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In this article we study the following problem.

Problem: Let X be a projective variety. Let I be an ample

line bundle on X that is spanned at all points of X bv global

sections. Assume that some irreducible A €|{L] is a JP; bundle

f : A-Y over a projective variety Y ., Describe X .

The second author studied this earlier in [S801] where he
showed (as a consequence of a very general extension theorem
of his) that if A 1is a smooth ample divisor on a smooth

projective X and k22 then f extends holomorphically to

a ' pbundle F: X —> Y with 1L restricted to a general

fibre isomorphic to 0 (1) . Some technical improvements

]Pk+1



were made in this result by Fujita [Pu1l, Fu2l and Silva [Si].
We include a quite general extension theérem subsuming all
these results in a short appendix. This paper is concerned
with the much more subtle case when the fibre of f : A —> Y
is :P1.

The key to analyzing X 1s to show that the map
f : A—> Y extends to a holomorphic map f : X —> Y . This
is not always true-examples with Y = P" for some n21
are easy to construct. We rule this sort of example out by
assuming that Y has a nontrivial top degree holomorphic

form.

Theoremn. let I, be an ample line bundle on a normal pro-

jective variety X . Assume that L is spanned at all peoints

by global sections and that there is a smooth A€ |L| which

is a holomorphic In bundle f : A —> ¥ over a connected

proijective variety ¥ . If h°(KY)=t0 then f extends to a

meromorphic map f : X —> Y holomorphic in a neighborhood

of A ; if X is a local complete intersection then f is

holomoxrphic.

If T 4is holomorphic it is an easy consequence of an
earlier result of the second author [So1] that dimyYs2
and in the case dimY=2, f : X —> Y is a holomorphic »2
bundle with L restricted to a fibre of ¥ . isomorphic to

0 2 {1) . The case when dimyY=1 is classical and leads
P



to "Quadric bundles® besides ]Pz bundles.

The above theorem is proved as a consequence of a

considerably more powerfil meromorphic extension theorem .

One form of it is the following.

Theorem. Let L be an ample line bundle on a normal pro-

jective variety X . Assume that L is spanned at all points

by global sections and that there is a normal A€ {L] which

fibres holomorphically £ : A —> ¥ over a normal projective

variety Y ., Assume that:

a) X is a local complete intersection whose locus

of non-rational singularities is at most dimension 1,

b) the general fibre of £ is Eﬂ and both A and

Y have at most rational sinqularities,

c) there is a desingularization ¥ of Y with

hO(K—Y') =0 .

Then f extends to a meromorphic map f : X —> ¥ which

is holomorphic in a neighborhood of the open set Ug;Areg

such that fU s U—> f{(U} is a Eﬂ bundle.

The most natural approach to such extension theorems is
to choose a very ample line bundle E on Y , show that
f*E extends to a line bundle E on X , and show that a "lot"

of sections of f*E extend to & . This was the approach



in [So1] (cf. the appendix to this paper) but it works if

dimA -~ dimY

H

1 only in very special cases (cf. [B] for the

case of A a T!bundle over m').

The second approach is to attempt to construct f
geometrically. The idea is to take a general fibre £ of £
and look at the closure F of all deformations £' of (£
such that £nf'=¢ . F should be the general fibre of T .
The main trouble in this approach is showing that dimF = 2 .
A counterexample with Y = P® shows that F can equal X .
A modified form of the above approach does work. We want to use
the non-trivial holomorphic form on the desingularization of
Y to guarantee that dimF = 2 . To do this we need control
over the parameter space of the set of deformations ¢'
above. For this reason we restrict to deformations &' of (£
such that £'nf=¢ and £' 1is a fibre of a deformation
f' : A' —> ¥Y' of £ : A —> Y where A'€ |IL! . This re-
quires us to first show that for mest A'€ LI , £' : A' —> ¥!

exists.

The contents of this paper are as follows.

In § 0 we present background material for which there are
no good references (especially material on vanishing theorems
and extension of line bundles). We also present the classical
material when dimY = 1 and the standard'counterexamples to

extension.



In § 1 we present various results on holomorphic forms

and the groups Hi(Ox) .

In § 2 we prove the meromorphic extension theorem.

In § 3 we use this result to analyze the global structure
of X . We also deduce some results on when a modification of
a hyperplane section extends to a modification of a projective
variety; these results which are in the same vein as
{Fa1, Fa2, Fa + So, So02, So3, So4] where one of our main moti-
vations to study the problem stated at the beginning of this

introduction.

In § 4 we discuss the proof of the main results and what

should be true in general.

In a short appendix we include the strongest version of
the extension theorem originally given for manifolds in [So1l
for holomorphic surjections £ : A —> Y with dimA - dimY 22
We would like to thank J. Noguchi for some helpful remarks

on the de Francis problen.
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§ 0 BACKGROUND MATERIAL

Our notation is the same as in [Sc2] and [Fal}l. For the

convenience of the reader we review it here.

(0.1) All spaces and manifolds are complex analytic unless
otherwise specified; all dimensions are over & . Given an
analytic space X , we denote its structure sheaf by Ox .
We don't distinguish between a holomorphic vector bundle E
and its locally free sheaf of germs of holomorphic sections.
Thus when E 1is tensored with a coherent analytic sheaf $
we mean the tensor product over 0 of the sheaf of

X
of holomorphic sections of E and S ; we denote this E®S.

We denote the sections of a sheaf § over X by

T(X,8); or T(S) when no confusion will result.

Similarly we often suppress X and write Hi(S} for the ith
cohomology group of S on X . We write its dimension hi(S) '

or hi(x,S) if there is a posibility of confusion.

Let X be an n dimensional normal irreducible complex

analytic space. The canonical sheaf Wy of X is defined to

be the sheaf of holomorphic n forms if X is smooth and the

direct image 1i,(wy ) in general where i is the inclusion
reg
of the smooth locus Xreg of X into X . A good reference

for dualizing sheaves is [Hal. Let KX denote the



Grauert-Riemenschneider canonical sheaf of X {[Gra+Ril. This
is defined to be m,wy where m : X —> X is a resolution
of the singularities of X ; it is independent of the reso-

lution. There is the basic exact sequence:

(0.1.17) 0 —> KX —> wy —> S —>0
where the coherent sheaf S is supported on an analytic

subset X of X . It is a theorem of Kemph ([Rel,

irr sing
Pg. 50) that the set Xirr is the locus of non rational~
singularities of X , i.e. the union of the supports of
{u(i)(Oi)Iiz 1} where i) denotes the ith direct image
of any resolution 7 : X —> X (the sheaves M) (Og) are
basic invariants of X that are independent of the resolution

used to define them). We refer to Xirr as the irrational

locus of X .

(0.2) Vanishing Theorem of Kawamata ~ Viehweg -~ Kodaira-

Ramanujan -~ Grauert-Riemenschneider. Let X be an n dimen-

sional irreducible normal projective variety. ILet L be a

numerically effeqtive line bundle, i.e. L+ C20 for all

irreducible curves CSX . If CT(L)n-t-Ht3>O for some ample

divisor H and some t20 then Hl{X,mX@L) = 0 for

i> max{t,dim(xirr) }o.

Proof. We will be brief since results like this are dis-

cussed in great detail in [Sh+So] . Tensoring (0.1.1) with



L and using the long exact cohomology sequence it follows
that the theorem will be proved if we show that
Hi(X,KXQL) =0 for i>t . Let 7 : X —> X be a projective

desingularization of X . By the projection formula:
* * =
) n(i)(wi ® m*L) “(i)(“"i) e L .

By this and the definition of KX it follows that
* = * —
g (wi ® 7T*L) ﬂ(o)(wi ® w*L) 1is Kx ® L. . The Grauert
Riemenschneider vanishing theorem [Gra+Ri] says that
w(i)(mi) =0 for i>0 . Therefore by *) and the Leray
spectral sequence for 1w , the proof will follow from

Hi(f,wi ® m*L) = 0 for i>t . This is of course the

Kawamata-Viehweg vanishing theorem (see [V]; remark (0.2)) .

We will also need a relative form of the above in one
situation. Rather than formulate and prove the general result

we merely prove a special case [generalizing So1l, by reducing

to a result of Fujita {Ful].



(0.2.1) Theorem. Let f : X—> Y be a holomorphic sur-

jective map from a compact normal irreducible projective

variety X to a proijective variety ¥ . Assume that

dimX~ dimY 22 . Assume that L is a line bundle on X

such that some power Lt for t>0 is spanned at all points

by global sections and such that the map associated to F(Lt)

has a dimX dimensional image. Then given any locally free
k

sheaf E on Y , HU(X,L Fef*E)= 0 for kz1 .

Proof. Let 7 : X —> X be a projective resolution of
singularities of X . It is clear by the Leray spectral
sequence that H (X,I X £*F) injects into

1 (X, (n*1) K

® (fow)*E) . Therefore using X instead of
X, fern instead of f and 7*L instead of L we have

reduced to the case X is smooth.

Using dimX - dimY2 2 the result is now clear from

[Ful; Corollary As6].

{0.3) We need some information about extension of line

bundles.

{0.3.1) Lemma. Let A be an effective ample divisor

on an irreducible proijective variety X of dimension 2z 4 .

Assume that AcX o - Then for any desingularization X of

X the restriction map Pic(X) —> Pic(A) has finite cokernel.
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Proof. Since Affxreg + X has isolated singularities
and we can assume without loss of generality that X 1is

normal.

Let 7 : X —> X denote a desingularization of X .
Since #® 1is a biholomorphism from
X - n—1(Sing(x)) —> X - Sing(X) we identify A and
) .

Consider the long exact cohomology sequences associated

to the exponential sequences on X and A .

g (')‘E,ox) —> Pic(X) —> G (X,2) —> B2 (X, 03

B R B

1'(a,0,) —> Pic(n) —> n2(a,2) —> B (A,0,)

where the vertical maps are restrictions.

As it is well known Hiti,Ox)ssﬁl{A,OA) for i %dima-1 .

This follows from the Kodaira vanishing theorem (0.2},

(%, 217" = 0 for 4isdima .

Therefore we will be done by a diagram chase if we show
that the restriction Hz(ﬁ,l) —_> HZ(A,Z) has finite cokernel.

This will follow if we show that Hz(g,ﬂ) — H2(A,Q) is onto.

Choose n>0 such that [A]" is very ample and embed

N-1
T

that meets X in naA . The hypherplanes sufficiently near #H'

X in IPI; using r([al™) . There is a hyperplane H' = P

meet X 1in sets contained in a neighborhood vsfxreg of A
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which is a deformation retract of A . The basic result

of [So5 ] shows that for any of these nearby hyperplanes H ,
the restriction mapping RH : Hj(V,Z) — Hj(Hf1X,Z) is an
isomorphism for jsdimX~-2 . Choosing an H near H'

s0 that A' = H'NX is smooth we see that

Hztﬁ,m) —_> HZ(A,Q) —> 0 is equivalent to showing that

Hz(ﬁlm} — HZ(A',Q) —> 0 . Indeed consider:

~ H(A,D)

R

B2 (X,Q) —> HZ(V,Q)
B2 (a',Q)

By Kronecker duality we are reduced to showing that:

0 —> E,(a",0) —> Hy(X,0) .

Since the intersection homology of a manifold is equal to its
usual homology [ (G+M)3] and since the rational intersection
homology of a complex algebraic variety X injects into the
rational intersection homology of any desingularization X

[(G+M)1] we are reduced to showing that:
where IH, denotes intersection homology. This last injection

follows from the beautiful result [(G+M)3] that for a hpyerplane

section of a variety by a hyperplane to all strata of a Morse
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stratification of the variety (which A' € Xpaq certainly
is) the usual first Lefschetz theorem holds with intexrsection

homology replacing the usual homology.

We need the following result also.

(0.3.2) Lemma. Let A be an ample divisor on an irreducible

projective local complete intersection X. Assume that

cod Irr(xX) 2 3. Under restriction:

Pic(X) ~ Pic (3) if dim X 2 4
0 —> Pic (X) —> Pic (A) with torsion free cokernel if
dim X = 3.

Proof. By the usual argument using the long exact cohomology
sequence associated to the exponential sequence of X ’and A
the above result will follow if we show that ni(X,A,a) with

i § dim A and any basepoint a € A and also tha£ Hi(x,[A]_?)=0

for i = 1,2. The former is the Lefschetz theorem of Goresky-

MacPherson [(G+ M)2] and the latter is just (0.2).

In the same spirit as the above results we need information
about when we can conclude that there is a non-trivial holomorphic

k form on a desingularization of a variety.
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{0.3.3) Lemma. Let L be a line bundle on a normal irreducible

proijective variety, X , of dimension n. Assume that some posi-

tive power L™ of I is spanned by global sections at all

points of X and that the map associated to P(Lm) has an n

dimensional image, e.g. assume that L is ample. Let A € |L|

be normal with at most rational singularities. Let P X — X

be a desinqularization of X and let 31 : A —> A' be a desingu~

larization of the proper transform A' in X of A. Let

. 1O (aKpx
R : H (AT} )

R is a surjection for k< dim A.

—_ HO(AkT% ) be the map induced by 7,. Then

1.

Proof,. By Hodge theory it sufficies to show that the map
R Hk(Oi) —_— Hk(OA) induced by T is a surjection for

k < dim A, By (0.2) the restriction

k k

is an isomorphism for k <dim A.
Using this and considering the commutative diagram:

k
H (Ox)
4’.
k k
¥ (0, ,) H® (0g)
+
k
H (0W2~1(A))
+

k
H (OA)
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it sufficies to show that the map
k
wr s B0,) —> BN (0g) |

induced by the composition w : A —> A of T, and

A' —> A is an isomorphism. Using the Leray spectral se-
quence for 7 and the fact that A having only rational
singularities is equivalent to “(i)(OK) =0 for i >0,

this is clear.

(0.4) Lemma. Let ¢ : Z -—>An? be a holomorphic map of

T
an_irreducible projective variety % with dim ¢(Z) 2 2.

Given a general hyperplane H on %, ¢ V(H) 1is irreducible.

Given any hyperplane H on P, ¢~V (H) is connected.

Proof. This is a standard fact, e.g. [Sh+So; theorem (3.42)1].

a

(0.5) We give here a few standard counterexamples to the extension

problem discussed in the introduction. The most obvious is

1 1 '
r x® < IPz. This can be generalized slightly. Let Hd c ¥

3

3

be a smooth degree 4 hypersurface in 1P that contains a

line ¢, e.g. let

{ ! g ¢
Hy = {(Bh,e00,2,) 2 = 0 }.
a 0 3hE

Then [ = OIP3(1)lHd ol21”! is spanned by global sections

and gives a holomorphic surjection £:H, —> nﬂ with general

da
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fibre biholomorphic to a curve of degree d -1 in IP2

see [So1] for more or this type of fibration. Clearly £

can't extend holomorphically to IP3.

Many examples of non-extendible maps with dim ¥ = 1
can be given. We know of only one example of a 1 bundle
A over a Y with dim Y > 1 , where X is not a I?z

bundle. The following simple argument was given to us by

E. Sato.

n

Let Y = 1P with n > 1. Let Yy be a non trivial element

of H1(0nﬂ (-2)) and let F* = & 0,9 (-2). Let E* be the

n copies
unique extension

0 —> F¥* —> E¥ —> ¢m1 —-—> 0

such that 1 € HO(O goes to y ® ... w y € H! (F*},

1)
IP [n copies]
Note that IP(F) 1is a very ample divisor on IP (E). To see
this it must just be noted that E is ample. By dualizing
the above exact sequence we can easily check that E 1is

spanned by global sections. We must only check that E

doesn't contain a trivial summand.

If it did then E* would have a nowhere vanishing section.
Since F* has no section, the image of this section would split
the above exact sequence contradicting the non~triviality of

Y . These P (F)} is a very ample divisor of I(E).
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Note that P®(F) =P!x p".

1

Since there are no non trivial map P —5 p” the map

P(F) —> P®  cannot extend to a map from the 'PrH1 -bundle

P(E) to P".

(0.6) We give here a summary of the solution to the problem
posed in the introduction when Y is a curve of genus g> 0.
This result was more a less known a half century ago (cf. [Rol,

Ch. 4, § 11,12), a short proof can be found in [Fa+Sol.

{0.6.1) Theorem. Ilet A be a smooth ample divisor on an

irreducible projective local complete intersection

threefold X, Assume that there is a holomorphic map
f:A —> R with generic fibre :IE’1 onto a Riemann surface

R of genus g » 1. Then £ extends to a holomorphic map

f : X —> R. Either

2

' pbundle and T is a P° bundle with the

a) £ is a

restriction of [A] to a general fibre isomorphic to P’ or

b)  has Ph @' as general fibre and the restriction

of [a] to PlWwirlis isomorphic to [A] where A is the

diagonal of Px pl,

(0.7) Lemma. Let L be an ample line bundle on a normal pro-

jective local complete 1lntersection X. Assume that L is

spanned at all points by global sections and that the locus of
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irrational singularities is of codimension 2 3,

Assume that there is an A € |L| and a surjective holo-

morphic map £:A —> Y into a normal projective variety Y.

If f extends to a meromorphic map f:X —> Y holomorphic

in a neighborhood of A and dim A>dim Y then T is

holomorphic.

Proof. Let E be a very ample line bundle on Y and let

E be the extension of f*E to X that exists by lemma (0.3.3).
If we knew that pullbacks under f of sections of E extended to
sections of E we would be done by an argument of [So1]l] when
X 1is smooth that wasnicely generalized to arbitrary X in
[Fu1l. Indeed dim Y + 1 sections span E. Thus dim Y + 1
sections span E off an analytic set A < X - A. Thus A is
empty Or dim A  dim X - dim ¥ - 1> 0. But since A < X - A,
dim A = 0. Thus since E is spanned by dim Y + 1 sections,

the map associated to pullbacks of sections has a dim ¥ dimen-

sional image. It is easy to see this must be Y.

The natural supposition is that if we take D € |E]
then T*D € |E|. If this is true we are done by the above
reasoning. If we knew that ¥*D were Cartier this would be
cledar since 0 —> Pic(X) —> Pic{d). Unforunately this is

not immediately obvious.

Let m:X —> X be a desingularization of the graph of

f. Choose an A' € |L| such that A = ﬂ"1(A‘) is smooth and

¥ is holomorphic in a neighborhood of A'. This is possible
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since f is holomorphic in a neighborhood of A.

Let f£':X —> Y be the holomorphic map induced by
T . 1et E and E be us before and let M = [£'*D] for
a general divisor DEJE| such that f'*1(D) is irreducible.

If we show that M ~ 1™ we will be done. Consider:

0 —> *(Eo L ') o M1 —> *E o M| (1*E o M“‘)K —

1

Since w*Eeo M ' w 0 it sufficies to show that

H1(n*(E@ L—1) ® M_1) = 0. 8Since the map associated to
T((N*L)X) has a dim A dimensional image, it follows that

1

HT«(ﬂ*E) ® M“1 ® T*L )K) = H1((W*Lﬁt)x) = 0

for t>0. Therefore by tensoring the above exact segquence
with n*L’t for ©t = 1,2,3 ... and using the associated
long exact cohomology sequence we reduce to showing that

1

H1(§,n*(E o L) @ ') = 0 for some t>0.

By Serre duality and the Leray spectral sequence we reduce

to showing that:

it (x,1F o E* @ Ty (g @ K1) =0

for i+3 =dim A and t >> 0. Since M 41is spanned it follows

from {(Gr + Ri] that “d)(wf @ M) =0 for 3>0. Since L
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dim

t
is ample H A(X,L ® E* o T Wy® MAY=0 for t >> 0.

n
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§ 1 Some Results on Holomorphic Forms

(1.1) Theorem. Let f : X —> Y be a holomorphic surjection

with connected fibres between normal irreducible projective

varieties X and Y. Assume that there is a non-empty Zariski

open set V c Y such that V and f-1{V) are smooth and

£: £ (V) — V is of maximal rank. Assume that X and Y

have at most rational singularities. If hi(GF) = 0 for

0 <i <qg where F 1is a general fibre of £ then

f(i)(ox) = 0 for 0<i<q.

In particular if hi(OF) = 0 for 1 > 0 then
f(i)(Ox) =0 for i > 0.

Proof. It can be assumed without loss of generality that X
and Y are smooth. To see this let g:? —> Y be a de-
singularization of Y and let X be a desingularization of
the irreducible component of the fibre product xxY? which
surjects onto both Y and X under the natural projections.

We have the commutative square:
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The horizontal maps are birational morphisms and

since the singularities of X and Y are rational:
* Py ~ = = ~ i

) g(i)(ox) 0 g(i)(OY) for i> 0
and since X and Y are normal:

*¥) Gul0g) =0 9.(0g) = Oy

The condition on the general fibre of f and the fact

that g : g—1(V) — Y and ¢ : §_T(f—1(V)) > f”1

(v}

are biholomorphisms imply that hi(OF) =0 for 0<i=<gq
where ¥ is a general fibre of T. If the theorem is true

for T then using *) and **) and the Leray spectral sequence

for g o ¥ we see that
(g %)(i) =0 for 0<iz<q and (g e T),(0p =0

Yt

Using this, £ e E = g o f, *), **}, and the Leray spectral

sequence for f o § we see that:
0 = f(i)(g*OE) = f(i)(OX) for 0 < i <qg.
Therefore assume that X and Y are smooth,.

We need a lemma.
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(1.1.1) Lemma. Let f : X —> Y be a surjective holomorphic

map with connected fibres between projective manifolds X and

Y. Assume that hi(OF) =0 for 0 <i<q where F is a

generic fibre of £. Then

I D |
(1.1.1.1) £ 3 HU(0,) —> H(0,)

is an isomorphims for 0 < i < q.

Proof. By standard Hodge theory the map in (1.1.1.1) is an
injection for all i , e.g. [W]. We must only show that the
map is surjective. By conjugation and the Hodge theory anti-
isomorphism of Hi(Ox) with H0(A1T§) and of Hi(OY) with
HO(A1T§) this is equivalent to showing that every holomorphic
i form n on X with 0 < i <q is of the form f*p for

a holomorphic i form on Y.

This is certainly true over the dense Zariski open set
V c Y such that f : f*1(V) —> V is of maximal rank. Indeed

let V' = £

(V} consider the exact sequence:

—" | J— U * e
0 > f*Tv > TG, > TV'/V > 0.

We get a filtration.
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where F, = (Ai‘Jf*T;,) A (A7T%,). The quotients are
s .
Fy/Fs_y ™ (A IErTE) o AJT\‘;,/V . Let ng,

restriction of n to V'. Since by shrinking V it is

denote the

easy to see that Ny = f*wv for some holomorphic i

3
form if A T{;,/VlF

0 < j < i. By the Hodge theory isomorphism Hi(o ) = HO(AiT*)
. - - 2

] A3T§ has no holomorphic sections for

and our hypothesis this is clear. We must only show that Uy
has a holomorphic extension to Y. Assume otherwise. Since

by Hartogs theorem holomorphic sections of vector bundles
extend over codimension 2 sets it follows that Wy extends

to a holomorphic i form w' on Y - Z where Z is a set
of pure codimension 1. Choosing dim X - dim ¥ general
.hyperplane sections of X and intersecting we get a submani-
fold X' of X such that fx, is generically finite to one
Further the pullback of w' to X' extends holomorphically
since it agrees with the restriction of n on a dense open
set. Choose a smooth point x of 2 such that fx, is
finite toone over a neighborhood of x. An easy calculation
shows that ' has at worst poles on Z and extends holomor-
phically 1if it has no poles. Slicing Y with sufficiently
ample hyperplane sections through x we can choose an i-
dimensional submanifold Y¥' < ¥ such that the restriction

w" of w' to Y' - ZnyY' has poles along zZny* if w?
has poles along Z. Further desingularizing an irreducible
component of fgz(y') we get a projective i-dimensional mani-
fold X" and a gerically finite to onesurjective £":X" —> Y

such that the pullback of " to X" extends to all of X"

holomorphically. But this implies
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[ w" A w™ is finite since

deg (") [ w" A ®" = [ (£"*w") A(F"%p").

If J w" A w™ is finite an easy calculation shows that

w' has no poles along ZnAY'. Thus has a holomorphic

\'%

extension to Y.

We need a general slicing lemma also.

(1.1.2) Slicing lemma, Let £ : X —> Y be a holomorphic

surjection between projective manifolds. If H is a general

hyperplane section of Y then

1

a) H and H' = f '(H) are smooth,

b) dim support (£ i)(OX)) = dim support (£ )(OH.))

( B (4
+1 whenever f(i)(ox) is non trivial (here we

adopt the convention that the empty set has dimension

1) and (£,,) (0

(1) H‘) is non-trival if dim support

f(i)(Ox) = 1.

Proof. a) is true by Bertini's theorem. We have the exact

sequence:

0 —> [u']"! —» Oy —> O0py —> 0
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The long exact sequence of direct image sheaves gives:
-1
> f(i){Ox) e [H] " —> fi(OX) > f(i)(ﬂH‘) >

If 8 1is any coherent sheaf in a manifold Y, then a general
hyperplane section will not contain the support of any sub-

sheaf of S. Thus
0 —> S o [H]-1 —> 8.

From this and the long exact sequence of direct image

sheaves above, we get the lemma.

Now assume the theorem is false. Let i be the
smallest integers 0 < i < g such that f(i)lﬂx}=#0.
If f(i)(ox) is supported in a finite set then by the
Leray spectral sequence and lemma {(1.1.1) we have a con-

tradiction. 1f f )(Ox) is supported on a k > 1 dimensio-

(i
nal set then by lemma (1.1.2) we can slice with k hyperplane
sections on Y and reduce to a situation where we get the

same contradiction as the last sentence.

The following lemmas will be convenient.

{(1.2) Lemma, let f : X —> Y be a holomorphic surjective

map of irreducible projective varieties. If there is a non-

trivial holomorphic k form on a desingularization of Y,
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then there is a non-trivial holomorphic k form on a desingular-

lzation of X.

Proof. Let =, : X —> X and : ¥ —> Y be desingulari-

w
2
zations of X and Y. Since holomorphic forms pullback to
holomorphic forms under meromorphic maps the lemma follows

by considering n;1 o £ o .

(1.3) Lemma. Let f : X —> Y be a meromorphic surjective

map between irreducible projective varieties. Assume that

there is an open set V < Yreg £.: £ (V) — VvV  is of

maximal rank and

-1
a) £ (V) c xreg '
b} on f'1(V) ., £ has connected fibres and is

maximal rank,

c) given a generic fibre F of f on f"1(V):

htog) =0 0<i<k.

If a desingularization of X has a non-trivial k form

then a desinqularization of Y has a non-trivial k form.

Proof. Let X' denote the graph of f and f':X' —> Y

the induced map. Let : Y —> Y be a desingularization of

v
2
Y. Let 2 be the irreducible component of X' 'YY that
surjects onto both X and Y under the induced map. Let
¥ X —> Z be a desingularization of 2. We have a commuta-

tive diaaram:
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] € X
S S

where the horizontal maps are birational. The hyptheses
of lemma {(1.1.1) are satisfled and therefore our lemma

follows.
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§ 2 The Meromorphic Extension Theorem

(2.0) Let L be a line bundle on a compact irreducible
normal complex analytic space X. Assume that L is

spanned at all points by global sections and that X is
Cohen-Macaulay, i.e. that the localrings of X are all

Cohen-Macaulay local rings. Let

e : X xT{L) —> L

denote the evaluation map on sections. Since T (L) spans

L at all points it follows that e 1is onto and the kernel K
is a vector bundle on X. We denote P (K*) by A and note
that A < X x |Ll is the family of pairs (x,A)} with
x€A€|L|. Let p: A—>X and gq : A —> |L| dencte the
maps induced by the product projections and note that p is

the natural projection of I (K*) —> X .

Since A 1is a fibre bundle with smooth fibre over a
Cohen-Macaulay variety it follows that A is Cohen-Macaulay.
Since g has equal dimensional fibres, A is Cohen~Macaulay,

and |L| 4is smooth, it follows that:

(2.0.1) gq is flat.

(2.1.) Lemma. Let X,L,A and q be as above. Assume that

there 1s an irreducible normal A € |LI that fibres holomor-

phically f : A —> ¥ where Y 1is a normal irreducible
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analytic space and where £ has connected fibres. Assume

further that there is a smooth Zarisky open set V oY
-1

such that U = f "(V) 1is smooth and such that £ is of

maximal rank on U. Assume that there is an ample line

bundle E on Y such that £*E extends to a line bundle

E on X. Assume that f(i)(oA) = 0 for all odd i. Then

there is a compact normal analytic space VY , a holomorphic

surjection g : ¥ —> |LI and a meromorphic surjection

F : A—> V¥ such that :

F>y

a) A

q \ ﬁ commutes
ILI

b) F is holomorphic on a Zariski open set containing
-1

q-1(A), g '(A) is biholomorphic to Y and F = f,

g Ya)

c) g is equal dimensional in a neighborhood of gniiA),

d) there is a smooth Zariski open set V<V such that
1

F is of maximal rank in the set U = F 'V which is

smooth and such that V 0 g '(A) = V.

Proof. Choose n 1large enough so that E"  is very ample and

by Serre‘s theorem Hj(Y,f (£%g™)) = Hj(Y:f(i)(OA) x E)

(i)
is zero for j>0 and all 4i. By the Leray spectral sequence
for £ and £*E" and the hypothesis that f{i){ﬁA) = 9 for

odd 1, it follows that HJ(a,f*E") = 0 for odd 3> 0. By the
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flatness (2.0.1) of q it follows that x(ex.) is
independent of A' € |L|. From this and the upper semi-
continuity of dimensions of cohomology groups it follows
that ho(A‘,EX,) is constant for a Zariski open set of |L|
that contaiﬁs A. This and the flatness of q imply by

a theorem of Grauert that the coherent sheaf:
S = qu(p*E™)

is locally free of rank hO(En) in a neighborhood of A

in IL!. Since sections of f£*gE" therefore extend to give
sections of § it follows that (p*En), is spanned by global
section for A' in a Zarisky open set (¢ containing A in
{Ll1. Therefore we have a meromorphic map F' from A into
Proj(S) which is holomorphic in a neighborhood of q"1(A).
Let V¥V denote the normalization of the image of F' and

let F denote the induced meromorphic map. Note that

dim F(q '(a')) is independent of A' € 0. Indeed if 52, is
spanned, then its image is of dimension:

max {k|E -+« E « L 4is non-trivial in H2k+2(x,Q)}.

k timesJ

This implies c¢) where g : ¥ —> |L| is the induced map.

The assertion d) is straighforward and left to the

reader.
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{(2.3) Meromorghic Extension Thecorem. Let X be an

n dimensional Cohen Macaulay compact irreducible normal

complex analytic space. Assume that hO(An“ZT:) + 0
~ X
where X is a desingularization of X. Assume that L

is a line bundle spanned at all points of X by global

gections and that C1(Iddim X >0, i.e., the map assogci-

ated to T'(L} has image of dimension dim X. Assume that there

is an irreducible normal A € {L| such that there is a holo-
1

morphi¢c surjection f : A —> ¥ with generic fibre P

onto a compact normal complex analytic space Y. Assume that

there is an ample line bundle E on Y such that £*E

extends to a holomorphic line bundle £ on X. If either

f is flat or A and Y have only rational singularties

(if any) then f extends to a meromorphic map:

f:X—>Y

-

holomorphic in a neighborhood of the open set U ¢ Arag such

that fU : U —> £(U) is a Eﬂ bundle.

Proof. Lemma (2.1) applies. Let

X <*~ A -> 4

"\

be as in that lemma.
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Since A is normal and since a generic fibre of

f: A—>Y |is I’1 , it follows that f(Sing(A)) 1is a

proper analytic subset of Y and therefore that f is
a holomorphic Iﬂ bundle over a Zariski open set of Y.
This property is clearly inherited by the maps

Fart A' —> F(A'") given by lemma (1.1) for A' near
A in {L{. Thus:

(2.3.1) F 1is a P1 bundle over a smooth Zariski open
set V c ¥ which meets Y non-trivially in a Zariski
open set V (here we identify Y with 9“1(A)}.
Let B = p-1(A) and let B' be the image of B in
A x A under the map (i,p) where i : B —> A |is the

inclusion. Let F':Axa —> Y xA be the map v(F,idA).

Note that B 1is irreducible since it is a fibre bundle
over A. Thus F'(B') 1is irreducible. Since F' is a ‘P1
bundle over V x A where V 1is as in (2.3.1) it follows
that the closure 2z of F' (F'(B') NV x A) in F' (F'(B'))

is an irreducible set.

(2.3.2) Lemma. The meromorphic map F' from B' to

F'(B'}) is one to one on F‘”T(V x A) N B'.
Proof. To see this note that if (v,x) € V x A then F'~1(V,X)=

{(w,x) | F(w) = v}.
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Note that {w € A | F(w) = v} = {(z,A') € Xx{L{ { g{v) = A",

z € A',FA,(z) = v},

H

Thus F'_1(v,x) N B' = (x,A',x) €Xx|LlxA | g{v) = A', XEA',

FA.(X) = v}

Let h : 2 —> X denote the map onto X induced
by the composition of the product projection A x A —> A
and p. Let k : Z —> Y denote the surjection induced by
the composition of tﬁe product projection A x A —> A and
f:A—>Y. Let ¢ : Z—> YxX denote the map (k,h). Let
Z' = ¢(2) and let k' : 2' —> Y and h' : Z2' —> X be the

maps induced by the product projections.

Choose a general element H € lENl where N is chosen
so that E' is very ample. By lemma (0.4), H' = k) is

irreducible since % is irreducible.
(2.3.3) Lemma. h(H') # X.

Proof. Assume that h(H') = X. 8ince a desingularization of
X has a non~trivial holomorphic n-2 form on it it follows
from lemma (1.2) that a desingularization H' of H' has a

non-trivial holomorphic n-2 form on it. Since
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'H‘ : H' —> PFP'(H'}) is a ]E’1 bundle over a dense open

F
set of F'{H'), it follows from lemma (1.3) that a desingu-
larisation of F'{(H') has a non~trivial holomorphic n- 2

form on it. Using lemma (2.3.2) it is clear that F'(H'} |is
birational to p_1(f~1(H')). Since this is a projective bundle
over f '(H') it follows from lemma (1.3) that the desingulari-

1

sation of f (H') has a non-trivial holomorphic n-2 form

on it. Since f—1(H') maps onto H' with generic fibre P1
it follows from lemma (1.3) that the desingularisation of H'®
has a non-trivial holomorphic n-2 form on it. But since

dim H' = n- 3, this is absurd.

We are now in a position to show that Z' is the graph
of meromorphic map from X to Y. First note that the dimen-
sion of a generic fibre of h' : Z' —> X is 0 dimensional.
Indeed if it was not then given a general very ample divisor
H on Y, it follows that h'(k' '(H)) = X. Since h'(k' 1 (H))

= h(k—1(H)), this is ruled out by lemma (2.3.3).

Therefore since h'(Z') = h(Z) = X it follows that

dim Y + dim (generic fibre of k') = dim X or
(2.3.4) dim (generic fibre of k') = 2.

(2.3.5) Choose a Yy €Y that is general in the sense that:

a) k '(y) is irreducible and dim h(k™ '(y)) = 2,

b} the curve & = f“1(y) is a smooth n>1 c Areg
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and f is of maximal rank in a neighborhood of

2.

{2.3.6). Choose an A' € |L| that is general in the following

senses:

a) A' 1is irreducible and smooth away from X sing 7

b) A*'NA is irreducible and A' meets A transversely

on Areg’

c) A' does not contain a point x € £ selected in

advance of the choice of a' ,

d) F is holomorphic in a neighborhood of q ' (A').

. Note the fact that generically A' and A' N A are
irreducible follow from lemma (0.4) and the fact that the

map associated to T (L) has an image of dimension dim X.

Let P < ILl denote the pencil joining A and A',
Let I denote the graph of the Fq,1 . Let X' denote

(?)
the irreducible component of T such that:

pl{projection of X' on q-T(P)) = X.

Let m : X' —> X be the map composed of p and projection

of X' to q '(p). Note that

(2.3.7) m is a birational map.
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et VY denote the irreducible component of g”‘(?)

P

such that g(VP) = p and the map FP : X' —> VP induced

by F is onto. We have:

where g¢g' and r are the maps induced by g and g respectively.

By (2.3.6) there is a dense open set @ < X which
contains & and such that m -1 : m—1(Q) —> Q is Q

m {(Q)
with AnA'nQ blown up.

By a€ 2n A' , r Y xm Y(a)) contains a unique
irreducible 2 dimensional component wa that contains £.
To see this note that for most w € r(m '(a)) m(r (w)) is
a smooth :l?1 on an A" € P which is also a fibre of FA"'
From this we see also that m(W ) < h(k '(y)). Since
dim h(k '(y)) = 2 by (2.3.5a) we conclude m(w_) = hik™ ' (y)).
This set which we call W 4is therefore independent of a € 2 n A'
and the general A' chosen éubject to (2.3.6}.

Let € T{(L) be a section defining A'. There is a

Spt
short exact sequence:
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0 —> Nz\ —> N

A A —— L£m>0

regly

of normal bundles. The infinitesimal deformation of 1
corresponding to the family m(r—1(w)) for w near
A'iz' Since
SAJX)‘*O by (2.3.6c) we see that { is smooth near x

r(a) has as image in Lz the restriction s

and (# is transverse to A near x. Since x £ & was
arbitrary we conclude that # is smooth in a neighborhood

of & and along £ W intersects A transversely.
(2.3.8) Lemma. Wna-= 2.

Proof. Since y 4is general and the map ¢ : X -*>ZP¢
has an image of dimension equal to dim X , it follows
that dim ¢(W) = 2. By (0.4) W N A is connected. Since

W meets A transversely in £ it follows that Wna = £,

The above shows that W determines y by £{(¢ 0 a).

Thus 2' is the graph of a meromorphic map £: X —> Y,

Finally let 2 < Areg be a fibre of £ in a neigh-
borhood of which f is of maximal rank. Choose A' subject
to (2.3.6). Choose a local holomorphic section.

g N —> A

where N 1is a neighborhood of £(&) and o(N) € AO0A'.
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For asmall enough N and for y in a small enough neigh-
borhood of x 1in X, there is a well defined holomorphic
map which sends y to f(a) where a € o(N} and

m—1(y) 3 Wa. This map agrees with f on an open set and

gives the desired extension.

(2.4) Corollary, ILet X be a normal irreducible projective

variety and let L be an ample line bundle on X spanned at

all points of X. Assume there is an irreducible A€ |L| such

that:

a) Ac Xreg and A has only rational singularities ,

b) there is a holomorphic surjection £ : A —> Y onto

a normal projective variety and the generic fibre of

£ is ]E>1 .

c} that Y has at worst rational singularities.

Then f extends to a meromorphic map f : X —> Y holomorphic

in a neighborhood of the open set U < Areg such that

fU : p—> £(u) 1is a P bundle.

Proof. Let =# : ¥ —> X be a desingularization of X. Since

Ac xreg we have 1 giving a biholomorphism of A and

w—1(A). Let E be an ample line bundle on Y. By lemma (0.3.1)

£*E” extends to X for some n>0. By (1.2) and (0.3.3)

hO (A9 Yrx) 4 0. Thus (X,7*L,n” ' (ALE®) satisfies the hypo-
X

thesis on (X,L,A,E} in theorem {2.3). Therefore there is a

meromorphic extension f : X —> Y. The composition f o u"1

:X —> ¥
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is the desired extension.

(2.5) Corollary. Assume the same hypothesis as (2.4) except that

Ac Xreg is replaced by the assumption that X is a

local complete intersection with the locus of irrational

singularities having codimension > 3 . Then the same

conclusion as in (2.4) holds.

Proof. Use (0.3.4) instead of (0.3.3).

(2.6) Theorem Let X be a projective variety which is a
local complete intersectijon. Assume that L is an ample

iine bundle spanned at all points of X by global sections.
1

Assume that there exists a smooth A € L] which is a 1P

bundle f : A —> Y over a proijective manifold Y. Assune

that there exists an unramified cover # : T —> Y with
hdim T,0 (T) # 0. Then f extends to a holomorphic map
f: X — Y.

Proof. We can assume withoﬁt loss of generality that T is a
regular covering of Y. Suppressing base points for simplicity
we note that w,(T) 2;1 T4 (A) ;* 7, (X) where 1 : A% X is
the inclusion map. Let H, = mn,(n (T)), H, = f;1(H1) and

Hy = i, (H,). Denote by A and X the covering spaces of A
and X corresponding to H2 and Hy o subgroups of n1{A)

and 11(X) respectively. Thus we have the following diagram
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A > X
P q
v v
07] A > X
i
£
v
T ~1~> Y

Note that £ ¢ p and 1 ¢ p 1lift to a map from A to

T and from A to X respectively since

(f

1
24
1

o

P),(n, (R)) = m,ln (T)) and

(i

o

H
m
1l

P)ylng (B)) = Hy = g, (n,(X)).

It is easy to see that A is an ample divisor on X

and that X —2> T is P 1 bundle over T. Using (0.7)

and (2.4) we conclude that the map ¢ extends to a holomor-
phic map ©® : X —> T. The group of the deck transformations
of X,A and T are all isomorphic to one another by cons-
truction. Denote such group by G. Note that everything
descends. Therefore we get a holomorphic map T: X — v,
where ¥ is obtained from $: X —> T after we have con-

sidered the action of G on X and T. Clearly f is

holomorphic and is an extension of our given f.
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(2.7) Corollary Let X,L and A be as in (2.6). Assume

that Kt = (0 , with t minimal. Then the same conclusion
e Y -

as in (2.6) holds.

Proof. Let % : T —> ¥ be the t-cyclic unramified cover

of Y determined by the torsion line bundle Ky. Note that

ndi® Te0 0y 4 0. Therefore (2.6) applies.
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§ 3 :P1 Bundles as gxggrglggg Sections

{3.0) Theorem. lLet X be a projective local complete inter-

section. Assume that L is an ample line bundle on X

spanned at all points by global sections. Assume that there
1

is a smooth A € |L{ which is a »® bundle f : A —> Y

over a projective Y. Then if hO(KY) # 0 f extends to a

it

holomorphic map f : X —> Y. Dim Y < 2 and if dim Y

T:X—> Y is a P° bundle with the restriction of L to

2,

a fibre of ¥ 4isomorphic to 047 (1).

Proof. By lemma (0.7) and (2.4) the'holomorphic extension
f : X —> Y exists. By Prop. V of [So1] it follows that if

f is a P' bundle then dim Y < 2.

We can therefore by theorem (0.6.1) assume that dim Y = 2.
Let A Dbe the union of the singular set of X and the set where
£ is not of maximal rank. Since A < X - A, the set A is

finite. Choose a smooth connected curve C < Y such that

——

f(A)nc = ¢. Let f£' =f£f P BT = E , and let F
£ £

denote a general fibre of ¥f'. Suppressing basepoints for simpli-

city we have the long exact sequences of homotbpy groups of

fibre bundles:

—1
////irwz(F) —> 1, (' (C))
(C) Ta Tb

k ™~ ,/;qIZ(C)
1, (B1) —>7, (£71(C))
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Note that b is surjective by the first Lefschetz
theorem on hyperplane sections. A diagram chase shows that
a is surjective. Since Eﬂ is a hyperplane section of
F it is very well known [e.g. So2, (0.6.1)] that F

is either Pz or a P1 bundle over EJ . Since a 1is

surjective F is I and [p’ lp = Ly is 0p2(1) .

We are done except for the possibility of a singular

YEmy) o+ 1 = 2.

fibre F of f : X —> Y. Dim F < dim £~
By the above it is clear that F is irreducible (since
L -+ L« F = 1), An easy arugment using [So2 (0.6.1)1 shows

that F ~ B2,

. T 2
To finish the argument note that since £ £(¥F) = P

and since f is flat (fibres are egual dimensional, X is
a local complete intersection and Y is smooth) it follcws

that f 1is of maximal rank in a neighborhood of F,

(3.1) Theorem Let L be an ample line bundle on a lccal

complete intersection X assume that:

N

. . L0,
a) L is spanned by global sections and h {{&x ® L))

*# 0 for some N >0,

®

b) the sinqular set of X have codimension > 4.
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Let H € IL|I and assume that there is a holomorphic surjection

f:H—> B which expresses H as a projective variety with

a codimension 2 submanifold A' < Héeg blown up. Assume that

ho(KA,) # 0. Then dim A' < 2 and £ extends to a holomorphic

map f : X —> X' such that

o
v
>

thy

o<
v
YR

il

commutes where i and 1' are inclusions.The map ¥t expresses

X as X' with the smooth subvariety i'(A') < xéeg blown up.
Proof. By the same arqument as in [So2] or [Fa2] it can be
shown that there exists a normal Cartier divisor D on X
which meets H transversaly along E, the exceptional divisor
of f over A'. By (3.0) the map fE : E—> A' extends to

a holomorphic map f : D —> A' and dim A' < 2. The case

dim A' = 1 has been done, see [Fa2]l. So the only case left
out is dim A' = 2. In such case f : D —> A' is a P bundle
with the restriction of Ly to the genexal fibre of T
isomorphic to Op2 (1). It is then clear that the line bundle
[D] .restricted to the general fibre of F is sz (~1). There-
fore by Nakano's theorem we can smoothly blow down D. Thus
there exists a variety X and a holomorphic map f : X —> X'

such that the following diagramm



-45-

H ——> X
fl l}”‘
v
H' > X!
commutes. Clearly i'(A') < X! since H' 1is a Cartier

reg
divisor on X'. And the map f expresses X as X' with

i*{(A'}) blown up.
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§4 Concluding Remarks

1

(4.0) gongectur ., Let f : A —>Y be a P bundle over

a smooth connected projective manifold Y. Assume that Y

has non-negative Kodaira dimension. If A is an ample divisor

on a projective local complete intersection X , then £

extends to a holomorphic surjection f : X —> Y, dim ¥ < 2,

and dim Y = 2 implies f is a P2  bundle.

How do we approach (4.0)? First let us consider the Kodaira
dimension condition. It would be natural to have a higher order
first Lefschetz theorem. For example there is the following

question.

(4.1) Question. Let A be a smooth ample (or even very ample)

divisor on a connected projective manifold X. Is

HO((AiTX*)(S)) s HO((AiTi)(S))

for i < dim A and all sufficiently large s where g!s

denotes the s th symmetric power of a vector bundle E.

We can weaken the condition h’(K,) # 0 when dim Y = 2.
Indeed if ¥ is a general type surface then most fibres of
VP —> P in the proof of (2.3) are general type surfaces. The
intersection A n A' is also of general type and surjects

generically finite to one onto most fibres of VP —-> P. By the

2 dimensional de Francis theorem ({D+M]},[{M]}) most of the maps
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AN A' to a fibre of VP —> P are the same except for some
blowing up and down. Assuming the fibre degree of theSe maps

is t then we get a meromorphic map VP — (Af)A‘)(t)

L8

where = wt/st where s acts by permutations in the

t

t factors. The image of VP in (A n A')t is birational

to Y and the composition of X <— X' —> VP with this

gives the desired birational map.

Next how should we remove the condition [A] be spanned?

Assume hO(Kv) # 0. Let © be a non-trivial section of

Adim ¥T§ obtained by lifting w to Adlm ¥

by the first Lefschetz theorem. We have a sequence:

TZ and extending

. _w Adim Y- 1 T§

where im is interior multiplication. Let F be the subsheaf
which is the kernel of im. F should define a foliation on a
dense set of X whose sheets are the fibres of the desired
meromorphic extension X —> ¥. A careful study of F will
very possibly (at the expense of a more technical proof} remove

the need to assume spanning of [A].

Finally it would be interesting to know how much the

Kodaira dimension condition on Y can be relaxed.
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Appendix Extension Theorems for Maps of Fibre dimension

at least 2

{A.1) Theorem. Let A be an ample divisor on an irreducible

normal projective variety X. Assume that A is normal and

that there is a holomorphic surjection £ : A —> Y of A

onto a projective variety such that dim A - dim Y > 2. If

there is an ample line bundle L on Y such that f£*L

extends to a holomorphic line bundle L on X, then f

extends to a holomorphic map £ : X —> Y. In particular

extension takes place if X . is a local complete intersection

with the locus of non rational singularities having codimension

> 3.

Proof. The proof follows that of [So1] very closely; we
incorporate the improvements of [Full and [Fu2]l . By raising
L +to a sufficiently high positive power we get a very ample
line bundle whose pullback extends to X. Thus we can assume
that IL is very ample without loss of generality. Consider:

1

0 —> Lo [A] ' —> L—> L, —> 0

If the sections of LA extend to sections of ({ we
will get an extension of f to a meromorphic f : X —> Pc

by using TI'(L) as sketched in (0.7) (cf. [{Ful]l also).

To show the sections of L, extend to sections of L

it sufficies to show that H(X,L o [A]™1) = o.
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Considering the above exact sequence tensored with [A] *
for r = 1,2,3 ... we see that H1(A,LA ® {Algr) = 0 for

r = 1,2,3... would imply that:
1 - -
h (le [A17Y) <nl(L o [A]7%) < ... .
Since X is normal, H1(X,L ® {A]*k) = 0 for k>0,
[Ha Ch. III, Cor. 7.8]. Therefore we have reduced to
showing that h1(LA ® {A};r ) =0 for r > 1 which

follows from (0.2.1).

Note that under the local complete intersection condition

extension of f£*L occur by (0.3.2).

(A.2) Theorem. Let X be a normal irreducible projective

variety with isolated singularities. Let A be an ample

divisor on X which is normal and such that A < Xreg‘

If there is a holomorphic surjection f : A —> Y onto a

projective variety with dim A - dim Y > 2 then £ extends

to a meromorphic map f : X —> y which is holomorphic on

Xreg*

Proof. Let L be an ample line bundle on Y. Let = : X —> X%
be a desingularization of X. By lemma (0.3.1), £+ extends
to a halomorphic line bundle [ on X for some m > O.

The proof of the last result and a standard Hartog's theorem
argument would prove this result if we show that for some

neighborhood U of &
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H1(U,L @ [A1F) =0 for r>>0.

This is true by a result of Griffiths ([Gril, see also [LP]);
we have followed the idea of [Si]. Instead of using Griffiths’
theorem we could work on the formal completion of A in X

as done by Fujita [Fu2].

A consequence of theorem (A.1) using [So1] is that if A

and X are as in theorem (A.1) so that the holomorphic extension

f:X—>Y exists and if £ : A —> Y is a Pk' bundle with
k

P k+1

>2 then T is a bundle.
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