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Moduli Space of Abelian Varieties with Level Structure
over Function Fields

Junjiro Noguchi

§ 1. Introduction and main results

Nadel [N] lately proved a very interesting theorem on the bound of level
structures on principally polarized Abelian varieties which are defined over
1—dimensional complex function fields of genus <1 and non—constant. The purpose of
this paper is to deal with the moduli problem of those Abelian varieties defined over an
arbitrary function field of dimension > 1 , and to extend Nadel’s theorem. We know
that the moduli space of families of g—dimensional principally polarized Abelian varieties
over a smooth complex projective manifold R , having degenerations at most over a
given hypersurface of R , forms a quasi—projective scheme of finite type over € ([F])
(boundedness), and is a finite union of quotients of symmetric bounded domains ( [No],
cf. also [MN]). Here we put no condition on the degeneration locus, but take into

account level structures to obtain the boundedness of the moduli space.

Let k& be the rational function field of R . Let A(g, n, R) denote the moduli
space of all g-dimensional principally polarized Abelian varieties A with level
n—structure over R which are non—constant (cf. Definition (3.1)). Here the term "level
n—structure" is used in the same sense as in [N];i.e., itis a 2¢g —tuple (zl, ey Ty g) of
k-rational points € A(k) which generates the subgroup of all n—torsion points of
A(%) , where % is the algebraic closure of k . Moreover, let Adeg(g’ n, R) be the
subspace of those elements A — R of A(g, n, R) which have degenerations. Set



Y(R) =inf“R e,(Kp) I\Q""l} >-o,

where ¢, (Kp) denotes the first Chern class of the canonical bundle K, over R and
£ runs over all Hodge metric forms on R . We denote by k(g) the smallest k£ such

that the Siegel modular cusp—forms of weight & have no common zero.
Main Theorem 1. Assume that g¢> 5.

i)  If n>gk(9)/2, then A(g, n, R) is a quasi—projective scheme of finite type over
C.

i) If YR)<0 and n>gk(g)/2 , then A(g, n, R)=¢ ; if v(R)>0 and
n> (14 9(R))gk(g)/2, then Adeg(g’ n, R)=1¢.

Remark 1. The case of 1< g<4 can be reduced to the case of g=5 (see [N,

p. 176]).
Remark 2. If 7(R) <0, then A(g, n, R) = Adeg(g’ n, R) (see Proposition (4.3)).

Let A’(g,n, R) denote the subspace of A(g, n, R) consisting of those
A e A(g, n, R) such that the polarization divisor ©, of A, (te R) is non—singular for

some fe R. Let

/
Adeg(g’ n, R)=A'(g,n, R) N Adeg(g’ n, R) .
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/
For A’(g,n, R) and A d eg(g’ n, R) we prove the following better bounds on n than

those in the Main Theorem 1.
Theorem 2. Assume that g2 5.

i) Ifn>3g(9+3)/g+1), then A'(g, n, R) is a quasi—projective scheme of finite
type over €.

i) If y(R)<0 and n>3g(9+3)Ag+1), then A'(g,n, R)=¢ ; if +(R)>0
and n> (1 + 1R))3gg+ 3)/(g+ 1), then A&eg(g, n, R)=¢.

In the proof we will use similar but more precise current inequalities than those in
[N]. Nadel reduced the non—existence of high level structure to that of certain
transcendental holomorphic mapping from ¢ and used the Nevanlinna calculus.
Instead, we will carry out a sort of Nevanlinna claculus just on R , and then deduce

estimates on certain Chern numbers, which yield our assertions.

Unfortunately, it is not yet proved if Nadel’s theorem holds in its form. We will
discuss his result at the end of § 4 (Remark 2).
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'§ 2. Lemmas on currents

Let M be an m—dimensional paracompact complex manifold and ¢ a locally
integrable function on M . We denote by dd[¢] the dd—derivative of ¢ in the sense
of currents (cf., e.g., [L]).

(2.1) Lemma. Let ¢ be a holomorphic function on M and a> 0 a C®—function on
M . Then we have the following:

i)  (Poincaré—Lelong) 2'-5_ 8'5[log|go|2] =(p) , where (p) denotes the divisor
determined by ¢ .

" 1 2 \2 ] 2 \2
ii) 5; 90 [log(log|v|“a)"] =2'—1r-8}9 log(log | ¢| “a)” .

For a proof, see [GIK].

Let D be a complex hyperface of M with only normal crossings. Let Py € D and
take a holomorphic local coordinate neighborhood U(z, ..., z, ) around p, such that
U is biholomorphic to the unit polydisc A™ = (20 2) |"‘j| <1} ,
py=(0, .., 0) and

DNU={z -z =0} (1<k<m).

Let w, be the following formon A™ - D:
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k
. dz. A dz.
- L J J
2 0= 2 5 T gl 7P
=1 gl COBIZ T k4

m
1

A real (1,1) —form 7 is said to have at most Poincaré growth near D if |7| = O(w,)

around all points of D . Note that the coefficients of such # are locally integrable

around any point of D.

(2.3) Lemma. Let M and D be as above. Let ¢ : M — D— R bea C° - function
which i3 bounded from above around every point of D . Let wy and Wy be C° real
(1,1) — form an M — D such that w; 20 and w, has at most Poincaré growth near

D . Suppose that
1
o 9392 vy + w,
on M — D . Then the coefficients of w) are locally integrable on M and
3= 99 [p] > v + w,
on M as currents.

Proof. While this is implicitly proved in Propositions 1.2 and 1.3 of [N], we here
give a simplified proof for the completeness. We may assume that M is biholomorphic
to A™ and D= {z:1 g = 0} . Let ¥, be the form defined by (2.2). By the

assumption, there is a constant ¢ > 0 such that cwy + wy 2 0. Put



¥=glg —— D ET b
22 =k+1
TT (oglzyh*  =FF
j=1

Then 7 is bounded from above around any point of D and
i -
We have

5}6_6‘(<p+c¢)2w1+(cw0+w2)20,

so that ¢ + c¥ is plurisubharmonicon M — D . Since ¢ + cy is bounded from above
around any point of D, ¢ + ¢y is uniquely extended to a plurisubharmonic function

on M ([GR]). Thus
1= 53[0+ oy
is a positive (1,1) — current on M. Let

M= Treg + Tsing

be the Lebesgue decomposition of % into the regular part 75

reg and the singular part

Tsing which are both positive (1,1) — currents. Since Mreg 2wy + wy + cyp

5;3'8[<p+ ] 2wy + wy + oy



.

By Lemma (2.1), ii), 5? da[y] = wg , and hence

i; [e] 2 0 + wy.
Q.E.D.

§ 3. Inequalities for Chern number

Let Hg be the Siegel upper—half space of degree ¢ and I'(n) C Sp(2g, Z) the

Siegel modular group of level n> 3 . Then TI'(n) is torsion free. Let I‘(n)\H; be the

Satake compactification of the quotient variety I‘(n)\Hg and put

D = I‘(n)\H; - T(m)\H, .

Let R be a complex projective manifold. Let A —— R be a principally polarized
Abelain variety over R with level n-—structure . Then it naturally induces a

meromorphic mapping

fpiteR—[4] ¢ I‘(n)\H;.

| *
Since I‘(n)\Hg is complete hyperbolic and hyperbolically imbedded into I‘(n)\Hg ,
f ZI(D*) is a hypersurface of R and f 4 18 holomorphic in R — Sing f;l(D*) , where
Sing f;1(D') denotes the singular locus of f7%(D) (cf. [K]).

(3.1) Definition. We say that A —— R 1is non—constant if
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rank f, = max{rank df,: te R—f71(D)} = dim R.

Let A(g, n, R) be the moduli space of all non—constant principally polarized

Abelian varieties over R with level n—structure, and A deg

*
all A— R of A(g, n, R) which have degenerations; i.e., f,(R)ND #¢.

(g, n, R) the subspace of

Let w be the Bergman metric form on I‘(n)\Hg normalized as
% 8Flog v = w,
m = dim H 9= +1)

Here we use the notation, #dlog w™ in the following semse: If o™ = a(2)-
idz; A dEl A A oidz A dEm with holomorphic local coordinates (2, ..,z ) on
M, then

§8log W™ = 89 log o(2) .

1t follows that

(3.2) holomorphic sectional curvature of w < — % :

Let S be a locally closed s—dimensional submanifold of Hg with imbedding
: H .
L:S— g

1

: * x
(3-3) Lemma. %Bﬁlogb wszﬁl, w.
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*
Proof. We endow S with the induced metric 2 by ¢ w.Let K be the curvature
formof h.Let Xe TpM be a holomorphic tangent vector at pe M and {el, ey es}
*
be an orthonormal basis of TpM . Since — ddlog ¢ w’ is the Ricci curvature of h, we

see by [GK]

. 3
(34) (10 e )X D) == § Klej, %, 4.
=1

We may assume that X =ce; with c= || X]| , and note that K is non—positive.
Therefore we obtain from (3.2) and (3.4)

* 9 - - 21 _1 2
(9log e )X, X) 2 - |c| K(ey, e, e, €7) 2 |e|” == 1X]|%.
Q.E.D.

We fix a Hodge metric form @ on R. Fora (1,1)-current T on R, we set

v (1) = v (T, 9)=jR TAQ™?,

r=dim R.

Let I(n)\H . be the torioidal compactification of I‘(n)\Hg such that I‘(n)\ng is

smooth projective and D = I'(n)\H g—P(n)\Hg is a hypersurface with only normal

*
crossings. Then we have a holomorphic mapping from F(n)\Hg onto I‘(n)\Hg which

" .
is the identity on I‘(n)\Hg .Let fy:R—> I‘(n)\Hg be the meromorphic mapping
induced from A e A(g, n, R) . Then f A defines a meromorphic mapping from R into



—10 —

I‘(n)\Hg , which is again denoted by f,: R— I‘(n)\Hg . We denote by I(f,) the

indeterminancy locus of fA:R—-»I‘(n)\Hg . Then  codim I(fA)?_Z . Let

[D] — T(m)\B, be the line bundle determined by D . Let o< HO(I‘(n)\Hg, [D])
be a section of [D] such that (¢) = D. Take a hermitian metric | | in [D] so

that Jo| <1, and denote by ¢ (D) its first Chern form.
(3.5) Lemma. v (fy0/7) < m{v (fy¢,(D) + v (c,(Kp))} -

Proof. Put
S=i7(D)UKf)U{ze R—If,);rank df, < r}.

Then S is a thin analytic subset of R . Let a: R — R be a blowing up with center

contained in S such that S=a —l(S) is a hypersurface with only normal crossings

~

and f, is lifted to a holomorphic mapping f,: R — I‘(n)\H . We identify R— S

with R—S.Let & be a volume form on R . It follows from Lemmas (2.1) and (3.3)

that

~ ~

on R— S. Notethat « has at most Poincaré growth near D . Hence the function
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(f;“’)r 2
3 7oyl

*
is bounded from above, and f,w 2 0. By Lemma (2.3) and (3.6) we have

as currents on R . We deduce that

% v (f*w/qr) —v (cl(KR)) 4 (f;cl(D))

. I ~
SJ~5;33[105[L%£L|00f|2]] Aaatl<o.
R

Q.E.D.

We denote by K, the canonical line bundle over I‘(n)\ng :
(3.7) Lemma. v (fye,(K,)) + v (fye,(D)) < v (fya/).

Proof. By [M2, Proposition 3.4], there is a positive constant C and N such

that

1 &
(3.8) ) TN C Tm SO
|o|“(log|o|®) w™

(cf. [N, p. 168]) . We have
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1 @ofA

(3.9) i §3log :
= |00 £41 2008|050 £, DN wMof,

_ 1 * * ] 53 2:2
“fAcl(Kn)_}‘wa""fAC]_(D)_Nﬁ log(logiaofA| )

~ ~

on R—§. By Lemma (2.1),ii), Lemma (2.3), (3.8) and (3.9), we see that

. do
5;6-8[108{ o2 1 N 22N . fﬁ ”
o0 f,120gloo £, WMo,

>}*c(K)—l;*w+'}*c(D)—Ni 439 [log(lo o'} 2)2]
2 fae(Bp) =5 fqu+ [y L glloglo o 74|

~

as currents on R . Therefore we deduce
0> J'N fye(K)haa™l -1 J o fquha Q™
R R
N x ' * 1
+ J'~ fye (D) Aa’™
R

= U fye,(K,)) + U Syey (D)) — A fyof ).
: Q.E.D.
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§ 4. Proofs of main results
(a) We use the same notation as in § 3. Moreover, in this section we fix a Hodge
metric form © on R as follows. If (R)=-o , we take Q so that

v(c)(Kp); Q) <0; if 7(R)>—o,wetake Q sothat v(c;(Kp); ) =R).Inany

case we put

(4.1) 1R) = v (¢,(Kp) ; Q)
in this section. We also assume that

(4.2) 925, n23.
First we show~the following:

(4.3) Proposition. If 1(R) <0, then A(g, n, R) = Adeg(g’ n, R) .

Proof. Let A e A(g, n, R) be an arbitrary element and f, : R — I‘(n)\Hg the
meromorphic mapping induced by A (see § 3). We show that f, (R) N D # ¢ . Assume

that f(R)ND=¢ ; ie, fy (R)CF(n)\Hg . Then fA:R——»I‘(n)\Hg is
holomorphic. Put

S={ze R;rank df, <r}.

Then S is a thin analytic subset of R . It follows from Lemma (3.3) that
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: * *
%ﬂlog warQ%wa

on R—S.Let & bea volume formon R and put ¢ (Kp) = (i/2r)ddlog & . Then

*

: fAW *
5—;0’5105 2%’fA“’_cl(KR)
on R—S.Since f;u"/® is bounded, Lemma (2.3) implies

*r

i gBlog | A2 | > L ftu—e (Kp)
2r B 2mxlAY T q\8p
as currents on R . Hence

AN

v (fe) - ~R) <0,

so that y(R) > 0.
Q.E.D.

(b)  Proof of Main Theorem 1. Let A e A(g, n, R) be an arbitrary element and

fp: R— I‘(n)\H , be the induced meromorphic mapping. By definition of k(g) (§ 1),
there is a Siegel modular cusp form 7 such that

{r=10} :bfA'(R)'

where T= denotes the closure of {r=0} in T(a)\H g Let
(wn, Wygy s wgg) = (wy, gy -+ s wm) be the standard coordinate system on Hg .
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n= "N dwA ... A du_)K9

defines a K ¢) — pluricanonical meromorphic form on the non—singular part of

T
Sp(2g, I)\H o - Here we note the following result due to Tai [T].

(4.4) If g2 5, every holomorphic pluricanonical form on the non—singular part of
R
Sp(2¢, I)\H o extends holomorphically on the whole nonsingular model of

Sp(2g, R)\H; .

By [N, p. 174] we see that

(4.5) the projection = : I‘(n)\Hg — Sp(2g, I)\H y is ramified to order at least

n over D.

' *
Since 7 is a cusp form, we infer from (4.4) and (4.5) that =« 7 defines a holomorphic

section

¢ « B(T(n)\E,, k (g)(K, + D)~ n g+ 1)D)

such that {¢ =0} b f A(R) , where the assumption n > gk(g)/2 is used. Therefore
*x
v (f4(€)) 20, so that
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(46) k(v (Fyey(K)) + v (Fye (D)} —n (g + v (fye (D) 20.
Combining (4.6) with Lemma (3.7), we get
(4.7) k(g (fquim) = n (g + v (fye, (D)) 2 0.
This and Lemma (3.5) imply

E(9w (fyolm) =n (g + D) v (Fwin) +n g+ D(R) 2 0.
Therefore
(48) [35-Ho) | v(fyo/m <nig+ DR

Since n> gk(g)/2 , u(f;w) is uniformly bounded, so that A(g, n, R) is

quasiprojective. This shows 1i).
If M{R)<0 and 7> gk(g)/2, then (4.8) implies that A(g, n, R) =¢ . Now

suppose that 7(R) >0 and A e Adeg(g’ n, R) . It follows from (4.7) and Lemma (3.5)
that

my (fey (D)) + my (R) = n v (fey(D) 2 0,

so that

(4] v aer(O) < § ).
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Since v (f:;cl(D)) > 1, we get

n< (g1 +(R)) .

Thus ii) is proved.
Q.E.D.

(c)  Proof of Theorem 2. Here we use a result of Mumford [M,]. Let
N, C Sp(2g, E)\Hg be the set of principally polarized Abelian varieties (4, ©®) of

which theta divisors © are singular. Let Sp(2g, H)\E[g(l) be the partial
compactification of rank 1 degenerations of Sp(2g, Z)\H g (see [Mg, § 1]). Put

D) = sp(2g, )\BLY - Sp(29, D)\,

and let Sp(2g, H)\Hgl)'o denote the smooth part of Sp(2g, ﬂ)\Hgl) . Then

(4.9) K =(g+1)r- o) ,

sp(2g, 1)\ B\

where A is the line bundle associated to Siegel modular forms ([M3, Proposition 1.7]).

Let NO denote the closure of N in Sp(2g, H)\E[gl)’o . The divisor class [No] of 'NO

is given by

(4.10) [¥,] = (%'_31 gl _(_‘LT_%)_! [D(l)]
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({Mj, Theorem (2.10)]). Let AeA’(g,m R) and fy: R—-———tI‘(n)\E[g be the
induced meromorphic mapping. Then f, (R) is not contained in the closure of wzl(No)

in I‘(n)\Hg. We infer from (4.10), (4.9), (4.5) and (4.4) that

+3+ v (fZK,,) + v(f:,cl(D))} - U:[-%)—' nu(f;cl(D)) >0,
and hence

(411)  6(g+ 3){v (f3K,) + v (fe (DN} = (9 + 1)mw (fye(D)) 2 0.

Instead of (4.6), we use (4.11) and apply the same arguments as in (b) to obtain our
assertions.

Q.E.D.

Remark 1. For the assertion i)’s of the Main Theorem 1 and Theorem 2, it is

sufficient to assume in Definition (3.1) that rank f, > 0.

Remark 2. If dimR=1, then 4{R)=-¢(R), where e(R) is the Euler
number of R . Hence, if the genus of R <1, then 4(R) <0 ; in this case, Nadel [N]

proved in fact that there is a proper algebraic subset E of Sp(2g, H)\H . such that if
n> max{28, g(g + 1)/2} , then f,(R) C x_'(E) forall Ae Ag, n, R).

Remark 3. We can give a variation of Theorem 2 by making use of the

theta—null—divisor I’n ull * That is, using the standard notation of theta functions, we let

F(w):]_["ﬂ[g:l(o, w),weﬂg
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be the product of all even—characteristic theta functions 4 [‘t’] (0, w) (see [M3, p.
370]). Then the divisor 9 o defined by F' satisfies

(4.12) [9,01] = 297229 + DA - 220 D]

on Sp(2g, H)\Hg(l)’o . We restrict ourselves to consider only those A e A(g, n, R)

such that x_ o f,(R) is not contained in the closure of the support of 9 .y - Then we
obtain the bound 4¢ (142 9) (resp. 4g9(1 + 279)(1 + 4(R))) on =n for the similar

assertion to Theorem 2, i) (resp. ii)).

Remark 4 (T. Shioda). We consider the analogue of the Main Theorem 1 over a
number field K. Let A be a principally polarized Abelian variety defined over K . Let

A bethedualof A and A (resp. En) the n—torsion subgroup of A (resp. ;\1).

Let . be the group of n—th roots of 1. Then we have Weil’s e —pairing

which is surjective (cf. [Ml] ). By the assumption, A = A . Hence, if A C A(K) , then
Iy C K . This implies that if A(g, n, K) # ¢ , then n is bounded by the number of all

roots of 1 in K. Hence, the estimate on n is as follows:

p(n) < [K;Q],

where [K; Q] is the extension degree of K over Q and ¢(n) is Euler’s function
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