VARIETIES WHOSE HYPERPLANE SECTIONS $\text{ARE} \quad \textbf{P}_{C}^{k} \quad \text{BUNDLES}$

bу

Maria Lucia Fania and Andrew John Sommese

Max-Planck-Institut für Mathematik Gottfried-Claren-Str. 26 D-5300 Bonn 3 Federal Republic of Germany

MPI/SFB 85-14

VARIETIES WHOSE HYPERPLANE SECTIONS ARE

Pr BUNDLES

by

Maria Lucia Fania

and

Andrew John Sommese

In this article we study the following problem.

Problem: Let X be a projective variety. Let L be an ample line bundle on X that is spanned at all points of X by global sections. Assume that some irreducible $A \in |L|$ is a $\mathbb{P}_{\mathbb{C}}^k$ bundle $f : A \to Y$ over a projective variety Y. Describe X.

The second author studied this earlier in [So1] where he showed (as a consequence of a very general extension theorem of his) that if A is a smooth ample divisor on a smooth projective X and $k \ge 2$ then f extends holomorphically to a \mathbb{P}^{k+1} bundle $\overline{f}: X \longrightarrow Y$ with L restricted to a general fibre isomorphic to $0 \\ \mathbb{P}^{k+1}$ (1). Some technical improvements

were made in this result by Fujita [Fu1, Fu2] and Silva [Si]. We include a quite general extension theorem subsuming all these results in a short appendix. This paper is concerned with the much more subtle case when the fibre of $f: A \longrightarrow Y$ is \mathbb{P}^1 .

The key to analyzing X is to show that the map $f: A \longrightarrow Y$ extends to a holomorphic map $\overline{f}: X \longrightarrow Y$. This is not always true-examples with $Y = \mathbb{P}^n$ for some $n \ge 1$ are easy to construct. We rule this sort of example out by assuming that Y has a nontrivial top degree holomorphic form.

Theorem. Let L be an ample line bundle on a normal projective variety X. Assume that L is spanned at all points by global sections and that there is a smooth $A \in |L|$ which is a holomorphic \mathbb{P}^1 bundle $f: A \longrightarrow Y$ over a connected projective variety Y. If $h^{\circ}(K_Y) \neq 0$ then f extends to a meromorphic map $\overline{f}: X \longrightarrow Y$ holomorphic in a neighborhood of A; if X is a local complete intersection then \overline{f} is holomorphic.

If \overline{f} is holomorphic it is an easy consequence of an earlier result of the second author [So1] that $\dim Y \le 2$ and in the case $\dim Y = 2$, $\overline{f}: X \longrightarrow Y$ is a holomorphic \mathbb{P}^2 bundle with L restricted to a fibre of \overline{f} isomorphic to \mathbb{P}^2 (1). The case when $\dim Y = 1$ is classical and leads

to "Quadric bundles" besides P² bundles.

The above theorem is proved as a consequence of a considerably more powerful meromorphic extension theorem .

One form of it is the following.

Theorem. Let L be an ample line bundle on a normal projective variety X. Assume that L is spanned at all points by global sections and that there is a normal A \(\) | L \(\) which fibres holomorphically f: A \(\) Y over a normal projective variety Y. Assume that:

- a) X is a local complete intersection whose locus of non-rational singularities is at most dimension 1,
- b) the general fibre of f is P¹ and both A and
 Y have at most rational singularities,
- c) there is a desingularization \overline{Y} of Y with $h^0(K_{\overline{V}}) \neq 0$.

Then f extends to a meromorphic map $\overline{f}: X \longrightarrow Y$ which is holomorphic in a neighborhood of the open set $U \subseteq A_{reg}$ such that $f_U: U \longrightarrow f(U)$ is a \mathbb{P}^1 bundle.

The most natural approach to such extension theorems is to choose a very ample line bundle E on Y, show that f^*E extends to a line bundle E on X, and show that a "lot" of sections of f^*E extend to E. This was the approach

in [So1] (cf. the appendix to this paper) but it works if $\dim A - \dim Y = 1$ only in very special cases (cf. [B] for the case of A a \mathbb{P}^1 bundle over \mathbb{P}^1).

The second approach is to attempt to construct \overline{f} geometrically. The idea is to take a general fibre ℓ of f and look at the closure F of all deformations ℓ' of ℓ such that $\ell \cap \ell' \neq \phi$. F should be the general fibre of \overline{f} . The main trouble in this approach is showing that $\dim F = 2$. A counterexample with $Y = \mathbb{P}^n$ shows that F can equal X. A modified form of the above approach does work. We want to use the non-trivial holomorphic form on the desingularization of Y to guarantee that $\dim F = 2$. To do this we need control over the parameter space of the set of deformations ℓ' above. For this reason we restrict to deformations ℓ' of ℓ such that $\ell' \cap \ell \neq \phi$ and ℓ' is a fibre of a deformation $f': A' \longrightarrow Y'$ of $f: A \longrightarrow Y$ where $A' \in |L|$. This requires us to first show that for most $A' \in |L|$, $f': A' \longrightarrow Y'$ exists.

The contents of this paper are as follows.

In § 0 we present background material for which there are no good references (especially material on vanishing theorems and extension of line bundles). We also present the classical material when dimY = 1 and the standard counterexamples to extension.

In § 1 we present various results on holomorphic forms and the groups $\ {\rm H}^{\dot{1}}\left({\it O}_{\chi}\right)$.

In § 2 we prove the meromorphic extension theorem.

In § 3 we use this result to analyze the global structure of X. We also deduce some results on when a modification of a hyperplane section extends to a modification of a projective variety; these results which are in the same vein as [Fa1, Fa2, Fa + So, So2, So3, So4] where one of our main motivations to study the problem stated at the beginning of this introduction.

In § 4 we discuss the proof of the main results and what should be true in general.

In a short appendix we include the strongest version of the extension theorem originally given for manifolds in [So1] for holomorphic surjections $f:A\longrightarrow Y$ with $dimA-dimY\ge 2$. We would like to thank J. Noguchi for some helpful remarks on the de Francis problem.

We would like to express our thanks to the Max-Planck-Institut für Mathematik for making this joint work possible. The second author would also like to thank the University of Notre Dame and the National Science Foundation (MCS 8200629).

§ 0 BACKGROUND MATERIAL

Our notation is the same as in [So2] and [Fa1]. For the convenience of the reader we review it here.

(0.1) All spaces and manifolds are complex analytic unless otherwise specified; all dimensions are over ${\bf C}$. Given an analytic space ${\bf X}$, we denote its structure sheaf by ${\bf 0}_{\bf X}$. We don't distinguish between a holomorphic vector bundle ${\bf E}$ and its locally free sheaf of germs of holomorphic sections. Thus when ${\bf E}$ is tensored with a coherent analytic sheaf ${\bf S}$ we mean the tensor product over ${\bf 0}_{\bf X}$ of the sheaf of of holomorphic sections of ${\bf E}$ and ${\bf S}$; we denote this ${\bf E}$ ${\bf C}$ ${\bf S}$.

We denote the sections of a sheaf S over X by $\Gamma(X,S)$, or $\Gamma(S)$ when no confusion will result.

Similarly we often suppress X and write $H^1(S)$ for the ith cohomology group of S on X. We write its dimension $h^1(S)$, or $h^1(X,S)$ if there is a posibility of confusion.

Let X be an n dimensional normal irreducible complex analytic space. The canonical sheaf $\omega_{\rm X}$ of X is defined to be the sheaf of holomorphic n forms if X is smooth and the direct image $i_*(\omega_{\rm X})$ in general where i is the inclusion of the smooth locus $X_{\rm reg}$ of X into X. A good reference for dualizing sheaves is [Ha]. Let $K_{\rm X}$ denote the

Grauert-Riemenschneider canonical sheaf of X [Gra+Ri]. This is defined to be $\pi_{\star}\omega_{\overline{X}}$ where $\pi:\overline{X}\longrightarrow X$ is a resolution of the singularities of X; it is independent of the resolution. There is the basic exact sequence:

$$(0.1.1) \qquad 0 \longrightarrow K_{x} \longrightarrow \omega_{x} \longrightarrow S \longrightarrow 0$$

where the coherent sheaf S is supported on an analytic subset X_{irr} of X_{sing} . It is a theorem of Kemph ([Ke], pg. 50) that the set X_{irr} is the locus of non rational-singularities of X, i.e. the union of the supports of $\{\pi_{(i)}(0_{\overline{X}}) | i \geq 1\}$ where $\pi_{(i)}$ denotes the ith direct image of any resolution $\pi: \overline{X} \longrightarrow X$ (the sheaves $\pi_{(i)}(0_{\overline{X}})$ are basic invariants of X that are independent of the resolution used to define them). We refer to X_{irr} as the <u>irrational</u> locus of X.

(0.2) Vanishing Theorem of Kawamata - Viehweg - Kodaira-Ramanujan - Grauert-Riemenschneider. Let X be an n dimensional irreducible normal projective variety. Let L be a numerically effective line bundle, i.e. $L \cdot C \ge 0$ for all irreducible curves $C \subseteq X$. If $C_1(L)^{n-t} \cdot H^t > 0$ for some ample divisor H and some $t \ge 0$ then $H^i(X, \omega_X \otimes L) = 0$ for $i > max\{t, dim(X_{irr})\}$.

<u>Proof.</u> We will be brief since results like this are discussed in great detail in [Sh+So]. Tensoring (0.1.1) with

L and using the long exact cohomology sequence it follows that the theorem will be proved if we show that $H^{i}(X, K_{X} \otimes L) = 0 \quad \text{for} \quad i > t \text{ . Let } \pi : \overline{X} \longrightarrow X \quad \text{be a projective desingularization of } X \text{ . By the projection formula:}$

*)
$$\pi_{(i)} (\omega_{\overline{X}} \otimes \pi^*L) = \pi_{(i)} (\omega_{\overline{X}}) \otimes L$$
.

By this and the definition of K_X it follows that π_* ($\omega_{\overline{X}} \otimes \pi^*L$) = $\pi_{(0)}$ ($\omega_{\overline{X}} \otimes \pi^*L$) is $K_X \otimes L$. The Grauert-Riemenschneider vanishing theorem [Gra+Ri] says that $\pi_{(i)}$ ($\omega_{\overline{X}}$) = 0 for i > 0. Therefore by *) and the Leray spectral sequence for π , the proof will follow from $H^1(\overline{X},\omega_{\overline{X}} \otimes \pi^*L)$ = 0 for i > t. This is of course the Kawamata-Viehweg vanishing theorem (see [V]; remark (0.2)).

We will also need a relative form of the above in one situation. Rather than formulate and prove the general result we merely prove a special case [generalizing So1], by reducing to a result of Fujita [Fu1].

(0.2.1) Theorem. Let $f: X \longrightarrow Y$ be a holomorphic surjective map from a compact normal irreducible projective variety X to a projective variety Y. Assume that $\dim X - \dim Y \ge 2$. Assume that L is a line bundle on X such that some power L^t for t>0 is spanned at all points by global sections and such that the map associated to $\Gamma(L^t)$ has a dim X dimensional image. Then given any locally free sheaf E on Y, $H^1(X,L^{-k}\otimes f^*E)=0$ for $k\ge 1$.

<u>Proof.</u> Let $\pi: \overline{X} \longrightarrow X$ be a projective resolution of singularities of X. It is clear by the Leray spectral sequence that $H^1(X,L^{-k} \otimes f^*E)$ injects into $H^1(\overline{X},(\pi^*L)^{-k} \otimes (f \circ \pi)^*E)$. Therefore using \overline{X} instead of X, $f \circ \pi$ instead of f and π^*L instead of f we have reduced to the case X is smooth.

Using $\dim X - \dim Y \ge 2$ the result is now clear from [Fu1; Corollary A6].

- (0.3) We need some information about extension of line bundles.
- (0.3.1) Lemma. Let A be an effective ample divisor on an irreducible projective variety X of dimension ≥ 4 .

 Assume that $A \subseteq X_{reg}$. Then for any desingularization \widetilde{X} of X the restriction map $Pic(\widetilde{X}) \longrightarrow Pic(A)$ has finite cokernel.

<u>Proof.</u> Since $A \subseteq X_{reg}$, X has isolated singularities and we can assume without loss of generality that X is normal.

Let $\pi: \widetilde{X} \longrightarrow X$ denote a desingularization of X. Since π is a biholomorphism from $\widetilde{X} - \pi^{-1}(\operatorname{Sing}(X)) \longrightarrow X - \operatorname{Sing}(X) \text{ we identify } A \text{ and } \pi^{-1}(A)$.

Consider the long exact cohomology sequences associated to the exponential sequences on \widetilde{X} and A.

where the vertical maps are restrictions.

As it is well known $H^{1}(\widetilde{X}, \theta_{\widetilde{X}}) \approx H^{1}(A, \theta_{\widetilde{A}})$ for $i \leq \dim A - 1$. This follows from the Kodaira vanishing theorem (0.2), $H^{1}(\widetilde{X}, [A]^{-1}) = 0$ for $i \leq \dim A$.

Therefore we will be done by a diagram chase if we show that the restriction $H^2(\widetilde{X},\mathbf{Z}) \longrightarrow H^2(A,\mathbf{Z})$ has finite cokernel. This will follow if we show that $H^2(\widetilde{X},\mathbf{Q}) \longrightarrow H^2(A,\mathbf{Q})$ is onto.

Choose n>0 such that $[A]^n$ is very ample and embed X in $\mathbb{P}^N_{\mathbb{C}}$ using $\Gamma([A]^n)$. There is a hyperplane $H'=\mathbb{P}^{N-1}_{\mathbb{C}}$ that meets X in nA. The hypherplanes sufficiently near H' meet X in sets contained in a neighborhood $V\subseteq X_{\mathbf{reg}}$ of A

which is a deformation retract of A . The basic result of [So5] shows that for any of these nearby hyperplanes H , the restriction mapping $R_H: H^j(V,\mathbb{Z}) \longrightarrow H^j(H \cap X,\mathbb{Z})$ is an isomorphism for $j \leq \dim X - 2$. Choosing an H near H' so that $A' = H' \cap X$ is smooth we see that $H^2(\widetilde{X},\mathbb{Q}) \longrightarrow H^2(A,\mathbb{Q}) \longrightarrow 0$ is equivalent to showing that $H^2(\widetilde{X},\mathbb{Q}) \longrightarrow H^2(A',\mathbb{Q}) \longrightarrow 0$. Indeed consider:

$$H^{2}(\widetilde{X}, \mathbb{Q}) \longrightarrow H^{2}(V, \mathbb{Q}) \stackrel{H^{2}(A, \mathbb{Q})}{\stackrel{}{\sim}} H^{2}(A', \mathbb{Q})$$

By Kronecker duality we are reduced to showing that:

$$0 \longrightarrow \operatorname{H}_2(A', \mathbb{Q}) \longrightarrow \operatorname{H}_2(\widetilde{\mathbb{X}}, \mathbb{Q}) \ .$$

Since the intersection homology of a manifold is equal to its usual homology [(G+M)3] and since the rational intersection homology of a complex algebraic variety X injects into the rational intersection homology of any desingularization \widetilde{X} [(G+M)1] we are reduced to showing that:

$$0 \longrightarrow IH_2(A',Q) \longrightarrow IH_2(X,Q)$$

where IH_{\star} denotes intersection homology. This last injection follows from the beautiful result [(G+M)3] that for a hyperplane section of a variety by a hyperplane to all strata of a Morse

stratification of the variety (which $A' \subseteq X_{reg}$ certainly is) the usual first Lefschetz theorem holds with intersection homology replacing the usual homology.

D

We need the following result also.

(0.3.2) Lemma. Let A be an ample divisor on an irreducible projective local complete intersection X. Assume that $cod Irr(X) \ge 3$. Under restriction:

 $Pic(X) \approx Pic(A)$ if $dim X \geq 4$

0 -> Pic (X) -> Pic (A) with torsion free cokernel if

dim X = 3.

<u>Proof.</u> By the usual argument using the long exact cohomology sequence associated to the exponential sequence of X and A the above result will follow if we show that $\pi_i(X,A,a)$ with $i \le \dim A$ and any basepoint $a \in A$ and also that $H^i(X,[A]^{-1})=0$ for i = 1,2. The former is the Lefschetz theorem of Goresky-MacPherson [(G+M)2] and the latter is just (0.2).

0

In the same spirit as the above results we need information about when we can conclude that there is a non-trivial holomorphic k form on a desingularization of a variety.

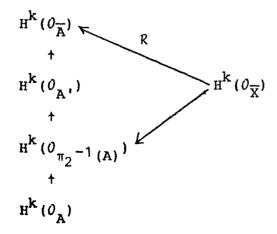
(0.3.3) Lemma. Let L be a line bundle on a normal irreducible projective variety, X, of dimension n. Assume that some positive power L^m of L is spanned by global sections at all points of X and that the map associated to $\Gamma(L^m)$ has an n dimensional image, e.g. assume that L is ample. Let $A \in |L|$ be normal with at most rational singularities. Let $\pi_2: \overline{X} \to X$ be a desingularization of X and let $\pi_1: \overline{A} \longrightarrow A'$ be a desingularization of the proper transform A' in X of A. Let $R: H^0(\Lambda^k T_{\overline{X}}^*) \longrightarrow H^0(\Lambda^k T_{\overline{A}}^*)$ be the map induced by π_1 . Then R is a surjection for k < dim A.

<u>Proof.</u> By Hodge theory it sufficies to show that the map $\overline{R}: H^k(\mathcal{O}_{\overline{X}}) \longrightarrow H^k(\mathcal{O}_A)$ induced by π_1 is a surjection for $k < \dim A$. By (0.2) the restriction

$$H^{k}(\mathcal{O}_{\overline{X}}) \longrightarrow H^{k}(\mathcal{O}_{\pi-1(A)})$$

is an isomorphism for k < dim A.

Using this and considering the commutative diagram:



it sufficies to show that the map

$$\pi^* : H^k(\mathcal{O}_{\overline{A}}) \longrightarrow H^k(\mathcal{O}_{\overline{\overline{A}}})$$
,

induced by the composition $\pi:\overline{A}\longrightarrow A$ of π_1 and $A'\longrightarrow A$ is an isomorphism. Using the Leray spectral sequence for π and the fact that A having only rational singularities is equivalent to $\pi_{\{i\}}(\theta_{\overline{A}})=0$ for i>0, this is clear.

(0.4) Lemma. Let $\phi: Z \longrightarrow \mathbb{P}_{\mathbb{C}}$ be a holomorphic map of an irreducible projective variety Z with $\dim \phi(Z) \ge 2$.

Given a general hyperplane H on $\mathbb{P}_{\mathbb{C}}$, $\phi^{-1}(H)$ is irreducible.

Given any hyperplane H on $\mathbb{P}_{\mathbb{C}}$, $\phi^{-1}(H)$ is connected.

Proof. This is a standard fact, e.g. [Sh+So; theorem (3.42)].

(0.5) We give here a few standard counterexamples to the extension problem discussed in the introduction. The most obvious is $\mathbb{P}^1 \times \mathbb{P}^1 \subseteq \mathbb{P}^3$. This can be generalized slightly. Let $\mathbb{H}_d \subseteq \mathbb{P}^3$ be a smooth degree d hypersurface in \mathbb{P}^3 that contains a line ℓ , e.g. let

$$H_d = \{(z_0, \ldots, z_3) | \sum_{i=0}^3 z_i^d = 0 \}.$$

Then $L = \theta_{IP3}(1)|_{H_d} \circ [l]^{-1}$ is spanned by global sections and gives a holomorphic surjection $f:H_d \longrightarrow IP^1$ with general

fibre biholomorphic to a curve of degree d-1 in \mathbb{P}^2 see [So1] for more or this type of fibration. Clearly f can't extend holomorphically to \mathbb{P}^3 .

Many examples of non-extendible maps with $\dim \overline{Y} = 1$ can be given. We know of only one example of a \mathbb{P}^1 bundle A over a Y with $\dim Y > 1$, where X is not a \mathbb{P}^2 bundle. The following simple argument was given to us by E. Sato.

Let $Y = IP^n$ with n > 1. Let γ be a non trivial element of $H^1(\mathcal{O}_{\mathbb{IP}^1}(-2))$ and let $F^* = \bigoplus \mathcal{O}_{\mathbb{IP}^1}(-2)$. Let E^* be the unique extension

$$0 \longrightarrow F^* \longrightarrow E^* \longrightarrow 0_{\text{IP}} 1 \longrightarrow 0$$

such that $1 \in H^0(\mathcal{O}_{\mathrm{IP}1})$ goes to $\gamma \oplus \ldots \oplus \gamma \in H^1(F^*)$. Note that IP(F) is a very ample divisor on IP(E). To see this it must just be noted that E is ample. By dualizing the above exact sequence we can easily check that E is spanned by global sections. We must only check that E doesn't contain a trivial summand.

If it did then E* would have a nowhere vanishing section. Since F* has no section, the image of this section would split the above exact sequence contradicting the non-triviality of γ . These $\mathbb{P}(F)$ is a very ample divisor of $\mathbb{P}(E)$.

Note that $\mathbb{P}(F) = \mathbb{P}^1 \times \mathbb{P}^n$.

Since there are no non trivial map $\mathbb{P}^{n+1} \longrightarrow \mathbb{P}^n$ the map $\mathbb{P}(F) \longrightarrow \mathbb{P}^n$ cannot extend to a map from the \mathbb{P}^{n+1} bundle $\mathbb{P}(E)$ to \mathbb{P}^n .

- (0.6) We give here a summary of the solution to the problem posed in the introduction when Y is a curve of genus g > 0. This result was more a less known a half century ago (cf. [Ro], Ch. 4, § 11,12), a short proof can be found in [Fa+So].
- (0.6.1) Theorem. Let A be a smooth ample divisor on an irreducible projective local complete intersection

 threefold X. Assume that there is a holomorphic map

 f:A -> R with generic fibre P¹ onto a Riemann surface

 R of genus g > 1. Then f extends to a holomorphic map

 T: X -> R. Either
- a) f is a \mathbb{P}^1 bundle and \overline{f} is a \mathbb{P}^2 bundle with the restriction of [A] to a general fibre isomorphic to \mathbb{P}^1 or
- b) \overline{f} has $\mathbb{P}^1 \times \mathbb{P}^1$ as general fibre and the restriction of [A] to $\mathbb{P}^1 \times \mathbb{P}^1$ is isomorphic to [A] where A is the diagonal of $\mathbb{P}^1 \times \mathbb{P}^1$.
- (0.7) <u>Lemma</u>. <u>Let L be an ample line bundle on a normal projective local complete intersection X. Assume that L is spanned at all points by global sections and that the locus of</u>

irrational singularities is of codimension ≥ 3.

Assume that there is an A ∈ |L| and a surjective holomorphic map f:A → Y into a normal projective variety Y.

If f extends to a meromorphic map f:X → Y holomorphic in a neighborhood of A and dim A > dim Y then f is holomorphic.

<u>Proof.</u> Let E be a very ample line bundle on Y and let E be the extension of f*E to X that exists by lemma (0.3.3). If we knew that pullbacks under f of sections of E extended to sections of E we would be done by an argument of [So1] when X is smooth that was nicely generalized to arbitrary X in [Fu1]. Indeed dim Y + 1 sections span E. Thus dim Y + 1 sections span E off an analytic set $A \subseteq X - A$. Thus A is empty or dim $A \ge \dim X - \dim Y - 1 > 0$. But since $A \subseteq X - A$, dim A = 0. Thus since E is spanned by dim Y + 1 sections, the map associated to pullbacks of sections has a dim Y dimensional image. It is easy to see this must be Y.

The natural supposition is that if we take $D \in |E|$ then $\overline{f}*D \in |E|$. If this is true we are done by the above reasoning. If we knew that $\overline{f}*D$ were Cartier this would be clear since $0 \longrightarrow Pic(X) \longrightarrow Pic(A)$. Unforunately this is not immediately obvious.

Let $\pi: \overline{X} \longrightarrow X$ be a desingularization of the graph of $\overline{\mathbf{f}}$. Choose an $A' \in |L|$ such that $\overline{A} = \pi^{-1}(A')$ is smooth and $\overline{\mathbf{f}}$ is holomorphic in a neighborhood of A'. This is possible

since \overline{f} is holomorphic in a neighborhood of A.

Let $f':\overline{X} \longrightarrow \overline{Y}$ be the holomorphic map induced by \overline{f} . Let E and E be us before and let M = [f'*D] for a general divisor $D \in |E|$ such that $f'^{-1}(D)$ is irreducible. If we show that $M \approx \pi^*E$ we will be done. Consider:

$$0 \longrightarrow \pi^*(E \bullet L^{-1}) \bullet M^{-1} \longrightarrow \pi^*E \bullet M^{-1} \longrightarrow (\pi^*E \bullet M^{-1})_{\overline{A}} \longrightarrow 0$$

Since $\pi^*E \otimes M^{-1} \approx 0_{\overline{A}}$ it sufficies to show that $H^1(\pi^*(E \otimes L^{-1}) \otimes M^{-1}) = 0$. Since the map associated to $\Gamma((\pi^*L)_{\overline{A}})$ has a dim A dimensional image, it follows that

$$H^{1}((\pi^{*}E) \otimes M^{-1} \otimes \pi^{*}L^{-1})_{\overline{A}}) = H^{1}((\pi^{*}L^{-t})_{\overline{A}}) = 0$$

for t > 0. Therefore by tensoring the above exact sequence with π^*L^{-t} for t = 1,2,3... and using the associated long exact cohomology sequence we reduce to showing that

$$H^1(\overline{X}, \pi^*(E \otimes L^{-t}) \otimes M^{-1}) = 0$$
 for some $t > 0$.

By Serre duality and the Leray spectral sequence we reduce to showing that:

$$H^{1}(X,L^{t} \otimes E^{*} \otimes \pi_{0}) (\omega_{\overline{X}} \otimes M)) = 0$$

for $i+j=\dim A$ and t>>0. Since M is spanned it follows from [Gr + Ri] that $\pi_{(i)}$ ($\omega_{\widetilde{X}} = M$) = 0 for j>0. Since L

is ample $H^{\dim A}(X,L^{t} \otimes E^{*} \otimes \pi_{*}\omega_{X} \otimes H)) = 0$ for t >> 0.

§ 1 Some Results on Holomorphic Forms

with connected fibres between normal irreducible projective varieties X and Y. Assume that there is a non-empty Zariski open set $V \subset Y$ such that V and $f^{-1}(V)$ are smooth and $f^{-1}(V) \longrightarrow V$ is of maximal rank. Assume that X and Y have at most rational singularities. If $h^{i}(O_{F}) = 0$ for $0 < i \le q$ where F is a general fibre of f then

$$f_{(i)}(\theta_X) = 0$$
 for $0 < i \le q$.

In particular if $h^{i}(\theta_{F}) = 0$ for i > 0 then

$$f_{(i)}(\theta_X) = 0$$
 for $i > 0$.

<u>Proof.</u> It can be assumed without loss of generality that X and Y are smooth. To see this let $g:\widetilde{Y} \longrightarrow Y$ be a desingularization of Y and let \widetilde{X} be a desingularization of the irreducible component of the fibre product $X \times_{\widetilde{Y}} \widetilde{Y}$ which surjects onto both \widetilde{Y} and X under the natural projections. We have the commutative square:

$$\widetilde{X} \xrightarrow{\widetilde{g}} X$$

$$\widetilde{f} \downarrow \qquad \qquad \downarrow f$$

$$\widetilde{Y} \xrightarrow{g} Y$$

The horizontal maps are birational morphisms and since the singularities of X and Y are rational:

*)
$$\widetilde{g}_{(i)}(0_{\widetilde{X}}) = 0 = g_{(i)}(0_{\widetilde{Y}})$$
 for $i > 0$

and since X and Y are normal:

**)
$$\widetilde{g}_{\star}(0_{\widetilde{X}}) = 0_{X}$$
 $g_{\star}(0_{\widetilde{Y}}) = 0_{Y}$.

The condition on the general fibre of f and the fact that $g:g^{-1}(V)\longrightarrow V$ and $\widetilde{g}:\widetilde{g}^{-1}(f^{-1}(V))\longrightarrow f^{-1}(V)$ are biholomorphisms imply that $h^{i}(0_{\widetilde{F}})=0$ for $0\le i\le q$ where \widetilde{F} is a general fibre of \widetilde{f} . If the theorem is true for \widetilde{f} then using *) and **) and the Leray spectral sequence for $g\circ\widetilde{f}$ we see that

$$(g \circ \widetilde{f})_{(i)} = 0$$
 for $0 < i \le q$ and $(g \circ \widetilde{f})_* (\partial_{\widetilde{X}}) = \partial_{Y}$.

Using this, $f \circ \tilde{g} = g \circ \tilde{f}$, *), **), and the Leray spectral sequence for $f \circ \tilde{g}$ we see that:

$$0 = f_{(i)}(\widetilde{g}_{\star} 0_{X}^{\sim}) = f_{(i)}(0_{X}) \quad \text{for} \quad 0 < i \leq q.$$

Therefore assume that X and Y are smooth.

We need a lemma.

(1.1.1) Lemma. Let $f: X \longrightarrow Y$ be a surjective holomorphic map with connected fibres between projective manifolds X and Y. Assume that $h^{i}(O_{F}) = 0$ for $0 < i \le q$ where F is a generic fibre of f. Then

(1.1.1.1)
$$f^* : H^i(O_Y) \longrightarrow H^i(O_X)$$

is an isomorphims for 0 < i < q.

<u>Proof.</u> By standard Hodge theory the map in (1.1.1.1) is an injection for all i, e.g. [W]. We must only show that the map is surjective. By conjugation and the Hodge theory anti-isomorphism of $H^{1}(\mathcal{O}_{X})$ with $H^{0}(\Lambda^{1}T_{X}^{*})$ and of $H^{1}(\mathcal{O}_{Y})$ with $H^{0}(\Lambda^{1}T_{X}^{*})$ this is equivalent to showing that every holomorphic i form η on X with $0 < i \le q$ is of the form $f^{*}\mu$ for a holomorphic i form on Y.

This is certainly true over the dense Zariski open set $V \subseteq Y$ such that $f: f^{-1}(V) \longrightarrow V$ is of maximal rank. Indeed let $V' = f^{-1}(V)$ consider the exact sequence:

$$0 \longrightarrow f^*T_V^* \longrightarrow T_V^*, \longrightarrow T_V^*, /V \longrightarrow 0.$$

We get a filtration.

$$F_0 \subseteq F_1 \subseteq \cdots \subseteq F_4$$

where $F_{j} = (\Lambda^{i-j}f^{*}T_{V}^{*}) \Lambda (\Lambda^{j}T_{V}^{*})$. The quotients are $F_{j}/F_{j-1} \approx (\Lambda^{i-j}f^*T_V^*) \otimes \Lambda^{j}T_{V'/V}^*$. Let η_V , denote the restriction of n to V'. Since by shrinking V it is easy to see that $\eta_{V^{\dagger}} = f^*\omega_{V}$ for some holomorphic i form if $\Lambda^{j}T_{V,/V}^{*}|_{F} \approx \Lambda^{j}T_{F}^{*}$ has no holomorphic sections for $0 < j \le i$. By the Hodge theory isomorphism $H^{i}(\theta_{F}) = H^{0}(\Lambda^{i}T_{F}^{\star})$ and our hypothesis this is clear. We must only show that ω_{ij} has a holomorphic extension to Y. Assume otherwise. Since by Hartogs theorem holomorphic sections of vector bundles extend over codimension 2 sets it follows that ω_{ij} extends to a holomorphic i form ω' on Y - Z where Z is a set of pure codimension 1. Choosing dim X - dim Y general hyperplane sections of X and intersecting we get a submanifold X' of X such that f_{v} , is generically finite to one Further the pullback of ω' to X' extends holomorphically since it agrees with the restriction of η on a dense open set. Choose a smooth point x of Z such that f_{X} , is finite to one over a neighborhood of x. An easy calculation shows that ω' has at worst poles on Z and extends holomorphically if it has no poles. Slicing Y with sufficiently ample hyperplane sections through x we can choose an idimensional submanifold Y' C Y such that the restriction ω " of ω ' to Y' - Z \cap Y' has poles along Z \cap Y' if ω ' has poles along Z. Further desingularizing an irreducible component of $f_{X'}^{-1}(Y')$ we get a projective i-dimensional manifold X" and a gerically finite to one surjective $f'':X'' \longrightarrow Y$ such that the pullback of ω " to X" extends to all of X" holomorphically. But this implies

$$\int \omega$$
 $\Lambda \overline{\omega}$ is finite since

$$\mathrm{deg}\ (\mathrm{f"})\ \int\ \omega^{\mathrm{u}}\ \Lambda\ \overline{\omega^{\mathrm{u}}}\ =\ \int\ (\mathrm{f"}*\omega^{\mathrm{u}})\ \Lambda\ (\overline{\mathrm{f"}*\omega^{\mathrm{u}}})\ .$$

If $\int \omega'' \wedge \overline{\omega''}$ is finite an easy calculation shows that ω' has no poles along Z \cap Y'. Thus ω_V has a holomorphic extension to Y.

We need a general slicing lemma also.

(1.1.2) Slicing Lemma. Let f: X -> Y be a holomorphic surjection between projective manifolds. If H is a general hyperplane section of Y then

- a) H and $H' = f^{-1}(H)$ are smooth,
- b) dim support $(f_{(i)}(0_X)) = \dim \text{ support } ((f_{H'})_{(i)}(0_{H'}))$ +1 whenever $f_{(i)}(0_X)$ is non trivial (here we adopt the convention that the empty set has dimension -1) and $(f_{H'})_{(i)}(0_{H'})$ is non-trival if dim support $f_{(i)}(0_X) = 1$.

Proof. a) is true by Bertini's theorem. We have the exact
sequence:

$$0 \longrightarrow [H']^{-1} \longrightarrow 0_{X} \longrightarrow 0_{H'} \longrightarrow 0$$

The long exact sequence of direct image sheaves gives:

$$\longrightarrow f_{(i)}(0_X) \otimes [H]^{-1} \longrightarrow f_i(0_X) \longrightarrow f_{(i)}(0_{H'}) \longrightarrow$$

If S is any coherent sheaf in a manifold Y, then a general hyperplane section will not contain the support of any subsheaf of S. Thus

$$0 \longrightarrow S \otimes [H]^{-1} \longrightarrow S.$$

From this and the long exact sequence of direct image sheaves above, we get the lemma.

Now assume the theorem is false. Let i be the smallest integers $0 < i \le q$ such that $f_{(i)}(\theta_X) \neq 0$. If $f_{(i)}(\theta_X)$ is supported in a finite set then by the Leray spectral sequence and lemma (1.1.1) we have a contradiction. If $f_{(i)}(\theta_X)$ is supported on a $k \ge 1$ dimensional set then by lemma (1.1.2) we can slice with k hyperplane sections on Y and reduce to a situation where we get the same contradiction as the last sentence.

D

The following lemmas will be convenient.

(1.2) <u>Lemma.</u> <u>Let f: X -> Y be a holomorphic surjective</u>

map of irreducible projective varieties. If there is a non
trivial holomorphic k form on a desingularization of Y,

then there is a non-trivial holomorphic k form on a desingularization of X.

<u>Proof.</u> Let $\pi_1: \overline{X} \longrightarrow X$ and $\pi_2: \overline{Y} \longrightarrow Y$ be desingularizations of X and Y. Since holomorphic forms pullback to holomorphic forms under meromorphic maps the lemma follows by considering $\pi_2^{-1} \circ f \circ \pi_1$.

0

(1.3) Lemma. Let $f: X \longrightarrow Y$ be a meromorphic surjective map between irreducible projective varieties. Assume that there is an open set $V \subseteq Y_{reg}$ $f: f^{-1}(V) \longrightarrow V$ is of maximal rank and

- a) $f^{-1}(v) \subseteq x_{reg}$,
- b) on f⁻¹(V), f has connected fibres and is maximal rank,
- c) given a generic fibre F of f on $f^{-1}(V)$, $h^{i}(O_{F}) = 0 \quad 0 < i \le k$.

If a desingularization of X has a non-trivial k form
then a desingularization of Y has a non-trivial k form.

<u>Proof.</u> Let X' denote the graph of f and f':X' -> Y the induced map. Let $\pi_2: \overline{Y} \to Y$ be a desingularization of Y. Let Z be the irreducible component of X' π_Y that surjects onto both X and \overline{Y} under the induced map. Let $\pi_1: \overline{X} \to Z$ be a desingularization of Z. We have a commutative diagram:

where the horizontal maps are birational. The hyptheses of lemma (1.1.1) are satisfied and therefore our lemma follows.

§ 2 The Meromorphic Extension Theorem

(2.0) Let L be a line bundle on a compact irreducible normal complex analytic space X. Assume that L is spanned at all points by global sections and that X is Cohen-Macaulay, i.e. that the localrings of X are all Cohen-Macaulay local rings. Let

$$e : X \times \Gamma(L) \longrightarrow L$$

denote the evaluation map on sections. Since $\Gamma(L)$ spans L at all points it follows that e is onto and the kernel K is a vector bundle on X. We denote $\mathbb{P}(K^*)$ by A and note that $A \subseteq X \times |L|$ is the family of pairs (x,A) with $x \in A \in |L|$. Let $p:A \longrightarrow X$ and $q:A \longrightarrow |L|$ denote the maps induced by the product projections and note that p is the natural projection of $\mathbb{P}(K^*) \longrightarrow X$.

Since A is a fibre bundle with smooth fibre over a Cohen-Macaulay variety it follows that A is Cohen-Macaulay. Since q has equal dimensional fibres, A is Cohen-Macaulay, and |L| is smooth, it follows that:

(2.0.1) q is flat.

(2.1.) Lemma. Let X,L,A and q be as above. Assume that there is an irreducible normal A \in |L| that fibres holomorphically f: A -> Y where Y is a normal irreducible

analytic space and where f has connected fibres. Assume further that there is a smooth Zarisky open set $V \subseteq Y$ such that $U = f^{-1}(V)$ is smooth and such that f is of maximal rank on U. Assume that there is an ample line bundle E on Y such that $f \times E$ extends to a line bundle E on X. Assume that $f_{(i)}(O_A) = 0$ for all odd i. Then there is a compact normal analytic space Y, a holomorphic surjection $g: Y \longrightarrow |L|$ and a meromorphic surjection $F: A \longrightarrow Y$ such that:

a)
$$\begin{array}{ccc}
A & \xrightarrow{F} & y \\
q & & g & commutes
\end{array}$$

- b) F <u>is holomorphic on a Zariski open set containing</u> $q^{-1}(A), g^{-1}(A) \underline{is\ biholomorphic\ to}\ Y \underline{and}\ F_{q^{-1}(A)} = f,$
- c) g is equal dimensional in a neighborhood of g -1 (A),
- d) there is a smooth Zariski open set $V \subseteq V$ such that F is of maximal rank in the set $U = F^{-1}V$ which is smooth and such that $V \cap g^{-1}(A) = V$.

<u>Proof.</u> Choose n large enough so that E^n is very ample and by Serre's theorem $H^j(Y,f_{(i)}(f^*E^n)) = H^j(Y,f_{(i)}(\theta_A) \otimes E^n)$ is zero for j > 0 and all i. By the Leray spectral sequence for f and f^*E^n and the hypothesis that $f_{(i)}(\theta_A) = 0$ for odd i, it follows that $H^j(A,f^*E^n) = 0$ for odd j > 0. By the

flatness (2.0.1) of q it follows that $\chi(E_{A'}^n)$ is independent of $A' \in |L|$. From this and the upper semicontinuity of dimensions of cohomology groups it follows that $h^0(A', E_{A'}^n)$ is constant for a Zariski open set of |L| that contains A. This and the flatness of q imply by a theorem of Grauert that the coherent sheaf:

$$S = q_*(p*E^n)$$

is locally free of rank $h^0(E^n)$ in a neighborhood of A in |L|. Since sections of f^*E^n therefore extend to give sections of S it follows that (p^*E^n) , is spanned by global section for A' in a Zarisky open set 0 containing A in |L|. Therefore we have a meromorphic map F' from A into Proj(S) which is holomorphic in a neighborhood of $q^{-1}(A)$. Let Y denote the normalization of the image of F' and let F denote the induced meromorphic map. Note that dim $F(q^{-1}(A'))$ is independent of $A' \in O$. Indeed if $E^n_{A'}$ is spanned, then its image is of dimension:

$$\max \ \{k \mid E \cdots E \cdot L \text{ is non-trivial in } H^{2k+2}(X,Q) \}.$$

This implies c) where $g: V \longrightarrow |L|$ is the induced map.

The assertion d) is straighforward and left to the reader.

(2.3) Meromorphic Extension Theorem. Let X be an n dimensional Cohen Macaulay compact irreducible normal complex analytic space. Assume that $h^0(\Lambda^{n-2}T^*) \neq 0$ where \widetilde{X} is a desingularization of X. Assume that L is a line bundle spanned at all points of X by global sections and that $C_1(L)^{\dim X} > 0$, i.e., the map associated to $\Gamma(L)$ has image of dimension dim X. Assume that there is an irreducible normal $A \in |L|$ such that there is a holomorphic surjection $f: A \longrightarrow Y$ with generic fibre \mathbb{P}^1 onto a compact normal complex analytic space Y. Assume that there is an ample line bundle E on Y such that f*E extends to a holomorphic line bundle E on X. If either f is flat or A and Y have only rational singularties (if any) then f extends to a meromorphic map:

 $\frac{\text{holomorphic in a neighborhood of the open set}}{\text{that}} \quad \text{$U \subseteq A$}_{\text{reg}} \xrightarrow{\text{such}}$

Proof. Lemma (2.1) applies. Let

$$X \stackrel{P}{\longleftarrow} A \stackrel{F}{\longrightarrow} V$$

be as in that lemma.

Since A is normal and since a generic fibre of $f: A \longrightarrow Y$ is \mathbb{P}^1 , it follows that f(Sing(A)) is a proper analytic subset of Y and therefore that f is a holomorphic \mathbb{P}^1 bundle over a Zariski open set of Y. This property is clearly inherited by the maps $F_{A'}: A' \longrightarrow F(A')$ given by lemma (1.1) for A' near A in |L|. Thus:

(2.3.1) F is a \mathbb{P}^1 bundle over a smooth Zariski open set $V \subseteq Y$ which meets Y non-trivially in a Zariski open set V (here we identify Y with $g^{-1}(A)$).

Let $B = p^{-1}(A)$ and let B' be the image of B in $A \times A$ under the map (i,p) where i: $B \longrightarrow A$ is the inclusion. Let $F': A \times A \longrightarrow Y \times A$ be the map (F, id_A) .

Note that B is irreducible since it is a fibre bundle over A. Thus F'(B') is irreducible. Since F' is a \mathbb{P}^1 bundle over $V \times A$ where V is as in (2.3.1) it follows that the closure Z of $F'^{-1}(F'(B') \cap V \times A)$ in $F'^{-1}(F'(B'))$ is an irreducible set.

(2.3.2) Lemma. The meromorphic map F' from B' to F'(B') is one to one on $F^{1-1}(V \times A) \cap B'$.

<u>Proof.</u> To see this note that if $(v,x) \in V \times A$ then $F^{i-1}(v,x) =$

 $\{(w,x) \mid F(w) = v\}.$

Note that $\{w \in A \mid F(w) = v\} = \{(z,A') \in X \times |L| \mid g(v) = A', z \in A', F_{A'}(z) = v\}.$

Thus $F^{-1}(v,x) \cap B' = (x,A',x) \in X \times |L| \times A \mid g(v) = A', x \in A',$ $F_{A'}(x) = v$

Let $h: Z \longrightarrow X$ denote the map onto X induced by the composition of the product projection $A \times A \longrightarrow A$ and p. Let $k: Z \longrightarrow Y$ denote the surjection induced by the composition of the product projection $A \times A \longrightarrow A$ and $f: A \longrightarrow Y$. Let $c: Z \longrightarrow Y \times X$ denote the map (k,h). Let Z' = c(Z) and let $k': Z' \longrightarrow Y$ and $h': Z' \longrightarrow X$ be the maps induced by the product projections.

Choose a general element $H \in |E^N|$ where N is chosen so that E^N is very ample. By lemma (0.4), $H' = k^{-1}(H)$ is irreducible since Z is irreducible.

(2.3.3) Lemma. $h(H') \neq X$.

<u>Proof.</u> Assume that h(H') = X. Since a desingularization of X has a non-trivial holomorphic n-2 form on it it follows from lemma (1.2) that a desingularization $\overline{H'}$ of H' has a non-trivial holomorphic n-2 form on it. Since

 $F'_{H'}: H' \longrightarrow F'(H')$ is a \mathbb{P}^1 bundle over a dense open set of F'(H'), it follows from lemma (1.3) that a desingularisation of F'(H') has a non-trivial holomorphic n-2 form on it. Using lemma (2.3.2) it is clear that F'(H') is birational to $p^{-1}(f^{-1}(H'))$. Since this is a projective bundle over $f^{-1}(H')$ it follows from lemma (1.3) that the desingularisation of $f^{-1}(H')$ has a non-trivial holomorphic n-2 form on it. Since $f^{-1}(H')$ maps onto H' with generic fibre \mathbb{P}^1 it follows from lemma (1.3) that the desingularisation of H' has a non-trivial holomorphic n-2 form on it. But since dim H' = n-3, this is absurd.

0

We are now in a position to show that Z' is the graph of meromorphic map from X to Y. First note that the dimension of a generic fibre of $h': Z' \longrightarrow X$ is 0 dimensional. Indeed if it was not then given a general very ample divisor H on Y, it follows that $h'(k'^{-1}(H)) = X$. Since $h'(k'^{-1}(H)) = h(k^{-1}(H))$, this is ruled out by lemma (2.3.3).

Therefore since h'(Z') = h(Z) = X it follows that $\dim Y + \dim (\text{generic fibre of } k') = \dim X$ or

- (2.3.4) dim (generic fibre of k') = 2.
- (2.3.5) Choose a $y \in Y$ that is general in the sense that:
 - a) $k^{-1}(y)$ is irreducible and dim $h(k^{-1}(y)) = 2$,
 - b) the curve $l = f^{-1}(y)$ is a smooth $IP^{1} \subseteq A_{req}$

and f is of maximal rank in a neighborhood of ℓ .

(2.3.6). Choose an A' \in |L| that is general in the following senses:

- a) A' is irreducible and smooth away from X sing,
- b) A' \cap A is irreducible and A' meets A transversely on A_{req} ,
- c) A' does not contain a point $x \in l$ selected in advance of the choice of A',
- d) F is holomorphic in a neighborhood of $q^{-1}(A')$.

Note the fact that generically A' and A' \cap A are irreducible follow from lemma (0.4) and the fact that the map associated to $\Gamma(L)$ has an image of dimension dim X.

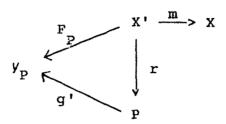
Let $P \subseteq |L|$ denote the pencil joining A and A'. Let Γ denote the graph of the F_{q-1} . Let X' denote the irreducible component of Γ such that:

p(projection of X' on $q^{-1}(P)$) = X.

Let $m: X' \longrightarrow X$ be the map composed of p and projection of X' to $q^{-1}(P)$. Note that

(2.3.7) m is a birational map.

Let y_p denote the irreducible component of $g^{-1}(P)$ such that $g(y_p) = P$ and the map $F_p : X' \longrightarrow y_p$ induced by F is onto. We have:



where g' and r are the maps induced by g and q respectively.

By (2.3.6) there is a dense open set $\Omega \subseteq X$ which contains ℓ and such that $\underset{m}{m}_{-1}(\Omega) : \overset{m}{m}_{-1}(\Omega) \longrightarrow \Omega$ is Ω with AAA'A Ω blown up.

By a \in l \cap A', $r^{-1}(r(m^{-1}(a)))$ contains a unique irreducible 2 dimensional component W_a that contains l. To see this note that for most $w \in r(m^{-1}(a)) = m(r^{-1}(w))$ is a smooth \mathbb{P}^1 on an A" \in P which is also a fibre of $F_{A''}$. From this we see also that $m(W_a) \subseteq h(k^{-1}(y))$. Since $\dim h(k^{-1}(y)) = 2$ by (2.3.5a) we conclude $m(W_a) = h(k^{-1}(y))$. This set which we call W is therefore independent of $a \in l \cap A'$ and the general A' chosen subject to (2.3.6).

Let s_{A} , \in $\Gamma(L)$ be a section defining A'. There is a short exact sequence:

$$0 \longrightarrow N_{\ell \setminus A} \longrightarrow N_{A_{reg}|_{\ell}} \longrightarrow L_{\ell} \longrightarrow 0$$

of normal bundles. The infinitesimal deformation of ℓ corresponding to the family $m(r^{-1}(w))$ for w near r(a) has as image in L_{ℓ} the restriction $s_{A^{-1}\ell}$. Since $s_{A^{-1}}(x) \neq 0$ by (2.3.6c) we see that w is smooth near x and w is transverse to A near x. Since $x \in \ell$ was arbitrary we conclude that w is smooth in a neighborhood of ℓ and along ℓ w intersects w transversely.

(2.3.8) Lemma. $W \cap A = \ell$.

<u>Proof.</u> Since y is general and the map $\phi: X \longrightarrow \mathbb{P}_{\mathbb{C}}$ has an image of dimension equal to dim X, it follows that dim $\phi(W) = 2$. By (0.4) $W \cap A$ is connected. Since W meets A transversely in ℓ it follows that $W \cap A = \ell$.

The above shows that W determines y by $f(W \cap A)$. Thus Z' is the graph of a meromorphic map $\overline{f}: X \longrightarrow Y$.

Finally let $\ell \subseteq A_{reg}$ be a fibre of f in a neighborhood of which f is of maximal rank. Choose A' subject to (2.3.6). Choose a local holomorphic section.

where N is a neighborhood of f(l) and $\sigma(N) \subseteq A \cap A'$.

For a small enough N and for y in a small enough neighborhood of x in X, there is a well defined holomorphic map which sends y to f(a) where $a \in \sigma(N)$ and $m^{-1}(y) \in W_a$. This map agrees with \overline{f} on an open set and gives the desired extension.

O

- (2.4) Corollary. Let X be a normal irreducible projective variety and let L be an ample line bundle on X spanned at all points of X. Assume there is an irreducible A ∈ |L| such that:
 - a) $A \subseteq X_{reg}$ and A has only rational singularities,
 - b) there is a holomorphic surjection f: A -> Y onto a normal projective variety and the generic fibre of f is P¹,
 - c) that Y has at worst rational singularities.
- Then f extends to a meromorphic map $\overline{f}: X \longrightarrow Y$ holomorphic in a neighborhood of the open set $U \subseteq A_{reg}$ such that $f_U: U \longrightarrow f(U)$ is a \mathbb{P}^1 bundle.

Proof. Let $\pi: \overline{X} \longrightarrow X$ be a desingularization of X. Since $A \subseteq X_{reg}$ we have π giving a biholomorphism of A and $\pi^{-1}(A)$. Let E be an ample line bundle on Y. By lemma (0.3.1) f^*E^n extends to \overline{X} for some n > 0. By (1.2) and (0.3.3) $h^0(\Lambda^{\dim Y}T^*) \neq 0$. Thus $(\overline{X},\pi^*L,\pi^{-1}(A),E^n)$ satisfies the hypothesis on (X,L,A,E) in theorem (2.3). Therefore there is a meromorphic extension $\overline{f}:\overline{X}\longrightarrow Y$. The composition $\overline{f}\circ\pi^{-1}:X\longrightarrow Y$

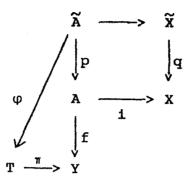
is the desired extension.

(2.5) Corollary. Assume the same hypothesis as (2.4) except that $A \subseteq X_{reg}$ is replaced by the assumption that X is a local complete intersection with the locus of irrational singularities having codimension > 3. Then the same conclusion as in (2.4) holds.

Proof. Use (0.3.4) instead of (0.3.3).

(2.6) Theorem Let X be a projective variety which is a local complete intersection. Assume that L is an ample line bundle spanned at all points of X by global sections. Assume that there exists a smooth A (|L| which is a IP bundle f: A -> Y over a projective manifold Y. Assume that there exists an unramified cover $\pi: T \to Y$ with f(T) = 0. Then f extends to a holomorphic map f(T) = 0. Then f extends to a holomorphic map

<u>Proof.</u> We can assume without loss of generality that T is a regular covering of Y. Suppressing base points for simplicity we note that $\pi_1(T) \overset{f^{-1}}{\simeq} \pi_1(A) \overset{i}{\simeq} \pi_1(X)$ where $i:A \hookrightarrow X$ is the inclusion map. Let $H_1 = \pi_*(\pi_1(T))$, $H_2 = f_*^{-1}(H_1)$ and $H_3 = i_*(H_2)$. Denote by \widetilde{A} and \widetilde{X} the covering spaces of A and A corresponding to A and A subgroups of A and A corresponding to A and A subgroups of A and A corresponding to A and A subgroups of A and A corresponding to A and A subgroups of A and A subgroups of A



Note that f \circ p and i \circ p lift to a map from \widetilde{A} to T and from \widetilde{A} to \widetilde{X} respectively since

$$(f \circ p)_*(\pi_1(\widetilde{A})) = H_1 = \pi_*(\pi_1(T))$$
 and
 $(i \circ p)_*(\pi_1(\widetilde{A})) = H_3 = q_*(\pi_1(\widetilde{X})).$

It is easy to see that \widetilde{A} is an ample divisor on \widetilde{X} and that $\widetilde{A} \xrightarrow{\phi} T$ is \mathbf{P}^1 bundle over T. Using (0.7) and (2.4) we conclude that the map ϕ extends to a holomorphic map $\widetilde{\phi}:\widetilde{X}\longrightarrow T$. The group of the deck transformations of $\widetilde{X},\widetilde{A}$ and T are all isomorphic to one another by construction. Denote such group by G. Note that everything descends. Therefore we get a holomorphic map $\widetilde{f}:X\longrightarrow Y$, where \widetilde{f} is obtained from $\widetilde{\phi}:\widetilde{X}\longrightarrow T$ after we have considered the action of G on \widetilde{X} and T. Clearly \widetilde{f} is holomorphic and is an extension of our given f.

(2.7) Corollary Let X,L and A be as in (2.6). Assume that $K_Y^t = 0_Y$, with t minimal. Then the same conclusion as in (2.6) holds.

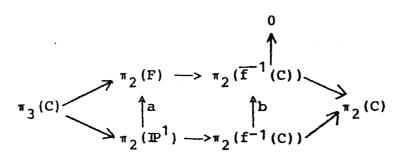
<u>Proof.</u> Let $\pi: T \longrightarrow Y$ be the t-cyclic unramified cover of Y determined by the torsion line bundle K_Y . Note that $h^{\text{dim } T,0}(T) \neq 0$. Therefore (2.6) applies.

§ 3 P¹ Bundles as Hyperplane Sections

(3.0) Theorem. Let X be a projective local complete intersection. Assume that L is an ample line bundle on X spanned at all points by global sections. Assume that there is a smooth $A \in |L|$ which is a P^1 bundle $f : A \longrightarrow Y$ over a projective Y. Then if $h^0(K_Y) \neq 0$ f extends to a holomorphic map $\overline{f} : X \longrightarrow Y$. Dim Y < 2 and if dim Y = 2, $\overline{f} : X \longrightarrow Y$ is a P^2 bundle with the restriction of L to a fibre of \overline{f} isomorphic to $0_{P^2}(1)$.

<u>Proof.</u> By lemma (0.7) and (2.4) the holomorphic extension $\overline{f}: X \longrightarrow Y$ exists. By Prop. V of [So1] it follows that if f is a \mathbb{P}^1 bundle then dim $Y \le 2$.

We can therefore by theorem (0.6.1) assume that $\dim Y = 2$. Let A be the union of the singular set of X and the set where \overline{f} is not of maximal rank. Since $A \subseteq X - A$, the set A is finite. Choose a smooth connected curve $C \subseteq Y$ such that $\overline{f}(A) \cap C = \emptyset$. Let $f' = f_{f^{-1}(C)}$, $\overline{f'} = \overline{f}_{f^{-1}(C)}$, and let F denote a general fibre of $\overline{f'}$. Suppressing basepoints for simplicity we have the long exact sequences of homotopy groups of fibre bundles:



Note that b is surjective by the first Lefschetz theorem on hyperplane sections. A diagram chase shows that a is surjective. Since \mathbb{P}^1 is a hyperplane section of F it is very well known [e.g. So2, (0.6.1)] that F is either \mathbb{P}^2 or a \mathbb{P}^1 bundle over \mathbb{P}^1 . Since a is surjective F is \mathbb{P}^2 and $[\mathbb{P}^1]_F = L_F$ is $\mathcal{O}_{\mathbb{P}^2}(1)$.

We are done except for the possibility of a singular fibre F of $\overline{f}: X \longrightarrow Y$. Dim $F \le \dim f^{-1}(\overline{f}(D)) + 1 = 2$. By the above it is clear that F is irreducible (since $L \cdot L \cdot F = 1$). An easy arugment using [So2 (0.6.1)] shows that $F \simeq \mathbb{P}^2$.

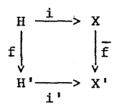
To finish the argument note that since $\overline{f}^{-1}\overline{f}(F) = \mathbb{P}^2$ and since \overline{f} is flat (fibres are equal dimensional, X is a local complete intersection and Y is smooth) it follows that \overline{f} is of maximal rank in a neighborhood of F.

 \Box

(3.1) Theorem Let L be an ample line bundle on a local complete intersection X assume that:

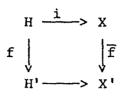
- a) L is spanned by global sections and $h^0((K_X \otimes L)^N)$ + 0 for some N > 0,
- b) the singular set of X have codimension > 4.

Let $H \in |L|$ and assume that there is a holomorphic surjection $f: H \longrightarrow H'$ which expresses H as a projective variety with a codimension 2 submanifold $A' \subseteq H'_{reg}$ blown up. Assume that $h^0(K_{\overline{A}}) \neq 0$. Then dim $A' \leq 2$ and f extends to a holomorphic map $\overline{f}: X \longrightarrow X'$ such that



commutes where i and i' are inclusions. The map \overline{f} expresses X as X' with the smooth subvariety i'(A') $\subseteq X'_{req}$ blown up.

<u>Proof.</u> By the same argument as in [So2] or [Fa2] it can be shown that there exists a normal Cartier divisor D on X which meets H transversaly along E, the exceptional divisor of f over A'. By (3.0) the map $f_E: E \longrightarrow A'$ extends to a holomorphic map $\overline{f}: D \longrightarrow A'$ and $\dim A' \leq 2$. The case $\dim A' = 1$ has been done, see [Fa2]. So the only case left out is $\dim A' = 2$. In such case $\overline{f}: D \longrightarrow A'$ is a \mathbb{P}^2 bundle with the restriction of L_D to the general fibre of \overline{f} isomorphic to $\mathcal{O}_{\mathbb{P}^2}$ (1). It is then clear that the line bundle [D] restricted to the general fibre of \overline{f} is $\mathcal{O}_{\mathbb{P}^2}$ (-1). Therefore by Nakano's theorem we can smoothly blow down D. Thus there exists a variety X and a holomorphic map $\overline{f}: X \longrightarrow X'$ such that the following diagramm



commutes. Clearly i'(A') $\subset X'_{reg}$ since H' is a Cartier divisor on X'. And the map \overline{f} expresses X as X' with i'(A') blown up.

§4 Concluding Remarks

(4.0) Conjecture. Let $f: A \longrightarrow Y$ be a \mathbb{P}^1 bundle over a smooth connected projective manifold Y. Assume that Y has non-negative Kodaira dimension. If A is an ample divisor on a projective local complete intersection X, then f extends to a holomorphic surjection $\overline{f}: X \longrightarrow Y$, dim $Y \le 2$, and dim Y = 2 implies \overline{f} is a \mathbb{P}^2 bundle.

How do we approach (4.0)? First let us consider the Kodaira dimension condition. It would be natural to have a higher order first Lefschetz theorem. For example there is the following question.

(4.1) Question. Let A be a smooth ample (or even very ample) divisor on a connected projective manifold X. Is

$$H^0((\Lambda^iT_X^*)^{(s)}) \approx H^0((\Lambda^iT_A^*)^{(s)})$$

for i < dim A and all sufficiently large s where E (s)

denotes the s th symmetric power of a vector bundle E.

We can weaken the condition $h^0(K_Y) \neq 0$ when dim Y = 2. Indeed if Y is a general type surface then most fibres of $V_P \longrightarrow P$ in the proof of (2.3) are general type surfaces. The intersection $A \cap A'$ is also of general type and surjects generically finite to one onto most fibres of $V_P \longrightarrow P$. By the 2 dimensional de Francis theorem ([D+M],[M]) most of the maps A \cap A' to a fibre of $V_p \longrightarrow P$ are the same except for some blowing up and down. Assuming the fibre degree of these maps is t then we get a meromorphic map $V_p \longrightarrow (A \cap A')^{(t)}$ where $w^{(t)} = w^t/s_t$ where s_t acts by permutations in the t factors. The image of V_p in $(A \cap A')^t$ is birational to Y and the composition of $X \longleftarrow X' \longrightarrow Y_p$ with this gives the desired birational map.

Next how should we remove the condition [A] be spanned? Assume $h^0(K_Y) \neq 0$. Let ω be a non-trivial section of $\Lambda^{\dim Y}_X^*$ obtained by lifting ω to $\Lambda^{\dim Y}_A^*$ and extending by the first Lefschetz theorem. We have a sequence:

$$T_X = \frac{i_{\omega}}{\Lambda} \Lambda^{\dim Y - 1} T_X^*$$

where i_{ω} is interior multiplication. Let F be the subsheaf which is the kernel of i_{ω} . F should define a foliation on a dense set of X whose sheets are the fibres of the desired meromorphic extension $X \longrightarrow Y$. A careful study of F will very possibly (at the expense of a more technical proof) remove the need to assume spanning of [A].

Finally it would be interesting to know how much the Kodaira dimension condition on Y can be relaxed.

<u>Appendix</u> Extension Theorems for Maps of Fibre dimension at least 2

(A.1) Theorem. Let A be an ample divisor on an irreducible normal projective variety X. Assume that A is normal and that there is a holomorphic surjection $f: A \longrightarrow Y$ of A onto a projective variety such that dim A - dim Y > 2. If there is an ample line bundle L on Y such that f*L extends to a holomorphic line bundle L on X, then f extends to a holomorphic map $\overline{f}: X \longrightarrow Y$. In particular extension takes place if X is a local complete intersection with the locus of non rational singularities having codimension > 3.

<u>Proof.</u> The proof follows that of [So1] very closely; we incorporate the improvements of [Fu1] and [Fu2]. By raising L to a sufficiently high positive power we get a very ample line bundle whose pullback extends to X. Thus we can assume that L is very ample without loss of generality. Consider:

$$0 \longrightarrow L \otimes [A]^{-1} \longrightarrow L \longrightarrow L_{A} \longrightarrow 0$$

If the sections of L_A extend to sections of L we will get an extension of f to a meromorphic $\overline{f}: X \longrightarrow P_{\mathbb{C}}$ by using $\Gamma(L)$ as sketched in (0.7) (cf. [Fu1] also).

To show the sections of L_A extend to sections of L it sufficies to show that $H^1(X,L \bullet [A]^{-1}) = 0$.

Considering the above exact sequence tensored with $[A]^{-r}$ for r = 1,2,3... we see that $H^{1}(A,L_{A} \otimes [A]_{A}^{-r}) = 0$ for r = 1,2,3... would imply that:

$$h^{1}(L \otimes [A]^{-1}) < h^{1}(L \otimes [A]^{-2}) < \dots$$

Since X is normal, $H^1(X, L \otimes [A]^{-k}) = 0$ for k >> 0, [Ha Ch. III, Cor. 7.8]. Therefore we have reduced to showing that $h^1(L_A \otimes [A]_A^{-r}) = 0$ for $r \ge 1$ which follows from (0.2.1).

Note that under the local complete intersection condition extension of f*L occur by (0.3.2).

(A.2) Theorem. Let X be a normal irreducible projective variety with isolated singularities. Let A be an ample divisor on X which is normal and such that $A \subseteq X_{reg}$. If there is a holomorphic surjection $f: A \longrightarrow Y$ onto a projective variety with dim A - dim Y ≥ 2 then f extends to a meromorphic map $\overline{f}: X \longrightarrow Y$ which is holomorphic on X_{reg} .

<u>Proof.</u> Let L be an ample line bundle on Y. Let $\pi: \widetilde{X} \longrightarrow X$ be a desingularization of X. By lemma (0.3.1), $f^*L^{\mathfrak{M}}$ extends to a holomorphic line bundle L on \widetilde{X} for some $\mathfrak{m} > 0$.

The proof of the last result and a standard Hartog's theorem argument would prove this result if we show that for some neighborhood U of A

$$H^{1}(U, L \cdot a \cdot [A]^{-r}) = 0 \text{ for } r >> 0.$$

This is true by a result of Griffiths ([Gri], see also [LP]); we have followed the idea of [Si]. Instead of using Griffiths' theorem we could work on the formal completion of A in X as done by Fujita [Fu2].

A consequence of theorem (A.1) using [So1] is that if A and X are as in theorem (A.1) so that the holomorphic extension $\overline{f}: X \longrightarrow Y$ exists and if $f: A \longrightarrow Y$ is a P^k bundle with $k \ge 2$ then \overline{f} is a P^{k+1} bundle.

REFERENCES

- [B1] L. Badescu, On ample divisors II, Proceedings of the "Week of Algebraic Geometry", Bucharest 1980, Teubner, Leipzig 1981.
- [B2] L. Bădescu, On ample divisor, Nagoya Math. Journal 86 (1982), 155-171.
- [D+M] M. Deschamps and L. Ménégaux, Surfaces de type général dominées par une variéte fixe, C.R. Acad. Sci. Paris Ser. A-B 291 (1980).
- [Fa1] M.L. Fania, Extension of modifications of ample divisors on fourfolds, J. Math. Soc. Japan, 36 (1984) 107-120.
- [Fa2] M.L. Fania, Extension of modifications of ample divisors on fourfolds II, to appear.
- [Fa+So] M.L. Fania and A.J. Sommese, Hyperplane sections of Gorenstein 3 folds, to appear Proceedings of Conference in honor of Wilhelm Stoll, Notre Dame (1984), Vieweg.
- [Fu1] T. Fujita, On the hyperplane section principle of Lefschetz, J. Math. Soc. Japan 32 (1980) 153-169.
- [Fu2] T. Fujita, Rational retrections onto ample divisors, Sci. Papers of the College of Arts and Sciences of the University of Tokyo 33 (1983) 33-39.
- [(G+M)1] M. Goresky and R. MacPherson, On the topology of complex algebraic maps, to appear.
- [(G+M)2] M. Goresky and R. MacPherson, Stratified Morse Theory, Proceedings of Symposia in Pure Mathematics 40 (1983), part 1, 517-533 (Amer. Math. Soc. Providence, R.I. 1983).
- [G+M)3] M. Goresky and R. MacPherson, Morse theory and intersection homology, Analyse et Topologie sur les Espace Singuliers, Asterique #101 (1983) 135-192.
- [Gr+Ri] H. Grauert and O. Riemenschneider, Verschwindungssätze für analytische Kohomologiegruppen auf komplexen Räumen, Inv. Math. 11 (1970), 263-292.
- Grij P. Griffiths, The Extension Problem in Complex Analysis II, Amer. J. Math. 88 (1966) 366-446.

- [Gro] A. Grothendieck, Cohomologie locale des faisceaux coherents et theoremes de Lefschetz locaux et globaux (SGA 2) North-Holland.
- [Ke] G. Kemph et al., Toroidal embeddings I, Lecture Notes in Math. 339, Berlin-Heidelberg New York (1973).
- [LP] J. Le Potier, Problems d'Extension de classes de cohomologie, Seminaire de géométrie analytique, Asterique #17 (1979) 79-109.
- [Ha] R. Hartshorne, Algebraic Geometry, Springer Verlag, Berlin-Heidelberg-New York, 1977.
- [M] K. Maehara, Family of varieties dominated by a variety, Proc. Japan Acad. Ser. A Math. Sci. 55 (1979) 146-151.
- [RO] L. Roth, Algebraic Threefolds, Springer Verlag, Heidelberg, (1953).
- [Sh+So] B. Shiffman and A.J. Sommese, Vanishing theorems on complex manifolds, to appear Progress in Mathematics, Birkhäuser.
- [Si] A. Silva, Relative vanishing theorems I: applications to ample divisors, Comm. Math. Helv. 52(1977) 483-489.
- [So1] A.J. Sommese, On manifolds that cannot be ample divisors, Math. Ann. 221 (1976), 55-72.
- [SO2] A.J. Sommese, On the minimality of hyperplane sections of projective threefolds, J. für die reine und ang. Math. 329 (1981) 16-41.
- [So3] A.J. Sommese, Ample divisors on 3 folds, Algebraic Threefolds, Proceedings 1981 Ed. by A. Conte, Springer Lecture Notes 947 (1982).
- [So4] A.J. Sommese, The birational theory of hyperplane sections of projective 3 folds, unpublished manuscript (1981).
- [So5] A.J. Sommese, Complex subspaces of homogeneous complex manifolds, II-Homotopy results, Nagoya Math. J. 86(1982) 101-129.
- [V] E. Viehweg, Vanishing theorems, J. für die reine und ang. Math. 335 (1982) 1-8.
- [W] R.O. Wells, Comparison of de Rham and Dolbeault cohomology for proper surjective mappings, Pac. Jour. of Math. 53. (1974), 281-300.

Maria Lucia Fania
Andrew John Sommese
Max-Planck-Institut für
Mathematik
Gottfried-Claren-Str. 26
5300 Bonn 3
FRG