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In this article we study the following problem. 

Problem: Let X be a Erojective variet:(. Let L 

line bundle on X that is sEanned at all EOints of 

sections. Assume that some irreducible A E ILl is a 

be 

X 

f : A .... Y over a Erojective variety Y. Describe X. 

an amEle 

b:( 9:lobal 

JPk 
a: bundle 

The second author studied this earlier in [S01] where he 

showed (as a consequence of a very general extension theorem 

of his) that if A is a smooth ample divisor on a smooth 

projective X and k i:: 2 then f extends holomorphically to 

a JPk+ 1 bundle l' : X -> Y with L restricted to a general 

fibre isomorphic to 0 k+l (1) • Some technical improvements 
lP 
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were made in this result by Fujita [Pu1, Pu2J and Silva [Silo 

We include a quite general extension theorem subsuming all 

these results in a short appendix. This paper is concerned 

with the much more subtle case when the fibre of f: A --> Y 

is JP 1 • 

The key to analyzing X is to show that the map 

f : A --> Y extends to a holomorphic map f: X --> Y • This 

is not always true-examples with Y = JPn for some n ~ 1 

are easy to construct. We rule this sort of example out by 

assuming that Y has a nontrivial top degree holamorphic 

form. 

Theorem. Let L be an ample line bundle on a normal pro-

jective variety X. Assume that L is spanned at all points 

by global sections and that there is a smooth A€ ILl which 

is a holomorphic p1 bundle f: A --> Y over a connected 

projective variety Y. If hO (Ky) ~ 0 then f extends to a 

meromorphic map f: X --> Y holomorphic in a neighborhood 

of A; if X is a local complete intersection then 1 is 

holomorphic. 

If f is holomorphic it is an easy consequence of an 

earlier result of the second author [Sol] that dim Y:S 2 

and in the case dim Y = 2 , "£ : X -> Y is a holomorphic JP2 

bundle with L restricted to a fibre of 1· isomorphic to 

o 2 (1) • The case when dim y. 1 
p 

is classical and leads 
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to "Quadric bundles" besides lP2 bundles. 

The above theorem is proved as a consequence of a 

considerably more powerful meromorphic extension theorem. 

One form of it is the following. 

Theorem. Let L be an amEle line bundle on a normal Ero-

jective variety X. Assume that L is spanned at all EOints 

by global sections and that there is a normal A ElL I which 

fibres holomorEhically f : A -> Y over a norma.l Erojective 

variety Y. Assume that: 

a) X is a local comElete intersection whose locus 

of non-rational singularities is at most dimension 1, 

b) the general fibre of f is lP 1 and both A and 

Y have at most rational singularities, 

c) there is a desingularization Y of Y with 

Then f extends to a meromorEhic maE f: X --> Y which 

is holomorEhic in a neighborhood of the oEen set 

such that fu: U -> f (U) is a lP 1 bundle. 

uc A - reg 

The most natural approach to such extension theorems is 

to choose a very ample line bundle E on Y t show that 

f·E extends to a line bundle E on X, and show that a IIlot" 

of sections of f.E extend to E. This was the approach 
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in [S01] (cf. the appendix to this paper) but it works if 

dimA - dimY = 1 only in very special cases (cf. [B J for the 

case of A a ]P 1 bundle over lP 1 ) • 

The second approach is to attempt to construct f 

geometrically. The idea is to take a general fibre t of f 

and look at the closure F of all deformations I' of t 

such that tnt I ;o! q, • F should be the general fibre of 1 . 

The main trouble in this approach is showing that dimF = 2 • 

A counterexample with Y =]pn shows that F can equal X. 

A modified form of the above approach does work. We want to use 

the non-trivial holomorphic form on the desingularization of 

Y to guarantee that dimF = 2 • To do this we need control 

over the parameter space of the set of deformations t' 

above. For this reason we restrict to deformations tt of t 

such that t' n,t;o! q, and ,t" is a fibre of a deformation 

f' : AI -> Y' of f: A -> Y where At E ILl. This re

quires us to first show that for most AI € ILl , fl : AI --> Y' 

exists. 

The contents of this paper are as follows. 

In § 0 we present background material for which there are 

no good references (especially material on vanishing theorems 

and extension of line bundles). We also present the classical 

material when dimY = 1 and the standard counterexamples to 

extension. 
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In § 1 we present various results on holomorphic forms 

and the groups Hi(Ox) • 

In § 2 we prove the meromorphic extension theorem. 

In § 3 we use this result to analyze the global structure 

of X. We also deduce some results on when a modification of 

a hyperplane section extends to a modification of a projective 

variety; these results which are in the same vein as 

[Fa1, Fa2, Fa + So, S02, S03, S04] where one of our main moti

vations to study the problem stated at the beginning of this 

introduction. 

In § 4 we discuss the proof of the main results and what 

should be true in general. 

In a short appendix we include the strongest version of 

the extension theorem originally given for manifolds in [S01] 

for holomorphic surjections f : A -> Y with dimA - dimY;;: 2 • 

We would like to thank J. Noguchi for some helpful remarks 

on the de Francis problem. 

We would like to express our thanks to the Max-Planck

Institut fUr Mathematik for making this joint work possible. 

The second author would also like to thank the University of 

Notre Dame and the National Science Foundation (MeS 8200629). 
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§ 0 BACKGROUND MATERIAL 

Our notation is the same as in [S02] and [Fa']. For the 

convenience of the reader we review it here. 

(0. 1 ) All spaces and manifolds are complex analytic unless 

otherwise specified; all dimensions are over ~ . Given an 

analytic space X, we denote its structure sheaf by OX. 

We don't distinguish between a holomorphic vector bundle E 

and its locally free sheaf of germs of holomorphic sections. 

Thus when E is tensored with a coherent analytic sheaf S 

we mean the tensor product over Ox of the sheaf of 

of holomorphic sections of E and S ; we denote this E e S • 

We denote the sections of a sheaf S over X by 

r(X,S), or r(S) when no confusion will result. 

Similarly we often suppress X and write Hi (S) for the ith 

cohomology group of S on X. We write its dimension hi(S) , 

or if there is a posibility of confusion. 

Let X be an n dimensional normal irreducible complex 

analytic space. The canonical sheaf Wx of X is defined to 

be the sheaf of holomorphic n forms if X is smooth and the 

direct image i.(wx ) in general where i is the inclusion 
reg 

of the smooth locus Xreg of X into X • A good reference 

for dualizing sheaves is [Hal. Let Kx denote the 
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Grauert-Riemenschneider canonical sheaf of X [Gra+Ri]. This 

is defined to be where 'IT : X -> X is a resolution 

of the singularities of X; it is independent of the reso

lution. There is the basic exact sequence: 

(0.1.1) o --> K --> w --> S --> 0 X X 

where the coherent sheaf S is supported on an analytic 

subset Xirr of Xsing ' It is a theorem of Kemph ([Kel, 

pg. 50) that the set Xirr is the locus of non rational

singularities of X, i.e. the union of the supports of 

{'IT (i) (Ox) Iii:: 1} where 'IT (i) denotes the ith direct image 

of any resolution 'IT X --> X (the sheaves 'IT (i) (Ox) are 

basic invariants of X that are independent of the resolution 

used to define them). We refer to Xirr as the irrational 

locus of X. 

(0.2) Vanishing Theorem of Kawaroata - Viehweg - Kodaira-

Ramanujan - Grauert-Riemenschneider. Let X be an n dimen

sional irreducible normal projective variety- Let L be a 

numerically effective line bundle, i.e. L· C ~ 0 for all 

irreducible curves C c: X • If for some ample 

divisor H and some t~O then for 

i > max { t , dim (X . )}. l.rr 

Proof. We will be brief since results like this are dis-

cussed in great detail in [Sh+So] • Tensoring (0.1.1) with 
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L and using the long exact cohomology sequence it follows 

that the theorem will be proved if we show that 

Hi (X, Kx & L) = 0 for i > t • Let 1f : X -.-> X be a projective 

desingularization of X. By the projection formula: 

*) 1f (i) (WX e 1f*L) = 1f (i) (WX) & L 

By this and the definition of' Kx it follows that 

TI* (WX ~ TI*L) = TI CO ) (WX e 1f*L) is KX e L • The Grauert

Riemenschneider vanishing theorem [Gra+Ri] says that 

if (i) (WX) = 0 for i > 0 . Therefore by *) and the Leray 

spectral sequence for 1f, the proof will follow from 

i -H (X,wx e 1f*L) = 0 for i > t • This is of course the 

Kawamata-Viehweg vanishing theorem (see [V]; remark (0.2» • 

o 

We will also need a relative form of the above in one 

situation. Rather than formulate and prove the general result 

we merely prove a special case [generalizing Sol], by reducing 

to a result of Fujita [Full. 
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(0.2.1) Theorem. Let f : X --> Y be a holomorphic sur-

ject1ve map from a compact normal irreducible projective 

variety X to a Erojective variety Y. Assume that 

dim X - dim Y ;;:2 Assume that L is a line bundle on X 

such that some Eower L t for t> 0 is sEanned at all points 

by global sections and such that the map associated to feLt) 

dimensional image. Then given any locally free 

sheaf E on Y, H 1 (X, L-k 
C!I) f*E) = 0 for k;:: 1 . 

~~~~~~~~-

has a dimX 

Proof. Let TI: X -> X be a projective resolution of 

singularities of X. It is clear by the Lecay spectral 

sequence that H 1 (X,L -k C!I) f*E) injects into 

H 1 (X, (TI*L) -k C!I) (f 0 TI) *E) • Therefore using X instead of 

X, fOTI instead of f and TI*L instead of L we have 

reduced to the case X is smooth. 

Using dimX - dimY ~ 2 the result is now clear from 

[Fu1; Corollary A6]. 

(0.3) We need some information about extension of line 

bundles. 

(0.3.1) Lemma. Let A be an effective amEle divisor 

on an irreducible projective variety X of dimension ~ 4 • 

Assume that A~Xreg • Then for any desingular~zation X of 

IJ 

X the restriction maE Pic (X) --> PictA) has finite cokernel. 
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Proof. Since Ac X , - reg X has isolated singularities 

and we can assume without loss of generality that X is 

normal. 

Let ~: X -> X denote a desingularization of X. 

Since n is a biholomorphism from 
~ -1 
X - n (Sing(X» --> X - Sing(X) we identify A and 

n-1 (A) • 

Consider the long exact cohomology sequences associated 

to the exponential sequences on X and A. 

1 IV 

Pic (X) H2 (X,Z) 2 tV 

H (X,OX) -> -> -> H (X,OX) 

! 1 ! ! 
1 H (A,OA) -> Pic (A) -> H2 (A,S) 2 -> H (A,OA) 

where the vertical maps are restrictions. 

As it is well known for i ::;; dimA-1 . 

This follows from the Kodaira vanishing theorem (0.2), 

Hi (X, [A]-1) = 0 for i;S dimA . 

Therefore we will be done by a diagram chase 1f we show 

2 '" 2 that the restriction H (X,S) --> H (A,S) has finite cokernel. 

This will follow 1f we show that H2{X,~) --> H2(AI~) is onto. 

Choose n>O such that [A]n is very ample and embed 

X in JPN using r( [A] n) There is a hyperplane HI N-1 
It . = PI: 

that meets X in n A. The hypherplanes sufficiently near H' 

meet X in sets contained in a neighborhood V= Xreg of A 
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which is a deformation retract of A. The basic result 

of [505 ] shows that for any of these nearby hyperplanes H, 

the restriction mapping -> is an 

isomorphism for j :;i dim X-2 . Choosing an H near HI 

so that A' = H' nx is smooth we see that 

H2
(X,(D) -> H2 (A,<D) -> 0 is equivalent to showing that 

H2 (X, (D) -> H2 (A I ,(D) -> 0 . Indeed consider: 

By Kronecker duality we are reduced to showing that: 

Since the intersection homology of a manifold is equal to its 

usual homology [(G+M)3] and since the rational intersection 

homology of a complex algebraic variety X injects into the 
rv 

rational intersection homology of any desingularization X 

[(G+M)1] we are reduced to showing that: 

where IH. denotes intersection homology. This last injection 

follows from the beautiful result [(G+M)3] that for a hpyerplane 

section of a variety by a hyperplane to all strata of a Morse 
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stratification of the variety (which AI = Xreg certainly 

is) the usual first Lefschetz theorem holds with intersection 

homology replacing the usual homology. 

o 

We need the following result also. 

(0.3.2) Lemma. Let A be an ample divisor on an irreducible 

projective local complete intersection X. Assume that 

cod Irr (X) ~ 3. Under restriction; 

Pic (X) f:::S Pic (A) if dim X >, 4 

o --> Pic (X) --> Pic (A) with torsion free cokernel if 

dim X = 3. 

Proof. By the usual argument using the long exact cohomology 

sequence associated to the exponential sequence of X and A 

the above result will follow if we show that ~. (X,A,a) with 
.1. 

i ~ dim A and any basepoint a € A and also that Hi (X,[A]-l)=o 

for i = 1,2. The former is the Lefschetz theorem of Goresky-

MacPherson [(G + M) 2] and the latter is just (0.2). 

o 

In the same spirit as the above results we need information 

about when we can conclude that there is a non-trivial holomorphic 

k form on a desingularization of a variety. 
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(0.3.3) ~mma. Let L be a line bundle on a normal irreducible 

projective variety, X, of dimension n. Assume that some posi

tive power Lm of L is spanned by global sections at all 

pOints of X and that the map associated to f(Lm) has an n 

dimensional image, e.g. assume that L is ample. Let A E ILl 

be normal with at most rational singularities. Let TI2 

be a desingularization of X and let TI1 : A --> A' be a desingu

larization of the proper transform A' in X of A. Let 

-> be the mae induced by 

R is a surjection for k < dim A. 

Proof. By Hodge theory it sufficies to show that the map 

R Hk(OX) --> Hk(OA) induced by TI1 is a surjection for 

k < dim A. By (0.2) the restriction 

-> k 
H (OTI-1 (A) ) 

2 

is an isomorphism for k < dim A. 

Using this and consideri~g the commutative diagram: 

Hk(0:A) 

t 

k k Hk(:A') /H (Ox) 

H ( OTI2 -1 (A) ) 

t 

ak(OA) 
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it sufficies to show that the map 

induced by the composition n : A --> A of n 1 and 

AI -> A is an isomorphism. Using the Leray spectral se-

quence for n and the fact that A having only rational 

singularities is equivalent to n{i) (OX) = 0 for i > 0 , 

this is clear. 

(0.4) Memma. Let ~: Z -> lP ~ be a holomorphic map of 

an irreducible projective variety Z with dim ~(Z) ~ 2. 

o 

Given a general hyperplane H on p~ I ~-1 (H) is irreducible. 

Given any hyperplane H on F~ I ~-1 (H) is connected. 

Proof. This is a standard fact, e.g. [Sh+Soj theorem (3.42)]. 

o 

(O.5) We give here a few standard counterexamples to the extension 

problem discussed in the introduction. The most obvious is 

1 1 3 3 
]p )( lP c:: II? • This can be generalized slightly. Let Hd ~ P 

be a smooth degree d hyper surface in ]p3 that contains a 

line i, e.g. let 

Then is spanned by global sections 

and gives a holomorphic surjection 1 f:Hd -> lP with general 
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fibre biholomorphic to a curve of degree 

see [501] for more or this type of fibration. Clearly f 

canlt extend holomorphically to IP3. 

Many examples of non-extendible maps with dim Y = 1 

can be given. We know of only one example of a JP 1 bundle 

A over a Y with dim Y > 1 I where X is not a lP2 

bundle. The following simple argument was given to us by 

E. Sato. 

Let Y = lP n with n > 1. Let y be a non trivial element 

of H1(OJPl (-2» 

unique extension 

and let F* = $ 0lP1 (-2). Let E* be the 
n cop~es 

o -> F* -> E* -> 0lP1 -> 0 

such that goes to y $ ••• til Y € H1 (F*) • 
In copiesJ 

Note that IP (F) is a very ample divisor on lP (E). To see 

this it must just be noted that E is ample. By dualizing 

the above exact sequence we can easily check that E is 

spanned by global sections. We must only check that E 

doesnlt contain a trivial summand. 

If it did then E* would have a nowhere vanishing section. 

Since F* has no section, the image of this section would split 

the above exact sequence contradicting the non-triviality of 

y • These lP (F) is a very ample divisor of JP {E) • 
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Note that J? (F) = pl x pn • 

Since there are no non tr i vial map lPn + 1 -> lPD the map 

P (F) -> pn cannot extend to a map from the pn+l . bundle 

I? (E) to pn. 

(0.6) We give here a summary of the solution to the problem 

posed in the introduction when Y is a curve of genus g > O. 

This result was more a less known a half century ago (cf. [Rol, 

Ch. 4, § 11,12), a short proof can be found in [Fa+SoJ. 

( 0 .6 • 1) Theorem. Let A be a smooth amp Ie di V,isor on an 

irreducible projective local complete intefsection 

threefQld X. Assume that there is a holomorEhic map 

f:A -> R with generic fibre P 1 onto a Riemann surface 

R of genus g ~ 1. Then f extends to a holomorphic map 

I : X --> R. Either 

a) f is a lP 1 bundle and f is a p2 bundle with the 

restriction of [A] to a general fibre isomorphic to p 1 
QJ;. 

b) f has p 1x ~1 as general fibre and the restriction 

of [A] to p 1x IF1 is isomorphic to Ud where fl is the 

diagonal of :Px p 1. 

(0.7) Lemms. Let L be an amele line bundle on a normal ero

jective local comelete intersection X. Assume that L is 

seanned at all points by global sections and that the locus of 
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irrational singularities is of codimension ~ 3. 

Assume that there is an A E ILl and a surjective holo

morphic maE f:A --> Y into a normal projective variety Y. 

If f extends to a meromorEhic map f:X --> Y holomorphic 

in a neighborhood of A and dim A> dim Y .. then f is 

holomorEhic. 

Proof. Let E be a very ample line bundle on Y and let 

E be the extension of f*E to X that exists by lemma (0.3.3). 

If we knew that pullbacks under f of sections of E extended to 

sections of E we would be done by an argument of [S01] when 

X is smooth that was nicely generalized to arbitrary X in 

[Fu1]. Indeed dim Y + 1 sections span E. Ttus dim Y + 1 

sections span E off an analytic set A c X-A. Thus A is 

empty or dim A ;; dim X - dim Y - 1 > O. But since A:= X - A, 

dim A = O. Thus since E is spanned by dim Y + 1 sections, 

the map associated to pullbacks of sections has a dim Y dimen-

sional image. It is easy to see this must be Y. 

The natural supposition is that if we take D C lEI 

then I*D E lEI. If this is true we are done by the above 

reasoning. If we knew that f*D were Cartier this would be 

clear since 0 --> Pic(X) --> Pic(A). Unforunately this is 

not immediately obvious. 

Let ~;X --> X be a desingularization of the graph of 

f. Choose an AI E ILl such that A = ~-1 (AI) is smooth and 

1 is holomorphic in a neighborhood of A'. This is possible 
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since f is holomorphic in a neighborhood of A. 

Let fl:X -> Y be the holomorphic map induced by 

'f Let E and E be us before and let M = [£I*D] for 

a general divisor DEIEI such that f,-1 (D) is irreducible. 

If we show that M F:J 'II*E we will be done. Consider: 

.. *E -1 1 
• M -> (1I"*E eM- )A: -.-> 0 

Since n*E e M- 1 
F:J 0- it sufficies to show that 

A 

H 1 (IT*'( Ee L -1) • 1.4- 1 ) = O. Since the map associated to 

r«lT*L)X) has a dim A dimensional image, it follows that 

for t > O. Therefore by tensoring the above exact sequence 

with IT*L- t for t = 1,2,3 ••• and using the associated 

long exact cohomology sequence we reduce to showing that 

By Serre duality and the Leray spectral sequence we reduce 

to showing that: 

i t 
H (X,L OJ E* II lTd) (WX • M )) = 0 

for i + j = dim A and t» o. Since M is spanned it follows 

from [Gr + Ril that IT(j) (WX • M) • 0 for j > O. Since L 
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is ample for t » o. 

o 
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§ 1 Some Results on Holomorphic Forms 

(1.1) Theorem. Let f: X --> Y be a holomorphic surjection 

with connected fibres between normal irreducible projective 

varieties X and Y. Assume that there is a non-empty Zariski 

open set V c Y such that V and f- 1 (V) are smooth and 

f : f- 1 (V) --> V is of maximal rank. Assume that X and Y 

have at most rational singularities. If hi (OF) = 0 for 

o < i < q where F is a general fibre of f then 

for 0 < i ~ q. 

In particular if hi(OF) = 0 for i > 0 then 

Proof. It can be assumed without loss of generality that X 

and Yare smooth. To see this let g:Y --> Y be a de

singularization of Y and let X be a desingularization of 

the irreducible component of the fibre product XXyY which 

surjects onto both Y and X under the natural projections. 

We have the commutative square: 

"" ,..., 9 
X -> X 

11 lf 
,... 
y --> Y 

g 
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The horizontal maps are birational morphisms and 

since the singularities of X and Yare rational: 

*) for i > 0 

and since X and Yare normal: 

**) 

The condition on the general fibre of f and the fact 

that g : g-1(V) --> V and ~ : ~-1(f-1(V)) --> f- 1 {V) 

are biholomorphisms imply that 

where F is a general fibre of 1. If the theorem is true 

for 1 then using *) and **) and the Leray spectral sequence 

for g 0 1 we see that 

(g 0 1) (i) = 0 for 0 < i ~ '1 and 

Using this, fog = g 0 f, *), **), and the Leray spectral 

sequence for fog we see that: 

Therefore assume that X and Yare smooth. 

We need a lemma. 
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(1.1.1) Lemma. Let f: X --> Y be a surject1veholomorph1c 

map with connected fibres between projective manifolds 

Y. Assume that hi(OF) = ° for ° < i ~ q where P 

generic fibre of f. Then 

(1.1.1.1) f* 

is an isomorphims for ° < i < q. 

X and 

is a -

Proof. By standard Hodge theory the map in (1.1.1.1) is an 

injection for all 1 I e.g. [W]. We must only show that the 

map is surjective. By conjugation and ~he Hodge theory ant1-

isomorphism of Hi(O) with HO(AiT*) and of Hi(Oy) with 
X X 

HO(AiTy) this is equivalent to showing that every holomorphic 

i form n on X with ° < i ~ q is of the ~orm f*~ for 

a holomorphic i form on y. 

This is certainly true over the dense Zariski open set 

V c y such that f: f- 1 (V) --> V is of maximal rank. Indeed 

let VI = f- 1 (V) consider the exact sequence: 

° --> f*T* --> T* --> T* / --> ° V V' VI V • 

We get a filtration. 
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where F
j 

= (Ai-jf*T
V
*) A (AjT*) Th V'. e quotients are 

F./F. 1 ~ (Ai-jf*T*) 3 AjT* Let n denote the J J- V V'/V • "V' 

restriction of n to V' • Since by shrinking V it is 

easy to see that nv ' = f*w 
V 

for some holomorphic i 

form if AjTV'/vIF R1 AjT* 
F has no holomorphic sections for 

0 < j ~ 1- By the Hodge theory isomorphism Hi(OF) = HO (AiT*) p 

and our hypothesis this is clear. We must only show that w V 

has a holomorphic extension to Y. Assume otherwise. Since 

by Hartogs theorem holomorphic sections of vector bundles 

extend over codimension 2 sets it follows that extends 

to a holomorphic i form w' on Y - Z where Z is a set 

of pure codimension 1. Choosing dim X - dim Y general 

hyperplane sections of X and intersecting we get a submani

fold XI of X such that fx, is generically finite to one 

Further the pullback of Wi to X· extends holomorphically 

since it agrees with the restriction of n on a dense open 

set. Choose a smooth point x of Z such that fx, is 

finite to one over a neighborhood of x. An easy calculation 

shows that w' has at worst poles on Z and extends holomor-

phically if it has no poles. Slicing Y with sufficiently 

ample hyperplane sections through x we can choose an i-

dimensional submanifold yl c Y such that the restriction 

wit of Wi to Y' - ZOY' has poles along ZOY' if w' 

has poles along Z. Further desingularizing an irreducible 

component of f;~ (Y') we get a projective i-diraensional mani

fold X" and a gerically finite to one surjective f" :X" -> Y 

such that the pullback of w" to X" extends to all of XU 

holomorph1cally. But this implies 
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J w" A w" is finite since 

deg ( f .. ) J w" A W" = f ( f 11 * W ") A (f" * w" ) • 

If J w" A W" is finite an easy calculation shows that 

W I has no poles along Z n y I. Thus Wv has a holomorphic 

extension to Y. 

D 

We need a general slicing lemma also. 

(1 .1.2) Slicing Lemma. Let f: X -> Y be a·· holomorphic 

surjection between projective manifolds. If H is a general 

hyperplane section of Y then 

a) H and HI = f- 1 (H) are smooth, 

b) dim support (f(i) (OX» = dim support «fH,) (i) (OH'» 

+1 whenever t(i) (OX) is-non trivial (here we 

adopt the convention that the empty set has dimension 

-1) and (tH,) (i) (OH') is non-trival if dim support 

f (i) (Ox) = 1. 

Proof. a) is true by Bertini's theorem. \,le have the exact 

sequence: 

o --> [H,]-1 --> 0 --> 0 --> 0 
X H' 
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The long exact sequence of direct image sheaves gives: 

If S is any coherent sheaf in a manifold Y, then a general 

hyperplane section will not contain the support of any sub

sheaf of S. Thus 

° --> S ~ [H]-1 --> S. 

From this and the long exact sequence of direct image 

sheaves above, we get the lemma. 

o 

Now assume the theorem is false. Let i be the 

smallest integers ° < i < q such that f(i) (Ox) *0. 

If f(i) (Ox) is supported in a finite set then by the 

Leray spectral sequence and lemma (1.1.1) we have a con-

tradiction. If f(i) (Ox) is supported on a k > 1 dimensio

nal set then by lemma (1.1.2) we can slice with k hyperplane 

sections on Y and reduce to a situation where we get the 

same contradiction as the last sentence. 

o 

The following lemmas will be convenient. 

(1.2) Lemma. Let f: X --> Y be a holomorphic surjective 

map of irreducible projective varieties. If there is a non

trivial holomorphic k form on a desinsularization of Y, 
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then there is a non-trivial holomorphic k form on a desingular

ization of X. 

Proof. Let .1 : X --> X and -2 : y --> Y be desinqulari

zations of X and Y. Since holomorphic forms pullback to 

holomorphic forms under meromorphic maps the lemma follows 

by considering w;' 0 f 0 w1• 

o 

(1.3) Lemma. Let f: X --> Y be a meromorphic surjective 

map between irreducible projective varieties. Assume that 

there is an open set V C Yreg f.: f~1 (V) --> V is of 

maximal rank and 

a) f- 1 (V) ~ Xreg , 

b) on f- 1 (V) I f has connected fibres and is 

maximal rank, 

c) given a ~eneric fibre F of f on f-'(V), 

hi(OF) = 0 0 < i < k • 

If a desingularizationof X has a non-trivial k form 

then a desingularization of Y has a non-trivial k form. 

Proof. Let Xl denote the graph of f and f':X' ---> Y 

the induced map. Let -2: Y --> Y be a desinqularization of 

Y. Let Z be the irreducible component of X· XyY that 

surjects onto both X and Y under the induced map_ Let 

., : X --> Z be a desinqularization of Z. We have a commuta

tive diaaram: 
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X -> X 

y -> y 

where the horizontal maps are birational. The hyptheses 

of lemma (1.1.1) are satisfied and therefore our lemma 

follows. 
o 
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§ 2 The MerQIDorphic ExtenstQP Abeo{em 

(2.0) Let L be a line bundle on a compact irreducible 

normal complex analytic space X. Assume that L is 

spanned at all pOints by global sections and that X is 

Cohen-Hacaulay, i.e. that the localrings of X are all 

Cohen-Macaulay local rings. Let 

e X x f(L) --> L 

denote the evaluation map on sections. Since r(L) spans 

L at all pOints it follows that e is onto and the kernel 

is a vector bundle on X. We denote F (K*) by A and note 

that A c X x ILl is the family of pairs (x,A) with 

xEAE ILl. Let p A -> X and q : A -> ILl denote the 

maps induced by the product projections and note that p is 

the natural projection of lP (K*) -> X . 

K 

Since A is a fibre bundle with smooth fibre over a 

Cohen-l-lacaulay variety it follows that A is Cohen-Macaulay. 

Since q has equal dimensional fibres, A is Cohen-Macaulay, 

and ILl is smooth, it follows that: 

(2.0.1) q is flat. 

(2.1.) Lemma. Let X,L,A and q be as above. Assume that 

there is an irreducible normal A € ILl that fibres holomor-

phically f: A --> Y where Y is a normal irreducible 
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analytic space and where f has connected fibres. Assume 

further that there is a smooth Zarisky open set V c Y 

such that U = f- 1 (V) is smooth and such that f is of 

maximal rank on U. Assume that there is an ample line 

bundle E ~ Y such that f*E extends to a line bundle 

E on X. Assume that f(i) (OA) = 0 for all odd i. Then 

there is a compact normal analytic space Y I a holomorphic 

surjeetion g: Y --> ILl and a meromorphic surjection 

F : A --> Y such that : 

a) 

commutes 

b) F is holomorphic on a Zariski open set containing 

q-1(A), g-1(A) is biholomorphic to Y and F = f, 
q -1 (A) 

c) 9 is equal dimensional in a neighborhood of g-1(A), 

d) there is a smooth Zariski open set V c Y such that 

F is of maximal rank in the set U = F- 1V which is 

smooth and such that V 0 g-1(A) = V. 

Proof. Choose n large enough so that En is very ample and 

by Serre's theorem Hj (Y,f (i) (f*E
n

» Hj(y,f(i) (OA) n = lS; E ) 

is zero for j > 0 and all i. By the Leray spectral sequence 

for f and f*En and the hypothesis that f (i) (OA) ;: 0 for 

odd 1, 1t follows that Hj (A, f*E n) :: 0 for odd j > O. By the 
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flatness (2.0.1) of q it follows that is 

independent of AI E ILl. From this and the upper semi-

continuity of dimensions of cohomology groups it follows 

that hO(A'IE~f) is constant for a Zariski open set of ILl 

that contains A. This and the flatness of q imply by 

a theorem of Grauert that the coherent sheaf: 

is locally free of rank h O (En) in a neighborhood of A 

in IL I. Since sections of f*En therefore extend to give 

sections of S it follows that (p*En ) I is spanned by global 

section for AI in a Zarisky open set 0 containing A in 

IL \. Therefore we have a meromorphic map FI from A into 

Proj (S) which is holomorphic in a neighborhood of q -1 (A) • 

Let Y denote the normalization of the image of FI and 

let F denote the induced meromorphic map. Note that 

dim F(q-1(A'» is independent of AI E O. Indeed if n EA, is 

spanned, then its image is of dimension: 

max {k IE. .• E • L is non-trivial in H2k+2 (X,Q) }. 

lk times J 

This implies c) where g Y --> ILl is the induced map. 

The assertion d) is straighforward and left to the 

reader. 

D 
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(2.3) Meromorghic Extension Theorem. Let X be an 

n dimensional Cohen Macaulay compact irreducible normal 

complex analytic space. Assume that 

where X is a desingularization of X. Assume that L 

is a line bundle spanned at all points of X by global 

sections and that C (L)dim X 
1 > 0 , i. e • I ...;;t;;;.;h;..;;e;....;;;m;;.;;a;;:./Op,--_a;:;;.;s;;;..s;;;;.o=c,;;;;i_-

ated to r{L) has image of dimension dim X. Assume that there 

is an irreducible normal A E ILl such that there is a holo

morphic surjection f: A --> ¥ with generic fibre ~1 

onto a compact normal complex analytic spa~ Y. Assume that 

there is an ample line bundle E on Y such that f*E 

extends to a holomorphic line bundle E on X. If either 

f is flat or A and Y have only rational singularties 

(if any) then f extends to a meromorphic maE: 

1" X -> Y 

holomorphic in a neiQhborhood of the oEen set 

that fu: U -> f (U) is a ~ 1 bundle. 

Proof. Lemma (2.1) applies. Let 

ILl 

be as in that lemma. 

U c A such reg 
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Since A is normal and since a generic fibre of 

f : A --> Y is pl, it follows that f(Sing(A) is a 

proper analytic subset of Y and therefore that f is 

a holomorphic ]? 
1 bundle over a Zariski open set of Y. 

This property is clearly inherited by the maps 

FA': A I -> F (A I ) 

A in ILl. Thus: 

given by lemma (1.1) for At near 

(2.3.1) F is a pl bundle over a smooth Zariski open 

set V c Y which meets Y non-trivially in a Zariski 

open set V (here,we identify Y with g-1(A». 

Let B = p-l(A) and let BI be the image of B in 

A It A under the map (i,P) where i : B --> A is the 

inclusion. Let FI: A itA -> Y It A be the map (F,idA). 

Note that B is irreducible since it is a fibre bundle 

over A. Thus FI(BI) is irreducible. Since FI is a pl 

bundle over V It A where V is as in (2.3.1) it follows 

that the closure Z of F'-'(FI(B') n V It A) in F I- l (F'(B'» 

is an "irreducible set. 

(2.3.2) Lemma. The meromorphic map F' from Bt to 

FI(B'} is one to one on p,-1 (V It A) n Bt. 

Proof. To see this note that if (v,x) € V It A then F,-l(v,x)= 

{(w,x) I F(W) = v}. 
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Note that {w E A ! F(w) = v} = {( z,A') E Xx tLI i g(v) ::: AI I 

z E A I I FA I (z) = v}. 

Thus -1 
F' (v,x) n B' = (x,A I ,x) E X x I L I x A I g (v) = A', x E A I I 

FA' (x) = v} 

o 

Let h . Z -> X denote the map onto X induced . 
by the composition of the product projection A x A-> A 

and p. Let k . Z -> Y denote the surjection induced bv . .. 
the compositfon of the product projection A x A ->A and 

f . A -> Y. Let c . Z -> YxX denote the map (k,h) • Let . . 
Z I = C (Z) and let k' : Z t -> Y and h.' Z' --> X be the 

maps induced by the product projections. 

Choose a general element H E IENI where N .is chosen 

so that EN is very ample. By lemma (0.4), HI = k- 1 (H) is 

irreducible since Z is irreducible. 

(2.3.3) Lemma. h (H ') :f X. 

Proof. Assume that h(H') = X. Since a desingularization of 

X has a non-trivial holomorphic n - 2 form on it it fol10\\'s 

from lemma (1.2) that a desingularization Ii' of HI has a 

non-trivial holomorphic n - 2 form on it. Since 
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F ' H ' : HI -> F' (H I ) is a P 1 bundle over a dense open 

set of F'(H'), it follows from lemma (1.3) that a desingu-

larisation of F' (H I) has a non-trivial holomorphic n - 2 

form on it. Using lemma (2.3.2) it is clear that FI(H') is 

birational to p-'{f-1 (HI}). Since this is a projective bundle 

over f-l(H I
) it follows from lemma (1.3) that the desingulari

sat ion of f- 1 (HI) has a non-trivial holomorphic n - 2 form 

on it. Since f- 1 
(HI) maps onto H' with generic fibre p1 

it follows from lemma (1.3) that the desingularisation of H' 

has a non-trivial holomorphic n - 2 form on it. But since 

dim H' = n - 3, this is absurd. 

o 

We are now in a position to show that Z' is the graph 

of meromorphic map from X to Y. First note that the dimen-

sion of a generic fibre of h' : Z' --> X is o dimensional. 

Indeed if it was not then given a general very ample divisor 

H on Y, it follows that h ' (k,-1(H» = X. Since h'(k'-'(H» 

= h(k- 1 (H», this is ruled out by lemma (2.3.3). 

Therefore since hl(Z') = h{Z) = X it follows that 

dim Y + dim (generic fibre of kl) = dim X or 

(2.3.4) dim (generic fibre of k') = 2. 

(2.3.5) Choose a y € Y that is general in the sense that: 

a) k- 1 (y) is irreducible and dim h(k-'(y» = 2, 

b) the curve R. = f-
1 

(y) is a smooth II? 1 = Areg 
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and f is of maximal rank in a neighborhood of ~. 

(2.3.6). Choose an A' € ILl that is general in the following 

senses: 

a) A I is irreducible and smooth away from X sing I 

b) A I n A is irreducible and A I meets A transversely 

on 

c) At does not contain a point x E t selected in 

advance of the choice of A' , 

d) F is holomorphic in a neighborhood of q-1(A ' }. 

Note the fact that generically A' and A' n A are 

irreducible follow from lemma (0.4) and the fact that the 

map associated to r(L) has an image of dimension dim X. 

Let P c ILl denote the pencil joining A and A' • 

Let r denote the graph of the Fq -1(p)' Let X' denote 

the irreducible component of r such that: 

p(projection of X' on q-1 (P) ) = X. 

Let m: X, -> X be the map comp·osed of p and projection 

of XI to q-1(p). Note that 

(2.3.7) m is a birational map. 
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Let Yp denote the irreducible component of g -1 (p) 

such that g (Yp) = p and the map Fp . X' -> Yp induced . 
by F is onto. We have: 

m XI --> X 

r 

where g I and r are the maps induced by g and q respectively. 

By (2.3.6) there is a dense open set 0 c X which 

contains and such that is 

with A f\ A' f\ 0 blown up. 

By a E ~ n AI , r- 1 (r(m- 1 (a}) contains a unique 

irreducible 2 dimensional component Wa that contains t. 

To see this note that for most w € r(m- 1 (a» m(r-1 (w» is 

a smooth :P 
1 

on an A" € P which is also a fibre of. FAil' 

From this we see also that -1 m(Wa , ~ h(k (y». Since 

dim h(k-1 (y}) = 2 by (2.3.5a) we conclude m(W) = h(k- 1 (y)). 
a 

This set which we call W is therefore independent of a € 1 n A' 

and the general AI chosen subject to (2.3.6). 

Let SA' € r(L) be a section defining AI. There is a 

short exact sequence: 
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-> Lt -> 0 

of normal bundles. The infinitesimal deformation of ~ 

corresponding to the family m(r- 1 (w» for w near 

r (a) has as image in L" the restriction SA'1 • Since 
R, 

sA'(X) ... 0 by (2.3.6c) we see that W is smooth near x 

and W is transverse to A near x. Since x E R, was 

arbitrary we conclude that W is smooth in a neighborhood 

of t and along .t W intersects A transversely. 

(2.3.8) Lemma. W n A = i. 

Proof. Since y is general and the map 4> : X -> ]I? (C 

has an image of dimension equal to dim X , it follows 

that dim ~(W) ~ 2. By (0.4) W n A is connected. Since 

W meets A transversely in t it follows that W n A = ,c .• 

o 

The above shows that W determines y by f(W n A). 

Thus Z' is the graph of a meromorphic map I : X -> Y. 

Finally let be a fibre of f in a neigh-

borhood of which f is of maximal rank. Choose A' subject 

to (2.3.6). Choose a local holomorphic section. 

a : N -> A 

where N is a neighborhood of f (t) and 0 (lit) c: A n A I. 
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For a small ,enough N and for y in a small enough neigh

borhood of x in X, there is a well defined holomorphic 

map which sends y to f(a) where a € a(N) and 
-1 m (y) € Wa" This map agrees with f on an open set and 

gives the desired extension. 
o 

(2.4) Corollary, Let X be a normal irreducible projective 

variety and let L be an ample line bundle on X spanned at 

all points of X. Assume there is an irreducible A€ ILl such 

that: 

a) A c X and A has only rational singularities I - reg - -

b) there is a holomorphic surjection f: A --> Y onto 

a normal projective variety and the generic fibre of 

f is 

c) that Y has at worst rational sin~ularities. 

Then f extends to a meromorphic map f: X --> Y holomorphic 

in a neighborhood of the open set u c: A - reg such that 

f U -> f ( u) is a 1I? 1 bundle. 
U 

Proof. Let ~ : X --> X be a desingularization of X. Since 

A c: X we have ~ giving a biholomorphism of A and reg 

~-1 (A). Let E be an ample line bundle on Y. By lemma (0.3.1) 

f*En extends to X for some n > O. By (1.2) and (0.3.3) 

hO(Ad1m YT*) '*' 0. Thus (X,1f*L,1f- 1 (A}'En ) satisfies the hypo-
X 

thesis on (X,L,A,E) in theorem (2.3). Therefore there is a 

meromorphic extension f : X --> Y. The composition f 0 1f- 1:x --> y 
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is the desired extension. 

a 

(2.5) Corollary. Assume the same hypothesis as (2.4) except that 

A ~ Xreg is replaced by the assumption that X is a 

local complete intersection with the locus of irrational 

sin~ularities having codimension > 3 . Then the same 

conclusion as in (2.4) holds. 

Proof. Use (0.3.4) instead of (0.3.3). 
a 

(2.6) Theorem Let X be a projective variety which is a 

local complete intersect~on. Assyme that L is an a~le 

line bundle spanned at all pOints of X bv global sections. 

Assume that there exists a smooth A (ILl which is a ~, 

pundle f: A --> Y over a projective manifold Y. Assume 

tbat there exists an unramified cover ~ : T --> Y with 

h dim T,O (T) * O. Then f extends to a holoffiorphic map 

f : X --> Y. 

Proof. We can assume without loss of generality that T is a 

regular covering of Y. Suppressing base pOints for simplicity 
-1 

we note that n 1 (T);* n 1 (A) ~* n,(X) where i: AL-> X is 

-1 
the inclusion map. Let Hl = n*(n 1 (T», H2 = f* (H 1) and 

H3 = i*(H2 )· Denote by A and X the covering spaces of A 

and X corresponding to H2 and H3 I subgroups of TI 1 (A) 

and w1 'X) respectively. Thus we have the following diagram 
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'" .... 
A -> X 

Ip Iq 
v v 

A > x 

If i 

v 
T 

lr 
-> Y 

Note that fOp and i 0 P lift to a map from A to 

T and from A to X respectively since 

(f 0 p)*('Jr 1 (A)) = H1 = 'Jr*-t'Jr 1 tT» and 

(i 0 p)*{'Jr 1 {A» = H3 = q*{'Jr,{X». 

It is easy to see that A is an ample divisor on X 

and that A ~> T is P 1 bundle over T. Using (0.7) 

and (2.4) we conclude that the map ~ extends to a holomor

phic map ;p: X -> T. The group of the deck transformations 

of X,A and T are all isomorphic to one another by cons-

truction. Denote such group by G. Note that everything 

descends. Therefore we get a holomorphic map! : X -> Y, 

where 'f' is obtained from <P: X -> T after we have con-

sidered the action of G on X and T. Claarly f is 

holomorphic and is an extension of our given f. 

o 
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( 2 • 7) Coro 11 ary .!&U: X , L J!.!1.Q A be a s.in ( 2 -.§J... As sume 

that Kt = 0 ,with t minimal. Then the same conclusion ,....-- y y--

as in (2.6) holds. 

Proof. Let ~ : T --> Y be the t-cyclic unramified cover 

of Y determined by the torsion line bundle Ky. Note that 

h dirn T,O (T) *' O. Therefore (2.6) applies. 

o 
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§ 3 P 1 
Bundles as Hyperplane Sect!s;ms 

(3.0) Theorem. Let X be a projective local complete inter

section. Assume that L is an ample line bundle on X 

spanned at all points by global sections. Assume that there 

is a smooth A € ILl which is a p1 bundle f : A -> Y 

over a projective Y. Then if hO(Ky ) 
:+: ° f extends to a 

holomoq~hic maE f : X -> Y. Dim Y < 2 and if dim Y = 2, 

f . X -> Y is a ]p2 bundle with the restriction of L to . 
a fibre of f isomorphic to Op2 (1). 

Proof. By lemma (0.7) and (2.4) the holomorphic extension 

f : X --> Y exists. By Prop. V of [So11 it follows that if 

f is a p1 bundle then dim Y < 2. 

We can therefore by theorem (0.6.1) assume that dim y = 2. 

Let A be the union of the singular set of X and the set where 

f is not of maximal rank. Since A c X - A, the set A is 

finite. Choose a smooth connected curve C c Y such that 

f (A) n C = ~. Let f I = f I F = f 1 ' and let F 
f- 1 (e) f- (C) 

denote a general fibre of Xl. Suppressing basepoints for simpli-

city we have the long exact sequences of homotopy groups of 

fibre bundles: 
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Note that b is surjective by the first Lefschetz 

theorem on hyperplane sections. A diagram chase shows that 

a is surjective. Since lP1 
is a hyperplane section of 

F it is very well known (e.g. S02, (0.6.1)J that F 

is either p2 or a p1 bundle over 1P1 . Since a is 

surjective F is ]p2 and [JP 1 ] :: Lp is °]p2(1) F 

We are done except for the possibility of a singular 

fibre F of f: X --> Y. Dim F ~ dim f- 1 (I(D) + 1 :: 2. 

By the above it is clear that F is irreducible (since 

L • L • F = 1). An easy arugment using [S02 (0.6.1)] shows 

that 

To finish the argument note that since I- 1f(F) :: ~2 

and since f is flat (fibres are equal dimensional, X is 

a local complete intersection and Y is snooth) it follows 

that r is of maximal rank in a neighborhood of F. 
n 

(3.1) Theorem Let L be an ample line bundle on a local 

comElete intersection X assume that: 

a) L is spanned by global sections and hO (( ® 

* 0 for some N :> 0 I 

b) the sinsular set of X have codimensi.on > 
. 
'+ • 
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Let H € ILl and assume that there is a holomoEEhic surjection 

f H -> H' which expresses H as a Erojective variety with 

a codimension 2 submanifold 

o 
h (KA,) * O. Then dim A' < 2 

map f X --> X' such that 

H'--> XI 
i' 

blown up. Assume that 

extends to a holomorphic 

commutes where i and i' are inclusions.The map r expresses 

x as X, with the smooth subvariety i ' (A') c: X' reg blown uE. 

Proof. By the same argument as in [S02] or [Fa2] it can be 

shown that there exists a normal Cartier divisor n on X 

which m~ets H transversaly along E, the exceptional divisor 

of f over AI. By (3.0) the map f
E

: E --> AI extends to 

a holomorphic map f: D --> AI and dim AI < 2. The case 

dim A' = 1 has been done, see [Fa2]. So the only case left 

out is dim A' = 2. In such case f D -> A' is a p2 bundle 

with the restriction of Ln to the general fibre of r 
isomorphic to Op2 (1). It is then clear that the line bundle 

[n] .restricted to the general fibre of f is Op2 (-1). There

fore by Nakano IS theorem we can smoothly blow down D. Thus 

there exists a variety X and a holomorphic map f: X --> X, 

such that the following diagramm 
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H _i_> X 

H' --> Xl 

i I (A I) c X I 
reg since HI is a Cartier 

divisor on XI. And the map f expresses X as XI with 

i I (A I) blown up. 

o 
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§4 Concluding Remark§ 

(4.0) £,oniecture. Let f: A --> Y be a P 1 bundle over 

a smooth connected projective manifold Y. Assume that Y 

has non-negative Kodaira dimension. If A is an ample divisor 

on a projective local complete intersection X, then f 

extends to a holomorphic surjection I: X --> Y, dim Y < 2, 

and dim Y = 2 implies I is a p2 bundle. 

How do we approach (4.0)? First let us consider the Kodaira 

dimension condition. It would be natural to have a higher order 

first Lefschetz theorem. For example there is the following 

question. 

(4.1) Question. Let A be a smooth ample (or even very ample) 

divisor on a connected projective manifold X. Is 

for i < dim A and all sufficientl~ large s where E(s) 

denotes the s th symmetric eower of a vector bundle E. 

We can weaken the condition hO(Ky ) * 0 when dim Y : 2. 

Indeed if Y is a general type surface then most fibres of 

Yp ----> p in the proof of (2.3) are general type surfaces. The 

intersection A n AI is also of general type and surjects 

generically finite to one onto most fibres of Yp -> P. By the 

2 dimensional de Francis theorem ([D+M],[M)) most of the maps 
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A n A I to a fibre of Y p -> P are the same except for some 

blowing up and down. Assuming the fibre degree of these maps 

is t then we get a meromorphic map Y -> (A n A I) (tl p 

where w(t) = wt/st where St acts by permutations in the 

t factors. The image of Yp in (A n At)t is birational 

to Y and the composition of X <-- Xl --> Yp with this 

gives the desired birational map. 

Next how should we remove the condition [Al be spanned? 

Assume hO(Ky ) * O. Let w be a non-trivial section of 

A
dim ~T* obtained by lifting w to A

dim 
YT* and extending X A 

by the first Lefschetz theorem. We have a sequence: 

i 
w Adim Y - 1 T* 

X 

where i is interior multiplication. Let F be the subsheaf w 

which is the kernel of i. F should define a foliation on a 
w 

dense set of X whose sheets are the fibres of the desired 

meromorphic extension X --> Y. A careful study of f will 

very possibly (at the expense of a more technical proof) remove 

the need to assume spanning of [A]. 

Finally it would be interesting to know how much the 

Kodaira dimension condition on Y can be relaxed. 
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Extension Theorems for Maps of Fibre dimension 

at least 2 

(A.l) Theorem. Let A be an ample divisor on an irreducible 

normal projective variety X. Assume that A is normal and 

that there is a holomorphic surjection f A -> Y of A 

onto a projective variety such that dim A - dim Y > 2. If 

there is an ample line bundle L on Y such that f*L 

extends to a holomorphic line bundle L on X, then f 

extends to a holomorphic map f: X --> Y. In particular 

extension takes place if X, is a local complete intersection 

with the locus of non rational singularities having codimension 

> 3. 

Proof. The proof follows that of [501] very closely; we 

incorporate the improvements of [Full and [Fu2l • By raising 

L to a sufficiently high positive power we get a very ample 

line bundle whose pullback extends to X. Thus we can assume 

that L is very ample without loss of generality. Consider: 

o --> L ~ [A]-l --> L --> LA --> 0 

If the sections of LA extend to sections of L we 

will get an extension of f to a meromorphic 1 X --> p~ 

by using r(L) as sketched in (0.7) (cf. [Full also). 

To show the sections of LA extend to sections of L 
1 -1 it sufficies to show that H (X,L • [Al ); o. 
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Considering the above exact sequence tensored with [AJ-r 

1 -r for r = 1,2,3 .•. we see that H (A,LA ® [AlA) = 0 for 

r = 1,2,3 •.• would imply that: 

. .. . 

Since X is normal, H1 (X,L4P[A]-k)=0 fork»O, 

[Ha Ch. III, Cor. 7.8]. Therefore we have reduced to 

showing that h1(LA ~ [A]~r ) = 0 for r > 1 which 

follow s from (0.2.1) • 

Note that under the local complete intersection condition 

extension of f*L occur by (0.3.2). 

(A.2) Theorem. Let X be a normal irreducible projective 

varietl with isolated singularities. Let A be an ample 

divisor on X which is normal and such that A eX. reg 

If there is a holomorphic surjection f : A --> Y onto a 

IJ 

projective variety with dim A - dim Y > 2 then f extends 

to a meromorphic map f: X --> Y which is holomorphic on 

Xrego 

Proof. Let L be an ample line bundle on Y. Let ~ X --> X 

be a desingularization of X. By lemma (0.3.1), f*Lm extends 

to a h~lomorphic line bundle L on X for some m > O. 

The proof of the last result and a standard Hartog's theorem 

argument would prove this result if we show that for some 

neighborhood U of A 
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Hl (U,L • [Al-r ) .. 0 for r» O. 

This is true by a result of Griffiths ([Gril, see also [LP1); 

we have followed the idea of [S1}. Instead of using Griffiths' 

theorem we could work on the formal completion of A in X 

as done by Fujita [Fu2]. 

[] 

A consequence of theorem (A.l) using [Sol] is that if A 

and X are as in theorem (A.l) so that the holomorphic extension 

1 X -> Y exists and if f : A ->. Y is a pk bundle with 

k > 2 then 1 is a P k+l bundle. 
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