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On k-spannedness for projective surfaces

by

Mauro Beltrametti and Andrew J. Sommese

INTRODUCTION. Let L be a line bundle on a smooth connected
projective surface S . In this paper we make a general study of
pairs (S,L) where L 1is k-spanned. K-spannedness of a line bundle
L is natural notion of higher order embedding for the map
associated to L that was introduced in [3], e.g. L is O-spanned
(1-spanned) iff L is spanned by global sections (very ample).

In § 0 we recall the definition of k-spannedness and the main
result of [3], a Reider type material criterion for a line bundle
to be k-spanned. We also collect a number of results, we continually
use.

In § 1 we study k-spannedness on curves proving a number of
lnequalltles linking invariants of the line bundle, the curve and
k . We characterize k-spannedness of L on S 1in terms of the
restriction of L to curves on S .

In § 2 we study lower bounds for ho(L) in terms of k . For
k = 2 we get the very strong result that hO(L) 2 6 , while for
k 2 3 we only get ho(L) 2 k+3 . Our prove is based on jet bundle
arguments.

In § 3 we give sufficient conditions for a line bundle L on
a ZP1 bundle over a curve to be k-spanned. The conditions are

necessary for h'(Os) S 1 and almost necessary in general.
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In § 4 we use the results of [13] to study when kKS + L is
spanned by global sections. This gives very strong numerical relat
a k-spanned line bundle must satisfy.

In § 5 we use the results obtained to classify the pairs
(S,L) with g(L) £ 5 and k 2 2 where L is k-spanned and
g(L) is the genus of a smooth C € |L| (see also [7], [9], [10]).

In § 6 we study the dependence of the inequalities between
gl(L), c1(L)2, k for k-spanned L with k 2 2 and the birational
geography of S .

We would both like to thank the Max-Planck-Institut fiir
Mathematik for making this joint work possible. The second author '
would also like to thank the University of Notre Dame and the

National Zcience Foundation (DMS 8420 315) for their support.




§ 0. Notation and background material.

We work over the complex numbers € . Throughout the paper, S

.

always denotes a smooth connected projective surface. We denote its

structure sheaf by Os and the canonical sheaf of the holomorphic

2-forms by K_. . For any coherent sheaf F on S we shall denote

S
by hl(F) the complex dimension of HY (S,F) .

Let L be a line bundle on S . L 1is said to be numerically

effective, nef for short, if L-C 2 0 for each irreducible curve

C on S, and in this case L 1is said to be big if c1(L)2:> o,

where c1(L) is the first Chern class of L . We say that L is

spanned if it is spanned by the space of its global sections T (L)

(0.1) We fix some more notation.

~ (resp. =) the numerical (resp. linear) equivalence of divisors;
x(L) = 2(-1)ihi(L) , the Euler characteristic of a line bundle L ;
|L] , the complete linear system associated to L ;

q(s) = h'(0g) , the irregularity of § ;

pg(S) = hZ(OS) , the geometric genus of S ;

x (S) , the Kodaira dimension of S ;

e(S) , the topological Euler characteristic of S .

We denote by Jt(S,L), Jt(C,L) the t-th holomorphic jet bundles
of a line bundle L. on S (resp. on a smooth curve C ). Recall that
Jt(S,L), Jt(C,L) are vector bundles of rank (t+1) (t+2)/2, t+1
respectively (for general properties of jet bundles we refer to
[8] and [11]).

As usual we don't distinguish between locally free sheaves and
vector bundles, nor between line bundles and Cartier divisors. Hence

we shall freely switch from the multiplicative to the additive



notation and viceversa.

(0.2) The genus formula. Let L be a nef and big line bundle on

S . Then the sectional genus, g(L) , of L is defined by the

equality 2g(L)-2 = (KS+L)°L .
It can be easily seen that g(L) 1is an integer. Furthermore if
there exists an irreducible reduced curve C in |L|, g(L) is simpl

the arithmetic genus pa(C)=1-x(0c) of C

(0.3) Let L be a nef and big line bundle on S . We say that the

(generically) polarized pair (S,L) 1is geometrically ruled if S ir

a P1 bundle, p : S —> R , over a nonsingular curve R and the

restriction Le of L to a fibre £ of p is 0_.(1) . We shall

f
denote by E a fundamental section of p . We say that (S,L) |is

a scroll (resp. a conic bundle) over a nonsingular curve R if

there is a surjective morphism with connected fibres p : S — R,

with the property that L 1is relatively ample with respect to p
and there exists some very ample line bundle M on R such that
*

Ks ® 2L ~ p*M (resp. KS

geometrically ruled conic bundle if S 1is a 1P1 bundle p: S —

® L~ p*M ). We also say that (S,L) 1is a

and the restriction of L to a fibre f of p is Of(2) .
We denote the rational 2P1 bundle P (0 1 @ 0 1(n)), n20,
P r
by T, , the Hirzebruch surface. Note that the only P bundle which

is not a scroll in the above sense is Eb =2P1 x:P1 with

S

L = %F (1,1 . We say that S 1is a Del Pezzo surface if -K is
0

ample.

(0.4) Castelnuovo's bound. Let L be a very ample line bundle
y

on a smooth surface S and let C be a general element in |L|




Assume that |L| embeds S in a projective space ZPN and let
'd = LL . Then g(L) = g{(C) and Castelnuovo's Lemma says that

(see e.g. [1])

d ] fd ] N-

where [x] means the greatest integer < x . From (0.4.1), writing

[ d-2 /N-2]

d-2-¢/N-2, 0 £ € £ N-3 , we find that

d 2 N/2 + /2(N-2)g(L)+((N~4/2) ~¢)

[\

this leading to

N/2+/2(N-2)g(L)+1/4 if N-4 is odd;
(0.4.2) daz |

N/2+/2(N-2)g(L) if N-4 1is even.

\

(0.5) k-spannedness. Let L be a line bundle on S (resp. on a

nonsingular curve C ).We say that L is k-spanned for k 2 0 1if
for any distinct points Zyreees2, ON S (resp. on C ) and any

t
positive integers k,,...,k  with ) k; = k+1 , the map
i=1

T(L) —> T(L ® OZ) is onto, where (Z,OZ) is a 0-dimensional

subscheme defined by the ideal sheaf IZ where IZOS is OS Z"
I 14

(resp. OC,z ) for =z ¢ {z1,...,zt} and IZOS,zi is generated by
k,

i 1) at zy with (xi,yi) local ciordinates at z;, on S
i=1,...,t (resp. IZ is generated by Y5 l, Y; local coordinate

(xi'y

at z; on C ). We call a O-cycle I as above admissible.

Note that O-spanned is equivalent to L being spanned by

(L) and 1-spanned is equivalent to very ample.



(0.5.1) If L 1is k-spanned on S , then L-C 2 k for every

effective curve C on S , with equality only if C EZP1 . Further

either C EZP1 or pa(C) = 1 1if deg Lc = k+1 .

The fact that L-C 2 k 1is clear from the definition, as well

as hO(LC) 2 k+1 . Now, loocking at the embedding of C in ZPN

given by F(LC) one has deg LC = deg C 2 N 2 k , so that C EZP1

whenever deg L, = k or deg LC

c N = k+1 and pa(C) = 1 if

deg LC = k+1 .,

(0.5.2) Let L be a k-spanned line bundle on either S or a smoo*

curve C . We say that V < I'(L) k-spans L (or V 1is a k-spanninc

set of L ) if for all admissible O-cycles (Z,OZ) with length (OZ
= k+1 , the map V —> T(L ® OZ) is onto.
For a given admissible 0O-cycle (Z,OZ) on S we say that a

smooth curve C is compatible with (Z,OZ) if

=22 g7

. n
- for any point 1z € Zred : Where IZOS,z = (x,y), x,y local
parameters at z , then f-x € mz where f 1is the local

equation of C at 2z and m, is the maximal ideal of

OS’Z .
Thus we get the following characterization of k-spannedness, we need
to prove the key-Lemma below.

Ve T'(L) k-spans L on S 1if and only if for all smooth

connected compatible curves ¢ on S, Im(V —> F(Lc))

k-spans the restriction LC .

(0.5.3) LEMMA. Let Li be ki-spanned line bundles either on S

Oor on a smooth curve C and let Vi et P(Li) ki-sEans Li for




i=1,...m . Then the image V of V, ® ... ® %“ in T(L, & ... ®

(k, + ... + km) - spans L, ® ... ® Hn .

1 1

Proof. In view of the characterization of k-spannedness given in
(0.5.2) we easily see that one can reduce to the curves case. Further

the result is clearly reduced to the case m = 2 ., Thus we have to
t

show that, given a O-cycle Z = ] n,p;, on C where n, >0,
i=1

n; = k+1 , the map V —> [‘(L1 ® L2 ® OZ) is onto.

It e~

i=1

To see this fix an index i . Write n., = ai+bi where a; > o,
0, bj 2 0 . Then

§ t t t

r=1ar = k,+1, £Z1br = k,+1 and let 7, = Z ap., 1, = rz1brpr

[\ o

bi > 0 and nj = aj+bj, j # i , where aj

By the fact that V1~ k1—spans L1 we can choose elements

Sqree-S; of V whose images in T(L, © 0, ) vanish at p,
i, 1 1 Z1 3j
i

to the aj-th order for j # i and which have prescribed ai-1

jet at Py - Similarly we can choose elements Ugreeesu; of V

1p.
1

2

whose images in I‘(L2 ® OZ ) vanish at P to the bj-th order
2

for j *#+ i and which have prescribed bi-1 jet at Py - Note that
the tensor powers of these sections give a space of sections wi

1

and which have prescribed ni~1 jet at p; - Now W

of L, ® L2 which vanish at pj to the nj-th order for j # i

< w clearly

170 t

generate I‘(L1 ® L2 ® OZ) , So we are done.

Let us recall the following numerical characterization of

k-spannedness.

(0.6) THEOREM ([3], (3.1)). Let L be a nef and big line bundle

on a surface S and let L+*L 2 4k+5 . Then either KS+L 15




k-spanned or there exists an effective divisor D such that L-2D

is @-effective, D contains some admissible O-cycle of degree

t+1< k+1 where the k-spannedness fails and

L*D-t-1 &€ DD < L*D/2 < t+1 .
a

We need the following consequence of the result above {(compare

with (5.3.4)).

(0.7) PROPOSITION. Let S be a Del Pezzo surface which is a blowi

up of ZFO or ZF1 . Let L be the spanned line bundle on S , obtai

by pulling back to S the pullback of 0 1(1) to F, under the
P
bundle projection :Fi ——>2P1, i =20,1 . Further assume KS-KS =1

Then KSt e L9 is k-spanned if g > 1 and t 2 k .

Proof. Let M = K;t-1 ® LY . Note that M is ample and M-M

-1,
S

M-M z dk+5 . If K5 @ M = K;t ® L9is not k-spanned, by the Theorem

= (£+1)%+2(t+1)q 2 (k+#1)%+4(k+1)q since t z k, K_'-L = 2 . Thus

above one has
M-D-k-1 £ DD < M-D/2 < k+1

for some effective divisor D on S . Now, since t 2 k, M-D/2 < k¢

gives KS ‘D = 1 and hence

D-D 2 M-D-k-1 2 gL-C 2 0 .

Since KS'D = 1, DD 2 1 by the genus formula. Then by the Hodge

index theorem we get Ky 'Ky = D-D = 1 and also K;1 ~ D . This lead

to the contradiction ql+D = 2q £ D-D = 1



Note that

-t

(0.7.1) g(Kg~ ® L) = t(t=1)/2+(2t-1)/a * 1.

o
To the reader's convenience we recall here the following result

from [3], we use several times.

(0.8) PROPOSITION ([3], (3.6)). Let S be a Del Pezzo surface. Then

K " is k-spanned for k 2 0 if and only if:

(0.8.1) t 2k/3 if s =B° ;

(0.8.2) t xk/2 if S =P xB ;

(0.8.3) t 2 k+2 if K Ko =1 ;

(0.8.4) t 2k if Kg'Kg 23 or Kg'Kg =2 and k + 1.
K

S
Further, if KS-KS = 2, ;t is very ample iff t 2z 2 .

(0.9) k-reduction. Let L be a line bundle on S . A pair (s',L')
is said to be a k-reduction of (S,L) if there is a morphism
T : S —> S' expressing S as S' with a finite set F blown up

1 k

and L~ m*L'<kq ' (F) . Note that KS @ L =~ ﬂ*(Kg, ® L') .

Apart from some cases where k 2 2 is explicitely needed, we
carry out for completeness most results for k-spanned line bundles

with k 2 1 , even though in the "classical" case k = 1 they don't

give something new.

In § 4 we use extensively the results of [13]. We refer directly
the reader to [13] instead of reporting here the results we need.
Through the paper we also use well known results describing polarized
pairs (S,L) with L of sectional genus g(L) = 0,1 ; for this we

refer e.g. to (5] and [7].



§ 1. k-spannedness on curves.

Throughout this section we denote by C a nonsingular irreduci
curve of genus g(C) and by KC the canonical divisor of C . Our
aim is to express the k-spannedness on C in terms of some useful

numerical conditions.

(1.1) LEMMA. Let L be a line bundle on C . Then:

(1.1.1) L is k-spanned if deg L 2 2g(C) + k ;

(1.1.2) if deg L = 2g(C)+k-1, L is k-spanned if and only if

0 .
h (L—KC) =0 .

Proof. (1.1.1) follows from the definition. Indeed, let Zyrees2,

be r distinct points on C and let k1""’kr r non negative

r r
integers such that ) k., = k+1 . Then hO (K -L+ Yy k.z,) =0, so
j=1 c i=1 i1
that we have a surjective map T (L) —> T(L ® 02) , where Z |is
r
the O-cycle defined as 7 = z kizi ; this means that L 1is
i=1
k-spanned.

To prove (1.1.2), note that, since deg L = 2g(C)+k-1 , we can
write L = KC ® L for some line bundle L of degree k+1 . Then

h1(L) = 0 and hence L 1is k-spanned if and only if
*) h'(t-p) = n%m-1) =0 ,

for every effective divisor D on C with deg D = k+1 . We claim
that condition *) is equivalent to hO(L) = hO(L-Kc) = 0 . In fact,
for any divisor D as above, deg(L-D) = 2g(C)-2 ; hence h1(L-D) *
implies that L-D ~ K that is L ~ D , so hO(L) # 0 . Viceversa,

C
h1(L-L) = h”KC)= 0 |if hO(L) # 0 , a contradiction.



The following plays a relevant role in the sequel.

(1.2) THEOREM. Let L be a k-spanned line bundle on C and let

h1(L) # 0 . Then:
(1.2.1) KC Ei k-spanned;

(1.2.2) 1h%(n) €1 for any line bundle L with deg L $ k+1 ;

(1.2.3)  g(C) 2z 2k+1 .

Proof. First, we can assume h1(L) = 1 . Indeed, if h1(L) =

= hO(KC-L) 2 2 , we can write KC—L ~ A+M  where hO(A) = 1 and

the moving part M is base points free. Then L' = L+M is k-spanned
by (0.5.3) and h'(L") = n%(a) .

To prove (1.2.1), note that K is k~-spanned if and only if

Cc
h1(Kc—Z) = h1(Kc) = 1 , for every length k+1 O-cycle Z on C .

This easily follows by looking at the exact sequence

0 —> KC ® OC(—Z) —_ KC —_ KC e OZ —> 0 .

[\

Now, if hl(Kc-Z) 2 2, clearly hO(KC—L+Z) 2 since KC—L is
effective and hence by duality h1(L-Z) 2 2 . Again, the k-spannedness
of L can be expressed as h1(L-Z) = h1(L) , this leading to a
contradiction. Thus K, is k-spanned and h'(K.-Z) = h°(Z) = 1

for every length t < k+1 O-cycle Z on C . This gives (1.2.1)

and (1.2.2). From the Existence Theorem (see (1], p. 206) we know
that for any integer t 2 (g(C)+2)/2 there exists a line bundle

L on C of degree t and with hO(L) 2 2 . Therefore it has to

be k+1 < (g(C)+2)/2 , which gives (1.2.3).

(1.3) KEY-LEMMA., Let L be a k-spanned line bundle on C . Then

ho(w) 2 k+2 if g(c) >0 .
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Proocf. Since L 1is very ample one sees that the k-th holomorphic
jet bundle Jk(C,L) is spanned by the image of T (L) under the
natural map j, : L —> Jk(C,L) . Since JO(C,L) = L and Té ® L

are ample vector bundles we see from the exact sequence

(k)

0 —> Té @ L —> Jk(C,L) —_ (C,L) —> 0

Jk-1

that Jk(C,L) is an ample vector bundle of rank k+1 . Then

no(L) 2 rk 3, (C,L) + dim C 2 k+2 .

(1.4) COROLLARY. Let L be a k-spanned line bundle on C with

g(C) >0 and let d = deg L . Then:
(1.4.1) d 2 k+2 ;

(1.4.2) d

[\

2k+2 if d s 2g(C) with equality only if either

[oh)
H

2g(C) or L =~ K k=1, g{(C) =3 .

cr
Proof. If h1(L) =0 , then d-g(C)+1 = hO(L) 2 k+2 gives

d 2 k+g(C)+1 2 k#2 . If h'(L) ¢ 0 Clifford's theorem and (1.3) yie
a/2+1 2 hO(L) 2 k+2 , whence d 2 2k+2 and (1.4.1) is proved.

Note that Clifford's inequality holds true also if h1(L) =0
whenever d £ 2g(C) . Therefore d 2 2k+2 by (1.4.1). Now, d = 2k+Z
gives the equality in the Clifford's theorem, so we find that
d =29(c) if h'(L) =0 , and either L ~ K, or C is a hyper-

elliptic curve with L a multiple of the unique g; on C if

h'(L) +0 . If L~K. d=2k+2 = 2g(C)-2 and g(C) 2 2k+1 by

C
(1.2.3), this leading to k = 1, g(C) = 3 . In the remaining case
d £ 2g(C)-2, L ~ ng; and KC ~ mg; for some positive integers m,Il
m 2 n . Then KC 3 L+(m-n)g; would be very ample, a contradiction

to hyperellipticity. This proves (1.4.2).
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{(1.5) REMARK (compare with § 6). Note that if L 1is a k-spanned
line bundle on S. with pg(S) > 0 , then for a general element

C € |L| the restriction L = L, verifies the condition

h1(L)(= hO(K )) #+ 0, so deg L = L-L § 2g(C)=2 . Hence

sic
g(L) 2 2k+1 by (1.2.3) and L-L 2 2k+3 if k 2 2 by (1.4.2).
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§ 2. A lower bound for hO(L),

Let L be a k-spanned line bundle on S . In this section
we show that the k-spannedness condition forces S to be embedded
by |L| in a projective space of dimension at least 5. First of al

note that from Lemma (1.3), we have
0

(2.1) h™ (L) 2 k+3 ,

so the claim is clear if k 2 3 .

(2.2) Let L be a k-spanned line bundle on S with k 2 2 . Take
a point x € S and let V2 < I'(L) denote the space of the section
of L that vanish to the 2-nd order at x . We claim that after

choosing a trivialization of L at x , a basis of V2 can be

written in the form s, = q1+0(3),...,s = qt+0(3) where the q,'s

1 t

are quadratic functions in the local parameters at x and at least

2 of the qa's are not (identically) zero and have no common facte¢

a 1,...,t .

Indeed, set I = {i,q, # 0}, J = {j,q. = 0} and assume that
i 3

the qi's have a linear common factor, say u . The maximal ideal
m of 0 can be assumed to be of the form m_ = (u,v) for
X S,x X
some linear factor v .
We can also assume that on the open set U0 = {x € s, so(x) #

s, € T{L)} a basis for T(S,L) on Ug consists of the hO(L)—1

0
elements hl.v....,si....sj...} . Now L 1is 2-spanned by the

assumption so that the map

p i T(L) —> T(L 8 0 /(u,v°))
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is onto. Since clearly u and the si's, sj‘s belong to Xerp we

find dim Kerp 2 hO(L)-Z , which contradicts dim T'(L © Ox/(u,v3)) = 3

Note that the claim we proved here shows that the kernel of the

;, evaluation map j2 < ¢ (S x I‘(L))X —_— J2(S,L)X at x induced by
14

E j2 : L —> JZ(S,L) has dimension at most hO(L)-S

We can now prove the following general result.

(2.3) THEOREM. If the 2~th jets bundles of a k 2 2 spanned

line bundle L on S5 don't span J,(S,L) at at least ome point,

~ then:

(2.3.1) c1(S)2 = 2c2(S) and the tangent bundle of either S or an

unramified double cover of S splits as a direct sum of line

bundles;
(2.3.2) Cokernel (j2 : S x T(L) —> J2(S,L)) = K. QL
Proof. Consider the commutative diagram

j2
S x T'(L) > JZ(S,L)

J,(s,L)

where # denotes the surjective restriction map, whose kernel is
T§(2) ® L . Since L 1is very ample, j1 is onto, the restriction
j of j, to the kernel K of 34 has image contained in

T§(2) ® L. , so one has a morphism

j:k— 12 @,
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Fix a point x € S , local coordinates at x and a trivialization

of L at x . By the earlier argument (2.2), the image of j in

rx(2)

S ® L at x 1s of the form

(Imj), = {ho(dz,dw)+up(dz,dw); A,u € T,0,¥
homogeneous quadratic functions without common

factors}

It is easy to see that any such a special pencil has precisely 2
distinct elements which are squares, e.g. the map ZP1 ——>IP1 given
by (¢,v) has degree 2 and has precisely two branch points by

Hurwitz's theorem. Thus the pencil is given at x by

2 2, *
{kw1 * oUW, A,u € @, Wy sy € Ts,x} .

Hence two directions on TS are determined at x . It is easy to
check that they vary holomorphically and give a submanifold
A S:P(TE) = [TS-S]/G*, S the 0-section of TS —> S , which is a

two to one unramified cover of S under L the restriction to

A of w :P(T*) —> S . Now, either A 1is a union of 2-sections

|

of ® o q;1(A) S P(T¥) is a union of 2 sections of ZP(TX) —> A

where d, ::P(Ti) ——>ZP(T§) is the induced map. In the former case

T§ = L1 ] L2 for 2 line bundles Ly, L on S ; in the latter

2
case TK = L; ® Lé for 2 line bundles Li, Lé

by a well known result of Bott (4], c1(Li)2 = c.I(Li)2 = 0 . Thus

on A . Note that

c1(S)2 = 2c2(S) in the former case and c1(A)2 = 2c2(A) in the
latter case. Since Ty is an unramified 2-sheeted cover in the
latter case, it follows that c1(A)2 = 2c1(S)2, cz(A) = 2c2(S) .

Thus in any case c7(S) = 2¢,(S) , which proves (2.3.1).
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Note that the image j(K) 1in Tg(z) ® L in the former case

is (L? ® L) & (Lg ® L) and hence the cokernel is L1 9 L2 ® L =

= Ks ® L . In the latter case L1, L2 are locally still well
defined as in the former case. Nonetheless choosing any open set

U such that L1, L2 are well defined, TG =L, ® L and L

1 2 1 8 Ly

is canonically identified with K Thus the cokernel of j 1is

S *
always KS ® L . So we are done by noting that coker j = cokerj2 .
=]

As a consequence, we get the result claimed at the beginning

of this section.

(2.4) THEOREM. Let L be a k-spanned line bundle on S, k 2 2.

Then hO(L) 26 .

Proof. From (2.1) we know that h°(L) z 5 and n’(L) 2 6 if

k 23 . So let k = 2 and assume hO(L) = 5 . Then previous argument

.(2.2) shows that the evaluating map S x T(L) —> JZ(S,L)

P

induced by j2 : L —> JZ(S,L) is injective. Hence we have an exact

sequence of vector bundles

0 — 8 x T{L) —> Jz(S,L) —_> KS ® L — 0

by the above Theorem. Thus detqu(S,L) z KS ® L . Now a direct
computation, by looking at the exact sequences, t = 1,2 ,

(t) _
(2.4.1) 0 —> Tg ® L —> Jt(S,L) _— Jt_1(S,L) > 0

shows that detqu(S,L) = K; ® L6 . Therefore Kg ] L5 H Os and

hence there exists a line bundle M on S such that M = K. ,

'M3 = L . Since M3

n

L, M is ample so pl(t) = X(Mt) is a non
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degenerate degree 2 polynomial. But M-5 = KS implies, by Kodaira'

0 for t = -1,-2,-3,-4 , a contradicticn

vanishing theorem, p(t)

w

This proves that h°(L) 2 6 .

o
Next we show that if ho(L) = 6 , then J2(S,L) is genericall

spanned.

(2.5) PROPOSITION. With the notation as in (2.4), there exists at

least one point x € S such that j2 < : (s x I‘(L))x —> JZ(S,L)x
’

is onto.

(14

Proof. Note that if (S,L) GPZ,O 2(2)) it is well known that
%

j2 : S x T(L) —> JZ(S,L) is onto (see e.g. [8] or [11]). Thus we

can assume (S,L) # GP2,0 5(2)) and let us suppose j, to be
P %
not onto for any x € S . Then by (2.3.1) there is an exact sequenct

of vector bundleé

0 —> Kerj2 —> S x I'(L) —> JZ(S,L) —> K, @ L —> 0

and hence Kerj2 has rank 1, since rk(s x I'(L)) = rk.Jz(S,L) =6

The total Chern classes verify the relation, where K = Ker j2 ’

(2.5.1) (1+K)'c(J2(S,L)) = 1+KS+L .

We know that c1(J2(S,L)) = det J, (S,L) = 4K +6L while a long but

standard computation, by using sequences (2.4.1), gives us
(2.5.2) c,(J,(s,L)) = 5c2(S)+5KS-KS+20KS-L+15L-L .
Furthermore from (2.5.1) we obtain

Kec (3,(8,L)) + c,(J,(S,L)) =0
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and hence
(2.5.3) cz(JZ(S,L)) =(3KS+5Lr(4KS+6L) = 12KS-KS+38KS-L+3OL'L .

By combining (2.5.2) with (2.5.3), and noting that c.(S)° = 2c,(s)
by (2.3.1), we find

(2.5.4) L-L = 3c2(S)+12(g(L)—1) .

Note also that KS+L is nef. Otherwise (S,L) would be either
GPZ,O(Z)), GP2,0(1)), 0P1XIJ,0(1,1)) or a scroll, contradicting
(S,L) # GP2,0(2)) or the fact that L 1is at least 2-spanned.
Therefore KS-KS+4(g(L)-1) 2 L°L ; hence (2.5.2) and KS-KS = 2c2(S)
lead to

(2.5.5) ¢, (S)+8(g(L)-1) s 0 .

Clearly g(L) # 0 since k 2 2 and (S,L) # GPZ,O(Z)) . Similarly

g(L) * 1 otherwise (S,L) would be either a scroll, contradicting
again k 2 2 , or a Del Pezzo surface, contradicting c2(S) <0 .

Thus g(L)

[\

2 , so 2c2(S) = KS-KS < 0 and therefore X(OS) < 0 .

This implies that S is birationally ruled, so KS'KS < 8(1-g(s)) ,

and the Riemann-Roch theorem yields
(2.5.6) c2(S) 2 4-4g(S) .

‘Hence from (2.5.5), (2.5.6) we infer that g(L) < (g(S)+1)/2 . Now,

Vxwl001,1))

since (S,L) is neither (®2,0(1)), ®%,0(2)), (@
nor a scroll, it has to be g(L) > g(S) (see e.g. [12]). So we
get g(S) = 0 , contradicting x(OS) < 0 . This proves the Proposition.

a
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Now, certain arguments that we have not been able to make
rigorous, together with the fact that (S,L) = 092,0 2(2)) whenevey
r

j2 is an isomorphism by a result due to Sommese [11], suggest the

following

(2.6) Conjecture. Let L be a k-spanned line bundle on S, k 2 2.,

Then hO(L) = 6 if and only if (S,L) = GP2,0 2(2)) .
P
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§ 3. k-spannedness on geometrically ruled surfaces.

Throughout this section, S 1is assumed to be a geometrically
ruled surface over a nonsingular curve R of genus g(R) . As
usual, E,£f denote a section of minimal self-intersection E2 = —-e
and a fibre of the ruling. Here we find some sufficient numerical
conditions for a line bundle L on S to be k~-spanned. In some

case, such conditions come out to be also necessary.

First we consider the case g(R) = 0.

(3.1) PROPOSITION. Let &S =:Fr be a Hirzebruch surface of invariant

r 21 and let L ~ aBE+bf be a line bundle on S.Then L is k-spanned

if and only if a 2 k and b 2 ar+k

Proof. If L is k-spanned, then L°‘f = a 2 k and L-E = -ar+b 2 k .

To show the converse, write
L ~ k{(E+(r+1)f)+{a-k) (E+rf) +(b-(ar+k) )£

and note that E+(r+1)f is very ample and E+rf, £ are spanned

(see e.g. [6], p. 379, 382). Then we are done by (0.5.3).

(3.2) REMARK. On a gquadric F, = XIP1 is clear that a line

bundle L of type (a,b) is k-spanned if and only if a 2 k, b 2 k .

Indeed, 0 1 1(a,b) is k min (a,b)-spanned.
x 1P

r
o

Thus we can assume g(R) > 0 . Recall that Ky ~ -2E+(2g(R)=-2-e) £

where e = -E*E 1is the invariant of S .

(3.3) PROPOSITION. Let S be a geometrically ruled surface with

invariant e 2 0 and q(S) > 0 . Let L ~ aE+bf be a line bundle
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on S . Then L 1is k-spanned if

a 2 k; b 2 ae+2gq(S)-2+max(k+2,e)

Proof. First note that E+ef is nef; indeed we see that (E+ef) -B
for every irreducible curve B on S , recalling that for such a
curve B, B #+ E,f, B ~ oE+Bf with a > 0, B 2 ae ([6], p. 382). Ne

let
M = L-Kg ~ (a+2) E+(b+e-2(q(S)-1))f .

Then M-*M = (2b-4(q(S)-1)—ae)(a+2)22(k+2)2 and hence M-M 2 4k+5

for k 2 1 . Further M 1is nef; indeed
M ~ (a+2) (E+ef)+(b-ae~-e=-2(g(S)-1))f

and both E+ef, £ are nef. Thus if L is not k-spanned, Theorem
(0.6) applies to say that there exists an effective divisor D su’

that
M-D-k-1 < DD < M*D/2 < k+1 .

We can write D ~ xE+yf where x = D°f 2 0, y = D-(E+ef) 2 0 . Now
M:D = x(b-ae-e-2(g(S)~-1))+y(a+2) , then from M-D/2 < k+1 and the

assumptions made on a and b we get y(k+2) < 2(k+1) which lead

to y =0,1 . If y =0, D-D = -ex>+2xy 2 M-D-k-1 yields

-ex+x (k+2) -k~-1 ¢ -ex2

and x 2 1 since y = 0 . Hence ex(x-1)+2x £ 0 , a contradiction.
If y =1, D-D 2 M-D-k=-1 gives

2
-ex+1 £ -ex
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that is xe(x-1)+1 5 0 , again a contradiction.

(3.4) PROPOSITION. Let S be a geometrically ruled surface of

invariant e < 0 and g(S) > 0 . Let L ~ aE+bf be a line bundle

on S . Then L 1is k-spanned if

a 2 k; b 2 ae/2+2g(S)+k .

Proof. First, note that E+(e/2)f is nef. Indeed one sees that
(E+(e/2)f)*B 2 0 for every irreducible curve B on S , recalling
that for such a curve B, B % E,f , B ~ aE+Rf with either o =1 ,

B20 or a 22, B2 oae/2 ([6], p. 382). Let

M = L-K_. ~ (a+2)E+(b-(2g(S)-~-2)+e)f .

S

Then MM = (2b-4(q(S)-1)+2e-(a+2)e) (a+2) 2 2(k+2)> and hence

M-M 2 4k+5 for k 2 1 . Further, by writing

ec) , (2b-4(g(S)-1)-ae)
M~ (a+2)(E+§f} + 5 JE

we see that M 1is nef. Thus if L 1is not k-spanned, there exists

by (0.6) an effective divisor D such that
M-D-k-1 < DD < M-D/2 < k+1 .

We can write D ~ x(E+(e/2)f)+yf where x € Z, 2y € Z and further

x = Df 2 0, D-(E+(e/2)f) =y 2 0 . Here

M-D = x(;g‘2+b-z(q(S)-1)>+y(a+z) ,

then from M+D/2 < k+1 and the assumptions made on a and b we
find (k+2) (x+y)/2 < k+1 , which gives x+y < 1 . Therefore, since

y €& if x = 0 , the only possible cases are (x,y) = (1,1/2) ,
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(1,0), (0,1) and an easy check shows that they contradict D-D
= 2xy 2 M-D-k-1 .
o

In the special case when g(S) = 1 something more can be said

(3.5) REMARK (g(S)=1). Assume S 1is a geometrically ruled surface
over a curve of genus g(R) = 1 . Then a standard but rather long
computation, following the lines of the previous proofs, gives us
necessary and sufficient conditions for a line bundle L ~ aE+bf
on S to be k-spanned. We state here the results, omitting the

proof for shortness.

(3.5.1) if e = -1 , L is k-spanned if and only if a 2 k, 2b+a 2

k+2 ;

v

(3.5.2) if e 20, L is k-spanned if and only if a k, b 2 k+2 1

+ ae .

(3.6) REMARK (conic bundle case). It is worth to point out that
if (S,L) 4is a conic bundle on a curve R of genus q(S) and L
is a k-spanned line bundle on S , then k & 2 . Further, if

a(s) 21, k =2 and S is geometrically ruled then

g(L) 2 g(s)+3 .

Indeed L ~ 2E+bf , so L-f = 2 and hence k £ 2 . If k =2 ,
deg LE = L°E = b-2e 2 4 by (1.4.1) while the genus formula gives
us g(L) = b+2gq(S)-1-e . Therefore g(L) 2 q(S)+e+3 , so we are

done since e 2 -q(S) .
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§ 4. The k-th adjunction mapping.

Let L be a k-spanned line bundle on S . It is useful to use
[13] to find for which positive integers t, t < k , the line bundle
t KS+L is very ample or spanned. The results of this section are
essentially corollaries of the analogous results for very ample
line bundles contained in [13], we used over and over (especially

Theorems (0.1), (0.2) and (2.1)).

For t =1 , we have the following

(4.1) THEOREM. Let L be a k-spanned line bundle on S with

k 2 2 . Then (S,L) contains no lines and KS+L is very ample

unless either:

(4.17.1) k =2 and (S,L) 1is a geometrically ruled conic bundle;
2

(4.1.2) k = 2 and either (S,L) = @®°,0 2(2)), g(L)=0 , or
, P
(5,10 = @' xB',0 , ,(2,2)), g(@)=1 ;
P xIP
(4.1.3) k =2 and S 1is a Del Pezzo surface with KS-Ks =2 ,
L~ Ko2, g(L)=3 ;

S
(4.1.4) k =3 and (S,L) = ®%,0 ,(3)), g(L)=1
P

Proof. First note that L 1is in fact 2-spanned or 3-spanned in
all cases listed above. This is clear if (S,L) 1is either as in
(4.1.1), (4.1.2) or (4.1.4), while (0.8) shows that L is
2-spanned in case (4.1.3).

Now if L 1is k-spanned, clearly (S,L) contains no lines since
L-C 2 k for any curve C on S . Then (S,L) caﬁnot be either
GPZ,O 2(1)) , @ scroll, nor not relatively minimal. Thus by looking
overzﬁhe lists in {13] we see that K_+L 1is very ample unless

S
either (S,L) is in one of the cases listed above or
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i) 8 1is a 1P1 bundle over an elliptic curve with invariant
e = -1 and L = 53, £ the tautological line bundle;

ii) S 1is a Del Pezzo surface with K;3 ~ L, Ké'Ks =1 ;

iii) S 1is a Del Pezzo surface with K;1 ~ L.

In case i), £ 1is a effective elliptic curve and L+ = 3 , wh

contradicts (1.4.1).

_‘]I
S
curve and L°E = deg_LE = 3 contradicts again (1.4.1).

In case ii), the general element E € |K is an elliptic

In case iii), since (S,L) 1is relatively minimal it has to

@' xp',0(2,2)) or (s,) = ®%,0,(3)) as in
P

class (4.1.2) or (4.1.4) respectively. This completes the proof.

be either (S,L)

n

(4.2) REMARK. Let L be a k-spanned line bundle on S with k 2!
and assume KS+L very ample. Then (KS+L)'L 2z k so by the genus

formula

g(L) 21 + k/2 .

Note also that if (S;KS+L) is not relatively minimal and £ 1is
a line with £2 = -1 , then (KS+L)~£ = 1 gives L-f = 2 , hence

k =2.

(4.3) Special classes. To go on it is convenient to analyze first

the very ampleness and the spannedness of t Ks+L, L k-spanned

line bundle and t positive integer, in three particular cases.

(4.3.1) Let S =2P2 . Then L = Os(k) ; hence t KS+L ~ OS(—3t+k)

is very ample iff t < k/3 and spanned if t < k/3 .

(4.3.2) Let S =P xP' . Then L = 0g(a,b) with k = min(a,b) .

Therefore ¢t K +L =~ Os(a-Zt,b-Zt) is very ample if and only if

t < k/2 and spanned if and only if t < k/2 .
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(4.3.3) Let S be a P' bundle and let £ be a fibre. Here we
can assume by induction on t that (t—1)KS+L is very ample. Then

by [13] (see in particular (1.4)) we know that:

i) ‘tKS+Lis very ample unless either ((t—1)KS+L)'f =1,2 or S

is a ZP1 bundle over an ellipticcurve with invariant e = -1 ,
(t-1)KS+L ~ 3£, £ the tautological line bundle and ((t—1)KS+L)'f = 3
ii) t KS+L is ample and spanned unless ((t—1)KS+L)'f =1 or 2 and
is spanned unless ((t-1)KS+L)'f =1 .

Thus, recalling that L-f 2 k , an easy check gives us the
following
(4.3.3.1) for a positive integer t, t KS+L is:
- very ample if t < k/2 , unless S is a iP1 bundle over an
elliptic curve of invariant e = -1 and L is described as in
i) above; further in this case t KS+L is very ample if
t < (k=2)/2 ;
- ample and spanned if t < k/2 ;
- spanned if t < k/2 .

Thus we can assume now that S is neither ZPZ, Eﬂ KP1 nor a

P' bundle.

(4.4) THEOREM. Let L be a k-spanned line bundle on S with

k 22 and let S be neither ]PZ, IP1 ><IP1 nor a ]P1 bundle. Then,

for a positive integer t, t < k-1 , we have:

(4.4.1) t K k-1, S 1is a Del Pezzo

u

+L, is very ample unless t
k

S

surface with KS-KS =2 and L =~ KS

(4.4.2) (t+1)KS+L is spanned unless t = k-1 and (S,L) 1is as in

-

(4.3.3.1). Further if (t+1)KS+L is spanned, the morphism associated
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to F((t+1)KS+L) has a 2-dimensional image unless t = k-1 and
either S 1s a Del Pezzo surface with L =~ K;k, KS.KS ¥ 1 or

(S,(k—1)Ks+L) is a conic bundle, L-f = k .

Proof. By induction on t , we can assume (t-1)K +L to be very
ample. Note that by [13], (0.1) we can also assume t Ko +L  to be
spanned: otherwise S is as in one of the above examples. Note
also that S does not contain lines £ such that £2 = -1 and

((t-1)KS+L)-£ = 1 since t £ k-1 and L-f 2k . If t KS+L is not

very ample we see by [13], (0.2) and (2.1) that the only possibiliti

are :
i) K;1 N (E=1)Kg+L
ii,) (S,(t—1)KS+L) is a conic bundle;
iii) KS R (t-1)Ks+L and KS-KS = 2 ;
. -3 - . _ ,
iv) Ks R (t-1)“b+L and KS KS = 1.
In case i), either § contains a line E,Kz = KS-K = -1 , and

1 2 1

hence L-2 = t K_ £ = ¢t 2 k, s =1 or S =T XZP1 , a contradict

S
In case ii) we can assume L-f 2 2k, £ a fibre of the ruling;
otherwise each fibre would be irreducible and hence S would be a

P' bundle. Then ((t=1)Kg*L) -£ = 2 contradicts t s k=1 .

In case iv), L =~ K;(t+2) is k-spanned if and only if
t+2 2 k+2 by (0.8), this contradicting once again t < k-1 .
In case iii), L ~ K;(t+1) is k-spanned if and only if

t+1 2 k , again by (0.8). Hence t = k-1 and L =~ K;k . This
proves (4.4.1).

Now, by [13], (0.1) we see that (t+1)Ks+L is spanned
whenever t KS+L is very ample under the assumptions made on S .

Finally by [13], (0.2) we see that, if (t+1)KS+L is spanned,

the morphism associated to F((t+1)KS+L) has a 2-dimensional image
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unless either K;1 ~ t Kg*L or (S,t Kg+L) is a conic bundle.

In both cases we find t = k-1 and we are done. Note that if
K;1 ~ t Kg*L , there exists some line £ with £2= KS-E = =1
since S 1is neither Pz nor .P1 xP1 .
a
The above result gives us rather strong numerical conditions
for k-spannedness.

(4.5) COROLLARY. Let. L be a k-spanned line bundle on S , write

d = LI, and let g(L) be the sectional genus of L . Further assume

S be neither .PZ, Eﬂ <P ¢ a P bundle ,nor a Del Pezzo surface

=2, L~ K;k as in (4.3.3.1). Then we have:

with KS'KS

(4.5.1) 4 < kZKS'KS+4k(g(L)-1)/(2k-1) ,
d
4

(4.5.2) s 2k(g(L)-1)/(k-1) ;

(4.5.3) £k KS-KS+2(9(L)—1) if «x(S) 2 0

Proof. By (4.4.2), k K *L 1is nef. Then (k Ko*L)% 2 0, (k Kg+L)'L 2

and KS-(k K.+L) 2z 0 , together genus formula (0.2),give (4.5.1),

S
(4.5.2) and (4.5.3) respectively.

0
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§ 5. A classification of (S, L) for small values of g(L).

As an application of the previous result we classify in this
section the polarized pairs (S, L) where L is a k-spanned
line bundle on S with k 2 2 and sectional genus g(L) £ 5 .
Note that in [9], [10] a complete classification is carried out
for g(L) £ 6 if k =1 (see also [7]).

The cases g(L) &€ 3 are easy consequences of Theorem (4.1).

(5.1) PROPOSITION. Let L be a k-spanned line bundle on S

with k 2 2 and sectional genus g(L) s 3 . Then we have:

(5.1.1) g(L) =0, k=2, (5,L) = (B°,0 ,(2)) ;
P
(5.1.2) g(L) = 1 ; either k = 2 and (S,L) = (FxB',0 , (2
P xIP
or k=3 and (S,1) = (P%,0 ,(3)) ;
r
(5.1.3) g{(L) =2, k =2 and either (S,L) = (ZFO ’QF (a, b))
0

with (a,b) = (2,3),(3,2) , or (S,L) = (I, , 2E+4f)

(5.1.4) g(L) = 3 ; either k = 4 and (S,L) = (B?,0 ,(4)) or
P
k = 2 and either (S, L) is isomorphic to
(F, ,O]Fo(a +b)) , with (a,b) = (2,4), (4,2) , (F, , 2E*
+ 5f) ,(15 + 2E+ 6f) , or S is a Del Pezzo surface with
K'zsaL, K. -K, = 2 .

Proof. Let g(L) £ 1 . Then Kg+L 1is not very ample in view

of (4.2), so that (S, L) 1is as in (5.1.1) or (5.1.2) by Theorem

(4.1).
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Let g{L) = 2 . Note that L-L 2 4 by (1.4.1) and hence

FPg(S) = 0 by the genus formula. Therefore
0
h(Kg+ L) = x{Kg+L) = 2-qg(s) ,

so that Ks+-L is not very ample. Thus by combining (4.1) and
(3.6) we see that (S, L) 1is a geometrically ruled conic bundle
over ®' and k = 2 . We have Ky~ 2E- (2+1)f ; if L ~ 2E+bf ,
b 2 2r+2 by (3.1) and the genus formula 2 = (KS-+L) + L =
=2(b-2-1r) gives b =r+ 3 ., Then either r =0, b =3 or
r=1, b=4. '

Let g(L) = 3 . We know that h®(L) 2 6 by (2.4), so d =

= L-+L 2 7 by Castelnuovo's bound (0.4.2). The same argument

as above shows that pg(s) = 0 and hO(KS-+L ) = 3 , hence if
KS+-L is very ample we have (S ,Ks-bL) 3 (J}?2 . 0 2(1)) that is
: P
(S,L) = LPZ , 0 2(4)) and k = 4 . If Ks+ L is not very ample,
r

again by (4.1) we see that k = 2 and either S 1is a Del Pezzo

surface with KS -KS =2, L=~ K;Z or (S,L) 1is a geometrically

ruled conic bundle. In this case S =:Fr by (3.6). If L ~ 2E+
+bf , b 2 2r+2 by (3.1) and the genus formula 4 = (KS-+L) + L =

= 2(b=-2~r) gives b =4+r . Then r £ 2 and we are done.

(5.2) PROPOSITION. Let L be a k-spanned 1line bundle on S

with k 2 2 and sectional genus g{(L) = 4 . Then either:

(5.2.1) k=3, s=P' xP' and L = 04(3,3) ;

(5.2.2) k =2 , S is a cubic surface in :PB and L = OS(Z) ; or,
(5.2.3) k =2 , either S =]Fr with r < 3, L ~2E+(5+1)Ff

or S is a :P1 bundle over an elliptic curve of
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invariant e =-1 and L ~ 2E+ 2f .

Proof. One has h%(L) 2 6 by (2.4) then d =L:L 2 8 by
Castelnuovo's bound (0.4.2). Therefore the genus formula and the

Riemann-Roch theorem give us
0
h (KS-+L) = x(KS-+L) = 4-g(sS) .

Then if K +L is very ample, it has to be q(S) = 0 and IKS+
embeds S as a surface of degree d' = (KS+L)2 in 1P3 . Hence

[ -~ At $ =
Ko = Os(d 4) and L = OS(S d') . Now since pg(S) 0 and

L is at least 2-spanned the only possible cases are 4' = 2,3
If d' = 2 we get class (5.2.1). If d' = 3 , S is a cubic in
P3 and L = 08(2) . Note that L 1is 2-spanned since L& = 2
for a 1line £ on S , so we find class (5.2.2).

If KS-+L is not very ample (S, L) 1is a geometrically
ruled conic bundle by (4.1) and q(S) = 0,1 by (3.6). Let
L ~ 2E+Dbf .

If gi{s) =0, s =2Tr and b 2 2r+2 by (3.1). The genus
formula 6 = (KS-FL) + L = 2(b-2-r) gives Db = 5+r . Then
r 3.

If q(s) =1, Kg~=-2E-ef, e =-E>, b-2e24 by
(1.4.1) and the equality 6 = (Ks-kL) +L = 2(b-e) yields b =
= 3+e , hence e =-1 . An easy check by using (0.6) shows that
L ~2E+2f 1is 2-spanned (see also (3.5.1)).

[w]

In the remaining case g(L) = 5 , Theorem (2.4) plays a

relevant role.
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(5.3) PROPOSITION. Let L be a k-spanned 1line bundle on S

with k 2 2 and sectional genus g(L) = 5 . Then either :

(5.3.1) k =2 and |L| embeds S in P> as a K3 surface

of degree 8, a complete intersection of three quadrics;

(5.3.2) k=2, (S,L) = (IH ,3E + 5f) ;

(5.3.3) k=2, S 1is a Del Pezzo surface , L z-ZKS ;, Ko K. =

=4;

(5.3.4) k=2, S 1is the blowing up o : S —-—ev]Fr of ]Fr '

r = 0,1 , along 7 distinct points Py » L ~ g*(4E +
7
= 51 )
+(2r+5)f)—ZiZ1Pi » Py =0 (py) ;
(5.3.5) k=2, B,L)E(Fr, 2ZE+ (6+r)f) , r <4 ; or,

1

{5.3.6) k=2, S 1is a T bundle over an elliptic curve,

L ~~2E+(e+4)f , e=0, -1.

Proof. Since hO(L) 2 6 by (2.4), Castelnuovo's inequality (0.4.2)

v

gives now d = L - L 8 .

First, let us assume KS-+L very ample. We distinguish +two

cases, according to the value of pg(S) .

If pg(S) > 0 it has to be d = 8 by the genus formula
and hence Kg-L = 0 so that Kg ~0 . From [12], § 3 we know
that 5 = g(L)

[\

hO(L)-+q(S)- 1 and hence hO(L) =6 , g(s) =0 .
Thus |L| embeds S as a degree 8 K3 surface in P> . Further

k = 2 in view of (1.2.3). Note that S 1is a complete intersection
of three quadrics. Indeed, if not, it is known that a general element
C € |L| contains a g; (see e.g. [2], p. 142). Now KC ~ LC is

2-spanned and hO(D) < 1 for any divisor D on C with

deg D £ 3 by (1.2), this contradicting C to be trigonal.
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If pg(s) = 0 , the Riemann-Roch theorem yields hO(KS-+L)

= X(KS-+L) = 5-g(S) , which gives qg(S) =0 , ho(KS-+L) =5 .

Then ]KS-+Ll embeds S in P? as a surface of degree

= (KS+L)2 and one has (see [6], p. 434)

(5.3.7) a'%-5d'=10 (g(L) - 1) + 12 (0g) = 2Kg + Kg

Now the usual Hodge index theorem yields dd' < [L

that d' £ 6 . From (5.3.7) and the equalities

g(KS+L) =d' - g(L) + 2 ;

f = . - - = . -
d' = K - Kg+2(2g(L)-2)-d = Kg * K+ 16-d

dl

2 _
"(Kg*L) 17 = 64

a purely numerical check gives us for 4 , 4' , KS . Ks
g(Kg*L) the values as in the table below
. '
cases K Kg d g(KS-+L) d
i) 8 3 0 21
ii) 4 4 1 16
iii) 1 5 2 12
iv) -1 6 3 9
In case i), (S, KS +L) 1is a IP1 bundle ]Fr over ]P1
L ~3E+bf and d = 21 leads to 2b-3r =7 , hence r # 0

Since b 2 3r+k by (3.1) we find 3r s 7 -2k which gives

r =1 ; so we obtain class (5.3.2).

k

wit
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In case ii), (S, K.+L) is either a Del Pezzo surface

S
or a scroll over an elliptic curve, this contradicting q(S) = 0
Then L =~ K;Z and we know from (0.8) that K;Z is 2-spanned .

So we get class (5.3.3).
In case iii), let C be a general element of IKS-+L| . Then

from the exact sequence

2
0 —> KS —_— KS @ L — KC —> 0

we find h°(2KS+L) - hO(KC) = g(Kg+L) = 2 . By (13], (0.1),

(0.2) we know that 2Ks-+L is spanned and, since (2KS+L)2 =0 ,

S-+L) is a conic bundle over :m1 . Further, since KS- KS =

=1 = KE" KE,—'7 , we see that S is obtained as the blowing up
r r

g : S —-—->IFr of ]I~"r at 7 distinct points pJ?_ S . Then K_+L =

S
{ -1
N O*M- ) P, » Py =0 (Pi) , for some ample line bundle M ~ 2E +
i=1

+bf on F, . Therefore b 2 2r+1 (see [6], p. 380) and g(M) =

(s ,K

=g(Ks-+L) = 2 , so the genus formula for M gives b = r+ 3 .

.
Thus r € 2 and L ~ o*(4E+ (2r+5)f) -2 ] P, - Now, case r = 2
i=1

is clearly excluded since 4E + 9f 1is not 2-spanned by (0.7)
and, if E' denotes the proper transform under o , L .+E' g

< (4E+9f) - E = 1 . Thus Proposition (0.7) applies to say that L
is 2-spanned . Indeed L 1is of the form K;t @ L? with t = 2 ,
g =1 and L the inverse image under o¢ of the pullback of

0 1 (1) to ZFr under a bundle projection ZFr ——->IP1 . This gives
cflss (5.3.4).

In case iv), again from [13], (0.1), (0.2) we know that

2K, +L is spanned and, since (2KS+L)2 =1, IZKS-+L| gives a
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birational morphism o : S ——>]P2 . Further since KS- KS ==1

we see that o is the blowing up of :mz along 10 distinct point

10

p.'s and L~ o*0 (7)~-2 ) P, , P,'s the exceptional divisc:

i 2 N § i
r i=1

Let vy be a cubic plane curve passing through 9 of the points

pi's . Note that Yy does not contain the remaining point. Other-

wise the proper transform y' of Yy under o¢ belongs to f-—KC
and hence ho(-Ks) 2 1 . Since k 2 2 this contradicts the fact
that -~-L -KS =1 . Then 'L =3, so Yy' 1is irreducible. Fix

now four points of the pi's and take six plane cubic curves C
as above, passing through the four fixed points and with Cj- L =
j=1, ... ,6 . Since ho(L) = 6 , we can choose an element A €
whose image o(A) passes through the four fixed points, so that
A+Cy 24, j=1,...,6.It thus follows that A contains tt
cubics Cj‘s and this clearly contradicts L:A =L+.L =9 .
Thus we can assume Ko +L not very ample. Then (S, L) is
geometrically ruled conic bundle by (4.1) with irregularity

qg(s) = 0,1 or 2 in view of (3.6).

Note that the case g(S) = 2 does not occur. Indeed the

o 2
equalities (Ksi-L) =0, (Ksi-L) L =18, Kg * Ko = 8(1-qg(s))
give d = 8 if g(S) = 2 , a contradiction.

If g(S) = 0 , the genus formula 8 = (Ks-+L) +L = 2(b=-2-1

-E2 . Then, since b

[\V)

yields b = 6+r where L ~2E+Dbf , r

[\

2r+2 by (3.1), we find r £ 4 and we are in class (5.3.5).

If qgq(S) =1 , by using again the genus formula one has b =
= 4+e , where L ~ 2E + bf , =-E2 and deg LE = b-2e 2 4
by (1.4.1). Thus we find either e =0, b =4 or e =-1,

b = 3 . Note that in both cases L is 2-spanned in view of
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(3.3), (3.4) and we are in class (5.3.5.).

(5.5) REMARK. If the conjecture (2.6) is true, then (5.3.1) does
not occur. We attempted without success to show that the restri-
ction L of 0 5(1) to S , S equal to the complete inter-
section of thre§>quadrics in ims , is only 1-spanned . It should
be noted that there exist such S which contain a line, ¢ , of
]P5 and for these, since L-£ =1 < 2 , it follows that L is

not 2-spanned . In general though there are no lines on such an

intersection of quadrics.

(5.5) REMARK (compare with § 6). Let L be a k-spanned line

w

bundle on S with k 2 2 and assume pg(s) 2 ., Then g(L) 2
2 2k+1 by (1.2.3). In the extremal case g(L) = 2k+ 1 the

inequality
S) £ k-3
Pg( )

holds true, hence in particular X(OS) $ k-2 . To see this, recall

that L-L 2 2k+3 by (1.5), so the genus formula reads KS- L £

+L 2 (S) +k .
Pg )

)

< 2k ~3 . Thus we are done after showing that KS

Indeed, hO(KS-L) = 0 since (Kg-L) -L <0 so that n0 (x

w

s|cC
2 pg(S) . Now if the pi'S are pg(S)-—Z different points, on S ,

we have hO(K 2 2 . Therefore deg K

s|c'§pi) 2 C-pg(s)+2=

S|

Kg -L-pg(s)+ 2 2k+2 by (1.2.2).
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§ 6. Geography of surfaces and k-spannedness .

In this section we study the relation between k-spannedness
of a line bundle L on S and the birational geometry of S .
We aim for a broad picture. The arguments we use clearly give muct
sharper bounds in particular cases. Since the case of very ample
line bundles is well studied we make the blanket assumption. that
k 2 2 . Through this section we shall use repeatedly almost all
the results we stated in § 1 as well as the genus formula (0.2)
and property (0.5.1). We also use a number of well known results
on the birational classification of surfaces for which we refer tc

{2]. We shall write 4 instead of L+ L .

(6.1) Let m : S —> S' Dbe a morphism of S to a minimal model
S' . Let L' = (m«L)** = [n(C)] where C 1is a smooth element of
r
|L| . Note K, =~ 7*K_.,+ ) n,P. where the P,'s are the irre-
S S i i 1

i=1
ducible components of the positive dimensional fibres of = ,

n, 21, r =e(S)-el(S'") . Further n, = 1 for all i if and

only if 7 : S — S' 1is a simple blowing up of a finite set of

r points. From this we easily obtain the following simple lemma.

(6.1.1)LEMMA. One has L -KS 2 k(e(S) —e(S8')) + L -v*KS., with

equality if and only if (S' ,L') is a k-reduction of (s5,L)

(6.1.2) COROLLARY. If «(S) 2 0 , then L-K_ 2 k(e(S) -e(S'))

S
If further «(S) 2 1 and ho(Kg) > 0 for some t > 0 then

L:Kg 2 k(e(s) -e(s')) + (k+ 1)/t .
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Proof. It follows from (6.1.1) by noting that K is nef and

S|

the general element A of |[m*tK has positive arithmetic

g
genus, so that L <A 2 k+1 .

(6.2) THEOREM. Assume «(S) 2 0 . Then d 2 2k + 3 . Further

g(L) 2 2k +1 wunless possibly if S is minimal, pg(S) = 0 and

1]
H
WA

q(s)

S Ko+ Kg s 9 , d 2 (5k+10)/2 and gl(L) 2 (3k+8)/2 .

0 or 1. If g(L) s 2k and «(S) = 2 then q(S) =0 , 1

Proof. Let C be a general element of |L| . Since «(S) 2 0 ,

d s 2g(L) -2 so it follows that d 2 2k+3.If h' (Lo) # 0 then
g(L) 2 2k +1 . Thus we can assume that hw(LC) = 0 and therefore
pg(S) = 0 . Since x(OS) 2 0 we conclude that g(S) = 0 or 1 .

Further, by the Riemann—~Roch theorem
(6.2.1) d = h%w.) +g(m) -1 = 2n%(@.) +x. - L
e ' c Cc S
whence
(6.2.1)' g(L) =1 = h%(L.) + K, - L
2. C S .

If S were non minimal, KS- L 2k by (6.1.1). Hence g(L) 2z k+2+k

by (6.2.1)'. Therefore we can assume further that S 1is minimal.

Now, let g(L) € 2k . If «k(S) = 2 , then KS‘ KS 2 1 and

X(Os) > 0 , while pg(S) = 0 implies g(S) = 0 and hence

x(OS) = 1 . Thus Kg * Kg < 9 by the Miyaoka-Yau inequality. The

Riemann~-Roch theorem gives ho(Kg) 2 2 . It thus follows that

KS- L2 (k+1)/2 by (6.1.1). Actually Kg+ L z (k+2)/2 since

otherwise we would have a pencil of rational or elliptic curves on

S . Then by (6.2.1), (6.2.1)"' we find d 2 (5k+ 10)/2 and
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g(L) 2 (3k+8)/2

(6.3) THEOREM. Let S be a 2P1 bundle p : S — R over a cur

R of genus qgq(S) . Then

(6.3.1) d 2 2k and gq(L) 2 (k-12 if q(S) = 0 ;

(6.3.2) d 2 k(k+2) and g(L) 2 k(k+1)/2 if q(s) =1 ;

v

(6.3.3) d 2 2k+4 and g(L) 2 2k+1 if q(S) 2 2 .

Proof. Let E be a section of p of minimal self-intersection

and f a fibre of p , so L ~ aE+ bf .

If g(s8) =0, E2 =-r and b 2 ar+k , a 2k by (3.1).
Hence d = L-L = a(2b-ar) 2 k(b+k) 2 2k2 . Similarly g(L) 2
2 2(k-1)2

Let g(s) =1, E2 =~e . Here a 2 k and either b 2 ae+
if e20 or 2b-ae 2k+2 if e =-1 (see (3.5)). So 4 =1L

= a(2b-ae) 2 2(k+2)k if e 20 and 4 2 k(k+2) if e =-1.
Further 2g(L) -2 = (a-1)(2b-ae) 2 2(k-1)(k+2) if e 2 0 aw
2g(L) -2 2 (k=-1)(k+2) if e =-1 . In either case d 2 k(k+2)
and g(L) 2 k(k+1)/2

Let q(S) 2 2 . We know from (4.3.3) that kKS-+2L is nef.

’

2
Hence kKS-KS+4kKS-L+4L-L > 0 . Now Kg * Kg = 8 - 8q(s)

then

4k(2g(L) - 2) 2 (4k-4)d + (8g(S) - 8) k2

and also

g(L) =1 z (k-1)d/2k + (q(S) - 1)k
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If h1(LC) + 0 we are done. Hence we can assume h1(LC) =0 ,

so that d = hO(LC)-+g(L)-1 2 g(L) +k+ 1 . Thus
g(L) =1 2 (k=1)(g(L) +k+1)/2k+ (g(S) - 1)k
which gives

(k+1)(g(L) =1)/2k 2 (k=-1)(k+2)/2k+ (q(S) - 1)k

or

g(L) 2 (k=1) (k+2) /(k+1) + 2k2/(k+1) +1 = 3k=1 2 2k + 1
Finally 4 2 g(L) +k+ 1 vyields d 2 4k > 2k+ 3 .
(6.4) THEOREM. If KS- KS $-x <0 and s 1is not a ZP1 bundle
then

d 2 2k+3 ; g(L) 2 k(1+x/4) +3/4k .
Proof. Now kKS-bL is nef by (4.4), so we find
- k%x + 2k (2g(L) - 2) - (2k-1)d 2 0
and also
(6.4.1) g(L) -1 2 kx/4 + (2k - 1)d/4k
If 4 » 2g(L) -2 we get
g(L) =1 2 kx/4+ (2k - 1) (2g(L) - 2) /4k + (2k - 1) /4k
or

(g(L) = 1)/2k 2z kx/4+ (2k~-1)/4k
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and also
2
g(L) 2 k“x/2+k+1/2

which gives d 2 k®x+4k-1 2 2k+3 . If d < 2g(L) -2 , then

(3%

d 2 2k+3 and, by (6.4.1), g(L) k(1 +x/4) + 3/4k . Note that

K2x/2+k+1/2 2 k(1 +x/4) + 3/4k .

\"

(6.5) THEOREM. If x{0g) < 0 and S is not a P bundle. Then

ol
v

> 2k+3 ; g(L) > k(2g(s) - 1) +k/4

Proof. Since x(OS) < 0, S 1is a ruled surface with g(S) > 1

and Kg * Kg < 8(1-aq(S)) < 0 . Use Theorem (6.4) with x = 8gq(S)~

It mainly remains to consider rational and elliptic surfaces.

0 -1
(6.6) LEMMA. If S is rational and Kg-Kg 2 0 then h™(Kg ') >

Proof. S 1is either :mz or a blowing up of ]Fr . An easy cal-

culation shows that hO(K;; ) 2 9 . Each time a point is blown up

r
on a surface, the number of sections of the anticanonical line

bundle decreases by at most 1, so that hO(K;1) 2 ho(Kaé ) - #
r
where # denotes the number of blowing ups. Thus since # =

. - . < 1
K:Er K:Fr KS KS < 8 the Lemma is proven.

(6.7) PROPOSITION. Assume S 1is not a IE1 bundle. Then:

(6.7.1) a2z k® and g(L) 2 k(k-1)/2+1 if K.-K, 2 0 and

S is rational;

(6.7.2) d 2 2k+3 and g(L) 2 2k+1 if K_-K. S-4

(6.7.3) d 2 4k and g(L) 2z 2k-1 if K -L S-4
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Proof. Since kKS-+L is nef by (4.4) one has

(6.7.4) d 2 -kKS - L .

S

If S 4is rational and K_-.-K_, 2 0 , Lemma (6.6) gives hO(K;1)> o,
k2 . Further

v

hence -KS -.L 2k s0 d

(6.7.5) 2gm)-22—(k—HKs-Lz}dk—U

whence g(L) 2 k(k-1)/2+1 . This proves (6.7.1).
Now (6.7.2) follows from (6.4) while (6.7.4) and (6.7.5)
yield (6.7.3).

(6.8) REMARK. Note that if kK +L is nef, by writing (kKS4-L)2=

- szS +Kg+ (2k=1)Kg - L+2g(L) -2 2 0 we find

2
2g(L) -2 2-k“Kg - Kg = (2k= 1)K+ L .

Therefore if KS- L £ 0 and KS -KS < 0 one has g(L) 2 k2/2-+1

2 2
- . - . >
and da( 2 k KS Ks ZkKS L) 2 k .

(6.9) THEOREM. If § is rational, d 2 k° . Further g(L) 2

2 k(k=1)/2+min(1,k-2) if K -L s 0 and g(L) > 5k/4 if

KS- L >0 .

Proof. If S 1is a 1P1 bundle use (6.3). If S 1is not a 2P1

bundle, use (6.7.1) if KS- KS 2 0 ; (6.8) if KS ‘KS < 0 and

K.+L £ 0 ; (6.4) with x =1 if KS -Ks < 0 and KS L > 0

(6.10) THEOREM. Let S be an elliptic ruled surface but not a

P1 bundle. Then d 2 k2 , g(L) 2 (k2-+2)/2 unless KS- L >0 .

If KS- L>0 then 4 2 2k+3 and g(L) > S5k/4 .
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Proof. We know that kKs-+L is nef by (4.4). Then

2
2g(L) =2 2 -k“Kg + Kg - (2k = 1)Kg - L

as in (6.8) with Kg - Kg < 0 . So if KS- L £0 we find g(L) 2
: (k®+2)/2 and also 4 2 2g(L) -2 2 k® . If Kg- L > 0 we use
(6.4).
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