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Abstract. In this paper, we prove that each injective simplicial
map of the arc complex of a compact, connected, orientable surface
with nonempty boundary is induced by a homeomorphism of the
surface. We deduce, from this result, that the group of automor-
phisms of the arc complex is naturally isomorphic to the extended
mapping class group of the surface, provided the surface is not a
disc, an annulus, a pair of pants, or a torus with one hole. We
also show, for each of these special exceptions, that the group of
automorphisms of the arc complex is naturally isomorphic to the
quotient of the extended mapping class group of the surface by its
center.

1. Introduction

In this paper, R = Rg,b will denote a compact, connected, oriented
surface of genus g with b boundary components, where b ≥ 1. Let ∂R
be the boundary of R and ∂i, 1 ≤ i ≤ b be the components of ∂R. We
say that R is a surface of genus g with b holes. Note that R0,1 is a disc;
R0,2 is an annulus; R0,3 is a pair of pants; R0,b is a sphere with b holes;
and R1,b is a torus with b holes.

The extended mapping class group of R is the group of isotopy
classes Γ∗(R) of self-homeomorphisms of R. The mapping class group
of R is the group of isotopy classes Γ(R) of orientation preserving self-
homeomorphisms of R. Note that Γ(R) is a subgroup of index 2 in
Γ∗(R).

The arc complex A(R) is the abstract simplicial complex whose sim-
plices are collections of isotopy classes of properly embedded essential
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arcs on R which can be represented by disjoint arcs. Γ∗(R) acts natu-
rally on A(R) by simplicial automorphisms of A(R), yielding a natural
simplicial representation ρ : Γ∗(R) → Aut((A)(R)) from Gamma∗(R)
to the group of simplicial automorphisms Aut(A(R)) of A(R).

In this paper, we prove that each injective simplicial map λ : A(R) →
A(R) is geometric (i.e. induced by a homeomorphism). More precisely,
we prove, for each such map, λ : A(R) → A(R), that there exists a
homeomorphism H : R → R such that the value of λ on the isotopy
class [A] of any properly embedded essential arc A on R is equal to
[H(A)].

As an immediate consequence of this result, it follows that ρ :
Γ∗(R) → Aut(A(R)) is surjective with kernel ker(ρ) equal to the sub-
group of Γ∗(R) consisting of isotopy classes of homeomorphisms R → R
which preserve the isotopy class of every properly embedded essential
arc on R.

Studying ker(ρ) we show that it is trivial when R is not a disc, an
annulus, a pair of pants, or a torus with one hole. When R is either a
disc, an annulus, a pair of pants, or a torus with one hole, we show that
ker(ρ) is equal to the center Z(Γ∗(R) of Γ∗(R), and compute explicitly
Z(Γ∗(R)) for each of these special examples.

Here is an outline of the paper.
In Section 2, we review some basic facts about arcs on surfaces used

in the following sections.
In Sections 3 and 4, we define and discuss the notions of a triangle on

R and a triangulation of R used in this paper, where we have modified
the standard notions of an ideal triangle on a punctured surface and an
ideal triangulation of a punctured surface, adapting these notions to
our setting of compact surfaces with nonempty boundary. The reader
will note that our notions here are equivalent to these standard notions
for punctured surfaces. In particular, in Section 3, we define the notions
of an embedded triangle on R and a non-embedded triangle on R.

In Section 5, we define and discuss the notion of a quadrilateral on
R used in this paper, where a quadrilateral on R corresponds, roughly
speaking, to the union of two triangles on R along a common side.

In Section 6, we define the notion of an elementary move on a tri-
angulation, which roughly speaking, corresponds to replacing one di-
agonal of a quadrilateral with the other diagonal.

In Section 7, we define the notion of the complex of arcs A(R) of R.
In Section 8, we define the notion of an elementary move on a top-

dimensional simplex of A(R). In particular, in this section, we recall
the “Connectivity Theorem for Elementary Moves” [M], reformulated
for our setting of compact surfaces with boundary, and we prove two
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results about elements of a triangulation which distinguish those el-
ements of a triangulation which correspond to sides of an embedded
triangle of the triangulation from those which do not.

In Section 9, we give explicit descriptions of the arc complex for
each of the following special examples of R; a disc, an annulus, a pair
of pants, and a torus with one hole. In particular, we compute explicitly
the groups of interest, Z(Γ∗(R)), Γ∗(R), and Aut(A(R)), and establish
the natural isomorphism Γ∗(R)/Z(Γ∗(R)) → Aut(A(R)) corresponding
to the natural simplicial action of Γ∗(R) on A(R). The results of this
section establish, for these special surfaces, the two main results of this
paper mentioned above.

In Section 10, we begin the proof of the first main result of this paper
for the remaining surfaces, those which are not a disc, an annulus, a
pair of pants, or a torus with one hole. In particular, in this section,
we prove, that injective simplicial maps of A(R) respect isotopy classes
of triangulations on R. This is the first step towards proving that such
maps are geometric.

In Section 11, we prove that injective simplicial maps of A(R) re-
spect elementary moves on isotopy classes of triangulations on R.

In Section 12, we prove that injective simplicial maps of A(R) re-
spect embedded triangles on R.

In Section 13, we prove that injective simplicial maps of A(R) re-
spect nonembedded triangles on R.

In Section 14, we observe that injective simplicial maps of A(R)
respect triangles on R, an immediate corollary of the results of Sections
12 and 13.

In Section 15, we prove that injective simplicial maps of A(R) re-
spect quadrilaterals on R.

In Section 16, we prove that injective simplicial maps of A(R) re-
spect the topological type of ordered triangulations on R, deducing this
result from the results of Sections 12, 13, 14, and 15.

In Section 17, we prove the first main result of this paper, that in-
jective simplicial maps of A(R) are geometric, deducing this from the
result of Section 16 by a well-known argument involving the Connectiv-
ity Theorem for Elementary Moves [M]. This argument was previously
used, in particular, in Ivanov’s proof of his theorem that automor-
phisms of the comlex of curves are geometric [I1], the seminal result
which motivates the second main result of this paper.

In Section 18, we prove the second main result of this paper, which
gives a complete description of Aut(A(R)). In particular, we prove that
the natural representation ρ : Γ∗(R) → Aut(A(R)) is an isomorphism
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when R is not a disc, an annulus, a pair of pants, or a torus with one
hole.

2. Preliminaries

Throughout this paper, all isotopies between subspaces of R will be
ambient isotopies. More precisely, if X and Y are subspaces of R, an
isotopy from X to Y is a map H : R × [0, 1] → R such that the maps
Ht : R → R, 0 ≤ t ≤ 1, defined by the rule Ht(x) = H(x, t), x ∈ R,
are homeomorphisms of R, H0 = idR : R → R, and H1(X) = Y .

An arc A on R is a subspace of R which is homeomorphic to the
interval [0, 1]. Let A be an arc on R. The endpoints of A are the images
of 0 and 1 under a homeomorphism from [0, 1] to A. We say that an
arc A on R is properly embedded on R if A intersects ∂R precisely at
the endpoints of A.

An arc A on R is essential on R if it is properly embedded on R and
there does not exist an embedded closed disk on R whose boundary is
equal to the union of A with an arc contained in ∂R.

Note that there are no essential arcs on any disc R0,1; and there is
a unique isotopy class of an essential arc on any annulus R0,2. This
isotopy class is represented by any arc on R0,2 which joins the two
distinct components of ∂R0,2.

If b ≥ 2, then any arc on R joining two distinct components of ∂R is
essential on R. Likewise, if g > 0 and b = 1, then any arc on R which
intersects a simple closed curve on R transversely and at exactly one
point is essential on R.

A system of arcs on R is a family of pairwise disjoint and nonisotopic
properly embedded arcs on R. Note that any subset of a system of arcs
on R is itself a system of arcs on R.

Let T be a system of arcs on R. We say that T is maximal if T is
not a proper subset of any system of arcs on R.

By the previous observations, there are no systems of essential arcs
on any disc R0,1, and there is a unique isotopy class of systems of
essential arcs on any annulus R0,2, represented by any arc on R0,2 which
joins the two distinct components of ∂R0,2.

Unless otherwise indicated, all arcs will be assumed to be essential
arcs on R.

We shall denote arcs by capital letters and their isotopy classes by
the corresponding lower case letters (e.g. A and a = [A] ∈ A(R)).

Definition 2.1. Let a and b be isotopy classes of properly embedded
essential arcs on R. The geometric intersection number i(a, b) of a and
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b is the minimum number of points in A ∩ B where A and B are arcs
on R which represent a and b.

Definition 2.2. Let a and b be isotopy classes of properly embedded
essential arcs on R. Let A and B be arcs on R representing a and b.
We say that A and B are in minimal position on R if the number of
points of intersection of A and B is equal to i(a, b).

The following proposition is a standard characterization of minimal
position for properly embedded essential arcs, similar to the standard
characterization of minimal position for curves [FLP].

Proposition 2.3. Let a and b be isotopy classes of properly embedded
essential arcs on R. Let A and B be arcs on R representing a and b.
Then A and B are in minimal position on R if and only if there does
not exist a disc D on R such that ∂D is equal to either (i) the union
of an arc of A with an arc of B or (ii) the union of an arc of A, an
arc of B, and an arc of ∂R.

K

J
a peripheral triangle  

formed from an arc J of A,  

an arc K of B, and an arc L

of the boundary of R

an interior bigon  

formed from an arc J of A  

and an arc K of B  

JK

L

Figure 1. Arcs which are not in minimal position

3. Triangles

In this section, we assume that R is neither a disc or an annulus.
Since ∂R has at least one component, it follows that the Euler charac-
teristic χ(R) of R is negative. Indeed, χ(R) = 2 − 2g − b < 0, since
either (i) g = 0 and b ≥ 3 or (ii) g ≥ 1 and b ≥ 1.

Let T be a system of arcs on R, RT denote the surface obtained
from R by cutting R along T , and q : RT → R be the natural quotient
map. Suppose that A is an element of T . Then the preimage q−1(A)
is a disjoint union of two arcs J and K contained in ∂RT . We say that
J and K correspond to the element A of T and J and K are the sides
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of A in RT . Note that the restrictions q| : J → A and q| : K → A are
both homeomorphisms.

non−embedded triangle

A

embedded triangle

with sides A, B, and C with sides A, B, and A

AC

B

A
B

Figure 2. The two types of triangles on R

Definition 3.1. Let {A,B,C} be a system of arcs on R, ∆ be a com-
ponent of R{A,B,C}, and q : R{A,B,C} → R be the natural quotient map.
We say that ∆ is a triangle on R with essential sides corresponding to
A, B, and C if ∆ is a disc such that ∂∆ is the union of three disjoint
arcs, J , K, and L, such that q(J) = A, q(K) = B, q(L) = C, and
three disjoint arcs, X, Y , and Z, such that q(X ∪ Y ∪ Z) ⊂ ∂R; X
joins an endpoint of J to an endpoint of K, Y joins an endpoint of K
to an endpoint of L, and Z joins an endpoint of L to an endpoint of J .

Suppose that ∆ is a triangle on R with sides corresponding to A,
B, and C. We also say that A, B, and C cut off the triangle ∆ from
R.

Let (∆, J,K, L,X, Y, Z) be as in Definition 3.1. We call J , K, and
L the essential sides of ∆ corresponding to A, B, and C and X, Y ,
and Z the peripheral sides of ∆.

Note, on the one hand, that the restrictions q| : J → A, q| : K → B,
and q| : L→ C are homeomorphisms.

Note, on the other hand, that each of the restrictions q| : X → q(X),
q| : Y → q(Y ), and q| : Z → q(Z) is either a homeomorphism or a
quotient map identifying the endpoints of its domain, an arc, to a
point. Hence, each of q(X), q(Y ), and q(Z) is either an arc of ∂R or a
component of ∂R.
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From hereon, unless otherwise specified, the phrase “side of a trian-
gle of R” will be assumed to refer to an essential side of a triangle of
R.

Since {A,B,C} is a system of arcs on R, either A, B, and C are
disjoint nonisotopic arcs or at least two of the arcs A, B, and C are
equal. In the former case, we say that ∆ is embedded. In the latter
case, we say that ∆ is non-embedded.

Let Q be the image of ∆ under q : R{A,B,C} → R. Suppose, on
the one hand, that ∆ is an embedded triangle. Then the restriction
q| : (∆, J,K, L,X, Y, Z) → (Q,A,B, C, q(X), q(Y ), q(Z)) is a homeo-
morphism. This is the motivation for saying that ∆ is an embedded
triangle. In particular, if ∆ is an embedded triangle, then Q is a disc
on R such that ∂Q is equal to the union of three disjoint nonisotopic
essential arcs, A, B, and C, on R, and three arcs q(X), q(Y ), and
q(Z) in ∂R. Note that, in this situation, the six arcs, A, B, C, q(X),
q(Y ), and q(Z) are determined from the disc Q on R. Indeed, q(X),
q(Y ), and q(Z) are the components of Q ∩ ∂R and A, B, and C are
the closures of the components of ∂Q \ (Q∩ ∂R). We say that Q is an
embedded triangle on R with essential sides A, B, and C and peripheral
sides q(X), q(Y ), and q(Z).

Suppose, on the other hand, that ∆ is a non-embedded triangle.
Then either A = B or B = C or C = A. Suppose, for instance, that
C = A. Then the restriction

q : (∆, J,K, L,X, Y, Z) → (Q,A,B,A, q(X), q(Y ), q(Z))

exhibits Q as a quotient of the disc ∆ obtained by identifying the arcs
J and L in ∂∆ by a homeomorphism in such a way that the resulting
quotient Q is orientable. It follows that Q is an annulus on R, q(Z) is a
component of ∂R, B is a properly embedded essential arc on R joining
the unique component of ∂R containing q(X)∪q(Y ) to itself, and A is a
properly embedded arc on R joining this component of ∂R to the other
component q(Z) of ∂R. We say that ∆ is a non-embedded triangle on R
with sides corresponding to A, B, and A; and (A,B) cuts off the non-
embedded triangle ∆ from R, with A joining two different components
of ∂R, and B joining a component of ∂R to itself. Note that, in this
situation, the arc B and the component q(Z) of ∂R are determined
from the annulus Q on R. Indeed, q(Z) is the unique component of ∂Q
which is a component of ∂R and B is the closure of ∂Q \ (Q∩∂R). On
the other hand, A, q(X), and q(Y ) are not determined from the annulus
Q on R. In order to determine A, q(X), and q(Y ), it suffices to specify
the arc A, which is a properly embedded arc in Q disjoint from B and
joining two distinct components of ∂R. Once A is specified, we also
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say that (Q,A) is a non-embedded triangle on R with essential sides
A and B, A joining two different components of ∂R, and B joining a
component of ∂R to itself.

Q_2

AB

B A

C

Q_1

A

Q_1

Q_2

B C C

Figure 3. Two embedded triangles with the same sides
on a pair of pants

AB

C

A B

B

A

A

C
B

Q_1

Q_2

Q_1

Q_2

Figure 4. Two embedded triangles with the same sides
on a torus with one hole

Proposition 3.2. Suppose that R is not a disc or an annulus. Let
{A,B,C} be a system of arcs on R. Suppose that ∆1 and ∆2 are
triangles on R with sides corresponding to A, B, and C. Let Qi =
q(∆i), i = 1, 2. Then either:

(1) ∆1 = ∆2 or
(2) R is a pair of pants (i.e. a sphere with three holes); ∆1 and ∆2

are embedded triangles on R; Q1 and Q2 have disjoint interiors
on R; A∪B ∪C = ∂Q1 = Q1 ∩Q2 = ∂Q2; and R = Q1 ∪Q2 or
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(3) R is a torus with one hole; ∆1 and ∆2 are embedded triangles
on R; Q1 and Q2 have disjoint interiors on R; A ∪ B ∪ C =
∂Q1 = Q1 ∩Q2 = ∂Q2; and R = Q1 ∪Q2.

Proof. Let i be an integer with 1 ≤ i ≤ 2. Since ∆i is a triangle on R
with sides corresponding to A, B, and C, it follows from Definition 3.1
that ∆i is a component of R{A,B,C}; ∆i is a disc; and ∂∆i is the union
of three disjoint arcs Ji, Ki, and Li, such that q(Ji) = A, q(Ki) = B,
q(Li) = C, and three disjoint arcs Xi, Yi, and Zi, such that q(Xi ∪Yi ∪
Zi) ⊂ ∂R, Xi joins an endpoint of Ji to an endpoint of Ki, Yi joins an
endpoint of Ki to an endpoint of Li, and Zi joins an endpoint of Li to
an endpoint of Ji.

Suppose that ∆1 is not equal to ∆2. Then, since ∆1 and ∆2 are
distinct components of R{A,B,C}, it follows that the restriction q| : ∆1∪
∆2 → Q1 ∪ Q2 exhibits Q1 ∪ Q2 as a quotient of the disjoint union
∆1 ∪ ∆2 of the discs ∆1 and ∆2 obtained by identifying J1 to J2, K1

to K2, and L1 to L2 by homeomorphisms.
It follows that ∆1 and ∆2 are embedded triangles on R; Q1 and

Q2 are discs on R with disjoint interiors on R; and A ∪ B ∪ C =
∂Q1 = Q1 ∩ Q2 = ∂Q2. Hence, Q1 ∪ Q2 is a compact surface with
∂(Q1 ∪Q2) equal to q(X1 ∪Y1 ∪Z1)∪ q(X2 ∪ Y2 ∪Z2). Moreover, since
q(Xi ∪ Yi ∪ Zi) ⊂ ∂R, i = 1, 2, it follows that ∂(Q1 ∪ Q2) is contained
in ∂R. Since R is connected, it follows that Q1 ∪Q2 = R.

Thus, R is the union of two embedded triangles, Q1 and Q2, meeting
along their common sides, A, B, and C. From the definition of an
embedded triangle on R, Q1 and Q2 are discs, each of whose boundaries
is a union of six arcs meeting only at their endpoints. Note that A, B,
and C constitute three of the six arcs on ∂Q1 and three of the six arcs
on ∂Q2. Since Q1 is not equal to Q2, we conclude that ∂Q1 ∪ ∂Q2 is a
union of exactly 9 (i.e. 6 + 6− 3) arcs meeting only at their endpoints.
Hence, we have a cell decomposition of R with exactly six 0-cells, the
endpoints of the disjoint arcs, A, B, and C; nine open 1-cells, the
disjoint interiors of the nine arcs of ∂Q1 ∪ ∂Q2; and two open 2-cells,
the disjoint interiors of the discs Q1 and Q2. It follows that the Euler
characteristic χ(R) of R is given by χ(R) = v−e+f = 6−9+2 = −1.
Since χ(R) = 2− 2g− b, we conclude that 2− 2g− b = −1 and, hence,
2g + b = 3. This implies that either g = 0 and b = 3 or g = 1 and
b = 1. That is to say, R is either a pair of pants or a torus with one
hole. This completes the proof. �

Suppose that A, B and C cut off distinct triangles ∆1 and ∆2 from
R. Then, by Proposition 3.2, ∆1 and ∆2 are embedded triangles on R,
and R is either a pair of pants or a torus with one hole. Hence, if R is
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not a pair of pants or a torus with one hole, then A, B, and C cut off
at most one triangle from R.

Moreover, if R is not a pair of pants or a torus with one hole, and
A, B, and C cut off a triangle ∆ from R, then ∆ is the unique triangle
on R which has sides corresponding to A, B, and C.

4. Triangulations

In this section, we assume that R is not a disc or an annulus.
Let T be a system of arcs on R and {A,B,C} ⊂ T . Suppose that

∆ is a triangle on R with sides corresponding to A, B, and C. We say
that ∆ is a triangle of T on R.

If ∆ is a non-embedded triangle on R with A joining two distinct
components of ∂R and B joining a component of ∂R to itself, then ∆
is the unique triangle on R which is cut off from R by A and B, and
∆ is the unique triangle of T on R having a side corresponding to A
as one of its sides.

Let R0 = R{A,B,C} and R1 = RT . Suppose that q0 : R0 → R and
q1 : R1 → R are the natural quotient maps. Since {A,B,C} ⊂ T , there
exists a natural quotient map q10 : R1 → R0 such that q1 = q0 ◦ q10 :
R1 → R.

Note that there exists a unique component ∆1 of R1 such that
q10(∆1) = ∆. Moreover, the restriction q10| : ∆1 → ∆ is a homeo-
morphism. We may use this restriction q10| : ∆1 → ∆ to identify ∆1

with ∆. In this way, we canonically identify the triangle ∆ on R, which
is a component of R0, with a component of R1.

A C

A

B

Q_1 Q_2

C

Figure 5. Two non-embedded triangles with a common
side on a pair of pants
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Suppose that T ′ is a system of arcs on R such that T ⊂ T ′ and,
hence, {A,B,C} ⊂ T ′. Let R2 = RT ′. Suppose that q2 : R2 → R,
q21 : R2 → R1, and q20 : R2 → R0 are the natural quotient maps.
Let ∆2 be the unique component of R2 such that q20(∆2) = ∆. Then
q2 = q1 ◦ q21 : R2 → R and q21(∆2) = ∆1. Hence, the canonical
identifications of the triangle ∆ on R, which is a component of R0, with
components ∆1 and ∆2 of R1 and R2 are compatible identifications.

With these canonical identifications in mind, we have the following
definition of a triangulation of R.

Definition 4.1. Let T be a system of arcs on R. We say that T is a
triangulation of R if each component of RT is a triangle on R.

Let T be a triangulation of R and ∆ be a component of RT . Then
there exists a unique subset {A,B,C} of T such that ∆ is a triangle
on R with sides corresponding to A, B, and C.

If ∆ is a non-embedded triangle with A = C, then A joins two
different components of ∂R, and B joins a component of ∂R to itself.
Note that, in this situation, ∆ is the unique triangle of T on R having
a side corresponding to A as one of its sides, ∆ is a triangle of T on
R which has a side corresponding to B as one of its sides, and there is
exactly one other triangle ∆′ of T on R having a side corresponding to
B as one of its sides. If ∆′ is also non-embedded, then R is a pair of
pants. Hence, if R is not a pair of pants, then any two distinct elements
of a triangulation T of R cut off at most one non-embedded triangle of
T from R.

Let Q = q(∆). If D is an element of T , then either D ∈ {A,B,C}
or D ∩Q = ∅.

In general, some of the triangles of a triangulation of R will be
embedded, while others are non-embedded.

Proposition 4.2. Suppose that R is not a disc or an annulus. Let T
be a system of arcs on R. Then the following are equivalent.

(1) T is a maximal system of arcs on R.
(2) T is a triangulation of R.
(3) T has exactly 6g + 3b− 6 elements.

Proof. Since any system of arcs on R is a subset of some triangulation
of R, any maximal system of arcs on R is a triangulation of R. This
proves that (1) implies (2).

Suppose that T is a triangulation of R. Let a be the number of
elements of T and t be the number of components of RT . Let U be a
regular neighborhood on R of the union |T | of the elements of T and
V be the complement of |T | in R. Then R = U ∪ V , U is a disjoint
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union of a contractible open sets, V is a disjoint union of t contractible
open sets, and U ∩ V is a disjoint union of 2a contractible open sets.
It follows that the Euler characteristic χ(R) of R satisfies the formula:

(4.1) χ(R) = χ(U) + χ(V ) − χ(U ∩ V ) = a+ t− 2a = t− a.

Since each triangle of T has exactly three sides and each arc in T has
exactly two sides:

(4.2) 2a = 3t.

Since χ(R) = 2−2g−b, we conclude that 2−2g−b = (2a/3)−a = −a/3
and, hence, a = 6g + 3b− 6. This proves that (2) implies (3).

Suppose that T has 6g + 3b − 6 vertices. Let T ′ be a triangulation
containing T . Since (1) implies (2), it follows that T ′ has 6g + 3b − 6
vertices. Since T is contained in T ′, we conclude that T is equal to T ′

and, hence, T is a triangulation of R. This proves that (3) implies (1),
completing the proof. �

Proposition 4.3. Suppose that R is not a disc or an annulus. Let T
be a triangulation of R. Then RT has 4g + 2b− 4 elements.

Proof. Let a be the number of elements of T and t be the number of
components of RT . By Proposition 4.2, a = 6g + 3b − 6. Then, as in
the proof of Proposition 4.2, we conclude that 3t = 2a = 12g+ 6b− 12
and, hence, t = 4g + 2b− 4, completing the proof. �

5. Quadrilaterals

In this section, we assume that R is not a disc or an annulus.

Definition 5.1. Let {A,B,C,D} be a system of arcs on R, Ω be a
component of R{A,B,C,D}, and q : R{A,B,C,D} → R be the natural quo-
tient map. We say that Ω is a quadrilateral on R with essential sides
corresponding to A, B, C, and D if Ω is a disc such that ∂Ω is a
union of four arcs, J , K, L, and M such that q(J) = A, q(K) = B,
q(L) = C, and Q(M) = D, and four disjoint arcs X, Y , Z, and W
such that q(X ∪ Y ∪ Z ∪W ) ⊂ ∂R; X joins an endpoint of J to an
endpoint of K; Y joins an endpoint of K to an endpoint of L; Z joins
an endpoint of L to an endpoint of M ; and W joins an endpoint of M
to an endpoint of J .

Suppose that Ω is a quadrilateral on R with sides corresponding
to A, B, C, and D. We also say that A, B, C, and D cut off the
quadrilateral Ω from R.
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Let (Ω, J,X,K, Y, L, Z,M,W ) be as in Definition 5.1. We call J ,
K, L, and M the essential sides of Ω corresponding to A, B, C, and
D and X, Y , Z, and W the peripheral sides of Ω.

Note that the restrictions q| : J → A, q : |K → B, q| : L → C, and
q| : M → D are homeomorphisms.

Let X, Y , Z. and W be the peripheral sides of Ω. Note that each of
the restrictions q| : X → q(X), q| : Y → q(Y ), q| : Z → q(Z), and q| :
W → q(W ) is either a homeomorphism or a quotient map identifying
the two endpoints of its domain, an arc, to a point. Hence, each of
q(X), q(Y ), q(Z), and q(W ) is either an arc of ∂R or a component of
∂R.

From hereon, unless otherwise specified, the phrase “side of a quadri-
lateral of R”’ will be assumed to refer to an essential side of a quadri-
lateral of R.

Since {A,B,C,D} is a system of arcs on R, either A, B, C, and D
are disjoint nonisotopic arcs on R or at least two of the arcs A, B, C,
and D are equal. In the former case, we say that Ω is embedded. In the
latter case, we say that Ω is non-embedded. We leave it to the reader
to enumerate the various possibilities for the corresponding restriction
of q| : Ω → q(Ω) when Ω is non-embedded.

Definition 5.2. Let Ω be a quadrilateral on R with sides corresponding
to A, B, C, and D. Let (Ω, J,X,K, Y, L, Z,M,W ) be as in Definition

AB

C D

E

J

K

L

M

F

Figure 6. An embedded quadrilateral with opposite
sides, A and C; opposite sides, B and D; and a pair of
diagonals, E and F
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5.1, so that J and L are in different components of ∂Ω \ (K ∪M). We
say that J and L are opposite sides of Ω.

Let Ω be a quadrilateral on R with sides corresponding to A, B, C,
and D. Note that A and C correspond to opposite sides of Ω if and
only B and D correspond to opposite sides of Ω.

Definition 5.3. Suppose that Ω is a quadrilateral on R with sides
corresponding to A, B, C, and D. Let (Ω, J,X,K, Y, L, Z,M,W ) be
as in Definition 5.1, so that A and C correspond to opposite sides of
Ω. Let U be a properly embedded arc in Ω such that J ∪K and L ∪M
are in different components of Ω \ U and E = q(U). We say that E is
a diagonal of Ω separating {A,B} from {C,D}.

LetQ = q(Ω). Suppose that E1 and E2 are diagonals of Ω separating
{A,B} from {C,D}. Then E1 and E2 are properly embedded arcs on
Q; E1 and E2 are contained in the subset (Q ∩ ∂R) ∪ A ∪ B ∪ C ∪D
of Q; and E1 and E2 are isotopic on Q by an isotopy on Q which fixes
(Q∩ ∂R)∪A∪B ∪C ∪D pointwise. Note that any such isotopy on Q
extends to an isotopy on R which is supported on Q.

Suppose that E is a diagonal of Ω separating {A,B} from {C,D}.
Then there exists a diagonal F of Ω separating {B,C} from {D,A}
such that E and F intersect transversely and there is exactly one point
in E ∩ F .

Definition 5.4. Suppose that Ω is a quadrilateral on R with sides
corresponding to A, B, C, and D; A and C correspond to opposite
sides of Ω; E is a diagonal of Ω separating {A,B} from {C,D}; F
is a diagonal of Ω separating {B,C} from {D,A}; E and F intersect
transversely; and there is exactly one point in E ∩ F . We say that
{E, F} is a pair of diagonals of Ω.

Note that a pair of diagonals {E, F} of Ω is uniquely determined
from Ω up to isotopies onQ which fix the subset (Q∩∂R)∪A∪B∪C∪D
of Q pointwise. Again, note that any such isotopy on Q extends to an
isotopy on R which is supported on Q.

Suppose that {E, F} is a pair of diagonals of Ω and G is an arc
on R such that {A,B,C,D,G} is a system of arcs on R. Then either
G ∈ {A,B,C,D}, G is isotopic on R to E, G is isotopic on R to F , or
G ∩Q = ∅.

Proposition 5.5. Suppose that R is not a disc or an annulus. Let
Ω be a quadrilateral on R with sides corresponding to A, B, C, and
D; opposite sides corresponding to A and B; and a pair of diagonals
{E, F}. Then the following hold:
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(1) E and F are disjoint from each of the essential arcs A, B, C,
and D on R.

(2) E and F are essential arcs on R.
(3) E and F are in minimal position on R with i([E], [F ]) = 1 and,

hence, E and F are not isotopic to each other on R.
(4) E and F are not isotopic to any of the arcs A, B, C, and D

on R.
(5) {A,B,C,D,E} is a system of arcs on R.
(6) {A,B,C,D, F} is a system of arcs on R.
(7) There exist triangles on R, ∆1 with sides corresponding to A,

B, and E; ∆2 with sides corresponding to B, C, and F ; ∆3

with sides corresponding to C, D, and E; and ∆4 with sides
corresponding to D, A, and F such that, if Q = q(Ω) and Qi =
q(∆i), i = 1, 2, 3, 4, then Q1 ∪Q3 = Q = Q2 ∪Q4.

(8) ∆1 and ∆3 are the unique triangles of {A,B,C,D,E} on R
which have a side corresponding to E as a side.

(9) ∆2 and ∆4 are the unique triangles of {A,B,C,D, F} on R
which have a side corresponding to F as a side.

Proof. By construction, E and F are disjoint from the essential arcs
A, B, C, and D on R. This proves (1).

Suppose that E is not an essential arc on R. Then there exists a
disc P on R whose boundary is the union of E with an arc N in ∂R. It
follows that either A∪J ∪B is contained in P or C∪L∪D is contained
in P . Hence, either A and B are both inessential arcs on R or C and
D are both inessential arcs on R. Since A, B, C, and D are essential
arcs on D, this is a contradiction. Hence, E is an essential arc on R.
Likewise, F is an essential arc on R. This proves (2).

Let a, b, c, d, e, and f be the isotopy classes of the essential arcs A,
B, C, D, E and F on R.

Suppose that E and F are not in minimal position on R. Then,
since E and F meet at only one point, it follows from Proposition 2.3,
that there exists a disc P on R whose boundary is the union of an arc
E0 of E, an arc F0 of F , and an arc G in ∂R. It follows that either A
is contained in P , B is contained in P , C is contained in P , or D is
contained in P . This implies that either A, B, C, or D is inessential,
which is a contradiction. Hence, E and F are in minimal position on R.
Since E and F are in minimal position on R and intersect at exactly
one point, i(e, f) = 1 and, hence, E and F are not isotopic to each
other on R. This proves (3).

On the other hand, since E and F are disjoint from A, B, C, and
D, i(x, y) = 0, x ∈ {e, f}, y ∈ {a, b, c, d}. Since i(e, f) = 1, it follows
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that e and f are not equal to any of the isotopy classes, a, b, c, and d,
of essential arcs on R. In other words, E and F are not isotopic to any
of the arcs A, B, C and D on R. This proves (4).

Since {A,B,C,D} is a system of arcs on R, it follows from (1), (2),
and (4) that {A,B,C,D,E} and {A,B,C,D, F} are systems of arcs
on R. This proves (5) and (6).

Let T0 = {A,B,C,D}, T1 = T0 ∪{E}, and T2 = T0 ∪{F}. Suppose
that q0 : R0 → R, q1 : R1 → R, q2 : R2 → R, q10 : R1 → R0, and
q20 : R2 → R0 are the natural quotient maps corresponding to cutting
R along T0, T1 and T2.

Since T1 and T2 are systems of arcs on R, it follows that {A,B,E},
{B,C, F}, {C,D,E}, and {D,A, F} are systems of arcs on R.

Let U and V be the unique arcs in Ω such that q0(U) = E and
q0(V ) = F . Note that U and V are properly embedded arcs in the disc
Ω which intersect essentially once and are disjoint from the arcs in Ω
which correspond to A, B, C, and D.

Note that Ω is the union of two discs ∆1 and ∆3 such that ∆1∩∆3 =
U ; J ∪K ∪U is contained in ∂∆1; and L∪M ∪U is contained in ∂∆3.
Hence ∆1 is a triangle on R with sides corresponding to A, B, and E
and ∆3 is a triangle on R with sides corresponding to C, D, and F .

Likewise Ω is the union of two discs ∆2 and ∆4 such that ∆2∩∆4 =
V ; K ∪L∪V is contained in ∂∆2; and M ∪J ∪V is contained in ∂∆4.
Hence ∆2 is a triangle on R with sides corresponding to B, C, and F
and ∆4 is a triangle on R with sides corresponding to D, A, and F .
This proves (7).

Since {A,B,E} and {C,D,E} are both contained in the system of
arcs {A,B,C,D,E}, the triangles ∆1 and ∆3 on R are both triangles
of {A,B,C,D,E} on R having E as a side. Note that U1 and U3 are
the unique arcs in R1 which map onto E by q1 : R1 → R.

Suppose that ∆ is a triangle of T1 on R having a side U correspond-
ing to E. Then U is an arc in R1 such that q(U) = E. Since U1 and U3

are the unique arcs in R1 which map onto E by q1 : R1 → R, it follows
that U is equal to either U1 or U3. Hence, ∆ is equal to either ∆1 (i.e.
the unique component of R1 which contains U1) or ∆3 (i.e. the unique
component of R1 which contains U3). This proves (8).

A similar argument proves (9).
�

6. Elementary moves on triangulations

In this section, we assume that R is not a disc or an annulus.
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Definition 6.1. Let T1 be a triangulation of R; Ω be a quadrilateral
of T on R with sides corresponding to A, B, C, and D; and {E, F} be
a pair of diagonals of Ω. By Proposition 5.5, T2 = (T1 \ {E}) ∪ {F}
is a triangulation of R. We say that T2 is obtained from T1 by an
elementary move replacing E with F .

Note that if ∆ is an embedded triangle of a triangulation T on R,
then there is a unique triangle ∆A of T on R which is different from ∆
and has a side corresponding to A as one of its sides.

Proposition 6.2. Suppose that R is not a disc, an annulus, a pair
of pants, or a torus with one hole. Suppose that ∆ is an embedded
triangle on R with sides corresponding to A, B, and C. Then there
exists a triangulation T on R containing {A,B,C} such that the unique
triangles ∆A, ∆B, and ∆C of T on R which are different from ∆ and
have, respectively, a side corresponding to A, a side corresponding to
B, and a side corresponding to C, are distinct triangles of T on R.

Proof. Since ∆ is an embedded triangle on R with sides corresponding
to A, B, and C, {A,B,C} is a system of arcs on R. Since R is not a
disc or an annulus, it follows from Proposition 4.2 that there exists a
triangulation T of R such that {A,B,C} is contained in T . Since ∆ is
an embedded triangle on R, it follows that there exist unique triangles
∆A, ∆B, and ∆C of T on R which are different from ∆ and have,
respectively, a side corresponding to A, a side corresponding to B, and
a side corresponding to C.

Suppose that ∆A, ∆B, and ∆C are the same triangle on R. Then ∆
and ∆A are two distinct triangles on R with the same sides, A, B, and
C. Since R is not a disc or an annulus, it follows from Proposition 3.2
that R is either a pair of pants or an annulus, which is a contradiction.
Hence, ∆A, ∆B, and ∆C are not the same triangle on R.

Suppose that ∆A = ∆B. Then ∆A has a side corresponding to A
and another side corresponding to B.

Suppose that ∆A is a non-embedded triangle on R. Then, since ∆A

has sides corresponding to A and B, either ∆A is the unique triangle of
T on R having a side corresponding to A or ∆A is the unique triangle
of T on R having a side corresponding to B, which is a contradiction,
as ∆ is a triangle different from ∆A having a side corresponding to
A and a side corresponding to B. It follows that ∆A is an embedded
triangle on R.

It follows that ∆A has a side corresponding to an element D of T ,
where D is not equal to A or B.

Suppose that D = C. Then ∆A is a triangle of T on R different
from ∆ having a side corresponding to C. In other words, ∆A = ∆C
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and, hence, ∆A, ∆B, and ∆C are the same triangle on R, which is a
contradiction. Hence, D is not equal to C.

Since ∆A is an embedded triangle of T on R with sides corresponding
to A, B, and D, there exists a unique triangle ∆D of T on R which is
different from ∆A and has a side corresponding to D.

Note that there is exactly one side of ∆D corresponding to D. Sup-
pose that the other two sides of ∆D correspond to elements E and F
of T .

Suppose, on the one hand, that C is not equal to E or F . Since the
sides of ∆D correspond to D, E, and F , none of which are equal to C,
∆D has no side corresponding to C. Since ∆C has a side corresponding
to C, it follows that ∆C and ∆D are distinct triangles of T on R. Since
∆A and ∆D are distinct triangles of T on R having a side corresponding
to D, there is a quadrilateral Ω on R with sides corresponding to A,
B, E, and F , and diagonal D. Let D′ be a diagonal of Q such that
{D,D′} is a pair of diagonals of Ω. Let T ′ = (T \ {D}) ∪ {D′} be
the triangulation on R which is obtained from the triangulation T on
R by an elementary move replacing D with D′. It follows that the
unique triangles ∆′

A, ∆′
B, and ∆′

C of T ′ on R which are distinct from
the triangle ∆ of T ′ on R and have, respectively, a side corresponding
to A, a side corresponding to B, and a side corresponding to C are
distinct triangles of T ′ on R (see Figure 7).

A B

C

E F

D

A B

C

E F

D’

Figure 7. Obtaining four triangles by one elementary move

Suppose, on the other hand, that C is equal to either E or F . We
may assume that C = E. It follows, by arguments similar to those
given above, that ∆D is an embedded triangle of T on R with sides
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corresponding to C, D, and F , where F is some element of T which is
not equal to A, B, C, or D.

Since F is a side of the embedded triangle ∆D of T on R, there is
a unique triangle ∆F of T on R which is distinct from ∆D and has a
side corresponding to F . By arguments similar to those given above,
there is exactly one side of ∆F which corresponds to F . Let the other
two sides of ∆F correspond to elements G and H of T .

Let T ′ be the triangulation obtained from T by an elementary move
replacing the element F of T by an element F ′ of T . Then let T ′′ be
the triangulation obtained from T ′ by an elementary move replacing
the element D of T ′ by an element D′′ of T ′′. It follows that the unique
triangles ∆′′

A, ∆′′
B, and ∆′′

C of T ′′ on R which are distinct from the
triangle ∆ of T ′′ on R and have, respectively, a side corresponding
to A, a side corresponding to B, and a side corresponding to C, are
distinct triangles of T ′′ on R (see Figure 7).

This shows, in any case, that there exists a triangulation of R with
the desired properties, completing the proof.

�

7. The complex of arcs

The complex of arcs, A(R), on R is an abstract simplicial complex.
Its vertices are the isotopy classes of properly embedded essential arcs
on R. A set of vertices of A(R) forms a simplex of A(R) if these vertices
can be represented by pairwise disjoint arcs on R. We denote the group
of simplicial automorphisms of A(R) by Aut(A(R)).

A B

C

G H

F’

D"

A B

DC

F

G H

Figure 8. Obtaining four triangles by two elementary moves
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The following result is an immediate consequence of preceding ob-
servations and Proposition 4.2.

Proposition 7.1. If R is a disc, then A(R) is empty. If R is an
annulus, then A(R) is a single vertex. If R is not a disc or an annulus,
then the dimension of A(R) is equal to 6g+ 3b− 7. In any case, every
simplex of A(R) is contained in a top-dimensional simplex of A(R).

8. Elementary moves on maximal simplices

Definition 8.1. Let T1 be a triangulation of R; Ω be a quadrilateral
of T on R with sides corresponding to A, B, C, and D; and {E, F}
be a pair of diagonals of Ω. Let e and f be the vertices of A(R) cor-
responding to E and F . By Proposition 5.5, T2 = (T1 \ {E}) ∪ {F} is
a triangulation of R. Let σi be the simplex of A(R) corresponding to
Ti, i = 1, 2. Then we say that σ2 is obtained from σ1 by an elementary
move replacing e with f .

Suppose that a maximal simplex σ2 of A(R) is obtained from a
maximal simplex σ1 of A(R) by an elementary move replacing e with
f . Note that σ1 is obtained from σ2 by an elementary move replacing
f with e; σ1 \σ2 = {e}; σ2 \σ1 = {f}; and σ1 \{e} = σ1∩σ2 = σ2 \{f}.

Let σ0 = σ1∩σ2. Note that σ0 is a codimension one face of A(R) and
σ1 and σ2 are the unique codimension zero faces of A(R) containing
σ0.

We shall need the following strong form of connectivity for A(R)
stated as the “Connectivity Theorem for Elementary Moves” in Mosher
[M]. See also Corollary 5.5.B in Ivanov’s survey article on Mapping
Class Groups [I2].

Theorem 8.2. (Connectivity Theorem for Elementary Moves, [M])
Suppose that R is not a disc or an annulus. Then any two triangula-
tions of R are related by a finite sequence of elementary moves. More
precisely, if T and T ′ are triangulations of R and σ and σ′ are the sim-
plices of A(R) corresponding to T and T ′, then there exists a sequence
of simplices σi, 1 ≤ i ≤ N , such that σ1 = σ, σN = σ′, and for each
integer i with 1 ≤ i < N , σi+1 is obtained from σi by an elementary
move.

Remark 8.3. The statement of Theorem 8.2 in Mosher [M] is in terms
of ideal triangulations of a punctured surface (S, P ) rather than trian-
gulations of R. For our purposes here, we let S be the closed surface
of genus g obtained from R by attaching a disc Di to each component
∂i of ∂R, 1 ≤ i ≤ b, and P be a set of points, xi, 1 ≤ i ≤ p, with xi

in the interior of Di, 1 ≤ i ≤ b. Then we may relate triangulations of
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R as defined in this paper to ideal triangulations of (S, P ) as defined
in Mosher [M] by “coning off” arcs on R to arcs or loops on S joining
points in P to points in P . In this way, we obtain the above restatement
of the Connectivity Theorem for Elementary Moves in a form suitable
for our purposes in this paper.

We now describe how elementary moves on maximal simplices arise
from considering elements of triangulations of R.

Proposition 8.4. Suppose that R is not a disc or an annulus. Let
T be a triangulation of R; E be an element of T ; σ be the simplex of
A(R) corresponding to T ; e be the vertex of A(R) corresponding to E;
and σ0 = σ \ {e}. Then the following are equivalent:

(1) There is a unique triangle of T having a side corresponding to
E as a side.

(2) There exists a non-embedded triangle of T on R with sides cor-
responding to E, B, and E, with E joining two different com-
ponents of ∂R, and B joining a component of ∂R to itself.

(3) σ is the unique maximal simplex of A(R) containing σ0.

Proof. Note that, by assumption, σ is a maximal simplex of A(R) con-
taining σ0.

Suppose that there is a unique triangle ∆ of T having a side corre-
sponding to E as a side. Let J and K be the two arcs in RT which map
via the natural quotient map q : RT → R onto E. Let ∆1 be the unique
component of RT containing the arc J and ∆2 be the unique compo-
nent of RT containing the arc K. Then ∆1 and ∆2 are both triangles
of T having a side corresponding to E as a side. Since ∆ is the unique
triangle of T having E as a side, we conclude that ∆1 = ∆ = ∆2. It fol-
lows that J and K are two of the sides in the component ∆ of RT . Let
L be the remaining side of ∆ and B = q(L). Since q(J) = E = q(K),
it follows that ∆ is a non-embedded triangle of T on R with sides cor-
responding to E, B, and E, with E joining two different components
of ∂R, and B joining a component of ∂R to itself. This proves that (1)
implies (2).

Suppose that there exists a non-embedded triangle ∆ of T on R
with sides corresponding to E, B, and E, with E joining two different
components of ∂R, and B joining a component of ∂R to itself. Let σ ′

be a maximal simplex of A(R) containing σ0. Since σ0 = σ \ {e} and
T \ {E} is a system of arcs representing the simplex σ0, there exists a
triangulation T ′ of R such that T \ {E} ⊂ T ′. Hence, there exists a
unique element E ′ of T ′ such that T ′ \ {E ′} = T \ {E}.
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Let Q1 = q(∆). Since E ′ is disjoint from and not isotopic to any ele-
ment of T \{E} and ∆ is a non-embedded triangle of T on R with sides
corresponding to E, B, and E, with E joining two different components
of ∂R, and B joining a component of ∂R to itself, it follows thatQ1 is an
annulus and E ′ is a properly embedded arc in Q1 which is disjoint from
B and joins the two distinct components of ∂Q1 to each other. Since
E is also a properly embedded arc in Q1 which is disjoint from B and
joins the two different components of ∂Q1, it follows that E ′ is isotopic
to E. This implies that σ′ = σ0 ∪ {[E ′]} = σ0 ∪ {[E]} = σ0 ∪ {e} = σ.
This proves that (2) implies (3).

It remains to prove that (3) implies (1). Since E is contained in
exactly one or exactly two triangles of A(R), it suffices to prove the
following proposition, using that (1) implies (3), which we have already
established here.

�

Proposition 8.5. Suppose that R is not a disc or an annulus. Let T1

be a triangulation of R; E be an element of T1; T0 = T1 \ {E}; σ1 be
the simplex of A(R) corresponding to T1; e be the vertex of A(R) cor-
responding to E; and σ0 = σ1 \ {e}. Then the following are equivalent:

(1) There are exactly two triangles of T1 on R having a side corre-
sponding to E as a side.

(2) There exists a quadrilateral of T0 on R having E as one of its
diagonals.

(3) There are exactly two maximal simplices of A(R) containing σ0,
σ1 and a simplex σ2 which is obtained from σ1 by an elementary
move replacing e by a vertex f of σ2.

Proof. Let q0 : R0 → R, q1 : R1 → R, and q10 : R1 → R0 be the natural
quotient maps corresponding to cutting R along T0 and T1.

Suppose that there are exactly two triangles of T1 on R, ∆1 and ∆2,
having a side corresponding to E as a side.

Suppose that the sides of ∆1 correspond to A, B, and E; and the
sides of ∆2 correspond to C, D, and E. Since ∆1 and ∆2 are triangles of
T1 on R, {A,B,C,D,E} ⊂ T1. Since ∆1 and ∆2 are distinct triangles
of T1 on R having a side corresponding to E as a side, it follows that E
is not equal to A, B, C, or D. Hence, {A,B,C,D} ⊂ T0 = T1 \ {E}.

It follows that there is a quadrilateral Ω of TO on R with sides
corresponding to A, B, C, and D such that Ω = q10(∆1) ∪ q10(∆2).
Since Ω = q10(∆1) ∪ q10(∆2), it follows that E is a diagonal of Ω.
Hence, Ω is a quadrilateral of T0 on R having E as one of its diagonals.
This proves that (1) implies (2).
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Suppose that there exists a quadrilateral Ω of T0 having E as one of
its diagonals. Let Q = q0(Ω). Note that there exists a diagonal F of Ω
such that {E, F} is a pair of diagonals of Ω. Let T2 = (T \ {E})∪{F}
be the triangulation of R which is obtained from the triangulation T1

of R by an elementary move replacing E with F . Let f be the vertex of
A(R) represented by F and σ2 be the simplex of A(R) corresponding
to T2. Then σ1 and σ2 are both maximal simplices of A(R) containing
σ0 and σ2 is obtained from σ1 by an elementary move replacing e with
f .

Suppose that σ is a maximal simplex of A(R) containing σ0. Since
T0 is a system of arcs representing σ0, there exists a triangulation T
of R and an element G of T such that T0 = T \ {G}. Since T is a
triangulation of R and Ω is a quadrilateral of T0 on R, it follows that
G is contained in Q and is disjoint from A, B, C, and D. This implies
that G is a diagonal of Ω. Since any diagonal of Ω is isotopic to one of
the diagonals, E or F , of a pair of diagonals, {E, F}, of Ω, it follows
that G is isotopic to either E or F . Let g be the isotopy class of G on R.
Then either g = e or g = f . Hence, either σ = σ0∪{g} = σ0∪{e} = σ1

or σ = σ0 ∪ {g} = σ0 ∪ {f} = σ2. This proves that (2) implies (3).
Suppose that there are exactly two maximal simplices of A(R) con-

taining σ0, σ1 and a simplex σ2 which is obtained from σ1 by an ele-
mentary move replacing e by a vertex f of σ2.

Since E is an element of T , there are either exactly one or exactly
two triangles of T having E as a side. Suppose that there is exactly one
triangle of T having E as a side. It follows from the proof of Proposition
8.4 above, where it is proved that the condition (1) in Proposition 8.4
implies the condition (3) in Proposition 8.4, that σ1 is the unique max-
imal simplex of A(R) containing E, which is a contradiction. Hence,
there are exactly two triangles of T on R having E as a side. This
proves that (3) implies (1).

This completes the proof of Proposition 8.5 and, hence, as previously
observed, the proof of Proposition 8.4. �

9. Examples

There is a natural action of the extended mapping class group Γ∗(R)
of R on A(R) given by the rule h∗(j) = [H(J)], where H : R → R
represents h ∈ Γ∗(R) and J ⊂ R represents j ∈ A(R). We denote the
corresponding representation of Γ∗(R) as a group of automorphisms of
A(R) by ρ : Γ∗(R) → Aut(A(R)) so that ρ(h) = h∗.

The automorphisms of A(R) in the image of the natural representa-
tion ρ : Γ∗(R) → Aut(A(R)) are exactly the geometric automorphisms
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of A(R) (i.e. the automorphisms of A(R) which are induced by home-
omorphisms R → R). Our goal is to determine whether or not all
injective simplicial maps A(R) → A(R) are geometric. We begin our
study of this question with a few illustrative examples.

9.1. g = 0, b = 1. If R is a disc (i.e. a sphere with one hole), then
no arc on R is essential. Hence, A(R) = ∅; every injective simplicial
map A(R) → A(R) is an automorphism of A(R); and Aut(A(R)) is a
trivial group.

On the other hand, Γ∗(R) is a cyclic group of order two. It follows
that Z(Γ∗(R)) = Γ∗(R) and, hence, Γ∗(R)/Z(Γ∗(R)) is also a trivial
group. Hence, Γ∗(R)/Z(Γ∗(R)) is isomorphic to Aut(A(R)).

j = [J]

A(R) = a single vertex

J

Figure 9. The arc complex of a sphere with two holes
and an arc representing its unique vertex

9.2. g = 0, b = 2. If R is an annulus (i.e. a sphere with two holes),
then an essential arc must join the two components of ∂R and all such
arcs are isotopic on R. It follows that A(R) consists of a single vertex j
as illustrated in Figure 9; every injective simplicial map A(R) → A(R)
is an automorphism of A(R); and Aut(A(R)) is a trivial group.

Note, on the other hand, that the action of Γ∗(R) on π0(∂R) yields
a short exact sequence:
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(9.1) 1 → Z2 → Γ∗(R) → Σ(π0(∂R) → 1

where Σ(π0(∂R)) ∼= Σ2 is the group of permutations of π0(∂R), Γ∗(R) →
Σ(π0(∂R)) is the corresponding representation, and the kernel Z2 of
Γ∗(R) → Σ(π0(∂R)) is the cyclic group of order 2 generated by the iso-
topy class of any orientation reversing involution of R which preserves
each component of ∂R.

The natural representation Γ∗(R) → Σ(π0(∂R)) restricts to an iso-
morphism Γ(R) → Σ(π0(∂R)). It follows that the above exact sequence
(9.1) is a split short exact sequence. It follows that Γ∗(R) is isomorphic
to Z2 ⊕Z2. This implies that the center Z(Γ∗(R)) of Γ∗(R) is equal to
Γ∗(R); Γ∗(R)/Z(Γ∗(R)) is a trivial group; and, hence, Γ∗(R)/Z(Γ∗(R))
is isomorphic to Aut(A(R)).

A

A

22 33

A 23

A
12

A 11

31

A

A

A A A

AA

11

22 33

12

23

31

Figure 10. The arc complex of a sphere with three
holes and arcs representing its six vertices

9.3. g = 0, b = 3. If R is a pair of pants (i.e. a sphere with three
holes), then there are exactly six isotopy classes of essential arcs on R
and A(R) is a two-complex represented by a regular tesselation of a
triangle by four triangles as illustrated in Figure 10. Note that each
maximal simplex of A(R) corresponds to a triangulation of R; each
maximal simplex of A(R) is a top-dimensional simplex of A(R); and
each codimension one simplex of A(R) is a face of one or two codimen-
sion zero faces of A(R).

The latter case, where the codimension one simplex of A(R) has two
sides in A(R), corresponds to removing an element of a triangulation
corresponding to a side of an embedded triangle of this triangulation
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and replacing it by the corresponding diagonal of the associated quadri-
lateral. The former case, where the codimension one simplex of A(R)
has one side in A(R), corresponds to removing the double-sided edge
of a non-embedded triangle.

Note, furthermore, that any two distinct codimension zero faces are
connected by a sequence of codimension zero faces such that any two
consecutive codimension zero faces in this sequence have a common
codimension one face.

Since A(R) is a finite simplicial complex, every injective simplicial
map A(R) → A(R) is an automorphism of A(R).

Note, on the one hand, that Aut(A(R)) is isomorphic to the symmet-
ric group Σ3 on three letters. Indeed, Aut(A(R)) is naturally isomor-
phic to the group of permutations Σ(π0(∂R)) of the set of components
π0(∂R) of ∂R.

Note, on the other hand, that the action of Γ∗(R) on π0(∂R) yields
a short exact sequence:

(9.2) 1 → Z2 → Γ∗(R) → Σ(π0(∂R) → 1

where Σ(π0(∂R)) ∼= Σ3 is the group of permutations of π0(∂R), Γ∗(R) →
Σ(π0(∂R)) is the corresponding representation, and the kernel Z2 of
Γ∗(R) → Σ(π0(∂R)) is the cyclic group of order 2 generated by the iso-
topy class of any orientation reversing involution of R which preserves
each component of ∂R.

1/1

0/1

−1/1

1/2

2/1

−1/2

1/3

2/3

3/1

3/2

−1/0 = 1/0

−3/2

−2/3

−1/3

−2/1

−3/1

1/0

1/1

0/1

Figure 11. The arc complex of a torus with one hole
and three arcs representing one of its triangles
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The natural representation Γ∗(R) → Σ(π0(∂R)) restricts to an iso-
morphism Γ(R) → Σ(π0(∂R)). It follows that the above exact sequence
(9.2) is a split short exact sequence. Since Σ3 has trivial center, it fol-
lows that Z2 is equal to the center Z(Γ∗(R)) of Γ∗(R); Γ∗(R)/Z(Γ∗(R))
is also naturally isomorphic to Σ(π0(∂R)); and, hence, Γ∗(R)/Z(Γ∗(R))
is naturally isomorphic to Aut(A(R)).

9.4. g = 1, b = 1. If R is a torus with one hole, then A(R) is rep-
resented by the decomposition of the hyperbolic plane H into ideal
triangles by the familiar Farey graph, F.

More precisely, let S be the torus obtained by attaching a disc D
to ∂R and P be a point in the interior of D. Choose an identification
of (S, P ) with the standard torus, (S1 × S1, (1, 1)). Then the isotopy
classes of arcs on R correspond naturally to the rational points on the
circle at infinity S∞ = R

∗ = R∪∞, where the arc A on R corresponds
to the rational point p/q if and only if the extension of the arc A on
R to a closed curve on S by “coning off” the endpoints of A in ∂D to
the “center” P of D represents ±(p, q) ∈ Z ⊕ Z = π1(S

1 × S1, (1, 1)).
The ideal triangles of the decomposition of the hyperbolic plane H

by the Farey graph correspond to ideal triangulations of (S, P ), which
correspond to maximal simplices of A(R), as in Remark 8.3.

Again, in this example, any injective simplicial map A(R) → A(R)
is an automorphism of A(R).

In this case, as is well-known, (Γ∗(R), Z(Γ∗(R)) ∼= (GL(2,Z), {±I}),
and, hence, Γ∗(R)/Z(Γ∗(R)) ∼= PGL(2,Z) ∼= Aut(F) ∼= Aut(A(R)).

10. Preservation of triangulations

In this section, we assume that R is not a disc or an annulus.

Definition 10.1. Let σ be a simplex of A(R). Let T be a triangulation
of R. We say that σ is the simplex of A(R) corresponding to T if σ is
the set of isotopy classes of the elements of T .

Proposition 10.2. Suppose that R is not a disc or an annulus. Let
λ : A(R) → A(R) be an injective simplicial map. Let σ be a simplex of
A(R) corresponding to a triangulation T of R. Then there exists a tri-
angulation T ′ of R such that λ(σ) is the simplex of A(R) corresponding
to T ′.

Proof. By Proposition 4.2, T has exactly 6g + 3b − 6 elements. Since
T is a system of arcs on S, it follows that σ has exactly 6g + 3b − 6
vertices. Since λ is injective, λ(σ) has exactly 6g+ 3b− 6 vertices. Let
T ′ be a system of arcs on R representing the simplex λ(σ) of A(R).
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Then T ′ has exactly 6g + 3b− 6 elements. It follows from Proposition
4.2 that T ′ is a triangulation of R. �

11. Preservation of elementary moves

In this section, we assume that R is not a disc or an annulus.

Proposition 11.1. Suppose that R is not a disc or an annulus. Let
λ : A(R) → A(R) be an injective simplicial map of A(R). Suppose that
a and b are vertices of A(R) such that i(a, b) = 1. Then i(λ(a), λ(b)) =
1.

Proof. Let A and B be representatives of a and b intersecting once.
Note that we may complete A to a triangulation T1 of R such that
(T1\{A})∪{B} is also a triangulation of R. Let T2 = (T1\{A})∪{B}.

Let σi be the simplex of A(R) corresponding to the triangulation Ti

of R, i = 1, 2, and σ0 = σ1 ∩ σ2. Note that σ2 \ {b} = σ0 = σ1 \ {a},
and σ2 is obtained from σ1 by an elementary move replacing a with b.

Let σ′
i = λ(σi), i = 0, 1, 2, a′ = λ(a), and b′ = λ(b). Since λ is injec-

tive, it follows from Proposition 10.2 that there exists a triangulation
T ′

i corresponding to σ′
i, i = 1, 2.

Since i(a, b) 6= 0, there does not exist a simplex of A(R) having both
a and b as vertices. Since a ∈ σ1 and b ∈ σ2, it follows that σ1 6= σ2.
Since λ : A(R) → A(R) is an injective simplicial map, it follows that
σ′

1 6= σ′
2.

Let A′ be the representative of a′ in T ′
1.

Since σ2 \ {b} = σ0 = σ1 \ {a} and λ : A(R) → A(R) is an injective
simplicial map, σ′

2 \ {b
′} = σ′

0 = σ′
1 \ {a

′}.
Note that we may choose a representative B ′ of b′ such that B′

is disjoint from and not isotopic to each element of T ′
1 \ {A′}. Let

T ′
2 = (T ′

1 \ {A′}) ∪ {B′}. Then T ′
2 is a triangulation of R and σ′

2 is
the simplex of A(R) corresponding to T ′

2. Since σ′
1 and σ′

2 are distinct
maximal simplices of A(R) containing σ′

0, it follows from Proposition
8.5 that σ′

2 is obtained from σ′
1 by an elementary move replacing a′

with b′. It follows from Proposition 5.5 that i(a′, b′) = 1, completing
the proof. �

12. Preservation of embedded triangles

In this section, we assume that R is not a disc, an annulus, a pair
of pants, or a torus with one hole.

Definition 12.1. Let {a, b, c} be a 2-simplex of A(R). We say that
{a, b, c} corresponds to an embedded triangle on R if there exists an
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Figure 12

embedded triangle ∆ on R with sides corresponding to A, B, and C
representing a, b, and c.

Proposition 12.2. Suppose that R is not a disc, an annulus, a pair
of pants, or a torus with one hole. Let λ : A(R) → A(R) be an in-
jective simplicial map and {a, b, c} be a 2-simplex of A(R). If {a, b, c}
corresponds to an embedded triangle on R, then {λ(a), λ(b), λ(c)} cor-
responds to an embedded triangle on R.

Proof. Let ∆ be an embedded triangle on R with sides corresponding
to A, B, and C representing a, b, and c. Let T0 = {A,B,C}. Since R
is not a disc, an annulus, a pair of pants, or a torus with one hole, it
follows from Proposition 6.2 that we can complete the system of arcs T0

on R to a triangulation T1 of R such that if ∆A is the unique triangle of
T1 on R different from ∆ having a side corresponding to A, ∆B is the
unique triangle of T1 on R different from ∆ having a side corresponding
to B, and ∆C is the unique triangle of T1 on R different from ∆ having
a side corresponding to C, then ∆, ∆A, ∆B, and ∆C are four distinct
triangles of T1 on R.

Let q0 : R0 → R, q1 : R1 → R, and q10 : R1 → R0 be the natural
quotient maps corresponding to cutting R along T0 and T1.

Note that ∂∆A is equal to a union of arcs, A1, X1, B1, Y1, C1, and
Z1, where A1, B1, and C1 correspond to elements of T1, and each of
X1, Y1, and Z1 corresponds to an arc in ∂R or a component of ∂R.
Without loss of generality, we assume that A1 corresponds to A, and
Y1 is disjoint from A1.

Similarly, ∂∆B is equal to a union of arcs, A2, X2, B2, Y2, C2, and
Z2, where A2, B2, and C2 correspond to elements of T1, and each of
X2, Y2, and Z2 corresponds to an arc in ∂R or a component of ∂R.
Without loss of generality, we assume that B2 corresponds to B, and
Z2 is disjoint from B2.
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Likewise, ∂∆C is equal to a union of arcs, A3, X3, B3, Y3, C3, and
Z3, where A3, B3, and C3 correspond to elements of T1, and each of
X3, Y3, and Z3 corresponds to an arc in ∂R or a component of ∂R.
Without loss of generality, we assume that C3 corresponds to C, and
X3 is disjoint from C3.

Let T2 = {q1(B1), q1(C1), q1(C2), q1(A2), q1(A3), q1(B3)}. Let q2 :
R2 → R and q12 : R1 → R2 be the natural quotient maps corresponding
to cutting R along the systems of arcs T1 and T2 on R.

Note that q12(∆∪∆A∪∆B∪∆C) is a component D2 of R2. Moreover,
D2 is a disc which is a union of four discs q12(∆), q12(∆A), q12(∆B), and
q12(∆C), which may be identified with the distinct components ∆, ∆A,
∆B, and ∆C of R1 via the appropriate restrictions of q12 : R1 → R2.

With these identifications in mind, note that there exists three prop-
erly embedded disjoint arcs, P2, Q2, and S2, on D2 such that P2 joins
Y1 to Z2; Q2 joins Z2 to X3; S2 joins X3 to Y1; P2 intersects each of A1

and B2 once essentially and is disjoint from C3; Q2 intersects each of
B2 and C3 once essentially and is disjoint from A1; and S2 intersects
each of C3 and A1 once essentially and is disjoint from B2.

Let P = q2(P2), Q = q2(Q2), and S = q2(S2). Then P , Q, and
S are disjoint essential arcs on R; P intersects each of A and B once
essentially and is disjoint from the other elements of T ; Q intersects
each of B and C once essentially and is disjoint from the other elements
of T ; and S intersects each of C and A once essentially and is disjoint
from the other elements of T ; and P , Q, and S cut off an embedded
triangle from R, as shown in Figure 12.

Let σ be the simplex of A(R) corresponding to T . Since R is not
a disc or an annulus and λ : A(R) → A(R) is an injective simplicial
map, it follows from Proposition 10.2 that there exists a triangulation
T ′ on R such that λ(σ) is the simplex of A(R) corresponding to T ′.

Let A′, B′, and C ′ be, respectively, the unique representatives of
λ(a), λ(b), and λ(c) in T ′. Since ∆ is an embedded triangle on R with
sides corresponding to A, B, and C, it follows that A, B, and C are
disjoint nonisotopic arcs on R. Since A, B, and C represent the vertices
a, b, and c of A(R), these vertices are distinct. Since λ : A(R) → A(R)
is an injective simplicial map, this implies that λ(a), λ(b), and λ(c)
are distinct vertices of A(R). It follows that the elements A′, B′, and
C ′ of the triangulation T ′ of R are distinct, and, hence, disjoint and
nonisotopic.

Let p, q, and r be the vertices of A(R) which are represented by the
essential arcs P , Q, and S on R.

Note that i(p, x) = 0 for every vertex x of σ other than a and
b, i(p, a) = 1, and i(p, b) = 1. Since R is not a disc or an annulus
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and λ : A(R) → A(R) is an injective simplicial map, it follows from
Proposition 11.1 that i(λ(p), y) = 0 for every vertex y of λ(σ) other
than λ(a) and λ(b); i(λ(p), λ(a)) = 1, and i(λ(p), λ(b)) = 1. Hence,
there exists an arc P ′ on R representing λ(p) such that P ′ intersects
A′ and B′ essentially once and is disjoint from the other elements of
T ′. Likewise, there exists an arc Q′ on R representing λ(q) such that
Q′ intersects B′ and C ′ essentially once and is disjoint from the other
elements of T ′; and there exists an arc S ′ on R representing λ(s) such
that S ′ intersects C ′ and A′ essentially once and is disjoint from the
other elements of T ′.

Since the essential arc P ′ on R intersects A′ and B′ essentially once
and is disjoint from the other elements of the triangulation T ′ of R,
there exists a triangle ∆1 of T ′ on R having sides corresponding to A′

and B′. Similarly, there exists a triangle ∆2 of T ′ on R having sides
corresponding to B ′ and C ′, and a triangle ∆3 of T ′ on R having sides
corresponding to C ′ and A′. Let the third side of ∆1 correspond to the
element D′ of T ′; the third side of ∆2 correspond to the element E ′ of
T ′; and the third side of ∆3 correspond to the element F ′ of T ′.

Suppose, on the one hand, that D′ = C ′. Then ∆1 is a triangle of
T ′ on R with sides corresponding to A′, B′ and C ′. Since A′, B′, and
C ′ are disjoint and nonisotopic essential arcs on R, it follows that ∆1

is an embedded triangle of T ′ on R with sides corresponding to arcs
A′, B′, and C ′ on R representing the vertices λ(a), λ(b), and λ(c) of
A(R). Hence, {λ(a), λ(b), λ(c)} corresponds to an embedded triangle
on R. Thus, if D′ = C ′, we are done. Likewise, if E ′ = A′ or F ′ = B′,
then we are done.

Hence, we may assume that D′ 6= C ′, E ′ 6= A′, and F ′ 6= B′.
Note that, since A′, B′, and C ′ are distinct arcs on R, ∆1 has no side
corresponding to C ′. Since ∆2 has a side corresponding to C ′, it follows
that ∆1 6= ∆2. Likewise, ∆2 6= ∆3 and ∆3 6= ∆1. Hence, ∆1, ∆2, and
∆3 are three distinct components of RT ′.

Since P , Q, and R are disjoint, i(p, q) = i(q, r) = i(r, p) = 0. Since
λ : A(R) → A(R) is a simplicial map, it follows that i(λ(p), λ(q)) =
i(λ(q), λ(r)) = i(λ(r), λ(p)) = 0. Hence, we may assume that P ′, Q′,
and R′ are disjoint arcs on R.

There are three cases to consider, depending on the placement of
the arcs corresponding to C ′, E ′, and F ′ on ∂∆2 and ∂∆3. These cases
are shown in Figures 12 and 13.

Case (i): Assume A′, B′, C ′, D′, E ′, F ′ are as shown in Figure 12.
Note that the arc P ′ on R representing λ(p) intersects B ′ and A′ once
essentially and is disjoint from E ′, D′, F ′, and C ′; and the arc Q′

on R representing λ(q) intersects B ′ and C ′ once essentially and is
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disjoint from E ′, D′, F ′, and A′. But then we see that P ′ and Q′

intersect essentially (see Figure 12), which gives a contradiction, since
i(λ(p), λ(q)) = 0.

A'B'

C'

S'E'

D'

P'

F'

A'B'

C'

E'

D'

F'

Figure 13

Case (ii): Assume A′, B′, C ′, D′, E ′, F ′ are as shown in the first part
of Figure 13. As before, it follows that the arc P ′ on R representing
λ(p) intersects B′ and A′ once essentially and is disjoint from E ′, D′,
F ′, and C ′; and the arc S ′ on R representing λ(s) intersects A′ and
C ′ once essentially and is disjoint from E ′, D′, F ′, B′. But then we
see that P ′ and S ′ intersect essentially (see Figure 13), which gives a
contradiction, since i(λ(p), λ(s)) = 0.

The proof for the third case is similar to the proof for Case (ii), (see
the second part of Figure 13).

Hence, we see that either D′ = C ′ or E ′ = A′ or F ′ = B′ and, hence,
as argued above, we are done.

�

13. Preservation of non-embedded triangles
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Figure 14
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In this section, we assume that R is not a disc, an annulus, a pair
of pants, or a torus with one hole.

Definition 13.1. Let (a, b) be an ordered 1-simplex of A(R). We say
that (a, b) corresponds to a non-embedded triangle on R if there exists
a non-embedded triangle ∆ on R with sides corresponding to A, B,
and A, where A and B represent a and b and A joins two different
components of ∂R.

Proposition 13.2. Suppose that R is not a disc, an annulus, a pair of
pants, or a torus with one hole. Let λ : A(R) → A(R) be an injective
simplicial map and (a, b) be an oriented edge of A(R). If (a, b) corre-
sponds to a non-embedded triangle on R, then (λ(a), λ(b)) corresponds
to a non-embedded triangle on R.

Proof. Let ∆ be a non-embedded triangle on R with sides correspond-
ing to A, B, and A, where A and B represent a and b, and A joins two
different components of ∂R.

Since R is not a pair of pants, there is an embedded triangle ∆′ of
T on R having a side corresponding to B. Note that ∆ and ∆′ are on
different sides of B (i.e. the sides of B in ∆ and ∆′ are different sides
of B). Since ∆′ is an embedded triangle having a side corresponding
to B, there is exactly one side of ∆ which corresponds to B. Suppose
that the other sides of ∆′ correspond to C and D as shown in Figure
14.

Let B∗ be as shown in Figure 14, b∗ be the vertex of A(R) corre-
sponding to B∗, c be the vertex of A(R) corresponding to C, and d
be the vertex of A(R) corresponding to D. Note that there is an em-
bedded triangle ∆1 on R with sides corresponding to A, B∗, and C,
and an embedded triangle ∆2 on R with sides corresponding to A, B∗,
and D. Since R is not a disc, an annulus, a pair of pants, or a torus
with one hole, and λ : A(R) → A(R) is an injective simplicial map,
it follows from Proposition 12.2 that there are embedded triangles ∆′

1

and ∆′
2 on R such that ∆′

1 has sides corresponding to A′, B∗′, and C ′,
and ∆′

2 has sides corresponding to A′, B∗′, and D′, where A′, B∗′, C ′,
and D′ represent λ(a), λ(b∗), λ(c), and λ(d).

Since R is not a disc or an annulus, λ : A(R) → A(R) is an injective
simplicial map and i(b, b∗) = 1, it follows from Proposition 11.1 that
i(λ(b), λ(b∗)) = 1. Since λ : A(R) → A(R) is an injective simplicial
map, we see that the arc B ′ representing λ(b) can be chosen so that
it is disjoint from A′, C ′, and D′ and intersects B∗′ once. But then,
this implies that A′ and B′ are the sides of a non-embedded triangle on
R, and A′ connects two different components of ∂R, (see Figure 14).
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Since A′ and B′ represent λ(a) and λ(b), it follows that (λ(a), λ(b))
corresponds to a non-embedded triangle on R.

This shows, in any case, that (λ(a), λ(b)) corresponds to a non-
embedded triangle on R, which completes the proof.

�

14. Preservation of triangles

In this section, we assume that R is not a disc, an annulus, a pair
of pants, or a torus with one hole.

Definition 14.1. Let {a, b, c} be a simplex of A(R). We say that
{a, b, c} corresponds to a triangle on R if there exists a triangle ∆ on
R with sides corresponding to A, B, and C such that {A,B,C} is a
system of arcs on R representing {a, b, c}.

The following proposition is a corollary of Propositions 12.2 and
13.2.

Proposition 14.2. Suppose that R is not a disc, an annulus, a pair
of pants, or a torus with one hole. Let λ : A(R) → A(R) be an in-
jective simplicial map and {a, b, c} be a simplex of A(R). If {a, b, c}
corresponds to a triangle on R, then {λ(a), λ(b), λ(c)} corresponds to
a triangle on R.

15. Preservation of triangulated quadrilaterals

In this section, we assume that R is not a disc, an annulus, a pair
of pants, or a torus with one hole.

Definition 15.1. Let (a, b, c, d, e) be an ordered 5-tuple of vertices of
A(R). We say that (a, b, c, d, e) corresponds to a triangulated quadrilat-
eral on R if there exists a quadrilateral Ω on R with sides corresponding
to A, B, C, and D, and a diagonal E of Ω such that A, B, C, D, and
E represent a, b, c, d, and e, and A and C correspond to opposite sides
of Ω.

Proposition 15.2. Suppose that R is not a disc, an annulus, a pair
of pants, or a torus with one hole. Let λ : A(R) → A(R) be an injec-
tive simplicial map and (a, b, c, d, e) be an ordered 5-tuple of vertices of
A(R). If (a, b, c, d, e) corresponds to a triangulated quadrilateral on R,
then (λ(a), λ(b), λ(c), λ(d), λ(e)) corresponds to a triangulated quadri-
lateral on R.

Proof. Let Ω be a quadrilateral on R with sides corresponding to A, B,
C, and D and a diagonal E, such that A, B, C, D, and E represent a,
b, c, d, and e, and A and C correspond to opposite sides of Ω.
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Let (E, F ) be a pair of diagonals of Ω such that E separates {A,B}
from {C,D}, and F separates {B,C} from {D,A}. By Proposition
5.5, E and F are disjoint from each of the essential arcs, A, B, C,
and D; E and F are essential arcs on R; and E and F are in minimal
position with i([E], [F ]) = 1. Hence, i(e, f) = 1, where f is the vertex
of A(R) represented by F .

By Proposition 5.5, {A,B,C,D,E} and {A,B,C,D, F} are systems
of arcs on R. Let T0 = {A,B,C,D}, T1 = T0∪{E}, and T2 = T0∪{F}.
Let q0 : R0 → R, q1 : R1 → R, q2 : R2 → R, q10 : R1 → R0, and
q20 : R2 → R0 be the natural quotient maps corresponding to cutting
R along T0, T1, and T2.

Furthermore, by Proposition 5.5, there exist unique triangles on
R, ∆1 with sides corresponding to A, B, and E; ∆2 with sides cor-
responding to B, C, and F ; ∆3 with sides corresponding to C, D,
and E; and ∆4 with sides corresponding to D, A, and F ; such that
q10(∆1) ∪ q10(∆3) = Ω = q20(∆2) ∪ q20(∆4).

It follows that {a, b, c, d, e} and {a, b, c, d, f} are simplices of A(R),
and {a, b, e}, {b, c, f}, {c, d, e}, and {d, a, f} correspond to triangles on
R.

Let a′ = λ(a), b′ = λ(b), c′ = λ(c), d′ = λ(d), e′ = λ(e), and
f ′ = λ(f). Since λ : A(R) → A(R) is an injective simplicial map, it fol-
lows from Proposition 14.2 that {a′, b′, c′, d′, e′} and {a′, b′, c′, d′, f ′} are
simplices of A(R), and {a′, b′, e′}, {b′, c′, f ′}, {c′, d′, e′}, and {d′, a′, f ′}
correspond to triangles on R. Moreover, since R is not a disc or an an-
nulus and i(e, f) = 1, it follows from Proposition 11.1, that i(e′, f ′) = 1.

Since {a′, b′, c′, d′, e′} and {a′, b′, c′, d′, f ′} are simplices of A(R), there
exist arcs A′, B′, C ′, D′, E ′, and F ′ such that {A′, B′, C ′, D′, E ′} and
{A′, B′, C ′, D′, F ′} are systems of arcs representing {a′, b′, c′, d′, e′} and
{a′, b′, c′, d′, f ′}. We may assume that E ′ and F ′ are in minimal posi-
tion. Then, since i(e′, f ′) = 1, it follows that E ′ and F ′ intersect once
essentially, and E ′ and F ′ are not isotopic to any of the arcs A′, B′,
C ′, and D′.

Let T3 = {A′, B′, C ′, D′}, T4 = T3 ∪ {E ′}, and T5 = T3 ∪ {F ′}.
Let q3 : R3 → R, q4 : R4 → R, q5 : R5 → R, q43 : R4 → R3, and
q53 : R5 → R3 be the natural quotient maps corresponding to cutting
R along T3, T4, and T5.

Since {a′, b′, e′}, {b′, c′, f ′}, {c′, d′, e′}, and {d′, a′, f ′} correspond to
triangles on R, it follows that there exist triangles ∆′

1 on R with sides
corresponding to A′, B′, and E ′; ∆′

2 on R with sides corresponding to
B′, C ′, and F ′; ∆′

3 on R with sides corresponding to C ′, D′, and E ′;
and ∆′

4 on R with sides corresponding to D′, A′, and F ′.
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Suppose that ∆′
1 = ∆′

3. Since the sides of ∆′
1 correspond to A′, B′,

and E ′ and the sides of ∆′
3 correspond to C ′, D′ and E’, it follows that

{A′, B′, E ′} = {C ′, D′, E ′}. This implies that {a′, b′, e′} = {c′, d′, e′}.
Since λ : A(R) → A(R) is injective, it follows that {a, b, e} = {c, d, e}.
By Proposition 5.5, e is not equal to a, b, c, or d. It follows that
{a, b} = {c, d}. Since {A,B,C,D} is a system of arcs on R represent-
ing {a, b, c, d}, we conclude that {A,B} = {C,D}. Since q10(∆1) ∪
q10(∆3) = Ω, it follows that ∆1 is not equal to ∆3. Since the sides of
∆1 correspond to A, B, and E and the sides of ∆3 correspond to C, D,
and E, it follows that ∆1 and ∆3 are distinct triangles on R with sides
corresponding to A, B, and E. Since R is not a disc or an annulus, it
follows from Proposition 3.2, that R is either a pair of pants or a torus
with one hole, which is a contradiction. Hence, ∆′

1 is not equal to ∆′
3.

Likewise, ∆′
2 is not equal to ∆′

4.
Since {A′, B′, C ′, D′, E ′} is a system of arcs on R and ∆′

1 and ∆′
3

are distinct triangles of {A′, B′, C ′, D′, E ′} on R both with sides corre-
sponding to E ′, it follows that there is a quadrilateral Ω′ of T3 on R
with sides corresponding to A′, B′, C ′, and D′ and diagonal E ′ where
q43(∆

′
1) ∪ q43(∆

′
3) = Ω′.

Hence, either A′ and C ′ correspond to opposite sides of Ω′ or A′ and
D′ correspond to opposite sides of Ω′. Since {A′, B′, C ′, D′, E ′} and
{A′, B′, C ′, D′, F ′} are systems of arcs and E ′ and F ′ are in minimal
position, with E ′ and F ′ intersecting once essentially, it follows that
{E ′, F ′} is a pair of diagonals of Ω′.

Suppose that A′ and D′ correspond to opposite sides of Ω′. Then, by
Proposition 5.5, there exist triangles on R, ∆′′

1 with sides corresponding
to A′, B′, and E ′; ∆′′

2 with sides corresponding to B ′, D′, and F ′;
∆′′

3 with sides corresponding to D′, C ′, and E ′; and ∆′′
4 with sides

corresponding to C ′, A′, and F ′; such that q43(∆
′′
1) ∪ q43(∆

′′
3) = Ω′ =

q53(∆
′′
2) ∪ q53(∆

′′
4).

Moreover, by Proposition 5.5, ∆′′
2 and ∆′′

4 are the unique triangles
of {A′, B′, C ′, D′, F ′} on R with a side corresponding to F ′ as a side.

Since ∆′
2 and ∆′

4 are distinct triangles of {A′, B′, C ′, D′, F ′} with a
side corresponding to F ′ as a side, it follows that either (∆′

2,∆
′
4) =

(∆′′
2,∆

′′
4) or (∆′

2,∆
′
4) = (∆′′

4,∆
′′
2).

Suppose, on the one hand, that (∆′
2,∆

′
4) = (∆′′

2,∆
′′
4). Since ∆′

2 has
sides corresponding to B ′, C ′, and F ′ and ∆′′

2 has sides corresponding to
B′, D′, and F ′ and ∆′

2 = ∆′′
2, it follows that {B′, C ′, F ′} = {B′, D′, F ′}.

Since F ′ is not isotopic to B′, C ′, and D′, this implies that {B′, C ′} =
{B′, D′} and, hence, C ′ = D′. Since A′ and D′ correspond to opposite
sides of Ω′, this implies that A′ and C ′ correspond to opposite sides of
Ω′.
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Suppose, on the other hand, that (∆′
2,∆

′
4) = (∆′′

4,∆
′′
2). Since ∆′

2 has
sides corresponding to B ′, C ′, and F ′ and ∆′′

4 has sides corresponding to
C ′, A′, and F ′ and ∆′

2 = ∆′′
4, it follows that {B′, C ′, F ′} = {C ′, A′, F ′}.

Since F ′ is not isotopic to A′, B′, and C ′, this implies that {B′, C ′} =
{C ′, A′} and, hence, A′ = B′. Since A′ and D′ correspond to opposite
sides of Ω′, this implies that B′ and D′ correspond to opposite sides of
Ω′ and, hence, A′ and C ′ correspond to opposite sides of Ω′.

It follows that, in any case, A′ and C ′ correspond to opposite sides
of Ω′. Thus, Ω′ is a quadrilateral on R with sides A′, B′, C ′, and
D′ and diagonal E ′ representing a′, b′, c′, d′, and e′, with A′ and C ′

corresponding to opposite sides of Ω′. This implies that (a′, b′, c′, d′, e′)
corresponds to a triangulated quadrilateral on R, completing the proof.

�

16. Preservation of topological type of triangulations

In this section, we assume that R is not a disc, an annulus, a pair
of pants, or a torus with one hole.

Proposition 16.1. Suppose that R is not a disc, an annulus, a pair
of pants, or a torus with one hole. Let λ : A(R) → A(R) be an in-
jective simplicial map. Let σ be a simplex of A(R) corresponding to a
triangulation T of R. Let T ′ be a triangulation of R such that λ(σ)
is the simplex of A(R) corresponding to T ′. For each arc J of T let
J ′ be the unique arc of T ′ such that λ([J ]) = [J ′]. Then there exist a
homeomorphism H : R → R such that H(J) = J ′ for each arc J of T .

Proof. Let R1 denote the surface obtained from R by cutting R along
T and R2 be the surface obtained from R by cutting R along T ′.

By Proposition 4.3, R1 and R2 both have N components, where
N = 4g + 2b − 4. Let {∆i|1 ≤ i ≤ N} be the N distinct components
of R1.

Since R is not a pair of pants or a torus with two holes, no two
distinct components of R1 can have sides corresponding to the same
elements of T . Likewise, no two distinct components of R2 can have
sides corresponding to the same elements of T ′.

Let i be an integer with 1 ≤ i ≤ N . Since ∆i is a component of R1,
∆i is a triangle of T with sides corresponding to elements Ai, Bi, and
Ci of T . Let ai, bi, and ci be the vertices of A(R) represented by Ai,
Bi and Ci. Then, {ai, bi, ci} corresponds to a triangle on R. Hence,
by Proposition 14.2, {a′i, b

′
i, c

′
i} corresponds to a triangle on R, where

a′i = λ(ai), b
′
i = λ(bi), and c′i = λ(ci). Let A′

i, B
′
i, and C ′

i be the unique
elements of T ′ which represent a′i, b

′
i, and c′i. It follows that there exists
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a unique triangle ∆′
i of T ′ on R with sides corresponding to A′

i, B
′
i, and

C ′
i.
Moreover, the correspondence ∆i 7→ ∆′

i establishes a bijection from
the set of exactly N distinct components {∆i|1 ≤ i ≤ N} of R1 to the
set of exactly N distinct components {∆′

i|1 ≤ i ≤ N} of R2.
Suppose, on the one hand, that ∆i is embedded. Then, by Propo-

sition 12.2, ∆′
i is embedded. Let Ji, Ki, and Li be the arcs in ∆i

corresponding to Ai, Bi, and Ci, and J ′
i , K

′
i, and L′

i be the arcs
in ∆′

i corresponding to A′
i, B

′
i, and C ′

i. Note that there exists a
homeomorphism Fi : (∆i, Ji, Ki, Li) → (∆′

i, J
′
i, K

′
i, L

′
i) which is well-

defined up to relative isotopies. In particular, the orientation type of
Fi : (∆i, Ji, Ki, Li) → (∆′

i, J
′
i, K

′
i, L

′
i) (i.e. whether it is orientation-

reversing or orientation-preserving) is fixed.
Suppose, on the other hand, that ∆i is non-embedded. Let Ji, Ki,

and Li be the arcs in ∆i corresponding to Ai, Bi, and Ci, and J ′
i, K

′
i,

and L′
i be the arcs in ∆′

i corresponding to A′
i, B

′
i, and C ′

i. We may
assume that Ai = Ci, so that Ai joins two different components of
∂R, and Bi joins a component of ∂R to itself. Then, by Proposition
13.2, ∆′

i is non-embedded, A′
i = C ′

i, A
′
i joins two different boundary

components of ∂R, and B ′
i joins a component of ∂R to itself.

Note, in this situation, that there is an ambiguity in the choice of
Ji and Li. After all, Ji and Li both correspond to Ai (i.e. Ji and Li

both correspond to Ci). Likewise, there is an ambiguity in the choice
of J ′

i and L′
i. Suppose that (Ji, Li, J

′
i, L

′
i) has been specified. Then

there exists a homeomorphism Fi : (∆i, Ji, Ki, Li) → (∆′
i, J

′
i, K

′
i, L

′
i)

which is well-defined up to relative isotopies and a homeomorphism
F ∗

i : (∆i, Ji, Ki, Li) → (∆′
i, L

′
i, K

′
i, J

′
i) which is well-defined up to iso-

topies. In particular, in this situation, the orientation type of Fi :
(∆i, Ji, Ki, Li) → (∆′

i, J
′
i , K

′
i, L

′
i) is fixed; the orientation type of F ∗

i :
(∆i, Ji, Ki, Li) → (∆′

i, L
′
i, K

′
i, J

′
i) is fixed; and Fi : (∆i, Ji, Ki, Li) →

(∆′
i, J

′
i, K

′
i, L

′
i) and F ∗

i : (∆i, Ji, Ki, Li) → (∆′
i, L

′
i, K

′
i, J

′
i) have oppo-

site orientation types.
Proposition 15.2 now ensures that we can choose homeomorphisms

Gi : ∆i → ∆′
i, 1 ≤ i ≤ N , where Gi is isotopic to Fi, if ∆i is embedded,

and Gi is isotopic to either Fi or F ∗
i , if ∆i is non-embedded, so that

the unique homeomorphism G : R1 → R2 whose restriction to ∆i is
equal to Gi, 1 ≤ i ≤ N , covers a homeomorphism H : R → R.

Roughly speaking, Proposition 15.2 ensures that the homeomor-
phisms Fi : ∆i → ∆′

i and Fj : ∆j → ∆′
j associated to embedded

triangles ∆i and ∆j which have sides corresponding to the same ele-
ment of T , can be isotoped by a relative isotopy to agree, relative to the
natural quotient maps, q1 : R1 → R and q2 : R2 → R. In other words,
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the restrictions of Fi and Fj to pairs of sides which correspond to the
same element of T , which restrictions may be identified, via q1 and q2,
to homeomorphisms from a fixed element of T to a fixed element of
T ′, have the same orientation type as such homeomorphisms between
fixed elements of T and T ′.

When ∆i is nonembedded, this condition on compatibility of orien-
tation types of restrictions on pairs of sides which correspond to the
same element of T can be realized on all such pairs by making the
appropriate choice of either Fi or F ∗

i , 1 ≤ i ≤ N .
Once the correct choices are made so that this compatibility of orien-

tations is realized, we may isotope the chosen homeomorphisms, Fi or
F ∗

i , to homeomorphisms Gi which agree, as homeomorphisms between
fixed elements of T and T ′, on all pairs of sides which correspond to
the same element of T .

It follows that H : R → R is a homeomorphism which maps each
element J of T to the corresponding element J ′ of T ′, completing the
proof. �

17. Injective simplicial maps

Theorem 17.1. Let R be a compact, connected, oriented surface of
genus g with b boundary components, where b ≥ 1. Let λ : A(R) →
A(R) be an injective simplicial map. Then λ : A(R) → A(R) is geo-
metric (i.e. there exists a homeomorphism H : R → R such that for
every essential arc A on R, λ([A]) = [H(A)]).

Proof. Let λ : A(R) → A(R) be an injective simplicial map.
If R is a disc, an annulus, a pair of pants, or a torus with one

hole, then the result follows from the discussion of special examples in
Section 9.

Suppose, therefore, that R is not a disc, an annulus, a pair of pants,
or a torus with one hole. Let τ be a maximal simplex of A(R). Let τ ′,
T , T ′, and H : R → R be as in Proposition 16.1. Let ψ = H−1

∗ ◦ λ :
A(R) → A(R). Note that ψ : A(R) → A(R) is an automorphism of
A(R) such that ψ(x) = x for each vertex x of τ . Recall that (i) each
vertex of A(R) is contained in a codimension zero face of A(R), (ii) each
codimension one face of A(R) is contained in one or two codimension
zero faces of A(R), and (iii) Theorem 8.2, Mosher’s “Connectivity by
Elementary Moves” holds. It follows from these facts that ψ = idA(R) :
A(R) → A(R). Hence, λ = H∗ : A(R) → A(R). That is to say, λ is
geometric, being induced by the self-homeomorphism H : R → R. �

Remark 17.2. Once Proposition 16.1 has been established and applied
at the beginning of the above proof of Theorem 17.1, the final step in this
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proof is standard. This final step is a standard argument for proving
Lemma 8.4.A in Ivanov’s survey article on Mapping Class Groups [I2].

18. Automorphisms

The next proposition gives an explicit description of the kernel of
the natural representation ρ : Γ∗(R) → Aut(A(R)).

Proposition 18.1. Let R be a compact, connected, oriented surface
of genus g with b boundary components, where b ≥ 1. Let Z(Γ∗(R))
be the center of the extended mapping class group Γ∗(R) of R. Let
ρ : Γ∗(R) → Aut(A(R)) be the natural representation corresponding
to the natural action of Γ∗(R) on the complex of arcs A(R) of R. Let
ker(ρ) be the kernel of ρ : Γ∗(R) → Aut(A(R)). Then the following
hold:

(1) If g = 0 and b = 1, then ker(ρ) = Γ∗(R) = Z(Γ∗(R)), which
is a cyclic group of order two generated by the isotopy class of
any orientation-reversing involution H : R→ R of R.

(2) If g = 0 and b = 2, then ker(ρ) = Γ∗(R) = Z(Γ∗(R)), which is
a direct sum of two cyclic groups of order two, one generated by
the isotopy class of any orientation-preversing involution H1 :
R → R of R interchanging the two components of ∂R, and the
other generated by the isotopy class of any orientation-reversing
involution H : R → R of R preserving each of the components
of ∂R.

(3) If g = 0 and b = 3, then ker(ρ) = Z(Γ∗(R)), which is a
cyclic group of order two generated by the isotopy class of any
orientation-reversing involution H : R → R of R preserving
each of the components of ∂R.

(4) If g = 1 and b = 1, then ker(ρ) = Z(Γ(R)) = Z(Γ∗(R)), which
is a cyclic group of order two generated by the isotopy class of
any hyperelliptic involution of R.

(5) Otherwise, ker(ρ) is equal to the trivial subgroup {[idR : R →
R]} of Γ∗(R).

Proof. (1), (2), (3), and (4) follow from our discussion of special exam-
ples in Section 9.

Suppose now that R is not a disc, an annulus, a pair of pants, or a
torus with one hole. Let h be an element of ker(ρ) and H : R→ R be
a homeomorphism of R representing h.

By the definition of the action of Γ∗(R) on A(R) and of the corre-
sponding representation ρ : Γ∗(R) → A(R), H : R → R preserves the
isotopy class of every essential arc on R.
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Since R is not a disc or an annulus, there exists a triangulation T of
R. Since H : R → R preserves the isotopy class of every essential arc
on R, we may isotope H : R → R to a homeomorphism H0 : R → R
such that, for each element J of T , H0(J) = J .

Since R is not a pair of pants, there exists an embedded triangle ∆
of T on R with sides corresponding to A, B, and C. Let Q = q(∆).
Since A, B, and C are elements of T , it follows that there exists an
embedded triangle ∆′ of T on R with sides corresponding to H0(A),
H0(B), and H0(C) such that q(∆′) = H0(Q).

Since A, B, and C are elements of T , H0(A) = A, H0(B) = B, and
H0(C) = C. It follows that ∆′ and ∆ are triangles on S with sides
corresponding to A, B, and C.

Since R is not a disc, an annulus, a pair of pants, or a torus with
one hole, it follows from Proposition 3.2 that ∆′ = ∆. It follows that
H0(Q) is equal to Q and, hence, the homeomorphism H0 : R → R
restricts to a homeomorphism H0| : (Q,A,B, C) → (Q,A,B, C). It
follows that we may isotope H0 : R → R relative to the union |T | of
the elements of T , to a homeomorphism H1 : R → R which restricts to
the identity map H1| = idQ : Q→ Q of Q.

Note that any other triangle ∆′ of the triangulation T of R is con-
nected to the triangle ∆ of the triangulation T of R by a sequence
of triangles which have sides corresponding to the same element of T .
Since H : R → R is orientation-preserving, it follows, by a finite induc-
tion argument, that we may construct a sequence of homeomorphisms,
Hi : R → R, 0 ≤ i ≤ N , with N equal to the number of triangles of T
on R, such that H0 preserves each element of T and is isotopic on R
to H; H1 preserves each element of T , fixes each point of at least one
triangle of T on R, and is isotopic on R to H0 relative to |T |; and for
each integer i with 2 ≤ i ≤ N , Hi preserves each element of T , fixes
each point of at least i triangles of T , and is isotopic on R to Hi−1

relative to the union of |T | with i− 1 triangles of T fixed pointwise by
Hi−1.

Since N is equal to the number of triangles of T on R, it follows
that HN = idR : R → R. Since H : R → R is, by induction, isotopic
to HN : R → R, it follows that H : R → R is isotopic to idR : R → R,
which completes the proof.

�

Theorem 18.2. Let R be a compact, connected, oriented surface of
genus g with b boundary components, where b ≥ 1. Then the following
hold:
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(1) If R is a disc, an annulus, a pair of pants, or a torus with one
hole, then Aut(A(R)) is naturally isomorphic to the quotient of
the extended mapping class group Γ∗(R) by its center Z(Γ∗(R)).
More precisely, we have a natural short exact sequence corre-
sponding to the natural action of Γ∗(R) on A(R):

1 → Z(Γ∗(R)) → Γ∗(R) → Aut(A(R)) → 1.

(2) If R is not a disc, an annulus, a pair of pants, or a torus with
one hole, then Aut(A(R)) is naturally isomorphic to the ex-
tended mapping class group Γ∗(R). More precisely, we have an
isomorphism corresponding to the natural action of Γ∗(R) on
A(R):

1 → Γ∗(R) → Aut(A(R)) → 1.

Proof. It follows from Theorem 17.1 that the natural representation
ρ : Γ∗(R) → Aut(A(R)) is surjective. Hence, Theorem 18.2 follows
from the description in Proposition 18.1 of the kernel of the natural
representation ρ : Γ∗(R) → Aut(A(R)) corresponding to the natural
action of Γ∗(R) on A(R).

�

Remark 18.3. It follows from Proposition 18.1 that, for the surfaces
listed in (1) of Theorem 18.2, Z(Γ∗(R)) is either cyclic of order two
or a direct sum of two cyclic groups of order two. In particular, there-
fore, (1) of Theorem 18.2 implies that, for these surfaces, the nat-
ural representation ρ : Γ∗(R) → Aut(A(R)) exhibits Γ∗(R) as an ex-
plicit finite central extension of Aut(A(R)). Otherwise, for the remain-
ing surfaces listed in (2) of Theorem 18.2, the natural representation
ρ : Γ∗(R) → Aut(A(R)) is an isomorphism.

Remark 18.4. The main consequence of Theorem 18.2 is that auto-
morphisms of arc complexes are geometric (i.e. are induced by self-
homeomorphisms of the underlying surface). Ivanov used the arc com-
plex in his proof of his theorem on automorphisms of the complex of
curves [I1]. In this context, he showed that automorphisms of arc com-
plexes which are induced from automorphisms of the complex of curves
are geometric. Our result, Theorem 18.2, does not assume that our
automorphisms of arc complexes are induced from automorphisms of
curve complexes.
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surfaces, Séminaire Orsay, Astérisque, Vol. 66-67, Soc. Math. de France,
1979.

[I1] N. V. Ivanov, Automorphisms of complexes of curves and of Teichmüller
spaces, Preprint IHES/M/89/60, 1989, 13 pp.; Also in: Progress in knot

theory and related topics, Travaux en Cours, V. 56, Hermann, Paris, 1997,
113-120.

[I2] N. V. Ivanov, Mapping class groups. Handbook of geometric topology, 523–
633, North-Holland, Amsterdam, 2002.

[M] L. Mosher, Tiling the projective foliation space of a punctured surface,
Trans. Am. Math. Soc. 306 (1) (1988) 1-70

Department of Mathematics and Statistics Bowling Green State

University Bowling Green, OH 43403, USA and Max-Plank-Institut

f́’ur Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

E-mail address : eirmak@umich.edu

Department of Mathematics, Michigan State University, East Lans-

ing, MI 48824-1027, USA and Max-Plank-Institut f́’ur Mathematik, Vi-

vatsgasse 7, 53111 Bonn, Germany

E-mail address : mccarthy@math.msu.edu


