```
ON THE STRUCTURE OF 4 FOLDS WITH A
HYPERPLANE SECTION WHICH IS A IP }\mp@subsup{}{}{1
BUNDLE OVER A SURFACE THAT FIBRES
    OVER A CURVE
        by
    Maria Lucia Fania, Eiichi Sato
        and
    Andrew John Sommese
```

 Max-Planck-Institut
 für Mathematik
 Gottfried-Claren-Str. 26
D-5300 Bonn 3

In this article we want to analyze the structure of a 4 dimensional projective variety x which has a smooth ample divisor A that is a \mathbb{P}^{1} bundle $\pi: A \longrightarrow S$ over a smooth surface S.

In [(Fa+Sol2], as a consequence of a more general result, the first and third authors determined the structure of x in the case the base s of the \mathbb{P}^{1} bundle A has a cover \tilde{S} with $h^{2,0}(\widetilde{S}) \neq 0$. Here we look at the remaining cases except for those surfaces which are the projectivization of a stable rank two vector bundle over a curve (the result is obviously true for s rational).

The key point is to extend the morphism $\pi: A \longrightarrow S$ to a morphism $\bar{\pi}: X \rightarrow S$. If the surface S has a morphism $\Psi: S \longrightarrow C$ onto a smooth curve C, then the morphism $\Psi \circ \pi: \AA \rightarrow S$ extends to a morphism $\varphi: X \rightarrow C$ (see [So1], Prop. V). Moreover the general fibre X_{c} of φ turns out to be a \mathbf{p}^{2} bundle over a curve contained in S. We now construct $\bar{\pi}: X \rightarrow S$ geometrically. The idea is to take a general fibre P of the general \mathbb{P}^{2} bundle X_{c} and look at all the deformations of P in X. Using the "universal" family of such deformations we will get our desired map.

The main result is the following

Theorem: Let X be a 4-dimensional projective variety which is a local complete intersection. Let A be an ample divisor on X which is a \mathbf{P}^{1} bundle, $\pi: A \rightarrow S$ over a smooth
surface S. Assume that there is a surjective holomorphic map $\Psi: S \rightarrow C$ with connected fibres, where C is a smooth curve. Then π can be extended to a holomorphic map $\bar{\pi}: X \rightarrow S$ unless $S=\mathbb{P}_{C}(V)$ with V a stable rank two vector bundle on c. Moreover $\bar{\pi}: X \rightarrow S$ is a \mathbb{P}^{2} bundle.

The paper is organized as follows. In §0 we recall some background material.

In §1 we study the structure of X in the case the surface S, base of the \mathbb{P}^{1} bundle A has a surjective morphism $\Psi: S \longrightarrow C$ onto a curve.

In §2 we completely determine the structure of X in the case $S=\mathbb{P}^{2}$. Also, for completeness, we determine the structure of those X with an ample divisor A which is a \mathbb{P}^{1} bundle over \mathbb{P}^{n}, with $n \geqq 3$.

We would like to express our thanks to the Max-PlanckInstitut für Mathematik for making this joint work possible. The third author would also like to thank the University of Notre Dame and the National Science Foundation.

§ 0 Background material

(0.1) Throughout this article the varieties considered will be projective and defined over \mathbb{C}. Given a variety X we denote its structure sheaf by O_{X}. We do not distinguish between a holomorphic vector bundle E on a variety X and its sheaf of germs of holomorphic sections. We denote the tautological line bundle of E by ζ_{E} or $0_{\mathbb{P}(E)}(1)$, where $\mathbb{P}(E)=E^{V}-$ \{zero section\} $/ \mathbb{I}^{*}$ and $E^{\mathbf{V}}$ is the dual bundle of E. If Y is a subvariety of X we denote by ${ }^{E} \mid Y$ the restriction of E to Y. For more details on vector bundles see $[\mathrm{Ok}+\mathrm{Sc}+\mathrm{Sp}]$.
(0.2) Let $p: X \rightarrow Y$ be a map of projective varieties. We will use interchangeably the word morphism and holomorphic map, as well as rational map and meromorphic map.
(0.3) Let X be a projective variety. Let D be an effective Cartier divisor on X. We denote by [D] or $O_{X}(D)$ the line bundle defined by D. If L is a line bundle on X, let $|L|$ denote the linear system of all Cartier divisors associated to L.
(0.4) By F_{r} with $r \geqq 0$ we denote the rth Hirzebruch surface. F_{r} is the unique \mathbf{P}^{1} bundle $\pi: F_{r} \rightarrow \mathbf{P}^{1}$ over \mathbb{P}^{1} with a section E satisfying $E \cdot E=-r$. By \widetilde{F}_{r} with $r \geq 1$ we denote the surface obtained from F_{r} by blowing down E .

The next result will be used often. We will state it for the convenience of the reader and refer to [So], (0.6.1) for a proof.
(0.5) Lemma Let x be a normal irreducible compact surface. Let L be an ample line bundle on X, with a smooth $c \in|L|$ being a rational curve and $C \subseteq X_{r e g}$. Then L is very ample and either
a) X is F_{r} and $L=[E] \otimes[f]^{k}$ with $k \geqq r+1$, or
b) X is \widetilde{F}_{r} and $p *_{L}=[E] \otimes[f]^{r}$ where $p: F_{r} \rightarrow \widetilde{F}_{r}$ is the map that blows down E. (Here f denotes a fibre of $\pi: F_{r} \rightarrow \mathbb{P}^{1}$).

§1. Proof of the main theorem

(1.0) Theorem Let x be a four dimensional projective variety which is a local complete intersection. Let A be an ample divisor on x which is a \mathbb{P}^{1} bundle, $\pi: A \longrightarrow S$ over a smooth surface S. Assume that there is a surjective holomorphic map $\Psi: S \rightarrow C$ with connected fibres, where C is a smooth curve. Then π can be extended to a holomorphic map $\bar{\pi}: X \rightarrow S$ unless $S=\mathbb{P}_{C}(V)$ with V a stable rank two vector bundle on C (see Remark (1.0.1)). Moreover $\pi: X \rightarrow S$ is a \mathbb{P}^{2} bundle.
(1.0.1) Remark W do not need to assume that $\Psi: S \rightarrow C$ has connected fibres and that C is smooth. In fact if otherwise we can Remmert-Stein factorize $\Psi=s$ or where $r: x \rightarrow C^{\prime}$ is a holomorphic map onto a smooth curve C^{\prime} and $s: C^{\prime} \longrightarrow C$ is a finite to one holomorphic map. Then the theorem is true unless $S=P_{C},(V)$ where V is a stable rank two vector bundle on C^{\prime}.

Proof of the theorem. We notice that dim Sing (X) $\leqq 0$ since the ample divisor A on X is smooth. The holomorphic map $\Psi \circ \pi$ extends to a holomorphic $\operatorname{map} \varphi: X \longrightarrow C$, see [So1] Prop V or [Fu]. Let X_{c} and A_{c} denote the general fibre of φ and $\psi \circ \pi$ respectively. Note that A_{c} is a geometrically ruled surface over $\Psi^{-1}(c)$ and moreover A_{c} is an ample divisor on X_{C}. We claim that either
a) X_{c} is a \mathbb{P}^{2} bundle over $\Psi^{-1}(c)$ and A_{c} is the tautological line bundle on X_{c}, or
B) $(\Psi \circ \pi)^{-1}(c) \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$ and X_{c} is a \mathbb{P}^{2} bundle over \mathbb{P}^{1} where the canonical projection $X_{c} \rightarrow \mathbb{P}^{1}$ is not an extension of $\pi: A_{c} \rightarrow \Psi^{-1}(c)\left(\simeq \mathbb{P}^{1}\right)$.

Proof of the claim The general fibre of Ψ is a smooth curve of genus $g \geqslant 0$. If $g>0$ or if $g=0$ and $A_{C} \simeq F_{r}$ with $r>0$, where F_{r} is as in (0.4), then using [BaL] we conclude that X_{C} is a \mathbb{P}^{2} bundle over $\Psi^{-1}(c)$ and A_{C} is the tautological line bundle on X_{C}. If $g=0$ and $A_{c} \simeq F_{0} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$ then we will show that
(*) $\operatorname{Pic}\left(X_{c}\right) \simeq \operatorname{Pic}\left(A_{C}\right) \simeq \mathbf{Z} \oplus \mathbf{Z}$.

Therefore the result will follow from [Bal] once we know (*).

Proof of (*) From the following diagram

we see that $\operatorname{dim} H_{2}\left(X_{c}, Q\right)=1$ is possible only if the two rulings of $A_{c}\left(\simeq F_{0}\right)$ get identified in X. But the two rulings were in different homology classes in A therefore they cannot go in the same homology class in X. Using Kronecker
duality and the first Lefschetz theorem we conclude that Pic $\left(X_{c}\right) \simeq \operatorname{Pic}\left(A_{c}\right)$.

The proof of the theorem will be split up in two parts. We will treat case α) first and then the case β).

Case a) Fix a general \mathbb{P}^{2} which is a fibre of $X_{c} \rightarrow \Psi^{-1}(c)$ and denote it by P. Using the fact that $P \subseteq X_{c} \subseteq X \quad$ and the exact sequence of normal bundles

$$
0 \rightarrow N_{P / X_{c}} \rightarrow N_{P / X} \rightarrow N_{X_{c}} / X \mid P \rightarrow 0
$$

it is straightforward to see that $N_{P / X}=O_{P} \oplus O_{P}$, where $N_{P / X}$ is the normal bundle of P in X, and that $H^{1}\left(P, N_{P / X}\right)=0$. Under the above assumption, using a basic result on Hilbert schemes, it follows that there exist irreducible projective varieties W and Z with the following properties:

1) $W \subseteq Z \times X$ and the map $p: W \rightarrow Z$ induced by the product projection is a flat surjection,
2) there is a smooth point $a \in Z$ with p of maximal rank in a neighborhood of $p^{-1}(a)$ and $p^{-1}(a)$ is identified with $P \simeq \mathbb{P}^{2}$ via q, where $q: W \rightarrow X$ is the map induced by the product projection.
(1.0.2) Lemma There exists a Zariski open neighborhood U of a , where a is as in 2), such that for every $z \in U$
i) $\mathrm{p}^{-1}(\mathrm{z})=W_{\mathrm{z}}$ is isomorphic to \mathbb{P}^{2} and it is a fibre of $X_{c} \rightarrow \Psi^{-1}(c)$ for some $c \in C$,
ii) $W_{z} \cap A=f\left(\simeq \mathbb{P}^{1}\right)$, where f is a fibre of π.

Proof From 2) above there exists a smooth neighborhood U of a in Z such that $p^{-1}(U) \rightarrow U$ and
$q^{-1}(A) \cap p^{-1}(U) \rightarrow U$ are smooth morphisms. Note that
$A \cap \omega_{a}=\mathbb{P}^{1}$. Moreover using the fact that small deformations of \mathbf{P}^{2} and \mathbb{P}^{1} are \mathbb{P}^{2} and \mathbb{P}^{1} respectively we conclude that the fibres of the maps $p_{p-1}(U)$ and $\left.{ }^{q}\right|_{q}{ }^{-1}(A) \cap p^{-1}(U)$ are \mathbb{P}^{2} and \mathbb{P}^{1} respectively. On the other hand a morphism φ from $\mathbb{P}^{2} \subseteq X$ to C is constant. Hence any fibre of $\left.{ }^{p}\right|_{p}{ }^{-1}(\mathrm{U})$ is contained in a fibre of φ. Therefore the rest of (1.0.2) is obvious
(1.0.3) Lemma The intersection number $A \cdot A \cdot U_{z}=1$ for every $z \in Z$. And if $W_{z}=\bar{W}_{z} U$ \{embedded part\} then \bar{W}_{z} is reduced and irreducible.

Proof By α) we have that $0_{X}(A) \mathbb{P}^{2}=0_{\mathbb{T}}{ }^{2}(1)$. Hence $\left(A \cdot A \cdot \mathbb{P}^{2}\right)_{X}=\left(0_{X}(A)\left|\mathbb{P}^{2} \cdot 0_{X}(A)\right|_{P^{2}}\right)_{\mathbb{P}^{2}}=1$, which implies that $A \cdot A \cdot W_{z}=1$ since the intersection number is preserved by flat maps. Clearly \bar{W}_{z} is reduced and irreducible isince $\left.A \cdot A \cdot W_{z}=1\right)$.

Note that the general fibre of the morphism $\Psi: S \rightarrow C$ is either isomorphic to \mathbb{P}^{1} or to a curve of positive genus.
(1.0.4) Lemma For every $z \in Z, W_{z} \nsubseteq A$.

Proof Let $z \in Z$ and let $\left\{z_{n}\right\}$ be a sequence of points in Z such that $\lim _{n \rightarrow \infty} z_{n}=z$ and $w_{z_{n}} \simeq \mathbb{P}^{2}$ for every n. The above is possible by (1.0.2). Now use the fact that $\varphi\left(\omega_{z_{n}}\right)$ is one point for every n, to conclude that $\varphi\left(\omega_{z}\right)$ is also one point. Assume that $\omega_{z} \subseteq A$.

Since $\pi: A \rightarrow S$ is $a \mathbb{P}^{1}$ bundle and since $(\Psi \circ \pi)\left(\omega_{z}\right)=c$, with c a point in c, we get that $\Phi=\pi \mid \omega_{z}: w_{z} \rightarrow \pi\left(w_{z}\right)$ is a \mathbf{p}^{1} bundle. Note that $\pi\left(w_{z}\right) \subseteq \Psi^{-1}(c)$. To continue the proof of the lemma we distinguish two cases:

Case 1 The general fibre of ψ is isomorphic to \mathbf{p}^{1}. If $\Psi^{-1}(c)$ with c as above is isomorphic to \mathbf{p}^{1} then w_{z} is a \mathbb{P}^{1} bundle over \mathbb{P}^{1}. Moreover there exists an ample line bundle ($[A] \mid \omega_{z}$) on ω_{z} whose selfintersection is 1 . This last fact is impossible.

If $\Psi^{-1}(c)$ is singular then $\Psi^{-1}(c)=\Sigma_{n_{i}} c_{i}$ with $c_{i} \simeq \mathbb{P}^{1}$. Also $\pi\left(w_{z}\right)=C_{i}$ for some i otherwise we would get a contradiction with the fact that ω_{z} is irreducible. Hence
ω_{z} is a \mathbb{P}^{1} bundle over \mathbb{P}^{1} which is impossible as noticed earlier.

Case 2 The general fibre of Ψ is isomorphic to a curve of positive genus.

Take a general fibre of $\omega \rightarrow Z$ and consider all the lines on such fibre. Let T denote the irreducible component of the Hilbert scheme of X parametrizing such lines. Denote by M the universal family. Thus $M \subseteq T \times X$. Note that every fibre of M is irreducible and reduced (since $L \cdot M_{t}=L \cdot \mathbb{P}^{1}=1$, where M_{t} is a fibre of M over T) .

Claim Every fibre of $M \rightarrow T$ has \mathbb{P}^{1} as normalization.

Proof of the claim Consider a curve B in T through a point t'. Also choose B of positive genus. Let M_{B} denote the inverse image of B under the natural projection $M \rightarrow T$. Note that most fibres of $M_{B} \rightarrow B$ are linear \mathbb{P}^{1} 's since B is chosen of positive genus. If we take a minimal model of a desingularization of \tilde{M}_{B}, where \tilde{M}_{B} denotes the normalization of M_{B}, we get a ruled surface over the normalization of B. This last conclusion follows from the fact that M_{B} has infinitely many $\mathbb{P}^{1 / s}$ and from the fact that the genus of B is positive. Thus since going from $M_{B} \rightarrow$ normalization \rightarrow desingularization \rightarrow minimal model does not destroy a positive genus curve and the normalization of M_{t}, goes in a fibre of a I^{1} bundle we conclude that every
fibre of $M \rightarrow T$ has \mathbb{P}^{1} as a normalization.

Now choose 2 points $(a, b) \subseteq \omega_{z}$ with $\Phi(a) \neq \Phi(b)$. Let $\left(x_{n}, Y_{n}\right) \subseteq w_{z_{n}}$ be a sequence of pairs of points such that $\lim _{n \rightarrow \infty} x_{n}=a$ and $\lim _{n \rightarrow \infty} y_{n}=b$.

Let $M_{t_{n}}$ be a sequence of lines containing $\left(x_{n}, y_{n}\right)$. The limit of $M_{t_{n}}$ is (maybe after passing to a subsequence) a line M_{t} containing the point (a,b). As shown in our previous claim, M_{t} is birational to \mathbb{P}^{1} so $\Phi\left(M_{t}\right)=\mathbb{P}^{1}$. Therefore $\omega_{z} \rightarrow R_{g}$ is a \mathbb{P}^{1} bundle over \mathbf{p}^{1}. Thus our lemma is proved.
(1.0.5) Lemma $W_{z} \cap A=f$, where f is a fibre of π. (The equality here is only setwise).

Proof By (1.0.2) we can take a sequence of points $\left\{z_{n}\right\}$ in z with $\lim _{n \rightarrow \infty} z_{n}=z_{\text {, }}$ such that $\lim _{n \rightarrow \infty} w_{z_{n}}=w_{z}$, $w_{z_{n}} \simeq \mathbb{P}^{2}$ for all n and $\omega_{z_{n}} \cap A=$ fibre of π. Hence $W_{z} \cap A=f+C$, where f is a fibre of π and C is a possibly empty effective 1-cycle. From (1.0.3) and the fact that A is ample it follows that $C=\emptyset$.
(1.0.6) Lemma For every fibre f of $\pi,\left\{z \in Z \mid W_{z} \supset f\right\}$ is finite.

Proof Assume otherwise. Then there is a curve $Y \subseteq Z$ such that for every $y \in Y, W_{y} \supseteq f$. Note that
$\left(\underset{y \in Y}{U} W_{y}\right) \cap A=f$ by $(1.0 .5)$. On the other hand $\underset{y \in Y}{U} W_{y}$
is a divisor on x. Thus $\operatorname{dim}\left(\left(\underset{y \in Y}{U} W_{y}\right) \cap A\right) \geqq 2$. This contra-
diction proves our lemma.

Notice that (1.0.5) and (1.0.6) yield the following important lemma.
(1.0.7) Lemma Assume the same hypotheses as in (1.0). Then there exist Zariski open sets $W_{1} \subseteq W$ and $X_{1} \subseteq x$ such that $A \subseteq X_{1}$ and $q_{\left.\right|_{W_{1}}}: W_{1} \rightarrow X_{1}$ is an isomorphism. Moreover Z is isomorphic to S.

Proof: The proof of the first conclusion is obvious from Zariski's Main Theorem. To get the second conclusion we use the universality of the Hilbert schemes.

From (1.0.7) it follows that there exists a meromorphic map $\bar{\pi}: x \rightarrow S$, where $\bar{\pi}=p \circ q^{-1}$, such that $\bar{\pi}_{A}$ is holomorphic. We claim that $\bar{\pi}$ is holomorphic. In fact the set on which $\bar{\pi}$ is not holomorphic in finite since $\bar{\pi}_{\mid A}$ is holomorphic and A is an ample divisor on X. Therefore by Riemann extension theorem $\bar{\pi}$ is holomorphic.

Before passing to the case β) we will show that the above $\bar{\pi}$ gives to X the structure of a \mathbb{P}^{2} bundle over S.

By construction the general fibre of $\bar{\pi}$ is \mathbb{P}^{2}. Also
$0_{X}(A) \mathbb{P}^{2}=0_{\mathbb{P}^{2}}(1)$. As for the possible singular fibre F of $\bar{\pi}$; we notice that F is reduced and irreducible since $L \cdot L \cdot F=1$. Since \mathbf{P}^{1} is an hyperplane section of F it is well known, see (0.5) that F is either F_{r} with $r \geq 0$ or \widetilde{F}_{r} with $r \geq 1$, where F_{r} and \widetilde{F}_{r} are as in (0.4). There are no F_{r} with an ample line bundle of degree 1. Among the \widetilde{F}_{r} the only one with an ample line bundle of degree 1 is $\underset{F_{1}}{\sim} \simeq \mathbb{P} \ddot{2}$. Now we use a theorem of Hironaka ([Hi],Th. 1.8) to conclude that $\bar{\pi}: X \rightarrow S$ is a \mathbb{P}^{2} bundle.

Let us now consider the case β).

Case B) Let $c \in C$ be a general point. We take a general rational curve ℓ in $A_{C}=(\Psi \circ \pi)^{-1}(c) \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$ such that $\ell \cdot \ell=0$ and ℓ is not a fibre of π. From now on we denote by ℓ the ruling of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ which is not a fibre of π. It is straightforward to see that

$$
N_{\ell / A}=0_{\ell} \oplus 0_{\ell} \quad \text { and } \quad H^{1}\left(\ell, N_{\ell / A}\right)=0 .
$$

Denote by S^{\prime} the irreducible component of the Hilbert scheme of A parametrizing flat deformations of ℓ in A and by y the universal family. Thus $y \subseteq S^{\prime} \times A$. Denote by $p: y \rightarrow S^{\prime}$ and $q: y \rightarrow A$ the maps induced by the product projections. Note that such deformations fill up the whole space A, i.e., $q(y)=A$.

Claim $1 \quad \Psi: S \rightarrow C$ is a geometrically ruled surface.

Proof of claim 1. Assume that there exists a point $c_{0} \in C$ such that $\Psi^{-1}\left(c_{0}\right)$ is a singular fibre. Then the number of irreducible components of $\Psi^{-1}\left(c_{0}\right)$ is at least 2. Let $\left\{c_{n}\right\}$ be a sequence of points in C approaching the point c_{0}. Let $\left\{\ell_{n}\right\}$ be the corresponding sequence of lines in y. Thus $\lim _{n \rightarrow \infty} \pi\left(\ell_{n}\right)=\Psi^{-1}\left(c_{0}\right)$, where the equality is only setwise (Here we have identified ℓ_{n} with $\left.q\left(\ell_{n}\right)\right)$. But the above equality is impossible since $A \cdot \ell_{n}=1$ for all n, while the number of irreducible components of $\Psi^{-1}(c)$ is at least 2 and A is an ample divisor.

We note that for every $c \in C,(\Psi \circ \pi)^{-1}(c) \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$. In fact since S is geometrically ruled it follows that for every $c \in C,(\Psi \circ \pi)^{-1}(c) \simeq F_{r}$ with $r \geqq 0$. Assume that there exists a $c_{0} \in C$ such that $(\Psi \circ \pi)^{-1}\left(c_{0}\right) \simeq F_{r}$ with $r>0$. Then $A \cdot f=1$, where f is a fibre of π. Note that $X_{C_{0}}=\varphi^{-1}\left(C_{0}\right)$ is a local complete intersection containing F_{r}, with $r>0$ as an ample divisor. Therefore $X_{C_{0}}$ is a \mathbb{P}^{2} bundle over $\Psi^{-1}\left(C_{0}\right)$ (see $[(\mathrm{Fa}+\mathrm{So}) 1]$ for a short proof and cf. [Ba2] for the case $\mathrm{X}_{\mathrm{c}_{0}}$ smooth). Thus we would be in the case α).

Let S^{\prime} and y be as before. We denote by ℓ_{s} the fibre of y over $s \in S^{\prime}$. Clearly the smooth fibres of the flat family y are isomorphic to \mathbb{P}^{1}. Recall that $A \cdot \ell_{s}=1$. Hence the Hilbert polynomial $\times\left(0_{\ell_{s}}\left(A_{\ell} \|_{s}\right)^{\otimes n}\right)$ of ℓ_{s} is equal to $n+1$.

Let $s \in S$ be such that ℓ_{s} is singular. Denote by \bar{l}_{s} the one dimensional closed subscheme of ℓ_{s} defined by removing the embedded points of ℓ_{s}.

Claim $2 \ell_{s}=\bar{\ell}_{s}$ and S^{\prime} is smooth.

Proof of Claim 2 Note that since \bar{l}_{s} is contained in a fibre of $\Psi \circ \pi \quad$ which is isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and since $A \cdot \bar{l}_{S}=1$ it follows that $\bar{\ell}_{S}$ is a fibre of $\mathbb{P}^{1} \times \mathbb{P}^{1}$, so $\bar{l}_{s}=\mathbb{P}^{1}$. In order to see that $\ell_{s}=\bar{l}_{s}$ we consider the following exact sequence

$$
(1.0 .8) \quad 0 \rightarrow T \rightarrow 0_{\ell_{s}} \rightarrow 0_{\bar{\ell}_{\mathrm{s}}} \rightarrow 0
$$

where the sheaf T is the torsion part of 0_{ℓ}. Tensoring (1.0.8) with $\left(A_{\ell_{s}}\right)^{\text {on }}$ and using the fact that the Euler characteristic is additive on a short exact sequence it follows that

$$
x\left(0_{\ell_{s}}\left(A_{\mid \ell_{s}}\right)^{\otimes n}\right)=x\left(T \otimes 0_{\ell_{s}}\left(A \mid \ell_{s}\right)^{\otimes n}\right)+x\left(0_{\bar{l}_{s}}\left(\left.A\right|_{\ell_{s}}\right)^{\otimes n}\right) .
$$

Note that the Hilbert polynomial of ℓ_{s} and of \bar{l}_{s} are equal. Thus T is the 0 -sheaf. To see that S^{\prime} is smooth note that $N_{\ell_{S} / A}=O_{\ell} \oplus O_{l}$. Therefore it follows that S^{\prime} is smooth at s.
(1.0.9) Remark i) y is isomorphic to A

> ii) A is a \mathbb{P}^{1} bundle $\sigma: \mathrm{A} \longrightarrow \mathrm{S}^{\prime}$ over S^{\prime}.

To see i) note that y is birational to A. Moreover y is in one to one correspondence with A, since for every $a \in A$ there exists a unique $\ell \subseteq A_{c}$ containing a, where $c=(\Psi \circ \pi)(a)$. Hence y is isomorphic to A. From i) it follows that there is a morphism $\sigma=p^{\circ} q^{-1}$ from A onto S^{\prime} whose fibres are isomorphic to \mathbb{P}^{1}. Moreover $\left.0_{A}(A)\right|_{\mathbb{P}} 1^{=} 0_{\mathbb{P}} 1(1)$. Thus ii) is clear.

Claim $3 S^{\prime}$ is geometrically ruled over C.

Proof of Claim 3 Let $c \in C$ and let f_{c} be the ruling of $A_{C}\left(\sim \mathbb{P}^{1} \times \mathbb{P}^{1}\right)$ corresponding to the map π. By the universality of the Hilbert schemes, the above f_{c} induces a closed subscheme f_{c}^{\prime} in S^{\prime}, with f_{c}^{\prime} a rational curve. To show that there exists a morphism from S^{\prime} onto C we will distinguish the case $g(C)^{>} 0$ and $g(C)=0$ where $g(C)$ denotes the genus of C.

In the case $g(C)>0$ it follows that $H^{1}\left(S^{\prime}, 0_{S^{\prime}}\right) \neq 0$.
We get the following diagram
*)

where a is the Albanese map. In the above diagram we have used the fact that $A l b(A) \simeq A l b(S) \simeq J(C)$. Note that $\operatorname{dim} \alpha\left(S^{\prime}\right)=1$. We claim that $j: C \rightarrow \alpha\left(S^{\prime}\right)$ is an isomorphism. Using the Riemann-Hurwitz formula the above claim is clear for $g(C)>1$. For $g(C)=1$ we get that the morphism j is a covering map. But this is impossible by the commutativity of the first square diagram in *). Therefore we get a morphism $T: S^{t} \longrightarrow C$, with $T=j^{-1}$ o α. Also f_{c}^{\prime} (the closed subscheme induced in S^{\prime} by f_{c}, are fibres of T. Therefore S^{\prime} is generically ruled over C. To see that S ' is geometrically ruled we assume otherwise. Then there exists a fibre $E=\sum_{i} n_{i} C_{i}$. Let $c=T(F)$. Note that $\sigma^{-1}(F)=\sum_{n_{i}} F_{i}$, where each F_{i} is a \mathbb{P}^{1} bundle over C_{i}. By the commutativity of the first square diagram in $*$) we see that ${\sum \operatorname{nF}_{i}}^{F_{i}} \sigma^{-1}(\mathrm{~F})=\varphi^{-1}(\mathrm{c})=\mathbb{P}^{1} \times \mathbb{P}^{1}$ which is impossible.

If $g(C)=0$ then $H^{1}\left(S^{\prime}, O_{S^{\prime}}\right)=0$. Thus there exists a line bundle L on S such that the linear system $|L|$ contains infinitely many f_{c}^{\prime} where f_{c}^{\prime} is the closed subscheme induced in S^{\prime} by f_{c}. It follows immediately form

$$
0 \rightarrow O_{S}: \longrightarrow L \longrightarrow L_{I_{C}} \rightarrow 0
$$

that dim|LI=1. Also it can be easily seen that the linear system $|L|$ is base point free. Hence it defines a morphism onto \mathbb{P}^{1}. The general fibre of such morphism is isomorphic to IP^{1}. Therefore by Noether's lemma s^{\prime} is rational. The same argument as in the case $g(C)>0$, shows that S^{\prime} is geometrically ruled.

From the above proof it also follows that the elements of $|L|$ are exactly $\left\{f^{\prime}{ }_{c}\right\} c \in C$.

ㅁ
Thus we have the following commatative diagram

We will now show that the case β) cannot occur unless $S=\mathbb{P}_{\cdot \epsilon}(V)$ where V is a stable rank two vector bundle on C. (Obviously does not occur if S is rational ruled).

By the universality of the fibre product of S and S^{\prime} over C we get a morphism $A \longrightarrow S \times C^{S}$ which is an isomorphism by Zariski's Main Theorem. The surfaces S and S' are geometrically ruled over C therefore there exist rank two vector bundles V and V ' over C such that $S=\mathbb{P}(V)$ and $S^{\prime}=\mathbb{P}\left(V^{\prime}\right)$. For the triple X, A and S^{\prime} the hypotheses of (1.0) are satisfied. Moreover we are in the case α). Hence we conclude that the morphism $\sigma: A \longrightarrow S^{\prime}$ extends to a morphism $\tilde{\sigma}: X \rightarrow S^{\prime}$ and that $\tilde{\sigma}: X \rightarrow S^{\prime}$ is a \mathbb{P}^{2} bundle. Therefore we have the following exact sequence of vector bundles on S^{\prime}

$$
\begin{equation*}
0 \longrightarrow 0_{S}, \longrightarrow E \xrightarrow{\gamma} F \longrightarrow 0 \tag{1.0.9}
\end{equation*}
$$

with $X=\mathbb{P}(E)$ and $A=\mathbb{P}(F)$ is embedded in X via the map γ. Since for every $c \in C \quad(\tau \circ \sigma)^{-1}(c) \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$ we have that $\sum_{\left.\right|_{\tau} ^{-1}(c)}=0_{\mathbb{P} 1}\left(a_{c}\right) \oplus{ }_{\mathbb{P} 1}{ }^{\left(a_{C}\right)}$. It is an easy check to see that a_{c} is independent of c in c. Thus we can omit the subscript c. Consider the vector bundle $F \otimes \xi^{-a}$ where ξ is the tautological line bundle of V^{\prime}. By the base change theorem $\tau_{*}\left(F \not \nabla \xi^{-a}\right)=\tilde{V}$ is a vector bundle on C of rank two. Thus (1.0.9) becomes
$(1.0 .10) \quad 0 \longrightarrow 0_{S} \rightarrow E \rightarrow \tau * \tilde{V} \otimes \xi^{a} \rightarrow 0$

(1.0.11) Lemma $S=\mathbb{P}(\widetilde{V})$

Proof. Note that $A=\mathbb{P}(F)=\mathbb{P}\left(\tau * V * \xi^{a}\right)=\mathbb{P}(\tau * V)$. Also $A=S{ }_{{ }_{C}} S^{\prime}=\mathbb{P}(V){ }_{{ }_{C}} S^{\prime}=\mathbb{P}\left(T^{*} * \widetilde{\sim}\right)$. Therefore there exists a line bundle L on S^{\prime} such that $\tau * \widetilde{V}=\tau * V * L$. Taking the 0 -th direct image via τ on both sides of the equality we get that $\tilde{v}=V \& \tau_{*} L$. Also $\tau_{*} L$ is a line bundle since $\left.L\right|_{\tau} ^{-1}(c) \quad$ is trivial. Hence $\mathbb{P}(\tilde{V})=\mathbb{P}\left(V \otimes \tau_{*} L\right)=\mathbb{P}(V)=S$.
(1.0.12) Lemma If ∇ is not a stable vector bundle on C then A is not an ample divisor on X.

Proof It is enough to show that the sequence (1.0.10) splits. Since \tilde{V} is a vector bundle of rank 2 on the curve C which is not stable, there exists an exact sequence

$$
0 \rightarrow \mathrm{M} \rightarrow \tilde{\mathrm{~V}} \rightarrow \mathrm{~N} \rightarrow 0
$$

such that $\operatorname{deg} M \geqq \operatorname{deg} N$. If we pull back the above exact sequence via τ and we tensor it with $\xi^{\text {a }}$ we get
(1.0.13) $0 \rightarrow \tau^{*} M \otimes \xi^{a} \rightarrow \quad \tau * \tilde{v} \otimes \xi^{a} \rightarrow \tau * N \otimes \xi^{a} \rightarrow 0$.

Note that $\tau^{*} N \otimes \xi^{\mathrm{a}}$ is ample. Hence $\tau^{*} \mathrm{M} \otimes \xi^{\mathrm{a}}$ is ample since $\operatorname{deg} \mathrm{M} \geqq \operatorname{deg} \mathrm{N}$. Therefore using the cohomology sequence associated to the dual sequence of (1.0.13), the ampleness of $\tau * N * \xi^{a}$ and of $\tau^{*} M \otimes \xi^{a}$ and the fact that $a>1$, we conclude that $H^{1}\left(S^{\prime},\left(\tau * \tilde{V} \in \xi^{a}\right)^{V}\right)=0$.
(Note that $\mathrm{a}=1$ would imply that (1.0.10) splits).

Thus we have shown that the case B) does not occur unless $S=\mathbb{P}_{C}(V)$ with V a stable rank 2 vector bundle on C.

§2. \mathbb{P}^{1} bundles over \mathbb{P}^{n} with $n \geq 2$ as ample divisors

(2.0) Theorem Let x be a projective local complete intersection. Let A be an ample divisor on X which is a \mathbb{P}^{1} bundle $p: A \rightarrow \mathbb{P}^{2}$ over \mathbb{P}^{2}. Then X is a \mathbb{P}^{2} bundle over \mathbb{P}^{2} unless $A \simeq \mathbb{P}^{1} \times \mathbb{P}^{2}$.

Proof. We claim that the map $p: A \longrightarrow \mathbb{P}^{2}$ extends to a $\operatorname{map} \tilde{p}: X \longrightarrow \mathbb{P}^{2}$ unless $A \simeq \mathbb{P}^{1} \times \mathbb{P}^{2}$. Think of p as the map associated to the linear system $\left|p^{*} 0_{\mathbb{P}^{2}}(1)\right|$. To show that the map p extends it is enough to check that the sections of $\Gamma\left(A, p^{*} \mathcal{P}_{\mathbb{P}^{2}}(1)\right.$ can be extended to X as sections of L where L is the unique extension of $p^{*} 0_{\mathbb{P}^{2}}(1)$ to x. Now to show that the sections extend it is sufficient to prove that $H^{1}(X, L \otimes[-A])=0$. This is implied by $H^{1}\left(A,\left(L \otimes[-A]^{t}\right)_{A}\right)=0$ for all $t>0$, sce [So 1] or [(Fa+So)2]. Let $F \in\left|p^{*} 0_{\mathbb{P}^{2}}(1)\right|$, i.e., $F=p^{-1}(\hat{\ell})$ where ℓ is a linear hyperplane of \mathbb{P}^{2}. Using the long cohomclogy sequence associated to the following exact sequence

$$
0 \longrightarrow K_{A} \otimes[A]^{t} \otimes[F]^{-1} \longrightarrow K_{A} \otimes[A]^{t} \longrightarrow\left(K_{A} \otimes[A]^{t}\right)_{\left.\right|_{F}} \longrightarrow 0
$$

the Kodaira vanishing theorem and the fact that E is a \mathbb{P}^{1} bundle over \mathbb{P}^{1}, we get that
$H^{1}\left(A,\left.L_{A} \otimes[-A]^{t}\right|_{A}\right)=0$ for all $t>0$ unless $F=F_{0}$, with F_{0} as in (0.4).

Note that since A is a \mathbb{P}^{1} bundle over \mathbb{P}^{2} we have that $A=\mathbb{P}(V)$, where V is a rank 2 vector bundle on \mathbb{P}^{2}. In the case $F=F_{0}$ we have that for every line ℓ in \mathbb{P}^{2}, $v_{\mid \ell}=o_{\ell}\left(a_{\ell}\right) \oplus o_{\ell}\left(a_{\ell}\right)$. Also it is easy to see that a_{ℓ} is independent of ℓ. Therefore the vector bundle V is uniform and so $V=0_{\mathbb{P}^{2}}(a) \oplus 0_{\mathbb{P}^{2}}(a)$. Therefore $A=\mathbb{P}(V) \simeq \mathbb{P}^{1} \times \mathbb{P}^{2}$. Thus the map p extends to a holomorphic map $\tilde{p}: x \rightarrow \mathbb{P}^{2}$ unless $A \simeq \mathbb{P}^{1} \times \mathbb{P}^{2}$. Now the same argument as in $[(\mathrm{Fa}+\mathrm{So}) 2] ;(3 . \mathrm{U})$ shows that X is a \mathbb{P}^{2} bundle over \mathbb{P}^{2}.
(2.1) Theorem Let X be a projective local complete intersection. Let A be an ample divisor on X which is a \mathbb{P}^{1} bundle $p: A \rightarrow \mathbb{P}^{n}$ over \mathbb{P}^{n}. If $n \geqslant 3$ then $A \simeq \mathbb{F}^{1} \times \mathbb{P}^{n}$ and hence x is a \mathbb{P}^{n+1} bundle over \mathbb{P}^{1}.

Proof. Note that $A=\mathbb{P}(V)$ for some rank 2 vector bundle V on \mathbb{P}^{n}. We can assume, without loss of generality that V is normalized.

We will prove the theorem for $n=3$. The same proof yields the general case also. Let $F=P^{-1}\left(\mathbb{P}^{2}\right)$, where \mathbb{P}^{2} is a hyperplane of \mathbb{P}^{3}. Let $L \in \operatorname{Pic}(X)$ be such that $L_{A}=[F]$. If $\Gamma(X, L) \longrightarrow \Gamma\left(A, L_{A}\right) \longrightarrow 0$ then the map p extends to X. And we will have the contradiction that $n \leq 2$, see [So 1], Prop. V. Thus we can assume that $H^{1}\left(X, L \otimes[A]^{-1}\right) \neq 0$. This
implies that $H^{1}\left(A,\left.L_{A} \otimes[A]\right|_{A} ^{-t}\right) \neq 0$ for some $t>0$. For such t we consider the following exact sequence
$0 \longrightarrow K_{A} \otimes[A]^{t} \otimes[F]^{-1} \longrightarrow K_{A} \otimes[A]^{t} \longrightarrow K_{F} \otimes[A]_{F}^{t} \otimes[F]_{F}^{-1} \longrightarrow 0$.

From the long exact cohomology sequence associated to the above sequence, Kodaira vanishing theorem and the fact that $H^{3}\left(A, K_{A} \otimes[A]^{t} \otimes[F]^{-1}\right) \neq 0$ by hypothesis, it follows that $H^{2}\left(F, K_{F} \otimes[A]_{F}^{t} \otimes[F]_{F}^{-1}\right) \neq 0$.

Note that F is a \mathbb{P}^{1} bundle $\mathbb{p}_{F}: F \longrightarrow \mathbb{P}^{2}$ over \mathbb{P}^{2}. Let $\widetilde{F}=\mathbb{P}_{\mathrm{F}}^{-1}\left(\mathbb{P}^{1}\right)$, where \mathbb{P}^{1} is a hyperplane of \mathbb{P}^{2}. We consider the sequence
$0 \longrightarrow K_{F} \otimes[A]_{F}^{t} \otimes[\widetilde{F}]^{-1}-K_{F} \otimes[A]_{F}^{t} \longrightarrow K_{\widetilde{F}} \otimes[A] \underset{\underset{F}{t}}{t} \otimes[F]{\underset{\widetilde{F}}{ }}_{-1} \longrightarrow 0$.

And now, as above, we conclude that
$H^{1}\left(\widetilde{F}, K_{\widetilde{F}} \otimes[A]_{\widetilde{F}}^{t} \otimes[\widetilde{F}]_{\widetilde{F}}^{-1}\right) \neq 0$. This together with the fact \widetilde{F} is a \mathbb{P}^{1} bundle over \mathbb{P}^{1} implies that $\widetilde{F}=F_{0}$, where F_{0} is as in (0.4). Therefore we conclude that $\left.{ }^{V}\right|_{\ell}$ is mrivial for all lines $\ell \subseteq \mathbb{P}^{3}$, which implies that V is frivial. Thus $A \simeq \mathbb{P} 1 \times \mathbb{P}^{3}$. But $A\left(\simeq \mathbb{P}^{1} \times \mathbb{P}^{3}\right)$ is ample on X. Hence X is a \mathbf{P}^{3+1} bundle, see [SO1].

REFERENCES

[Ba 1] L. Badescu, On ample divisors, Nagoya Math.J. 86 (1982), 155-171.
[Ba 2] L. Bădescu, On ample divisors II, Proceedings of the "Week of Algebraic Geometry", Bucarest 1980, Teubner, Leipzig 1981, 12-32.
[(Fa+So) 1] M.L. Fania, A.J. Sommese, On the minimality of hyperplane sections of Gorenstein 3 -folas, to appear Proceedings in honor of W. Stoll, Notre Dane (1984), Vieweg.
[(Fa+So) 2] M.L. Fania, A.J. Sommese, Varieties whose hyperplane sections are $\mathbb{P}_{\mathbb{C}}^{k}$ bundles, preprint.
[Fu] T. Fujita, on the hyperplane section principle of Lefschetz, J.Math.Soc. of Japan, 32 (1980), 153-169.
[Hi] H. Hironaka, Smoothing of algebraic cycles of small dimensions, Amer.J.Math., 90 (1968), 41-51.
[Ok+Sc+Sp] C. Okonek, M. Schneider, H. Spindler, Vector bundles on Complex Projective Spaces, Progress in Math. (1980) Birkhäuser, Boston-Basel-Stuttgart.
[Sa] E. Sato, Varieties which have two projective spaces bundle structures, preprint.
[So 1] A.J. Sommese, On manifolds that cannot be ample divisors, Math. Ann. 221 (1976), 55-72.
[So 2] A.J. Sommese, On the minimality of hyperplane sections of projective 3 -folds, J.fur die reine und angew. Math. 329 (1981), 16-41.

