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Abstract

Motivated by the tropical enumeration of plane cuspidal tropical curves
given by Y. Ganor and the author and the refined count of plane rational
tropical curves with marked vertices of arbitrary valency, we suggest a refined
enumeration of plane rational tropical curves with one unmarked vertex of
arbitrary valency. Our invariant extends (in the rational case) the Block-
Göttsche refined invariant counting trivalent tropical curves and the refined
rational descendant tropical invariant suggested by L. Blechman and the
author.

MSC-2010: 14N10, 14T05

Introduction

Existence of refined (i.e., depending on a formal parameter) enumerative in-
variants is one of the most interesting phenomena in the tropical enumerative
geometry. They were discovered by F. Block and L. Göttsche [2] in the problem of
enumeration of plane trivalent tropical curves with unmarked vertices (see also
[7] for the invariance statement). L. Göttsche and F. Schroeter [6] found a refined
invariant counting plane rational trivalent tropical curves with marked vertices.
The latter invariant was extended by L. Blechman and the author [1] to the case
of of plane rational tropical curves with marked vertices of arbitrary valency and
all unmarked vertices trivalent. In this note we suggest a refined enumeration of
plane rational tropical curves with marked points of arbitrary valency and one
unmarked point of arbitrary valency (while other unmarked points are trivalent).
We were inspired by the tropical enumeration of plane unicuspidal curves [3],
which necessarily leads to plane tropical curves with a four-valent unmarked
vertex.

The Block-Göttsche invariants can be explicitly related to the enumeration of
complex and real nodal algebraic curves on toric surfaces. In the case of plane
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tropical curves with marked points on edges and all but one vertices trivalent,
while one vertex is four-valent, our invariant, evaluated at y = 1 gives the number
of unicuspidal tropical curves passing through an appropriate generic configura-
tion of points and tropicalizing to the given tropical curve.

Acknowledgements. The author has been supported by the Israel Science
Foundation grants no. 176/15 and 501/18. A part of this research was performed
during the author’s stay at the Max-Planck Institut für Mathematik in August-
September 2018. The author thanks the MPIM for support and excellent working
conditions.

1 Plane marked rational tropical curves

We shortly recall some basic definitions concerning rational tropical curves
adapted to our setting and define the class of tropical curves under consider-
ation (for details, see [4, 5, 8, 9]).

(1) A plane n-marked rational tropical curve is a triple (Γ, h,p), where

• Γ is either isometric toR, or is a finite connected metric tree without vertices
of valency ≤ 2, whose set Γ0 of vertices in nonempty, the set of edges Γ1

contains a subset Γ1
∞
, ∅ consisting of edges isometric to [0,∞) (called ends),

while Γ1
\ Γ1
∞

consists of edges isometric to compact segments in R (called
finite edges);

• h : Γ → R2 is a proper continuous map such that h is nonconstant, affine-
integral on each edge of Γ in the length coordinate and, at each vertex V of
Γ, the balancing condition holds∑

E∈Γ1, V∈E

aV(E) = 0 ,

where aV(E) (called the directing vector of E centered at V) is the image under
the differential D(h

∣∣∣
E
) of the unit tangent vector to E emanating from its

endpoint V;

• p is a sequence of n distinct points of Γ.

The multiset of vectors deg(Γ, h) :=
{
aV(E) : E ∈ Γ1

∞

}
⊂ Z2

\ {0} is called the
degree of (Γ, h,p). Clearly the vectors of deg(Γ, h) sum up to zero (we call such a
multiset balanced). The degree ∆ is called nondegenerate if dim Span{a ∈ ∆} = 2,
and is called primitive if all vectors a ∈ ∆ are primitive integral vectors.

Denote by Z∞+ the set of sequences of nonnegative integers (ki)i≥0 such that∑
i ki < ∞, and by Z∞,∗+ ⊂ Z∞+ the set of sequences with the vanishing initial

member. Let m = (mi)i≥0 ∈ Z
∞,∗
+ , n = (ni)i≥0 ∈ Z∞+ . We say that (Γ, h,p) is of V-type

(m,n), if exactly mi vertices in Γ0
\ p have valency i + 2 for all i ≥ 1, exactly n0
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points of p lie in Γ \ Γ0, exactly ni vertices in Γ0
∩ p have valency i + 2 for all i ≥ 1.

It is easy to see that

|Γ0
| =

∑
i≥1

(mi + ni), |Γ1
| =

∑
i≥1

(i + 1)(mi + ni) + 1, |Γ1
∞
| =

∑
i≥1

i(mi + ni) + 2 . (1)

(2) Two plane n-marked rational tropical curves (Γ, h,p) and (Γ′, h′,p′) are called
isomorphic, if there exists an isometry ϕ : Γ → Γ′ such that h = h′ ◦ ϕ and
ϕ(pi) = p′i for all pi ∈ p, p′i ∈ p′, i = 1, ...,n. Assuming that a finite balanced multiset
∆ ⊂ Z2

\ {0} and sequences of nonnegative integers m ∈ Z∞,∗+ , n ∈ Z∞+ , satisfy

|∆| =
∑
i≥1

i(mi + ni) + 2 (2)

(cf. (1)), we consider the moduli spaceM0,n,m(R2,∆) parameterizing isomorphism
classes [(Γ, h,p)] of plane n =

∑
i≥0 ni-marked rational tropical curves of V-type

(m,n) and degree ∆.

Lemma 1.1 The spaceM0,n,m(R2,∆) can be identified with a finite union of open convex
polyhedral cones of pure dimension

∑
i≥0(mi + ni) + 1.

Proof. Given a combinatorial type of the pair (Γ,p) and the distribution of
the directing vectors aV(E) ∈ Z2

\ {0} for all edges E ∈ Γ1, the lengths of the
finite edges, the distances from marked points in Γ \ Γ0 to chosen vertices of the
corresponding edges, and the freely chosen image h(V) of a fixed vertex V ∈ Γ0

give N =
∑

i≥0(mi + ni) + 1 independent coordinates in the positive orthant of RN,
from which one should get rid suitable diagonals in case when more than one
marked points occur in the interior of the same edge of Γ. �

By M̂0,n,m(R2,∆) we denote the polyhedral fan obtained by extending
M0,n,m(R2,∆) with classes corresponding either to contraction of some finite edges
(i.e., vanishing of their lengths), or to arrival of marked points from edges to ver-
tices of Γ, or to collision of marked points.

Assume that 2n =
∑

i≥0(mi + ni) + 1, or, equivalently,

n =
∑
i≥1

mi + 1 . (3)

Then the evaluation map

Ev : M̂0,n,m(R2,∆)→ R2n, Ev[(Γ, h,p)] = h(p) ∈ R2n ,

relates spaces of the same dimension
∑

i≥0(mi + ni) + 1 = 2n.

Definition 1.2 Let a balanced, nondegenerate multiset ∆ ⊂ Z2
\ {0} and sequences

m ∈ Z∞,∗+ , n ∈ Z∞+ satisfy (2) and (3).

(1) We say that a class [(Γ, h,p)] ∈ M0,n,m(R2,∆) is regular, if each connected compo-
nent K of Γ \ p is unbounded, and its closure K ⊂ Γ possesses a unique orientation of its
edges (called regular orientation) such that
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• all marked points in K are sources, all ends of K are oriented towards infinity;

• for each vertex V ∈ K ∩ Γ0 exactly two of its incident edges are incoming, and,
moreover, the h-images of these edges are not collinear.

(2) A cell of M0,n,m(R2,∆) is called enumeratively essential, if Ev injectively takes
it to R2n. Denote by M e

0,n,m(R2,∆) the union of the enumeratively essential cells of

M0,n,m(R2,∆), by M̂ e
0,n,m(R2,∆) the closure of M e

0,n,m(R2,∆) in M̂0,n,m(R2,∆), and by

Eve the restriction of Ev to M̂ e
0,n,m(R2,∆).

Lemma 1.3 Let ∆ ⊂ Z2
\ {0} be a balanced nondegenerate multiset, m ∈ Z∞,∗+ , n ∈ Z∞+ .

Suppose that (2) and (3) hold. Then M e
0,n,m(R2,∆) , ∅ and each cell of M e

0,n,m(R2,∆)
consists of regular classes.

Proof. Suppose that [(Γ, h,p)] ∈ M0,n,m(R2,∆) is a regular class. Then it belongs
to M e

0,n,m(R2,∆). Indeed, whenever we fix the position of h(p), the image of
h : Γ → R2 is fixed as well (recall that the combinatorial type of (Γ,p) and the
differentials of h on the edges of Γ are a priori fixed), and then we recover the
lengths of compact edges of Γ. On the other hand, it immediately follows from
the regularity that any small variation of h(p) induces a (unique) small variation
of (Γ, h,p) in its combinatorial class.

For the proof of the existence of a regular class, we make the following elemen-
tary observation (left to the reader as an exercise):

(O) Let |∆| > 3 and let ∆ by cyclically ordered by rotation in the positive
direction. Then, for any ai ∈ ∆, which is not simultaneously collinear to ai−1 and
ai+1, and any 1 ≤ j ≤ |∆|−2, there exist a sequence ak, ...,ak+ j ∈ ∆, including ai, such
that dim Span{ak, ...,ak+ j} = 2,

∑k+ j
s=k as , 0, and the multiset ∆′ = (∆ \ {ak, ...,ak+ j})∪

{a′}, where a′ = ak + ... + ak+ j, is balanced and nondegenerate.

Then we proceed in the same way as the existence statement in [1, Lemma 1.4].
We remind here this argument referring to [1] for the details. First, we construct
the (convex lattice) Newton polygon P(∆), whose boundary can be represented as
the union of cyclically ordered integral segments [vk, vk+1], k = 1, ..., |∆|, v|∆|+1 = v1,
obtained by rotating the ordered as above vectors ak ∈ ∆, k = 1, ..., |∆|, by π

2
clockwise (we call ak and [vk, vk+1] dual to each other). The set V = {v1, ..., v|∆|}
includes all the vertices of P(∆).

We proceed by induction on n. If n = 1, the curve Γ is a fan with the center
at the unique (marked) vertex, and (Γ, h,p) is regular. Suppose that n > 1. Then
(cf. (3)) there are ni > 0 and m j > 0. If j = |∆| − 2 and respectively n = n0 = 2,
then γ again has a unique (unmarked) vertex, and we pick two marked points on
two ends with non-collinear directing vectors, obtaining a regular curve (Γ, h,p).
Suppose that j ≤ |∆| − 3. If i = 0, we choose ak, which is not parallel both to ak−1

and ak+1, then find a sequence as, ...,as+ j−1 as in observation (O), and, finally draw
the chord in P(∆) joining the points vs and vs+ j. It follows that the interior of this
chord is disjoint from ∂P(∆). The chord cuts P(∆) into a polygon containing j + 2
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points ofV and the remaining polygon P(∆′), where ∆′ = (∆ \ {as, ...,as+ j−1})∪{a′},
a′ = as + ...+as+ j−1. The former polygon (with the corresponding part ofV) is dual
to a tropical curve with the unique (unmarked) vertex of valency j + 2, a marked
point on the end directed by the vector ak, and the end directed by the vector −a′,
to which we attach the remaining part of the constructed curve existing due to
the induction assumption applied to ∆′ and n′, m′, obtained by reducing ni and
m j by one. The regularity of the constructed tropical curve is evident. Suppose
that n0 = 0 and i > 0. Then i + j ≤ |∆| − 3. We, first, choose a sequence ak, ...,ak+i

as in observation (O), join the points vk, vk+i ∈ V by a chord, whose interior must
be disjoint from ∂P(∆. It cuts off P(∆) an polygon P1 that will be dual to a marked
point of valency i + 2 incident to i + 1 ends directed by ak, ...,ak+i and to one more
edge dual to the chord. Set ∆′ = (∆ \ {ak, ...,aki}) ∪ {a

′
}, a′ = ak + ...,ak+i. Since the

chord is not collinear with the neighboring sides of P(∆), we apply observation
(O) to ∆′ and obtain a sequence of j + 1 vectors of ∆′ (including a′), whose dual
segments form a connected part of ∂P(∆′), and the extreme points of this part
are joined by a chord which intersects ∂P(∆′) only in its endpoints. Thus, we
cut off P(∆′) a polygon P2 which will be dual to an unmarked vertex of valency
j + 2incident to j ends, an edge dual to the first constructed chord, and one more
edge dual to the second chord. So, we attach the two constructed fragment by
gluing along the edges dual to the first chord, and, finally, apply the induction
assumption to ∆′′ that is formed by the vectors as dual to the remaining segments
[vr, vr+1] and by the vector a′′ equal to the sum of all removed vectors as (and dual
to the second chord), while n and m turn into n′,m′ by reducing 1 from ni and m j.

Suppose now that [(Γ, h,p)] ∈ M e
0,n,m(R2,∆). This means that x = h(p) is a

general position in R2. Using induction on |Γ0
|, we show that (Γ, h,p) is regular.

If |Γ0
| ≤ 1, the claim is evident. Assume that |Γ0

| > 1. Since one can consider all
components of Γ \p separately and independently, we are left with the case when
all marked points belong to ends of Γ, when no two points lie on the same end or
on collinear ends. The relation n = |Γ0

| + 1 (cf. (3)) yields that there are two ends
with marked points incident to the same vertex V ∈ Γ0. Note that no any other
end with a marked point is incident to V due to the general position of x. So, we
orient the segments on the chosen above two ends of Γ, which join the marked
points with V, towards V, while all other edges of Γ incident to V are oriented
outwards. Thus, we reduce the considered case to the study of the connected
components of Γ \ {V}, and hence derive the required regularity by the induction
assumption. �

Remark 1.4 As shown in [1, Proof of Lemma 1.4], the subdivision of P(∆) constructed
in the proof of Lemma 1.3 can be further refined by extra chords between the points ofV
so that the final subdivision will consist of |∆| − 2 nondegenerate triangles with vertices
inV.

Set
Y2n−1 = Ev

(
M̂

e
0;m(R2,∆) \M e

0;m(R2,∆)
)
. (4)
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This is a polyhedral complex of dimension ≤ 2n − 1 in R2n. Denote by X2n−1 the
union (maybe empty) of open (2n − 1)-dimensional cells of Y2n−1. Then X2n−2 :=
Y2n−1

\ X2n−1 is a finite polyhedral complex of dimension ≤ 2n − 2.

Lemma 1.5 Under the hypotheses of Lemma 1.3, suppose that X2n−1 , ∅. Then, for each
x ∈ X2n−1, the preimage (Eve)−1(x) consists of regular classes, or classes [(Γ, h,p)] such
that

(a) (Γ, h,p) is of V-type (m′,n′), where m′i = mi for all i ≥ 1 except for m′i1 = mi1 − 1,
and n′i = ni for all i ≥ 0 except for n′i2 = ni2 − 1 and n′i1+i2

= ni1+i2 + 1; furthermore,
exactly one connected component of Γ \ p is not regular;

(b) Γ is of V-type (m′,n), where m′i = mi for all i ≥ 1 except either for m′i1 = mi1 − 2,
m′2i1−2 = m2i1−2 + 1 with some i1 ≥ 1, or for m′i1 = mi1 − 1, m′i2 = mi2 − 1,
m′i1+i2−2 = mi1+i2−2 + 1 with some i2 > i1 ≥ 1; furthermore, exactly one connected
component of Γ \ p is not regular.

Proof. By construction, a non-regular element [(Γ, h,p)] ∈ (Eve)−1(x) is a limit of
regular classes [(Γt, ht,pt)], 0 < t < ε, and is obtained by vanishing of exactly of the
parameters in the corresponding cell ofM e

0,n,m(R2,∆). If the vanishing parameter
is the length of a segment joining a marked point pk,t and a vertex Vt ∈ Γ0

t \pt, then
we get to the case (a). The only non-regular component of Γ \ p is the component
which contains the limit of the edge of Γt \ pt, which is not incident to pk,t and is
regularly oriented towards Vt. If the vanishing parameter is the length of the edge
joining two vertices of Γ0

t \ pt and not containing points of pt, then we get to the
case (b). The only non-regular component of Γ\p is that with the vertex appeared
in the collision of two vertices of Γ0

t \ pt: the regularity fails, since the new vertex
is incident to three incoming edges. Note that no two of these three edges have
collinear directing vectors, since otherwise the dimension of the corresponding
cell of Y2n−1 would not exceed 2n − 2. �

2 The refined cuspidal invariant

2.1 Preparation

Throughout this section, we fix a standard basis in R2, and for any a = (a1, a2),

b = (b1, b2) ∈ R2, set a ∧ b = det
(
a1 a2

b1 b2

)
.

For any α ∈ R and a formal parameter y, define

[α]−y =
yα/2 − y−α/2

y1/2 − y−1/2 , [α]+
y =

yα/2 + y−α/2

y1/2 + y−1/2 . (5)

Let us be given a balanced, nondegenerate multiset ∆ ⊂ Z2
\ {0} and sequences

n ∈ Z∞+ , m ∈ Z∞,∗+ satisfying (2) and (3).
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We will use also labeled tropical curves. A labeling of a tropical curve (Γ, h,p)
is a linear order on the set of the ends Γ1

∞
. To simplify notations, we use the same

symbol Γ when it is clearly indicated whether the curve is labeled or not, and we
write Γlab, where it is not the case. Denote by M̂ e,lab

0,n,m(R2,∆) the moduli space of

labeled n-marked plane rational tropical curves that project to M̂ e
0,n,m(R2,∆).

Lemma 2.1 The projection forgetting labels

πe
0,n,m : M̂ e,lab

0,n,m(R2,∆)→ M̂ e
0,n,m(R2,∆)

is a finite, surjective map, and, for any element [(Γ, h,p)] ∈ M̂ e
0,n,m(R2,∆), we have

∣∣∣(πe
0,n,m)−1[(Γ, h,p)]

∣∣∣ =
|∆|!

|Aut(Γ, h,p)|
. (6)

Proof. We explain only formula (6). The group of permutations of |∆| elements
transitively acts on (πe

0,n,m)−1[(Γ, h,p)]. Then it remains to notice that a permutation
belongs to a stabilizer of an element of the above preimage if and only if it is
induced by an automorphism of (Γ, h,p). �

2.2 Refined multiplicity of a regular plane rational marked trop-
ical curve

Now we introduce an additional restriction:∑
i≥2

mi ≤ 1 . (7)

It means that all but at most one unmarked vertices are trivalent.

Remark 2.2 The refined multiplicity of plane tropical curves which we give below nat-
urally extends to arbitrary m and n satisfying (3). However the invariance statement
holds only under restriction (7). We do not know how to correct the refined multiplicity
in order to obtain an invariant in the general case.

Let [(Γ, h,p)] ∈ M e
0,n,m(R2,∆), and let (Γlab, h,p) be one of the labelings of (Γ, h,p).

We start with defining a refined cuspidal multiplicity RCMy(Γ, h,p,V) (depending
on a formal parameter y) for each vertex V ∈ Γ0.

(1) Refined cuspidal multiplicity of a trivalent unmarked vertex. Suppose that V ∈ Γ0 is
trivalent and the regularly oriented edges E1,E2 ∈ Γ1 incident to V are incoming.
Define the Mikhalkin’s multiplicity of the vertex V by (cf. [8, Definition 2.16])

µ(Γ, h,p,V) = |a1 ∧ a2|, where ai = D(h
∣∣∣
Ei

)(aV(Ei)), i = 1, 2 .
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Following [2], we put

RCMy(Γ, h,p,V) = [µ(Γ, h,p,V)]−y . (8)

(2) The function µ+
y (A). We recall here the definition of the function µ+

y (A) for
any balanced sequence A = (ai)i=1,...,r, r ≥ 2, ai ∈ R2, i = 1, ..., r, as given in [1,
Section 2.1, item (2)]. If r = 2, we set µ+

y (A) = 1. If r = 3, we set µ+
y (A) = [|a1∧a2|]+

y .
Note that, due to the balancing condition, this definition does not depend on the
choice of the order in the sequence A. If r ≥ 4, then, for each pair 1 ≤ i < j ≤ m,
we form the two balanced sequences

• A′i j consisting of the vectors ak, 1 ≤ k ≤ r, k , i, j, and one more vector
ai j := ai + a j,

• A′′i j = (ai,ai,−ai j).

Then we set
µ+

y (A) =
∑

1≤i< j≤m

µ+
y (A′i j) · µ

+
y (A′′i j) . (9)

It is easy to see that µ+
y (A) does not depend on the choice of the order in A.

(3) The refined cuspidal multiplicity of a marked vertex. Given a marked vertex
V ∈ Γ0

∩p and the directing vectors a1, ...,ar of all the edges incident to, we set (cf.
[1, Formula (9)])

RCMy(Γ, h,p,V) = µ+
y (AV), Av = (a1, ...,ar) . (10)

(4) The refined cuspidal multiplicity of an unmarked vertex of valency ≥ 4. Given an
unmarked vertex V ∈ Γ0

\ p of valency r ≥ 4 and the directing vectors a1, ...,ar of
all its incident edges of Γ, ordered so that a1,a2 direct the edges regularly oriented
towards V, we set

RCMy(Γ, h,p,V) = [|a1 ∧ a2|]−y · µ
+
y (A′V), A′V = (a1 + a2,a3, ...,ar) . (11)

(5) The refined cuspidal multiplicity of a regular plane rational marked tropical curve.
Given [(Γ, h,p)] ∈ Me

0,n,m(R2,∆), define

RCMy(Γlab, h,p) =
∏
V∈Γ0

RCMy(Γ, h,p,V), RCMy(Γ, h,p) =
RCMy(Γlab, h,p)
|Aut(Γ, h,p)|

. (12)

2.3 The invariance statement

Theorem 2.3 Let ∆ ⊂ Z2
\{0} be a balanced, nondegenerate multiset, m ∈ Z∞,∗+ , n ∈ Z∞+ ,

and let (2), (3) and the restriction (R) hold. Then the expression

RCy(∆,m, x) :=
∑

[(Γ,h,p)]∈(Eve)−1(x)

RCMy(Γ, h,p) (13)

does not depend on the choice of x ∈ R2n
\ Y2n−1 with Y2n−1 defined by (4).
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Remark 2.4 In case of ∆ primitive, ni = 0 for all i ≥ 1, and mi = 0 for all i ≥ 2 (i.e.,
(Γ, h,p) trivalent without marked vertices), the cuspidal invariant RCy(∆,n,m) coincides
with the Block-Göttsche refined invariant N∆,δ

trop(y) for δ chosen so that the counted tropical
curves are rational [2].

In case of ∆ primitive, ni = mi = 0 for all i ≥ 2 (i.e., (Γ, h,p) trivalent but with some
vertices marked), the invariant RCy(∆,n,m) coincides with refined broccoli invariant as
defined by Göttache and Schroeter [6].

At last, in case of mi = 0 for all i ≥ 2 (i.e., all unmarked vertices trivalent), the
invariant RCy(∆,n,m) coincides with the refined descendant invariant defined in [1].
The only novelty of the present note is that we allow on unmarked vertex of arbitrary
valency.

Similarly to [1, Proposition 2.4], our invariant RCy(∆,m) is often a rational
function of y:

Proposition 2.5 If under hypotheses of Theorem 2.3, in addition, ∆ ⊂ Z2
\ 2Z2 (i.e.,

does not contain even vectors), then we have

RCy(∆,m) =
F(y + y−1)

(y + 2 + y−1)k
, (14)

where k ≥ 0 and F is a nonzero polynomial of degree

deg F = |IntP(∆) ∩Z2
| +
|∂P(∆) ∩Z2

| − |∆|

2
+ k ,

where P(∆) is the Newton polygon constructed in the proof of Lemma 1.3. Furthermore,

k ≤
∑
i≥2

i(n2i + n2i+1) +
1
2

∑
j≥4

( j − 3)m j . (15)

Proof. The argument used in the proof of [1, Proposition 2.4] word-for-word
applies in the considered situation. We only make a couple of comments. The
computation of deg F uses the construction of a regular tropical curve in the
proof of Lemma 1.3 and also Remark 1.4. The last summand in the right-hand
side of (15) (as compared with [1, Inequality (14)]) comes from the fact that an
unmarked vertex of valency j > 3 contributes to the denominator at most j − 3
factors y1/2 + y−1/2. �

In general, the denominator in formula (14) is unavoidable as noticed in [1,
Corollary 3.3].

2.4 Proof of the invariance

It will be convenient to consider labeled tropical curves. In view of formulas
(6) and (12), the invariance of RCy(∆,n,m, x) is equivalent to the invariance of
RClab

y (∆,n,m, x). I

IThe latter expression is defined by formula (13), where we sum up over all labeled corves.
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So, we choose two generic configurations x(0), x(1) ∈ R2n
\ Y2n−1. There exists

a continuous path x(t) ∈ R2n, 0 ≤ t ≤ 1, connecting the chosen configurations,
that avoids X2n−2, but may finitely many times hit cells of X2n−1, which may
cause changes in the structure of (Eve)−1(x(t)). We shall consider all possible wall-
crossing phenomena and verify the constancy of RClab

y (∆,m,m, x(t)) (as a function
of t) in the in these events.

To relax notations we simply denote labeled tropical curves by (Γ, h,p) or and
write RClab

y (t) for RClab
y (∆,m, x(t)).

Let x(t∗) be generic in an (2n − 1)-dimensional cell of X2n−1. Denote by H0 the
germ of this cell at x(t∗) and by H+,H− ⊂ R2n the germs of the halfspaces with
common boundary H0. Let T∗ = (Γ, h,p) ∈ (Eve)−1(x(t∗)) be as described in Lemma
1.5(a,b), and let F0 ⊂ M̂

e,lab
0,m (R2,∆) be the germ at T∗ of the (2n − 1)-cell projected

by Eve onto H0. We shall analyze the 2n-cells of M̂ e,lab
0,m (R2,∆) attached to F0, their

projections onto H+,H−, and prove the constancy of RClab
y (t), t ∈ (t∗ − η, t∗ + η),

0 < η� 1.

(1) Suppose that T∗ is as in Lemma 1.5(a), i.e., it has a marked point p1 at a
vertex V ∈ Γ0 of valency i1 + i2 + 2, with incident edges E0, ...,Ei1+i2+1 directed by
the vectors a j := aV(E j), 0 ≤ j ≤ i1 + i2 + 1, and we assume that the limit of the
regular orientation is such that E0 is incoming and all other edges incident to V
are outgoing. Without loss of generality we can suppose that the path x(t), in a
neighborhood of t∗, is as follows: x1 = h(p1) ∈ R2 moves along a smooth germ
transversal to the fixed line L through the segment h(E0), while x \ {x1} remains
fixed.

Assume that i2 = 0. Then, in the deformation, the marked point p1 moves from
V to one of the edges E1, ...,Ei1+1. Note that the sign of a0 ∧ a j determines whether
the tropical curve with a marked point on E j, 1 ≤ j ≤ i1 + 1, is mapped to H+ or
H−. Hence, in view of the former formula in (12) and formula (11), the constancy
of RClab

y (t) is equivalent to the relation

i1+1∑
j=1

[a0 ∧ a j]−y · µ
+
y (A j) = 0, where A j = (a0 + a j, (ak)k,0, j) . (16)

If i1 = 1, the balancing condition, which reads a0 + a1 + a2 = 0, and the definition
µ+

y (A1) = µ+
y (A2) = 1 imply (16). If i1 ≥ 2, then (16) is equivalent to [1, Formula

(18)].

So, assume that i2 ≥ 1. Then, in the deformation, V splits into a marked (i2 + 2)-
valent vertex p1 and an unmarked (i1 + 2)-valent vertex V′ mapped to the line
L. Denote by E′0 the edge connecting the vertices V,V′ of the deformed curve.
The sign of a0 ∧ a′0, where a′0 = aV(E′0), determines whether the Eve-image of the
deformed curve belongs to H+ or to H−. Then the sought constancy will follow
from the relation (see Figure 1(a))∑

I∪J={1,...,i1+i2+1}
|I|=i1,|J|=i2+1

[a0 ∧ a′0]−y · µ
+
y (AI) · µ+

y (BJ) = 0 , (17)
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Figure 1: Geometric illustration to the invariance statement

where

AI = (a0,−a′0, (as : s ∈ I)), BJ = (a′0, (as : s ∈ J)), a′0 = −
∑
s∈J

as .

Using [1, Formula (18)], we rewrite (17) in the form (see Figure 1(b))∑
I∪J={1,...,i1+i2+1}
|I|=i1,|J|=i2+1

∑
k∈I

[a0∧as]−y ·µ
+(AI,k)·µ+

y (BJ) = 0, AI,k = (a0+ak,−a′0, (as : s ∈ I\{k})) ,

or, equivalently, as

i1+i2+1∑
k=1

[a0 ∧ ak]−y ·
∑

I∪J={1,...,i1+i2+1}
k∈I,|I|=i1,|J|=i2+1

µ+
y (AI,k)µ+

y (BJ)

 = 0 . (18)

For a given k, the term
∑

I,J µ
+
y (AI,k)µ+

y (BJ) in the left-hand side of (18) can be
written (cf. [1, Section 2.5, proof of Lemma 2.5]) as the sum of the expressions
µ+

y,α(Ck,a0 + ak,E), where Ck = (a0 + ak, (as : 1 ≤ s ≤ i1 + i2 + 1, s , k)), α runs over
all combinatorial types of trivalent trees having i1 + i2 + 1 leaves and containing
a point, whose complement consists of two trees with i1 + 1 and i2 + 2 leaves,
respectively, which E runs over the leaves of the former subtree. It follows from
[1, Formula (24)] that∑

I∪J={1,...,i1+i2+1}
k∈I,|I|=i1,|J|=i2+1

µ+
y (AI,k)µ+

y (BJ) = Φ1(z)
∑

τ∈Si1+i2

zτΛ(Ck) , (19)

where Ck = {as : 1 ≤ s ≤ i1 + i2 + 1, s , k}, z2 = y, Sk is the permutation group of k
elements, C = (bs}1≤s≤|C|, and

τΛ(C) =
∑

1≤s<t≤|C|

bτ(s) ∧ bτ(t) .

11



Plugging (19) to (18) and using relations

[a0 ∧ ak]−y =
za0∧ak − zak∧a0

z − z−1 , a0 = −a1 − ... − ai1+i2+1 ,

we obtain in the left-hand side of (18)

Φ2(z)

i1+i2+1∑
k=1

∑
τ∈Si1+i2

zτΛ(Ck)+
∑

s,0 ak∧as −

i1+i2+1∑
k=1

∑
τ∈Si1+i2

zτΛ(Ck)+
∑

s,0 as∧ak


= Φ2(z)

 ∑
σ∈Si1+i2+1

zσΛ(C)
−

∑
σ∈Si1+i2+1

zσΛ(C)

 = 0

(where C = {a1, ...,ai1+i2+1}).

(2) Suppose that T∗ = (Γ, h,p) is as in Lemma 1.5(b), i.e., it results from a collision
of two unmarked vertices of valency 3 and r ≥ 3. Then Γ has an unmarked vertex
V of valency r + 1. Let E j ∈ Γ1, j = 1, ..., r + 1, be the edges incident to V, and
the limit of the regular orientation is such that E1,E2,E3 are incoming, while the
other edges are outgoing. Denote a j = aV(E j), j = 1, ..., r + 1. We use the same
symbols E j for the corresponding edges of curves T(t) ∈ M e,lab

0,n,m(R2,∆) obtained in
a deformation of T∗ along the path x(t), t ∈ (t∗ − η, t∗ + η), no confusion will arise.

The list of possible curves T(t) is as follows:

• either, for some 1 ≤ j ≤ 3, a curve T(t) has a trivalent vertex V1 incident to
the edges E j, Ek, k = 4, ..., r + 1, and the edge E0 that joins V1 with the vertex
V2; in turn, V2 is incident to E0, E j1 , E j2 , where {1, 2, 3} \ { j} = { j1, j2}, and Es,
s = 4, ..., r + 1, s , k;

• or, for some 1 ≤ j ≤ 3, a curve T(t) has a trivalent vertex V1 incident to the
edges E j1 , E j2 , and the edge E0 that joins V1 with the vertex V2; in turn, V2 is
incident to E0, Es, s = 4, ..., r + 1.

The regular orientation of E0 is given in the former and in the latter case by the
vectors

a0 = aV2(E0) = a j + ak and a0 = aV1(E0) = a j1 + a j2 ,

respectively. In both the cases, the sign of a j ∧ a0 determines whether Eve(T(t))
belongs to H+ or H−. Introduce ε j = ±1, j = 1, 2, 3, so that ε j · sign(a j ∧ a0) = 1
points to H+ for all j = 1, 2, 3. Then the required constancy relation reads

3∑
j=1

ε j · [|a j1 ∧ a j2 |]
−

y ·

 r+1∑
k=4

[a j ∧ ak]−y · µ
+
y (Ak) + [a j ∧ (−a j1 − a j2)]

−

y · µ
+
y (A)

 , (20)

where

Ak = (a j1 + a j2 ,a j + ak, (al : l ∈ K \ {k})), A = (a1 + a2 + a3, (al)l∈K)

12



(see Figure 1(c,d)).

If r = 3, then (20) turns into

3∑
j=1

ε j · [a j ∧ (−a j1 − a j2)]
−

y · [|a j1 ∧ a j2 |]
−

y = 0 , (21)

which reflects a collision of two trivalent vertices with Block-Göttsche refined mul-
tiplicities, and in which case (21) appears to be a particular case of the invariance
statement in [7, Theorem 1] (see a detailed treatment in [7, Pages 5313-5316]).

If r ≥ 4, relation [1, Formula (18)] (cf. also (16)) yields that

r+1∑
k=4

(
[a j ∧ ak]−y · µ

+
y (Ak)

)
= −[a j ∧ (a j1 + a j2)]

−

y · µ
+
y (A) ,

we obtain in the left-hand side of (20)

2
3∑

j=1

(
ε j · [|a j1 ∧ a j2 |]

−

y · [a j ∧ (−a j1 − a j2)]
−

y

)
,

which vanishes in view of (21).
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