). Let F be a field that contains
the nth roots of unity. Let B ⊂ F ∗ be a finitely generated group and let F ′
be the smallest subfield (in an algebraic closure of F ) that contains the nth
root of each element of B. The degree of F ′ over F is the order of the group
B/B ∩ (F ∗)n.
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We apply this Proposition to the group B ⊂ F ∗ generated by f1, .., fk. We
have a surjective morphism

φ : Zk → B/B ∩ (F ∗)n

(a1, .., ak) → fa1
1 ...fak

k .

The kernel of φ contains nZk and by Proposition 1 the field F ′ has degree
nk if and only if Ker(φ) = nZk.
For g ∈ C(S) let (g) be the associated divisor. Write (fj) =

∑i=t
i=1mijLi

and let M be the t× k matrix M = (mij)1≤i≤t;1≤j≤k. Let m(Λ) ∈ N be the
integer such that the ideal generated by all the size k minors of M equals
m(Λ)Z.

Definition 2. We call m(Λ) the number of the arrangement Λ.

We denote by M̃ the matrix with coefficients in Z/nZ obtained by reduction
modulo n of the coefficients of M . The Kernel of φ is equal to of nZk if and
only if the equation:

M̃A = 0

has no non trivial solution A =t (a1, ..., ak) in (Z/nZ)k. This is so if and
only if m(Λ) and n are coprime. (Note that the hypothesis c) of definition 1
is necessary, otherwise, we have m(Λ) = 0).

Suppose now thatm(Λ) and n are coprime. Then S′n is an irreducible surface
and the function field of Sn and S′n is:

C(S)(f
1
n
1 , .., f

1
n
k ).

As this Kummer extension of C(S) has degree nk, the morphism f has degree
nk. Let s be a point of S and let t be a point of Sn above s. If s is not a
point of L then the local ring of Sn at t is isomorphic to:

OS,s(f
1
n
1 , .., f

1
n
k ).

The morphism f is not ramified above s. There exists an affine open Us of
S and an open Vs of Sn such that Vs is isomorphic to

Spec(OS(Us)(f
1
n
1 , .., f

1
n
k )).

Let us suppose now that s is a point of I. Allowing that the indicies may
be permuted, we can suppose that s is an intersection point of L1 and L2

and that it is not an element of H0 (the system which contains H0, ..,Hk is
free from base points). By the condition e) of the definition, it can be also
assumed that the divisors H1 and H2 verify:

v1(H1) = 1, v2(H1) = 0 and v2(H2) = 1.

The regular element f2 is written : f2 = f
v1(H2)
1 g2 and (f1, g2) is a parameter

system at s because L1 and L2 meet tranversally. Moreover f1 (resp. g2)
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is a local equation of L1 (resp. L2) in s. For i ∈ {3, .., k}, there exists an
invertible element gi ∈ OS,s such that:

fi = f
v1(Hi)
1 g

v2(Hi)
2 gi.

The local ring of Sp at t is isomorphic to the integral closure of

OS,s[f
1
n
1 , f

1
n
2 , .., f

1
n
k ]

and this ring is:

OS,s(g
1
n
3 ....., g

1
n
k )[f

1
n
1 , g

1
n
2 ].

Hence f has ramification index n2 at t. There exists an affine open Us of S
and an open Vs of Sn such that Vs is isomorphic to

Spec(OS(Us)(g
1
n
3 ....., g

1
n
k )[f

1
n
1 , g

1
n
2 ]).

Let s be a point of L outside I. Allowing that the indicies may be permuted,
we can suppose that s is a point of L1 and that the divisors H1 and H0

verify:
v1(H1) = 1 and v1(Hk) = 0.

Let be i ∈ {2, .., k}, there exist hi ∈ OS,s invertible such that:

fi = f
v1(Hi)
1 hi.

The local ring of Sn at t is isomorphic to:

OS,s(h
1
n
2 ....., h

1
n
k )[f

1
n
1 ]

and f is ramified with order n in t. There exists an affine open Us of S and
an open Vs of Sn such that Vs is isomorphic to

Spec(OS(Us)(h
1
n
2 , ..., h

1
n
k )[f

1
n
1 ]).

Now we calculate the Chern numbers of Sn. The morphism f is ramified
with order n over L, hence Kn is numerically equivalent to:

f∗(KS +
n− 1
n

L).

The morphism f is an étale covering of f−1(S \ L) of degree nk. This is a
covering of f−1(L \ I) of degree nk−1 and above each point of I, there are
nk−2 points. The Euler number of Sn is equal to

nke(S \ L) + nk−1e(L \ I) + nk−2e(I).

That ends the proof of Theorem 2.
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0.4. Arrangement of the 30 elliptic curves on the Fano surface of the
Fermat cubic threefold. Let S be the Fano surface that parametrizes
the lines of the Fermat cubic threefold

F = {x3
1 + ...+ x3

5 = 0} ↪→ P4.

If s is a point of S, we denote by Ls the line on F that corresponds to the
point s. Let µ3 be the third roots of unity. For 1 ≤ i < j ≤ 5, β ∈ µ3, the
hyperplane {xi + βxj = 0} cuts out a cone on F denoted by Cβij . The curve
that parametrizes the lines on Cβij is an elliptic curve Eβij that is naturally
embedded in the Fano surface S. These 30 cones are the only one contained
in F and the 30 elliptic curves of S verify:

EβijE
γ
st =


1 if {i, j} ∩ {s, t} = ∅
−3 if Eβij = Eγst
0 otherwise.

and a canonical divisor KS on S verifies K2
S = 45 (for these facts see [9]).

For 1 ≤ u < v ≤ 5, let Buv be Buv = Bvu =
∑

µ3
Eβuv.

Theorem 3. The 10 divisors:

Kij = 2Bij +Brs +Brt +Bst

({i, j, r, s, t} = {1, .., 5}) are canonical divisors of S.
The 6 divisors K12,K14,K23,K25,K35,K45 and the 30 elliptic curves form
an arrangement Λ of S. The number of the arrangement divides 3. Let n be
an integer prime to 3. The Euler caracteristic of Sn is :

e(Sn) = (162n2 − 270n+ 135)n3

and the first Chern number is:

(Kn)2 = 45(3n− 2)2n3.

We have (K2)2/e(S2) = 226
27 and limn 6∈3Z

(Kn)2

e(Sn) = 5
2 .

Proof. By the tangent bundle Theorem 12.37 of [2], we can identify the
forms x1, .., x5 ∈ Ho(P4,OP4(1) to a basis of the space of global sections
of the cotangent sheaf ΩS . Let be ω1, ω2 elements of Ho(S,ΩS) such that
ω1 ∧ ω2 6= 0. The identification between the two spaces is such that the
subjacent set to the canonical divisor associated to ω1 ∧ω2 parametrizes the
points s on S such that the line Ls ↪→ F cuts the space {ω1 = ω2 = 0} ↪→ P4.
For 1 ≤ i < j ≤ 5, the intersection of F and the plane xi = xj = 0 is a
smooth elliptic curve E. Let r < s < t be integers such that {i, j, r, s, t} =
{1, 2, 3, 4, 5}. The curve E contains the 9 edges of the cones

Cβrs, C
β
rt, C

β
st, β ∈ µ3

and E is the base curve of the cones Cβij = F ∩ {xi + βxj = 0}, β ∈ µ3.
Let p be a point of F . The scheme Sp that parametrizes the lines on F going
through p is an intersection of a cubic and a quadric in a plane (see [8]). If
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there is a finite number of lines through p, this scheme has degree 6.
A line L on F is called double if there exists a plane X such that

XF = 2L+ L′

where L′ is the residual line. A double line going through a point p contribute
for a degree at least 2 to the scheme Sp.
Suppose that p is a point of E ↪→ F hat is not the vertex of a cone. Then
there is three lines through p that come from the 3 cones F ∩ {xi + βxj =
0}, β ∈ µ3. As each line of a cone is double, these 3 lines are the only one
that goes through p.
That implies that each line L on F that goes through a point of E = F∩{xi =
xj = 0} corresponds to a point s of one of the following 12 elliptic curves:

Eβij , E
β
rs, E

β
rt, E

β
st, β ∈ µ3

contained in the Fano surface S. Hence the subjacent set to the canonical
divisor Kij associated to the form xi ∧ xj is the union of these 12 curves.
The group of symmetries that preserves the plane xi = xj = 0 and the cubic
F acts on the Fano surface and preserves the canonical divisor Kij . That
implies that there exist some integers a, b such that

Kij = aBij + b(Brs +Brt +Bst).

Let KS be a canonical divisor on S. As K2
S = KSKij = 45 and KSE

β
uv = 3,

we have :
9a+ 27b = 45.

Since a and b are positive integers, the unique solution is a = 2 and b = 1.
The 6 divisors K12,K14,K23,K25,K35,K45 and the 30 elliptic curves verify
properties a),..,d) and f) of definition 1.
For the property e), we consider the following tables:

12, 34 12, 35 12, 45 13, 24 13, 25 13, 45 14, 23 14, 25
35, 25 45, 14 35, 23 25, 35 45, 14 25, 23 25, 45 23, 14

and
14, 35 15, 23 15, 24 15, 34 23, 45 24, 35 25, 34
23, 12 23, 14 23, 35 23, 12 14, 12 35, 12 14, 12.

On the first line of these tables there are the indices ij, st such that the curve
Eβij cuts the curve Eγst (γ, β ∈ µ3). The second line gives the indices uv, xy
such that the divisors Ha = Kuv, Hb = Kxy and the curves L′ = Eβij and
L′′ = Eγst verify the properties e) of the definition 1. By example, we look at
the 8th column of the first table. In that case the divisor K23 contains Eβ14
with multiplicity 1 and does not contain Eγ25, moreover K14 contains Eγ25
with multiplicity 1.
Thus the 6 divisors K12,K14,K23,K25,K35,K45 and the 30 elliptic curves
form an arrangement. We easily check that the number of this arrangement
divides 3.
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The Euler characteristic of S is e(S) = 27 [2]. Each of the 30 elliptic curves
on S cuts 9 elliptic curves and L =

∑
Bij contains 135 singular points, hence

e(L \ I) = 30(0− 9) = −270

and
e(L) = e(L \ I) + e(I) = −135

where I is the set of singular points of L. The calculation of e(Sn) ensues.
In order to simplify the computation of (Kn)2, we can use the fact (proved
in [9]) that L is a bicanonical divisor of S. �

0.5. Arrangements of hyperplane sections. Let S be a surface. For each
integer t ≥ 3, let L1, .., Lt be smooth hyperplane sections of an embedding of
S such that for all i 6= j, the intersection of Li and Lj is transverse and such
that by a point of S goes at most 2 hyperplane sections. For i ∈ {1, ..., t},
take Hi = Lj . The curves Li and the divisors Hi form an arrangement Λt of
S. The number of this arrangement is 1.
For n ∈ N∗, let Stn be the surface associated to this arrangement. The
numbers KSL, L

2 and e(S \ L), e(L \ I) and e(I) are easily calculated and
we have limn

c1(Sn
n)2

e(Sn
n) = 2.

Corollary 1. Let S be a smooth projective surface. There are smooth sur-
faces S′ with a morphism S′ → S such that the Chern ratios of S′ are
arbitrarilly close to 2.

This fact was known for fibred surfaces [1]. We can ask what is the upper
bound a of the ratio c1(S′)/e(S′) when S′ varies among all surfaces of general
type which have a morphism S′ → S. For the plane, the response is a = 3.

0.6. Arrangements of lines on the plane and arrangements of smooth
fibers of a fibration. Take L1, .., Lk, k lines on the plane and let be
π : S → P2 the blow-up of points where 3 or more lines meet. The lines
Li and the divisors Hi = Li verifiy the properties b),..,e) of the definition 1.
By remark 1, we obtain an arrangement of S. The number of this arrange-
ment is 1 and the surfaces Sn are isomorphic to the surfaces Hn constructed
by F. Hirzebruch.

Now, let us consider S a surface with a fibration f : S → C. Let δ1, .., δk
be effective divisors of the same linear system on C such that the divisors
Hi = f∗δi are smooth. Let L1, ..., Lt be the irreducibles componants of the
Hj . The divisors Hi and the fibers Li form an arrangement Λ(Li, Hj) of S,
with number m(Λ) = 1.
Let Cn → C be the ramified cover of C of degree n above the points subjacent
to the divisor

∑
δi. The surface Sn is the fibred product

S ×C Cn.
We obtain the same surfaces as Sommese did in [12].
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