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ON WEAKLY STABLE YANG-MILLS FIELDS
OVER POSITIVELY PINCHED MANIFOLDS
AND CERTAIN SYMMETRIC SPACES

Yoshihiro OHNITA and PAN Yanglian (Y. L. Pan)

Abstract. In this paper it is proved that for n > 5 there exists a constant §(n)
with § < §(n) < 1 such that any weakly stable Yang-Mills connection over a simply
connected compact Riemannian manifold M with §(n)-pinched sectional curvatures
is always flat. The pinching constants are possible to compute by elementary func-
tions. Moreover we give some remarks on stability of Yang-Mills connections over
certain symmetric spaces.

Introduction.

Let M be an n-dimensional compact Riemannian manifold with a metric ¢
and G be a compact Lie group with the Lie algebra g. Let E be a Riemannian
vector bundle over M with structure group G, and let Cg denote the space of G-
connections in E, which is an affine space modeled on the vector space Q'(gg)
of smooth 1-forms with values in the adjoint bundle gg of E. The Yang-Mills
functional YM :Cg — R is

YM(V) = % /M |77 |[2dvol,

for each V € Cg, where F'V is the curvature form of the connection V. Note that F'V
is a smooth section of ?%(gg). The Yang-Mills connection V € Cg is a critical point
of YM. A Yang-Mills connection V is called weakly stable if , for each variation
V! € Cg with V = V°,

(d* /)Y M(V)|t=0 = 0.

M is called Yang-Mills unstable (cf. [K-O-T)) if for every vector bundle (E, G) over
M, any weakly stable Yang-Mills connection on F is always flat. First Simons
proved that the Euclidean n-sphere S™ for n > 5 is Yang-Mills unstable ([B-L]).
Ever since several persons have investigated the instability of Yang-Mills fields over
various Riemannian manifolds ; convex hypersurfaces, submanifolds, compact sym-
metric spaces (cf. [Ka],[K-O-T},[Pal},[Sh],[Ta],[We]). In [K-O-T] it was shown that
the Cayley projective plane P,(Cay) and the compact symmetric space of excep-
tional type Eg/F, are Yang-Mills unstable.

In this paper we first establish the instability theorem for Yang-Mills flelds
over a simply connected compact Riemannian manifold with sufficiently pinched
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sectional curvatures. Okayasu [Ok] used the construction and results of Ruh, Grove
and Karcher ([Ru],[G-K-R1],[G-K-R2]) to show the instability of harmonic maps
into a Riemannian manifold with sufficiently pinched sectional curvatures. By using
the same idea, the second named author [Pa2] showed an instability theorem for
harmonic maps from a Riemannian manifold with sufficiently pinched sectional
curvatures to an arbitrary Riemannian manifold. We will also use it. Next we
shall prove some results on weakly stable Yang-Mills fields over certain symmetric
spaces. Some of them were stated in [K-O-T] without proof. They supplement
results of Laquer [La] which determined the stablity of canonical connections over
simply connected compact irreducible symmetric spaces. Moreover we prove that
a weakly stable Yang-Mills field satisfying a certain condition over a quaternionic
projective space Pp,(H) is a B,-connection in a sense of [Ni], or equivalently a
self-dual connection in a sense of [C-S], and hence it minimizes the Yang-Mills
functional.

1. Preliminaries on Yang-Mills fields.

Let V € Cg. For any B € Q'(gg), set V! = V +tB € Cg. The second
variational formula for the Yang-Mills functional is given as follows ([B-L]);

(1.1) (d&*/dt*)YM(V*)=0 = I7 (B, B)
= / (S5 (B), B)dvol
M

= / {(§¥(B),B) - (§¥ B,6¥ B)}dvol,
M

where Sy (B) = §VdV B+ FV(B) and SV(B) = AV(B)+ FV(B). Here d¥ and §¥
denote the exterior covariant differentiation induced by the connection V € Cg and
its adjoint differential operator, and FV is a symmetric bundle endomorphism of
T*M @ gg defined by (FY(0))(X) = Y0 [FV(ei, X),b(e;)) for b € Ty M ® (gg):
and X € T, M, where {e;} is an orthonormal basis of T, M.

Let {w'} be the dual frame of a local orthonormal frame field {e;} in M,

Throughout this paper we use the summation convention. Set B = Biw' and
FV = (1/2)F;;w'Aw’. Then we have

dVB = (V;B; — V;B;)w'Aw?,
6VdVB = (V;V,B; — V;V;B)w',
FY(B) = [Fij, Bilw’,
IFYI* = (Fij, Fij)/2
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And (1.1) becomes
(d2/dt* )Y M(V*)]e=o
= f {(V;ViBj, Bi) — (V;V;Bi, Bi) + ([Fij, Bi], B;) }dvol.
M
Let D be a Riemannian connection of M and let R denote the curvature tensor
field of D ; R(ei,ej)ex = Rijrier. The Ricei tensor field Ric of M is defined by
Ri; = Rirkj. The scalar curvature R of M is defined by R = R;;. The Ricci

identities are as follows:

DijXi - DjDkXi = Rkqu‘ for X = Xie;,
ViViFij — ViViFij = ~FjRixi; — Fim Rikjm + [Fix, Fij).

The curvature form FV always satisfies the Bianchi identity dYFY = 0, or
equivalently

(1.2) ViFi; + ViFjp + V;jFe; = 0.
The Yang-Mills equation is 6V F'V = 0, namely
(1.3) VJ‘F,']' =0.

Let V € Cg. Assume that ¢ = (1/2)p;;w' Aw? € Q%(gg) is harmonic with
respect to V, that is, dV¢ = 0 and §Y¢ = 0. Note that if V is a Yang-Mills
connection, we can take ¢ = FV. Let V € C®°(TM) with V = V'e;. Set B =
iy = Biw' € Q'(gg). Here B; = V7¢;;. Then by the harmonicity of ¢ and the
Bochner-Weitzenbock formula (cf. [B-L]) we compute

(14) (STB)(X) = ¢(D"DV.X) =23 (Vi )(DerV, X)

+ »(V,Ric(X)) — {p o (Ric AT - 2R)}(V, X)

= S F e V), oo, X0 4 1 (e X), (e VI,

=1

where D*DV = -5  D?V(ei,ei), and R denotes the curvature operator of
(M, g) acting on A’ TM. We define a quadratic form Q,, on C®(TM) as

Qu(V) = (@2 /dt2)Y M(V") im0 = A a(V)dvol
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where V! = V + t(iyp) € Cg. By straightforward computations we have

(1.5) 9,(V) = D;DiV*V(prj, 1) = D D;VFV (i, o)
+ D;V*VH(Viorj, 0u) — 2D;VEV(Vi0ki, 011)
+ VEVIFL, @i3] + [Ff ki) i)
+ VEVY{ Rikmj(@mj» 1) = Rjikm(Pmis 1) + Rim(pims 1)}

2. The construction of Ruh for a §-pinched manifold.

We recall the idea and construction of Ruh ([Rul,[G-K-R1],[G-K-R2}). Let
(M, g) be an n-dimensional simply connected compact Riemannian manifold with
5-pinched sectional curvature, namely § < K < 1. We fix a normalized Riemannian
metric go = {(1+6)/2}g on M. Then we have 26/(1 + §) < K, < 2/(1 + 6).
Consider a vector bundle Z = TM @ ¢(M) with a fibre metric {, ) over M. Here
e(M) is a trivial line bundle with a fiber metric and it is orthogonal to TA. Let
e denote a smooth section of lengh 1 in e(M). Now we define a metric connection
D" in = as follows;

DLY = DxY — go(X, Y)e.

ve=X
for X, Y € C(TM). It was proved that if § is sufficiently close to 1, there exists
a flat connection D' in = close to D" ([G-K-R1]). Define

| D" — D"
= Ma:c{“D'xY - D';{Y”;X €T, M, go(X,X)=1Y € Z,,||Y| =1}

Note that it is a half of that one in [G-K-R2]. Set

k1 (8) = (4/3)(1 — 8)67 {1 + (6*/%sin(1/2)m61/2) 1},

k2(8) = {(1+ 6)/2} " k1 (6),

ks(8) = ka(8)[1 + {1 — (1/24)72ky(8)2} /2.
[G-K-M 2] proved that ||D' — D"|| < k3(6)/2. The curvature form R' of the con-
nection D" is

(2.1) R'(X,Y)Z = R(X,Y)Z — (Y, Z)X + (X, Z}Y,
(2.2) R'(X,Y)e=0



for X, Y, Z2 €T, M.

3. Trace formula for second variations of
Yang-Mills fields over a §-pinched manifold.

Assume that M is a simply connected compact Riemannian manifold with §-
pinched sectional curvatures. Let P = {v € C®(Z); D'v = 0}, which is linerly
isometric to R"*!. For each v € P, we denote by V = v7 the TM-component of
vin = Set V = {V € C®(TM);V = vT for some v € P}, which has a natural
inner product so that it is linearly isometric to P. Choose an orthonormal basis
{Va}a=o,.n of V. Set Vo = (v4)7. Then S7_ V*V! = 6%, In this section we

a=0

compute the trace TryQ, = >."_ Qu(Va) of @, on V relative to the inner product.
A straightforward computation shows

Lemma 3.1.

(3.1) D;VF = (D¢, v, ex) — (v, €) 8.
(3.2) D;D;V*
— ((Duzv)(e", Bj)! Bk) - 6jk(D"e"v, 8) - aik(D:‘; v, e) —_— 6,“;(’1), GJ)

Lemma 3.2.

(3.3) fM{DjDinV‘(Wj, 1) + D;VEV(Vigj, i) dvol
= /M{RjimkV"’V'(‘ija @i1i) = DiVED; V! (o1, 1i) Ydvol.

(3.4) /M —2D,;VEVE(V ki, p1i)dvol

= f {—2DD;VEVi(pij 1) — 2D;VEDLV (i, 01)
M
— D;D;ViVi(wijort) — DiVEDVi(0is, ox1)
— 2D D;VyVo(eje, pii) — 2D,V DiVi(jk, i) hvol.

Proof. (3.3) is due to the Ricci identity and the divergence theorem. We show
(3.4). By dV¢ = 0, we have

— 2D;VEVI(Vioki, oui)
= 2D;VEVI(Vipis, 1) + 2D;VEV (Vigsk, oii).
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By using the divergence theorem, we get
: f 2D;VEVI(Vipjk, pii)dvol
M
= j {~2D:D;VEVi ok, 1) — 2D;VEDVE(i0je, 01i) Ydvol.
M
We compute
2D;Vy Va(Viwij, pis)
= 2Di{ D,V Va(wijy pii)} = 2Dk D, VEVo(wijs i)
= 2DV, DiVy(wijy i) — 2DV Valij, Viepss)-
Since
(3.6) D;V}V! = -vFD, V!,

we have

DiViVa(wij, Vi) = DiVaVa(eij, Vigir).
Hence by Bianchi identity we get
—2D; Vi Va(pijs Vi) = DiViVa(wij, View).

Thus by using the divergence theorem we obtain
/ 2D;VEVI(Vipi;, p1i)dvol
M

= / {=2Di DV Va(wijs pui) = 2DV DiVo( iz i)
M
— DiD;Vy Vol ij, ox1) — D;Va DiVa(pijy par) }dvol.
g.e.d.
By (1.5),(3.3) and (3.4), we get

(3.7) Try Qo
= /M{_DjV:DiV;(Sija @1i) = D;D; ViV (eriy i)

= 2D, DV Vo (pij, 1) — 2DV DiVo (035, 013)
— DiD;Va Vi, oxt) = D;VEDVa(wij, ort)

— 2D, D;VEVi(psk, pu) — 2D;VED Vi (pjk, pii)
+ Rjik(wrjr p1i) + Rikmj(@ms, Pri)

= Rjikm{(®Omj, Pri) + Rem{(@im, pri)}dvol.
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Lemma 3.3.
(3.8) — 2D D; ViV (@jk, 1i)
= D;Va DiVa(pjes 1) + DiVis DiVo(wsk, ii)
+ Rjimi VI Vi(@ie, o1i),
(3.9) — DiD; ViV (@ijhert) = —(1/2)Rijmi VI Via(0ijy 0x1)-

Proof. {3.9) is due to the Ricci identity. We show (3.8). Differentiating covari-
antly (3.6), we have

(3.10) D,p;vivi+VviD,D;V!
+ D;VED, V) + D;VED; V] = 0.
3.8) follows from (3.10) and the Ricci identity. q.e.d.
(3.8)
Lemma 3.4.
(311)  —D;D;VVa(erir i) = (Diva, Dy, va) V5 Valipri, wii)
+{2(D} va,€) + (va, ex)} Vo (@ki, o1i)-
Proof. From (vq,vg) = 6ap, we have
(3.12) (D"*va)(eir e5), vp) + (D" vg)(es, 5), va)
= —(D;"UQ,D;’J, vg) — (D¢, va, Dy vg).-

Using (3.2) and (3.12), we obtain (3.11). g.e.d.

Lemma 3.5.
(3.13) / —2D: D;VEV (i, p1i)dvol
M

:/M[Q(D::',«vme)vci(saij,sou)
+ 2(D;, va, ek ){De; vas €1)(pis), 1)
+2{(2 - (n/2))( D¢, va, ex}(va, €) = (1/4)(R" (&1, ex)ex, e1)
— (1/4)(D¢, va, Dy vg){vg, ex{va, €1)
— (1/4)( Dy, va, D;, vg}{vg, e1){va, €k)
~ (1/2)(Dy, va, €)Vy + (1/2)(Dy, vas ex)(De, vas e2) eI
— 2(R" (ex, e5)er, ex)(pijs pii) + 2(n + 1){ D, va, €}V (015, i)
+ 2(va, €;) VL (i, p1i)]dvol.
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Proof. By (3.2), we have
(3.14) - 2DijVakVal(‘Pij: ©li)
= (D" va)(essea)rex) — (n + (DL, vay )
= (va, €5} Valwiss oui).
By using the Ricci identity we get

(3.15) (D"*va)(essex), k) Valpiss pui)
= {((Duzva)(eka ej),ex) + (R"(ex, 6j)vm€k)}Vc£(90ij, ©1i)-

We compute
(3.16) (D" va)ex, €5), ex) Vi (0ij, o)
= Di{(D{,va, ek} Val(pij, 01i)} — (DY, va, ) Valpiss 1)
— (D¢, va, e} (D, va, e} (ij, pii) = (D4, Vo, ex}{va, €} (#is, ij)
— (DY, va, ex)Va' (035, V6013).-
By the Bianchi identity we get
(3°17) _<D:z'..vm ek>Val(‘PiJ”vi9"li) = (1/4)(D;’kvmek)vclel”‘PHZ'

We compute

(3.18) (D!} va, ex)Va' Dl
= Di{(D! va, ex)Va'[l@ll*} = (D" va)(ex, 1), ex) V'l ll?
+ (D}, va, €) Vo |lol* = (DY, va, ex} (Dl va, e1) |||
+ n(DL’kva, ek)(vm e)"‘PHZ-

By using (3.12) and the Ricci identity we get
(3.19) (D"*ve) ek, €1), ex)Va'

= —(1/2){{R" (e, ex)ex, €1) + (D) va, D} vg) V5V,
+ (D¢, va, Dyyus)Va Vo't

Hence, by the divergence theorem, (3.13) follows from (3.14), (8.15), (3.16), (3.17),
(3.18) and (3.19). q.e.d.



Therefore, by (2.1), (3.8), (3.9), (3.11) and (3.13), (3.7) reduces to the follwing

trace formula.

(320) Trv Q’P
= /M[z{s —2n + (n(n = 1) = R)/4}¢l|® + R;i(pij, pit)

+ (DL'.-Uaa D:;.-vﬂ)V;V;(Sokia @) — 2(D:;..Ua: ek)(D;',- Vo, €1)(Pij, Pit)
+2{(2 = (n/2))(D{, va, ex){va, €)

— (1/4)(D¢, va, D¢, vs)(vg, ex){va, €1)

— (1/4)(D¢, va, D¢, vg){vg, e1){va, ex)

— (1/2)(D¢, va, ) Vs + (1/2){ D%, va, ex){ D v, ) Hleol?
—2(n + 1)(Dy; va, e)Vo(@ij, pir) = 8(Dy; va, ex ) (va, €) (1035, pik)
+ 2(D¢, va, ek (D, vas e1)(@iss pit) = (Dg; va, ex)(De, va, e} (i, xi)
+ (D¢, vas €5 Do Vo, ex) (i, pri)]dvol.

4. Instability theorem for Yang-Mills fields
over a é6-pinched Riemannian manifold.

Note that if =1, then D' = D", hence (3.20) becomes

Try Q=24 - 1) [ el
M
Since the sectional curvatures of M are §-pinched, we have

2(5 — 2n + (1/4)(n(n — 1) = R)}lll” + Ry, o)
< 2[5 — 2n + (1/4)n(n — 1){1 = 25/(1 + 6)} + 2(n — 1)/(1 + 8)]l¢|I>
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We can make estimates for each other term of (3.20) as follows:

(Dyva, De;vg) Vi Valris i) < (n/2)ks(8)%||e|%,
— 2(D}, va, ex ) (D¢ vas ) (i, pir) < n(n + 1)ka(8)*[lee]|?,
(2 - (n/2)){D¢, va, ex}(va, e} < n(n/4 — 1)ks(8),
— (1/4)(D{, va, Dy vp){vs, ex)(va, er} < (n?/16)k3(6)?,
— (1/4)(D¢, va, Dgyvp)(vg, e} (va, ex) < (n?/16)k3(6)7,
— (1/2(D va, e)VE < (n/4)ks(6),
(1/2)( D¢, va, ex Dy vas 1) < (n?/8)ka(6)?,
— 2(n + 1)(D;; va, &) Va(wijy pit) < 2(n + 1)ka(8)lo]?,
— 8(D¢, va, ex)(va, ) (ij, k) < 8ka(8)] ],
2(D;; va, ex]{ D, va, 1) (@i, pir) < nks(8)leo],
(De,vas €){De;vas ek )(wij, Pri)

— (D¢, vas ex){De,vas e1)(pijs o) < ka(8)l|eelf?.

Hence we get

(41)  Try Q
< 25— 2n+ (1/8)n(n — 1){1 = 26/(1 + &)} + 2(n — 1)/(1 + 6)

+(1/4)(n* + 1 + 20)k3(8) + (1/4)(3n” + 5n + 2)k3(6)’] /M llell®.

Therefore we obtain

Theorem 4.1. Ifn > 5 and
(4.2) 5—2n+(1/4)n(n—-1){1-26/(1+6)} +2(n—-1)/(1+9)

4+ (1/4)(n? + n + 20)k3(8) + (1/4)(3n% + 5n + 2)k3(8)% < 0,
then M 1s Yang-Mills unstable.

Corollary 4.2. For n > 5, there exists a constant 6(n), which depends only on
n, with 1/4 < §(n) < 1 such that any n-dimensional simply connected compact
Riemannian manifold M with é(n)-pinched sectional curvatures is Yang-Mills un-
stable.

Remark. As n tends to the infinity, the right hand side of (4.2) divided by
(1/4)(3n® + 5n + 2) tends to (1/3){1 — 26/(1 + 8)} + (1/3)k3(8) + k3(6)* > 0. In
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our argument it is not possible to find a pinching constant é independent of the
dimension of the base manifold M such that M is Yang-Mills unstable.

5. Trace formula for second variations of Yang-Mills fields
over submanifolds in Euclidean space.

Assume that M is isometrically immersed in a Euclidean space RY. Let ®
denote the immersion. We may assume that ®(M) is not contained in any hyper-
plane of RN. Set U = {U € C®(TM);U = grad f, for some u € RV}. Here f,
denotes the hight function on M defined by f.(z) = (®(z),u). Suppose that V
is a connection on a Riemannian vector bundle (E,G) over M and ¢ € Q(gg) is
harmonic with respect to V. Then we recall

Proposition 5.1 ([K-O-T]). For U = grad f, € U,
SY (iup)(X)
(51) = —{po(RicAT—2R)}U,X)
+ np(Aq(U), X) + (U, Ric(X)) — ¢(Ric(U), X)

- Z{[FV(G,.,U),@(G,.,X)] + [P (e, X), (e, U]}

—22 (eire5),u Ve, (th)"nZ e’?: u)p(ei, X).

1,7=1

(5.2) truQ, =2 /M(cp o {(n/2)(A; AI)—Ric A I+ 2R}, p)dvol,

where R, B, A, n and D" denote the curvature operator of M acting on /\2 TM, the
second fundamental form, the shape operator, the mean curvature and the normal
connection of ®, respectively.

Consider a compact Riemannian homogeneous space with irreducible isotropy
representation M.

Lemma 5.2. If V is a weakly stable Yang-Mills connection, then we have

(53) E{[Fv(ei: Y), (P(eh X)] + [Fv(ei)X)a ‘P(eia Y)]} =
=1
for every X, Y € T, M.
Proof. Let K be the group of isometries of M and let k be its Lie algebra of

Killing vector fields on M. Since M has irreducible isotropy representation, we can
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fix a I{-invariant inner product on k which induces the I{-invariant Riemannian

metric of M. By [B-L, (10.4) Lemmal, for each V € k

Sy Give)(X) = Z{[F"(eu ) (e, X)) + [FY (ei, X), 0(es, V)]

Hence try@, = 0. Since V is weakly stable, we have IV (ivp,ivyp) = 0 for all
V € k. For any B € Q'(gg),

0<I%(ivye +tB,ive + tB) = 2tT¥ (iyye, B) + t*IV(B, B),
hence IV (iy¢, B) = 0. Thus Sy (ive) = 0 for all V € k. q.e.d.

Consider ® : M — SN-1(y/n/A;1) C RY be the first standard minimal
immersion of M (cf. [K-O-T}). Since M is an Einstein manifold and ¢ is a minimal
immersion onto a sphere of radius \/n/X;, if ¢ = FV, then (5.1) becomes

(5.4) S¥(iue)(X) = [p o {(\ — 29I + 2RIV, X)
-2 Z (B(e'" ej),u)(VeJ.(,o)(e,-,X),

where ¢ and A; denote the Einstein constant of M and the first eigenvalue of the
Laplace-Beltrami operator of M acting on functions, respectively.
Assume that M is a compact irreducible symmetric space. Let

2
(5.5) AT:M=ho+h; +...+h,

be the orthogonal decomposition into eigenspaces of R, where hg is the eigenspace
with eigenvalue 0 and h, is the eigenspace with eigenvalue p, > 0. We decompose
© =@o+ @1+ ...+ @p along (5.5). Note that Ve = 0 if and only if Vi, = 0 for
each s = 0,...,p. Assume that Vi = 0. If V is weakly stable Yang-Mills field, then
by (5.3) we have

(5.6) SV (ives) = (A1 = 2¢+ 2u,)(ivyp,) foreach s =0,...,p

6. Remarks on Yang-Mills fields over compact symmetric spaces.

First we remark on the stability of the canonical connections over compact
globally Riemannian symmetric spaces. Laquer [La] determined the indices and
nullities of the canonical connection on the standard principal bundle of each simply
connected compact irreducible symmetric spaces. We denote by i(V) and n(V) the
index and nullity of a Yang-Mills connection V (cf. [B-L] for their definitions).
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Theorem 6.1 ([La]). Let M = KK/H be a simply connected compact irreducible
symmetric space associated with a symmetric pair (K, H) and let V the canonical
connection of the principal bundle K — K/H.

(1) I M is a group manifold, then i(V) =1 and n(V) = 0.

(2) If M = S™ (n > 5), P,(Cay), E¢/Fy, then i(V) = n 4+ 1,26,54 and n(V) = 0,
respectively.

(3)If M = P,,(H) (m 2 1), theni(V) =0,n(V) =10 (m = 1) or m(2m+3) (m >
2).

(4) If M is otherwise, then i(V) = n(V) = 0.

We should note that the values i(V) for M = S™ (n > 5), P,(Cay), Es/Fy and
n(V) for M = P,,(H) (m > 2) are equal to the dimension of the first eigenspace
of the Laplace-Beltrami operator of M acting on functions, and n(V) for M =
Py(H) = S* is equal to its twice. It is known that, in the cases of M = S", P,,,(H),
P;(Cay), the space of all gradient vector fields for the first eigenfunctions on M
coincides with the space of all proper infinitesimal conformal transformations or
projective transformations on M.

We observe the case when M is a non-simply connected, compact irreducible
symmetric space. From [La] we see that if M is a group manifold, then (V) =
1,n{V) = 0. Suppose that M is not a group manifold. We easily check that if the
canonical connection of the universal covering M of M has i(V) = n(V) = 0, then
the canonical connection of M also has i(V) = n(V) = 0. When M = S", by virtue
of [B-L, (9.1) Theorem], we have i(V) = n(V) = 0. From the theory of symmetric
spaces (cf. [He]) we know that if M = P,(H) or P,(Cay), then M = M, and if
M = Eg/F,, then M = Es/F;-2Z3. We show that the canonical connection of
M = Eg/Fy - Z; has i(V) = n(V) = 0. From Theorem 6.1 we see n(V) = 0. First
we recall the realization of Eg/F, and Eg/Fy - Z3 (cf. [Yo]). Consider the Jordan
algebra T = {u € M(3, Cay);u* = u} of (real) dimension 27. Let R** = C?" = T©
be the complexification of 7 with a natural real inner product {,). Let $53 =
{u € R®; (u,u) = 3}, a hypersphere of 7. Set M = {u € 5%; det(u) = 1} and let
® denote the embedding M — 55 C R,

Proposition 6.2. (1) M is isometric to a simply connected compact irreducible
symmetric space Eg/Fy (cf. [Yo]).

(2) The embedding & is the first standard minimal immersion of M = Eg/F,
(cf. [Oh]).

Now we define a finite group I' acting freely and isometrically on R% — {0}
and M by
[ ={1,0,0%} = Zs,

o(u) = e®/A™V=Ty  for each u € R™.
Then the quotient A = M /T is isometric to the symmetric space Eg/Fy - Z3.
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Set { = Fg,H = F; and N = 54. Let RV be the curvature form of the
canonical connection V for (K, H). Then we have

2
/\TzM = so(Tz]\;I) = hy + hy,

where h; is isometric to the Lie algebra of Fy, which is the holonomy algebra of M.
Since A; — 2¢ + 2p; < 0 by virtue of the result of [K-O-T], from (5.4) we see that

© = {iyRY;U =grad f, for someu € R")}

is an eigenspace of SV of dimension 54 with a negative eigenvalue. From Theorem
6.1 we see i(V) = dim ©. In order to show that the canonical connection of M has
i(V) = 0, it suffices to show that if iyRY € © is invariant by T, then U = 0. It
follows from the following two lemmas.

Lemma 6.3. Let V € C°(TM). If
y(ivRY) =1y RY for each vy €T,
then v,V =V for eachy €T,
Proof. For any X € T, M,

RV(VZ,X) = "T(iVRV)(X) = 7(RV(V7“(2)’7:1X))
= RY (7 V3=1(), X),
hence RY (7. Vy-1(z) — Vz, X) = 0. If we let the canonical decomposition k = h+m
at £ € M and we use the identification m = T, M, then RV(X,Y) = —adn[X,Y]

(cf. [K-N]). Thus adm [« Vy-1(z) — V&, X] = for each X € m. Since h = {m, m] and
k is semisimple, v, Vy-1(,) — V; = 0. q.e.d.

Lemma 6.4. Let U = grad f, € C®°(TM) for some u € RN, Ify € T — {1} and
v.U = U, then u = 0.

Proof For each x € M and X € T, M,
(U, X) = (U7 X) = (771 (X),u) = (X,7(u)) = (U, X} = (X, u),
hence (X,v(u) —u) = 0 Thus (z,v(u) — u) is constant in z € M. Since ®(M) is
not contained in any hyperplane of R", we have 4(u) = u. Since I acts freely on

RY — {0}, we get u = 0. q.e.d.
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Next we remark on weakly stable Yang-Mills fields over a quaternionic projec-
tive space M = P,,(H). Generally let M be a quaternionic Kahler manifold. The
Sp(m) - Sp(1)-structure induces the orthogonal decomposition

2
NT*M =Wy + Wy + Wy,

where (Wy)z, (Wi): = sp(1),(W2), = sp(m) are irreducible Sp(m)-Sp(1)-modules.
The curvature form FV = FOV + FlV -+-F2,V of a connection V on the vector bundle £
over M splits into components F\¥ to End(E)® W; at each point. A connection V
with FV = FY (resp. FV = F\V) is called a By-connection (resp. A}-connection) as
in [Ni], or a self-dual conncetion (resp. an anti-self-dual connection) as in [C-S]. They
are Yang-Mills connections which minimizes the Yang-Mills functional ([C-S],[Ni]).

Proposition 6.5. Let E be a Riemannian vector bundle over P,(H). If V is
a weakly stable Yang-Mills connection on E satisfying F\Y = 0, then V is a B,-
connection (self-dual).

Proof. We may suppose that g is an Sp(m+ 1)-invariant Riemannian metric on
P,,(H) = Sp(m+1)/Sp(m) x Sp(1) induced by the Killing form of the Lie algebra
of Sp(m + 1). From [K-O-T] we know

R =TRo+ R+ Raq,

Ro =0,

R1 = (m/2(m + 2))I,
Ra=(1/2(m + 2))1.

(6.1)

Hence by virtue of (5.2), we get

Try Qpv

=2 /M(FV o {2R — (1/(m + 2))I}, F¥ )dvol
=2{-1/(m +2) [M(FOV, FY)dvol + (m = 1)/(m + 2) /M(FIV, FY¥)dvol}.

Proposition 6.5 follows from this equation. q.e.d.

From the proof of Proposition 6.5, we see that if V satisfies the assumption,
then

n

(6.2) Z (B(efvej)au)(vej Fv)(ei’X) =0,

ij=1
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for all « € RY and all X € T, M. Using the properties of the second fundamental
form of & and the curvature tensor field of Pp,(H), we can check that (6.2) implies
that the restriction of F'V to every quaternionic projective line P,(H) C P, (H)
is always a Yang-Mills field. Hence by (5.6) and (6.1) we obtain that, for any
Bs,-connection V over Pp,(H) and any infinitesimal projective transformation U on
P,.(H), we have S¥ (iy F'V) = 0. This means the existence of an infinitesimal action
of the projective transformation group of P,,(H) on the space of all B,-connections
over P, (H). In fact, it is known that the projective transformation group of P,,(H)
acts on the moduli space of all By-connections on E.

By (5.4), (5.6) and (6.1) we obtain that the indices i(V) and the nullity n(V)
of the canonical connection of M = S" (n > 5), P;(Cay) and Eg/F; come from
spang {iyRY;U € U}, and the nullities for M = P,(H) = $* and P,(H) (m > 2)
comes from spang {ivRY ,ivRy ;U € U} and spang{iy Ry ;U € U}, respectively.
We do not know whether each weakly stable canonical connection over a compact
symmetric space minimizes the Yang-Mills functional. And it is interesting to inves-
tigate relationships of Yang-Mills fields with holonomy groups and the classification
of vector bundles with Yang-Mills connections satisfying VFV = 0 over compact
symmetric spaces. From results of [B-L, p. 211] and [K-O-T] we can find gap phe-
nomena for Yang-Mills fields over every compact irreducible symmetric space which
is not locally Hermitian symmetric. The classification of such Yang-Mills connec-
tions may also be useful to establish accurately isolation theorems for Yang-Mills
fields over compact symmetric spaces.

Acknowledgements. This joint work has done while the second named au-
thor stayed at the Max-Planck-Institut fiir Mathematik in autumn, 1988. The
authors would like to thank the Max-Planck Institut for the support and the hos-
pitality.

References

[B-L] J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for
Yang-Mills fields, Comm. Math. Phys. 79 (1981), 189-230.
[C-S] M. M. Capria and S. M. Salamon, Yang-Mills fields on quaternionic spaces,
Nonlinearity 1 (1988), 517-530.
[G-K-R1] K. Grove, H. Karcher and E. A. Ruh, Group actions and curvature, Invent.
Math. 23 (1974), 31-48.
iG-K-R2] K. Grove, H. Karcher and E. A. Ruh, Jacobi fields and Finsler metrics on
compact Lie groups with an application to differentiable pinching problems,
Math. Ann. 211 (1974), 7-21.
[He] S. Helgason, Differential Geometry, Lie groups and Symmetric Spaces, Aca-
demic Press, New York, San Francisco, London, 1978.

16



[Ka] S.Kawai, A remark on the stability of Yang-Mills connections, Kodai Math. J. 9

(1986), 117-122.
[K-N] S. Kobayashi and N. Nomizu, Foundations of Differential Geometry I,II, Wiley-
Interscience, New York, 1963, 1969.
[K-O-T] S. Kobayashi, Y. Ohnita and M. Takeuchi, On instability of Yang-Mills con-
nections, Math. Z. 193 (1986), 165-189.

[La] H. T. Laquer, Stability properties of the Yang-Mills functional near the canon-
ical connection, Michigan. Math. J. 31 {1984), 139-159.

[Ni] T. Nitta, Vector bundles over quaternionic Kahler manifolds, Tohoku Math. J.
40 (1988), 425-440.

[Oh] Y. Ohnita, The first standard minimal immersions of compact irreuducible
symmetric spaces, Lecture notes in Math. 1090, Springer-Verlag, Berlin, Hei-
delberg, New York, Tokyo, 1984, 37-49.

[Ok] T. Okayasu, Pinching and nonexistence of stable harmonic maps, Tohoku
Math. J. 40 (1988), 213-220.

[Pal] Y. L. Pan, Pinching conditions for Yang-Mills instability of hypersurfaces,
preprint, International Center for Theoretical Physics, Trieste, 1988.

[Pa2] Y. L. Pan, Stable harmonic maps from pinched manifolds, preprint, Max-
Planck-Institut fir Math. , Bonn, 1988.

[Ru] E. A. Ruh, Curvature and differential strucure on spheres, Comment. Math.
Helv. 46 (1971), 127-136.

[Sh] C. L. Shen, Weakly stability of Yang-Mills fields over the submanifold of the
sphere, Arch. Math. 39 (1982}, 78-84.

[Ta] C. H. Taubes, Stability in Yang-Mills theories, Comm. Math. Phys. 91 (1983),
235-263.

[We| S. W. Wei, On topological vanishing theorems and the stability of Yang-Mills
fields, Indiana Univ. Math. J. 33 (1984), 511-529.

[Yo] I. Yokota, Simply connected compact Lie groups Eg(_7g) of type Eg and its
involutive automorphisms, J. Math. Kyoto Univ. 20-3 (1980), 447-473.

17



Y. Ohnita :

Max-Planck-Instutut fiir Matematik
Gottfried-Claren-Strasse 26

5300 Bonn 3

Federal Republic of Germany

and

Department of Mathematics

Tokyo Metropolitan University
Fukasawa, Setagaya, Tokyo 158 .
Japan

Y. L. Pan :

Institute of Mathematics
Fudan University
Shanghai

People’s Republic of China

18



