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Modular equations and the genus zero
property of moonshine functions.

C J Cummins! and T Gannon?3

Abstract. In this paper we obtain the following result: Let f be an analytic
function on the upper half plane with Fourier ezpansion f(z) = ¢7'+3 00 anq™,
q = exp(2miz). If a; € Z[(k], 1 = 1,2,..., for some integer K > 0, then the
following are equivalent:

1 [ satisfies a modular equation of order n for alln =1 (mod K).
2 f is either ¢~ + Cq where (8°4CHK)FL — ¢ or is a Hauptmodul for
a subgroup G of SL(2,R) satisfying:
a G contains I'o(N) with finite indez for some N| K.

b G contains k) if and only if k € Z.

1 ~
0 1
¢ The Riemann surface X (G) has genus zero.

In Borcherds’ proof of the moonshine conjectures the moonshine functions satisfy
condition 1 of this theorem, for a suitable choice of K, by virtue of the twisted
denominator formulae of the Monster Lie algebra and hence are Hauptmoduln.
A conceptual ezplanation is thus provided of the genus zero property of these
functions.

§1. Introduction.
Let M be the Monster simple group. Let o(g), g € M, be the order of g. Define

FD(N):{(Z Z)GSL(Z,Z)[(::O (mod N)},

r(zv):{(‘z 3) € SL(2,7) | (‘;‘ Z):(é ?) (mod N)}
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and let A(N) be the normalizer of ['g(N) in SL(2,R). We shall call a discrete subgroup A of
SL(2,R) a congruence group if it contains I'(V) for some N. Necessarily the index of T'(N)
in A is finite and A acts on the extended upper half plane H* = HUQU {ico} by fractional
linear transformations. The quotient A\H* has the structure of a compact Riemann surface
and will be denoted by X{A). Conway and Norton [CN] conjectured relationships between
certain congruence groups and M known as the moonshine conjectures. These have heen
proved by Borcherds:

Theorem 1.1. [B] For each g € M there exists a formal g-expansion

oC
i@ =a7"+ > an(9)g™,
n=1

an(g) € Z, n > 1, such that :

1 For allm > 1 the map g — a,(g) is a character of M.
2 For each g there exists h|gced(24, o(g)) and a congruence group A(g) of SL(2,R) such
that

To(ho(g)) < A(g) < A(ho(g))

3 The genus of X(A(g)) is zero.
4 Replacing q by exp(2miz) in j, yields the Fourier expansion of a function f,(z) which
is analytic on H. The field of automorphic functions® of A(g) is C(f,).

Conway and Norton also conjectured that the series of Theorem 1.1 are related by
replication formulae. These are also proved by Borcherds:

Theorem 1.2. [B] Let (4 = exp(2wi/d). For cach g € M and for all n > 1 there exists a
polynomial @y, 4 such that

Z jg“(.cgq%) = Qn,g(jg((l))~ (1.1)

ad=n

o<b<d

Note that Q,, 4 is the unique polynomial such that
Qn.o(ig(q)) = ¢7" + terms of positive degree.

Polynomials with this property are known as the Faber polynomials [D, chapter 4]. We
shall use the notation (;, = exp(2wi/m) throughout this paper. -

The outline of Borcherds’ proof is as follows: First using vertex operator techniques
a generalized Kac-Moody algebra, called the Monster Lie algebra, is constructed on which
the Monster acts [B]. This Lie algebra has a Z x Z grading which is respected by M. The
(m,n) # (0,0) graded piece of the Monster Lie algcbra affords the representation Vi,
of M, where V,, is the representation of M of conformal weight n + 1 appearing in the

* All automorphic functions in this paper are of weight zero. A modular function of
level N is an automorphic function for T'(NV).
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Monster vertex operator algebra [FLM]. Let a,(g) be the trace of g € M on V;,. By using
a generalization of the Weyl denominator formula Borcherds finds a denominator identity
for each conjugacy class in M. For the identity element of M the formula is:

Pt I1 a=pmamem =) - ila),
m>0,nez

where the ¢,, are the coefficients of the g-expansion of
7(q) = ¢~ + 196884 g + 21493760 ¢% + 864299970 ¢° + .. .,

the normalized generator or Hauptmodul for SL(2,Z). For the other conjugacy classes the
formula is:

J exp Z 2 anln(g nuqn‘l/z) Z am. Z Qin g)q (12)

>0 m>0,neZ mezL mel

Consider next the formal g-series jg(q) = D _,,czam(9)g™, 9 € M. We want to show that
these j, satisfy the conditions of Theorem 1.1. By construction property 1 is satisfied
and so it remains to show that cach j, is an automorphic function with the required
properties. Borcherds’ proof of this is to note firstly that equation (1.2) implies that the
jg» g € M satisfy the replication identities of Theorem 1.2 as formal series. Koike [Koi]
has shown that the modular functions attached to the clements of M by Conway and
Norton satisfy the replication formulac (this is shown in more generality in [CuN]). Any
formal series which satisfies the replication formulae must obey recurrence relations which
determine the series from a finite number of terms [N1,B; ¢f. Mah]. Thus, by checking a
finite number of coefficients, it can be verified that each j, is the expected automorphic
function.

Unfortunately this last step in the proof does not offer any conceptual understanding
of why the series involved are automorphic functions of genus zero. In this paper we
address this problem which was first posed by Norton [N1] in terms of completely replicable

functions (see section 8).
Let

oo
hg)=q7"+ > ang"
n=1

with a,, € C, be a formal g-series and let ¥(n) = nH o (14 ) A modular polynomial

I'Imﬁ

of order n > 1 for h is a polynomial Fy,(z,y) € (C[:r,fz} "Such that*

M.1 Fy(z,y) = Fu(y, 7).

M.2 F,(z,y) is a monic polynomial of degree ¥(n) in = (and y).

M.3 For all a,b,d € Z such that ad = n, ged(a,b,d) =1 and 0 < b < d,
F,(h(q), h((,‘dqd)) = 0 as formal g-scries.

*  Although we have included M.1 as a separate property, it is in fact a consequence of
M.2 and M.3, cf. [K, Proposition 3.2].



We call F,(h(q),Rh(C%¢%)) = 0 a modular equation of order n for h. The study of
modular equations, particularly those of the j function, have a long history, for example
sec [Sh, section 4.6] and [L, chapter 5 §2]. We note that one consequence of Theorem
1.4 below is that many of the classical results on singular values of the j function can be
extended to any Hauptmodul. Some partial results along these lines are contained in [CY].

Mahler [Mah, Theorem 8] has shown that if A satisfies a modular equation for some
prime p, then it is the Laurent expansion of a meromorphic function defined in some
neighbourhood of ¢ = 0. Kozlov [K, Proposition 3.3] shows that if & satisfies a modular
equation of order p for infinitely many primes p, then it is the Laurent expansion of a
function analytic on the interior of the unit disc |¢| < 1, except for a pole at ¢ = 0 and
so, in this case, the function f(z) = h(exp(2niz)) extends to an analytic function on the
upper half plane. Moreover f satisfies:

M.3’ For all a,b,d € Z such that ad = n, ged(a,b,d) =1 and 0 < b < d,
Fo(f(2), f((az + b)/d)) = 0.

Thus in the rest of this paper we may, without loss of generality, consider f to be an
analytic function on the upper half plane and we shall set ¢ = exp(2niz) so that f has
Fourier expansion ¢~ + 3°7  a,¢™. Let

G(f)={m e SLZ,R) | f(m(z)) = f(2)}

we shall call G(f) the symmetry group of f. Our main results are stated in Theorems 1.3
and 1.4. In this paper if @ and b are integers such that a divides some power of b, then we
write a|b™.

Theorem 1.3. Let f be an analytic function on H with Fourier expansion f(z) = q~! +
S L anq™, where ¢ = exp(2miz) and a; € C, 1 =1,2,.... Let K > 0 be an integer and
suppose f satisfies a modular equation of order n for alln =1 (mod K). Then

1 IfG(f) # {£ (é i) | t € Z}, then [ is is a Hauptmodul for G(f) which

satisfies:
a G(f) contains I'o(N) with finite index for some N | K.
b G(f) 01

¢ X(G(f)) has genus zero.

2 IfG(f) = {£ ((1) i) | t € Z} and the coefficients a,, n = 1,2,... are

contains (1 k) if and only if k € Z.

algebraic integers, then f(z) = ¢~ + (g where (8¢d(4K)+1 — ¢

As observed by Norton [N1] and shown by Kozlov [K], if a,,,(g) € Q for all m € Z*
and all g € M then equation (1.2) implies the existence of a modular polynomial of order
n for jg(g) for all n coprime to o(g). Thus setting A(g) = G, Theorem 1.3 implies that

* That the coefficients of the moonshine functions are rational can be seen without a
case by case analysis, for example from the existence of a Z[1/2] form of the moonshine
vertex operator algebra [BR).



A(yg) is a congruence group which satisfies properties 3 and 4 of Theorem 1.1 and contains
[o(N) for some N, where N |o(g)®. It has been shown by Thompson [T] that there are
only finitely many groups G satisfying conditions a, b and ¢ of Theorem 1.3.

In order to state Theorem 1.4 we must introduce generalized modular equations. If f
has rational coefficients, then a generalized modular equation is a modular equation, but
in general this is not the case. Let N € Z>° For n coprime to N, *n will denote the
Galois automorphism of Q({nx ) such that (v * n = (%. With the same notation as above,
ifa; € Q(¢N),1=1,2,... then we define a generalized modular polynomial of order n > 1
for h to be a polynomial F,(z,y) € Q({~n)[z,y] such that**:

MIL.1 F,(z,y) = (Fn *n)(y,x)

MIL.2 F, (z,y) is a monic polynomial of degree ¥(n) in z (and y).

MI.3 For all a,b,d € Z such that ad = n, ged(a,b,d) =1 and 0 < b < d,
Fo((h*n)(q),h(¢8¢7)) = 0 as formal g-series.

In this definition F;, * n is the polynomial obtained from F,, by applying *n to each
of its coefhcients and h = n is obtained from A by applying *n to each of its coefficients. If
f(2) = h{exp(2niz)) and (f * n)(z) = (h*n)(exp(2wiz)) extend to analytic functions on
H, then a generalized modular polynomial for f(z) satisfies MI.1 and MI.2 while MI.3
is replaced by:

MI.3' For all a,b,d € Z such that ad = n, ged{a,b,d) =1 and 0 < b < d,
Fo((f xn)(2), f((az + b)/d)) = 0.

We then have the following:

Theorem 1.4.
1 If f be a Hauptmodul for a subgroup G of SL(2,R) satisfying
a G contains T'g(N) with finite index for some N.

b G contains ((1) Ilc) if and only ifk € Z.

¢ X(G) has genus zero.
d H is a subfield of Q((x }, where H is the field gencrated over Q by the coefficients
of f.
Then the exponent of the Galois group Gal(H/Q) is 1 or 2, i.e. H is a composite
of quadratic fields, and there exists a generalized modular equation F,(z,y) for f of
order n for all n coprime to N. Also F,,(f *n,y) is irreducible over C(f * n).
2 Let K > 0 be an integer. If f = ¢~ + Cq where (8¢924K)+1 — ¢ then there exists a

generalized modular equation for f of order n for all n coprime to K.

It is perhaps worthwhile to mention that one consequence of Theorem 1.3 is that if f
satisfies the hypothesis of Theorem 1.4 1, then for all n coprime to N, fxn is a Hauptmodul
for the group G(f * n) which satisfies conditions a, b and ¢ of Theorem 1.4.

A full discussion of property 2 of Theoremn 1.1 is beyond the scope of this paper.
However, if j, is a Hauptmodul for a group G such that G contains I'g(N) and pf N

** MIL.1 is implied by MI.2, MI.3 and the condition that Gal(H/Q) has exponent 1 or
2 (H as in Theorem 1.4), see Proposition 6.18.
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for some prime p, then, since the Monstrous functions have rational coefficients, Theorem
1.4 implies that j, satisfies a modular equation of order p. Since the sum of the roots of
this modular equation is a polynomial in j,, by Theorem 1.2 j, = j,». In other words, if
Jg # Jgr and G contains I'o(N) then p|N.

Results related to ours include the work of Martin [Mar], who uses the behaviour of
completely replicable functions at “bad” primes to derive invariance under certain con-
gruence groups, and Cohn and McKay [CM], who conjecture, based on computational
evidence, that the hypotheses of Theoremn 1.3 can be considerably weakened and show,
using computer algebra, that if f has intcger coefficients and satisfies modular equations
of order 2 and 3 then f is either a Hauptmodul or trivial.

In the next four sections we shall take f to be an analytic function on H, with Fourier
expansion f(z) = q71 + Yoo, ang", ¢ = exp(27iz) and we assume that f has a modular
polynomial Fy,(z,y) for all n = 1 (mod K). Our aim is to show that f is one of the
trivial functions or a Hauptmodul; a result that is obtained in section 7.

The proof is in several stages. In section 2 we show that if f(z;) = f(z2), then there is
an analytic bijection e from a neighbourhood D, of z; to a neighbourhood D5 of z3 such
that f(a(z)) = f(z) for all z in Dy. We call such an « a local symmetry of f. If o extends
to an automorphism of H, then we say it is a global symmetry, or simply a symmetry, of f.
In section 3 we show that any local symmetry has a unique maximal domain to which it
can be extended. Section 4 shows that this maximal domain must be H and so every local
symmetry of f is a global symmetry. In section 5 we address the problem of showing that
the symmetry group of f contains I'g(N) for some N. In section 6 a proof of Theorem 1.4
1 is given. In section 7 the results are combined to obtain Theorem 1.3 and Theorem 1.4
2. In the last section we make some conjectures and comments.

Acknowledgements We thank Yves Martin for many interesting and useful discussions.
T.G. appreciates the hospitality shown to him by the Department of Mathematics and
Statistics of Concordia University and the Max-Planck-Institut fiir Mathematik. We also
thank Simon Norton and John McKay for comments on an earlier version of this paper
and Hershy Kisilevsky for comments on section 6.

§2. Existence of local symmetries.

We shall make repeated use of Definition 2.1 and Lemma 2.2 in the rest of this paper:

Definition 2.1. Let Nk be the set of all positive integersn = 1 (mod K ). We will denote
elements of PGL(2,Q)", where the + denotes positive determinants, by angular brackets.
In particular, if m is a nonsingular 2 x 2 integer matrix with positive determinant, then
{m) will denote the corresponding element of PGL(2,Q)". Any element of (; 2 €
PGL(2,Q)* acts on H by the fractional linear transformation z — (az + b)/(cz + d). For

* b> | ad = n, ged(a,b,d) =1, 0 < b < d}.

any positive integer n define A(n) = {< 0 d

Lemma 2.2. There exists a t € R such that if Im (z;) > t and Im (23) > t and f(z;) =
f(z2) then z1 — 29 € Z.



Proof: Let f be the function meromorphic on the interior of the unit disk defined by the
relation f(exp(27iz)) = f(z) for all z € H. Then the coefficients of the Laurent expansion
of f are the Fourier cocfficients a,, of f. The Lemma follows immediately from the fact
that f(¢) has a simple pole at ¢ = 0. 1

Define H; = {z € H | Im(z) > t}. We shall call H, the injective region. Recall the
definition of a local symmetry of f given in the introduction.

Proposition 2.3. If z1,z; € H and f(z1) = f(z2) then there exists a local symmetry
a: Dy — Dy of f for which a(z1) = 2,.

The proof of Proposition 2.3 is a generalization of that of Corollary 3.7 in [K], obtained
by restricting attention to those n € Nk. The only place where this generalization is not
immediate is in establishing the following:

Lemma 2.4. If 21,2, € H are such that f(z1) = f(z2) and f'(21) = 0, then also f'(z3) =
0.

The remainder of this section is devoted to the proof of Lemma 2.4. We start with
three lemmas.

Lemma 2.5.
a Choose any n € Ng. If Im(z9) > nt, then all roots y of F,(f(20),y) will be simple
roots.
b Choose anyn € Ng and 3 € A(n). If f'(20) = 0 then either f'(8(z0)) = 0, or f(B(20))
is a multiple root of F,,(f(20),v).
¢ Choose any n € Ng and B € A(n). If f(B(20)) is a multiple root of F,,(f(z0),y), then
either f'(z9) = 0, or f(zo) Is a multiple root of F,,(f(8(z0)),¥)-

Proof: Part a is immediate from property MI.3' of F,, and Lemma 2.2. For any n € N,

and any g = <néd ;> € A(n), differentiating F,,(f(z), f(B(z))) = 0 gives:

85:‘ (f(20): f(B(20))) f'(20) + aa‘j" (£(20), £ (B(20))) T/ (B(z0)) = 0. (21)

Part b follows from equation (2.1), while c follows from equation (2.1} and property MI.1
of Fy,. |

Lemma 2.6. If f'(z9) # 0, then for all sufficiently large primes p € Nk and for all
£ € Z>°, f(ptzy) is a simple root of F, 2t (f(20),9).

Proof: Choose auy prime p € Ny and ¢ € Z>° such that f(p’z) is a multiple root of
Foe(f(2 ),y): (f(zo) f(p*20)) = 0. By Lemma 2.5 ¢, we see that f(z) is a multiple
root of F,e(f(p* zo) y). This means that f(zo) = f(B(p’zo)) for some B € A(p?), B(ptzy) #
20-

If there were infinitely many such primes p, then we would have a sequence w; =
pf’"‘zo + 8, 0 < s; < 1,1 =1,2,... of distinct numbers w; at which f{w;) = f(z). B
Lemma 2.2 all but finitely many of these w; have m; = 0, and so the w; lie in a bounded
region bounded away from the real axis. The analyticity of f would then force f(z) = f(z)
everywhere, a contradiction. [ |



Lemma 2.7. Suppose 21,22 € H, f(21) = f(22), f'(z1) = 0 and f'(z3) # 0. Then there
exists an NN such that for all primes p > NN, p € N, and any £ € Z>°, there is some
zyt = 3(21), where € A(p™), for which both f(z,) = f(pfz3) and ' (zpe) = 0.

Proof: Take NN sufficiently large so that for all primes p > NN, f(p®z,) is a simple root
of };‘pl(f(ZQ),y) = F,e(f(21),y). That such an NN exists follows from Lemnia 2.6. Then
f(p*z2) = f(z,¢) for some 2,6 = f(z1) for some B € A(p®) and hence f(z,) must be a
simple root of F,e(f(z1),y) and Lemma 2.5 b implies f'(z,¢) = 0.

|

Proof of Lemma 2.4: Assume that f'(z2) # 0, we shall show that this leads to a
contradiction.

First note that if p € ANk is a prime such that p > NN and Im(pze) > ¢, then by
Lemma 2.7 2z, and pzp satisfy f(zp,) = f(pz2), f'(2,) = 0 and, since pz; is in the injective
region, f'(pzz) # 0. Thus, by redefining z; to be z, and 2; to be pz; if necessary, we may
assume in our scarch for a contradiction that Im (z2) > ¢.

With notation as in Lemma 2.7, choose any primes p,p’ € Nk, p,p’ > NN. We may
find increasing sequences ¢;, £; € Z>° such that 1 < p% /p": < 2 (see Lemma 4.2 below).
Let n; = pt, m; = p'%. By Lemma 2.5 a cach root of Fi, (f(zn,),y) = Fm,(f(niz2),y)
will be simple. Then by Lemma 2.5 b, f'(m;2,,) = 0. Thus we obtain an infinite number
of distinct points z{ = m;z,,, such that f'(z]) = 0. Note that Im(z1/2) < Im(2]) and the
fact that f'(z]) = 0 means that Im(z}} < ¢t. Thus, translating by integers if necessary, all
the 2} lie in a compact region in which f is analytic. This forces f to be constant, which
is impossible. ]

§3. Existence of a unique maximal domain.

We know from Proposition 2.3 that if f(z;) = f(22), then there exists a local symmetry
a: Dy — Dy with z; € D; and a(z1) = z2. Our goal in this section is to show this « has a
unique maximal domain to which it can be analytically continued. Throughout this section
let 0,0’ : [0,1] — H be any two continuous maps which are injective except possibly at
finitely many points of {0, 1].

Definition 3.1. Write o ~ o' if for each s € [0,1] there exists a local symmetry ag,
defined in an open disc Dy about o(s), such that a0 0 = ¢’ in some neighbourhood V; of
S.

Note that =~ is an equivalence relation. Also the equation a4, o ¢ = ¢’ implies that
ag(z) = ag(2) for all s’ € V;, and for all z in Dy N Dy,

Lemma 3.2.
a Ifo=d',ne Nk and 8 € A(n), then there ezists a B € A(n) such that foo = 'oc’.
b If a : Dy = Dy is a local symmetry, n € Ng and f € A(n), then there exzists a
B € A(n) such that ' oo 71 : B{(D1) = B(D3) is also a local symmetry.
c Let @« : D1 — Dy be a local symmetry which is not a translation. Then for all

1 ;;> € A(p) such that foa

sufficiently large primes p € N, there ezists an § = <0

15 a local symmetry on pDi.



Proof: First note that the points z € H at which F,(f(2),y) has multiple roots — say
z € Z, — are isolated. To see this, note that y = f(8(z)) will be a multiple root if and
only if

O (1), 18) = 0. (51)

Y
The left side of equation (3.1} is an analytic function of z. It cannot be identically zero by
Lemma 2.2 (take Im (z) > nt); therefore its zeros must be isolated. Taking the union over
all 8 € A(n) of the solutions z of equation (3.1), we find that indeed the points of Z,, arc
isolated.
To prove a, choose any s € [0,1], and pick any z € Ds, z € Z,,. Then the equation

F(B(2)) = f(B 0 as(z)) (3.2)

uniquely determines some ' € A(n). By continuity, equation (3.2) continues to hold for
the same /', for all other z € D, 2 € Z,,; thus again by continuity and the fact the points
in Z, are isolated, it holds for the same #', for all z € D,. That equation (3.2) holds for
all s now follows from uniquencss of 8. Part a is now immediate (the local symmetry is
Bloa,o 18_1)-

The proof of b is similar. Part ¢ follows from b and Lemma 2.2. |
Lemma 3.3. If o ~ ¢’ and o is closed (i.e. 0(0) = o(1)), then so is 0.

Proof: Choose any prime p € N for which pe’(0) and po’(1) both lie in H;. By Lemma
3.2 a there exists a § € A(p) such that foo = po’. Then f(pa'(0)) = f(foc(0)) =
f(Beoa(l)) = f(pa'(1)); by Lemma 2.1 we must have ¢'(0) — o’(1) € 2Z. Choosing a
different prime p then forces ¢'(0) — ¢’(1) to be an integer, n say.

Now choose any £, m € Ng for which T%cr’ C H;. Again by Lemma 3.2 a, there exists
some 3 € A(fm) such that oo = %0’ . This means, from the above paragraph, that

”?f? € Z which, varying £ and m, forces n = 0. ]
Proposition 3.4. Every local symmetry has a unique maximal domain D.

Proof: Let o : D; = Ds be a local symmetry of f. Choose a point 25 € D, and let D
be the set of all points z € H such that there exists a curve o(]0,1]) from zg to z along
which a can be analytically continued. Clearly D is path connected and open and hence
connected. By Lemma 3.3 « extends to a well-defined analytic function on D. If D' is
any other domain to which a can be analytically continued, then by construction all the
points.of D' are contained in D and hence D is the unique maximal domain for a. ]

§4. Local symmetries are global symmetries.

In this section we show that the local symmetry of Proposition 2.3 extends to an
automorphism of H.



Lemma 4.1. Let D, and D, be the maximal domains for local symmetries «; and o
respectively. If there exists a nonempty open set E C Dy N Dy such that ay(E) C Hy and
a2(E) C Hy, then Dy = Ds.

Proof: We have a map ag o aj' : a;(E) — a(E). This is a local symmetry of f and
so, since both oy (F) and a2(FE) are in the injective region, it must be a translation, 6 say.
Set a3 = #oy. Then D, is also a maximal domain for a3 and, moreover, the analytic
functions a2 and «3 are equal on the open set E. Proposition 3.4 now forces D1 = Dy. |

Lemma 4.2. [HW, Theorem 438] If s € R>? is irrational, then the set {m —ns | m,n €
Z>°} is dense in R.

Proposition 4.3. Let o : B — A be a local symmetry which is not a translation, with
B the maximal domain of «. Then B is invariant under two transformations z — ;2 + b;,
+ = 1,2 where a; and ay are positive and not equal to 1 and a; # a%, for any rational r.

Proof: Choose B’ C B to be an open disc of radius 7 and centre zy = z¢ + iyp and let
A’ = a(B’). Choose any primes p,q € Ng. By Lemma 4.2 there exist strictly increasing
sequences £;,m; € Z>° i = 1,2,..., for which 1 < p%/¢"™ < 2. Put p; = p¥p% and
¢;i = ¢"™ where w is an integer chosen sufficiently large so that p** A’ C H,. By Lemma 3.2
b there are local symmetrics between p; A" and B} = §;(B’) for some §; € A(p;). Similarly
there exist local symmetries between B; = ¢; B] and suitable images A; of p;A’. By the
above inequalities all the A; are contained in H,. If B; NH; # @, then the local symmetry
between A; and B; must be a translation, which implies that « is also a translation: a
contradiction. So B;NH; = B. Let z; = z; +1y; and 7; be the centre and radius of B;. Since
¢;/pi > 1/(2p™) we have y; > yo/(2p") and, since B;NH; = 0, y; < t. Thus, translating by
integers if necessary, all the z; will lie in a compact subset of H. In addition 7; > 7/(2p")
and so by computing areas, we see that intersections must occur: say B; N (B; - s) is
nonempty for some integer s. By Lemma 4.1, the maximal domains corresponding to B;
and B; + s must be equal. This gives us some transformation a1z + b1 which must fix
B. Since the sequence m; is strictly increasing, a straightforward calculation shows that
a1 = p?q” with 7 # 0. To obtain the second transformation asz + by with a1 # af for any
rational 7, repeat the construction with two different primes. 1

Lemma 4.4. Let ay, aq, by, be be rational numbers such that:
1 a, and a are positive and not equal to 1.
2 a1 # ab, for any rational r.

3 c=0/(1-a1)—by/(1 —az)#0.

Let G be the subgroup of GL(2,R) generated by g1 = ((Bl 511) and g = (aoz b12 ) , then
the closure of G in GL(2,R) is the subgroup {(g ll)) | a,b € R,a > 0}.

Proof: A easy calculation shows that

—_1 -1 1 se(l—a7™(1—-a;™
(91 192 ngilgrl)ll).!i’:(o ( 1 1)( 2 ))
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Taking the limit m —» oo as appropriate, we have that the closure of GG contains
! ny _ N2
((1) sc(ll al)) and hence ((1) se{a) 1 2 )) for all ny,ne,8 € Z. By a suitable
choice of n; and ny we can make ¢(a]' —ay?) arbitrarily small and nonzero. Since s is any
integer the closure of the set of all these translations gives all real translations.
Next, note that by conditions 1 and 2 we may apply Lemma 4.2 to log(a;) and log(as)
to conclude that the set {ata3’ | n,m € Z} is dense in the positive reals. Now ggd* =

a’?af’!n . . ; 1 —d n,m _ a'rfa'gl 0
0 1 for some d. Thus the closure of G contains 0 1 JIr9E = 0 1
and so the closure of G contains all dilations by positive reals.

As {(g ll)) | a,b € R,a > 0} is generated by real translations and dilations by

positive reals the result follows. |

Corollary 4.5. The maximal domain B of a local symmetry « is either the upper half
plane or the interior of a region bounded by two lines which meet at a common point on
the real axis.

Proof: Let z +— a;z - b;, i = 1,2 be the two transformations produced by Proposition
4.3. If b1/(1 — ay) # beo/(1 — ag), then by Lemma 4.4 these two transformations generate
a group that is dense in a group that acts transitively on the upper half plane. Hence B
is the upper half plane and the result follows. If b1 /(1 — a1) = ba/(1 — az), then the two
transformations generate a subgroup of the group © of transformations z — wz + (1 —w)c,
w € R”%, ¢ = b1/(1 — ay). In fact this subgroup is dense by the same argument as used
in Lemma 4.4. Thus if 2y is a point in B, then B also contains the ©-orbit of z;. As the
orbits of © are rays with tail at the point ¢ on the real axis the result follows. ]

Proposition 4.6. Any local symmetry of f extends to a global symmetry.

Proof: Let « be a local symmetry of f. If o is a translation then we are done, so assume
otherwise. Clearly a~! is also a local symmetry of f. Let By be the maximal domain of c
and By be the maximal domain for «~!. Applying Lemma 3.3 to a~! shows that there are
no points of By at which « is not invertible. Thus «(B,) C B, and reversing the roles of «
and a~! gives a~1(B2) C B; and hence a(B;) = B,. By Corollary 4.5 there are four cases
to consider. If neither B; nor By is H then note first that we can construct an explicit
isomorphism «y; : By — H given by v1(2) = (a1(z — a4))*® for suitable choices of the real
parameters ap and ag and a complex parameter a,. Similarly there is an isomorphism
Y2 : Bp = H. Thus @ = v; ' o M o, for some M € SL(2,R). We can thus find a
continuous curve ¢ : [0,1) — By such that limy,,0(t) = 20 € dB1NH and ¢/ = aoo
such that ¢’ : [0,1) = B2 NH. Let wp = limy—,y ¢’ (¢). By continuity f{wg) = f(2z0) and
so there is a local symmetry from a neighbourhood of 2y to a neighbourhood of wg. This
however is a contradiction since it gives an analytic continuation of « across the boundary
of B; which was assumed to be the maximal domain of «.

Consider next the case where By # H and B, = H. As above we know that o = Moy,
Consider an open disc in H, bounded away from the real axis such that its centre lies on
one of the boundary lines of By. Let D; be the intersection of this disc with B;. Let
a(D1) = Dy. Under the map vy, D) maps to a simply connected region which has a
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bounded interval of the real axis as part of its boundary. Under M this interval must
remain bounded, since if not D, would contain points arbitrarily close to i00 and so f
would be unbounded on D,. This is a contradiction since f is bounded on D and ¢ is a
local symmetry of f.

Thus we have o : Dy — Dy with D, bounded away from the real axis and Dy such
that part of the boundary of Dy is an interval of the real line. Now by Lemma 3.2 ¢
for all sufficiently large primes p € Ng we have a local symmetry (g ?) oo L
B(Dy) — pDy, where 8 = ((1]
and applying a translation if necessary, we can find a local symmetry o’ : D] — Dj with
D{ c D4, D}y # Dj and D] bounded and bounded away from the real axis. Let wg be a
point of D} that is not in D}. The points &’ ~*(wy), k € Z>° are distinct, are in D} and f
has the same value at each point: a contradiction as f is analytic on ‘H and not constant.
The case B1 = H and B, # H is similar.

Thus the only possible case is B = B’ = H and so « is an automorphism of H. |

Recall that the group of analytic automorphisms of H is PSL(2,R). Our goal in the
next section is to show that the subgroup of PSL(2,R) generated by the symmetries of f
is a congruence group.

;) for some 0 < &k < p. Thus taking p sufficiently large

§5. Modular invariance.

In this section 1p will denote the identity 2 x 2 matrix and for any subgroup G of
SL(2,R) G, will denote the subgroup of G that stabilizes ico. We shall obtain the
following:

Proposition 5.1. Let G be a subgroup of SL(2,R) and K be a positive integer. Suppose
1 G is a discrete subgroup.

2 Goo = (=1, (é 1))

3 Foralln € Ng and allm = (
0 < —k < n/{ and such that

G OCEDE 7 =(F wiidn) o

b e
@ d) € G, there exist integers £ and k such that £|n,

isinG.

1 1
0 1
We start with some lemmas. For m € SL(2,R) define ¢,, to be the lower left entry of

m. Note that for any discrete subgroup I' of SL(2,R), |¢| is an invariant of the double
coset ['omnl .

Then either G = (=1, ( )) or G contains £T'o(N) where N| K.

12



Lemma 5.2. [Sh, p.11] Let T’ be a discrete subgroup of SL(2,R). Given M > 0, there
are only finitely many double cosets I'oqomI'o, withm € I' and |¢,,| < M.

Lemma 5.3. [Sh, p.11]
a Let I' be a discrete subgroup of SL(2,R). There exists an r > 0, depending only on
[, such that if m € T — [y, then |cp,| > 7.
b For any r satisfying the condition of a let U = {# € H | Im(2) > 1/r}. Then
Tow={mel|mU)NU # 0}.

We shall not require Lemma 5.3 b until Section 8.

Lemma 5.4. IfG is as in Proposition 5.1 and m € G thenm = Am’ wherem' € GL(2,Q)™
(the superscript denotes positive determinants).

Proof: Let m = (C: g) . If ¢ = 0 then the result follows from property 2 of G. Otherwise
define r,, = a/c (mod 1). As G = (-1, (1] } ), Tm is an invariant of the double

coset GeomG . Also, by property 3 of G and Lemma 5.3 a, for all but finitely many
primes p € Nk, G contains m(p) = pca :), with 7,5y = prm and ey = ¢ If a/c

is irrational, then for distinct primes py,p2 € Nk, we have p1a/c # peafc  (mod 1). So
we obtain infinitely many double cosets Goom(p)Goo with the same value of c,,(,), which

/
is a contradiction by property 1 of G and Lemma 5.2. Thus m = f\i, Z) with a’ and
;L . 1 Ao’ b . ;.
¢ rational. Applying the same argument to m™" gives m = e Ad with d' rational.

0 1
with i/ € GL(2,Q)* as required. 1

2
Finally applying the argument to m? ( or ((1 1) m) if o' +d' = 0) we get m = Am/

Definition 5.5. Call an integer matrix (Z 3) primitive if ged(a, b, c,d) = 1. Let M*
be the set of primitive integer 2 X 2 matrices. For m € G, by Lemma 5.4 we can write

m= A (z 3) with (Z’ Z) € M*. Define |m| = ad — bc. This is well-defined, since the

. b\ . . e
matrix (z d) is unique up to multiplication by —1.

Lemma 5.6.

m| is an invariant of GoomG .

Proof: Clear. |
In the rest of this section we use the notation a b if @ and b are integers such that a
divides b and a is coprime to b/a.

Lemma 5.7. Let my € G with A™lm; = (CC“ 31) an Integer matrix with ¢; # 0.
1 a1

a; b

Choose any n € Nk and let my = A (c_ Iy
1 1 2

) t > 2 be a sequence in G obtained
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recursively by applying property 3 of Proposition 5.1 to m;_y. Let £;,k; be the relevant
parameters in (5.1). Let coo = 1/ [0, & , then

a Ifco € Z then for each 1 > 1 d; Is an integer;

b If ceo € Z then coo # 0 and if p divides ged(n, ¢oo) then p divides d; for all + > 1;

¢ There exists a W, depending only on A and ¢y, such that if all prime divisors of n are
larger than W, then £; =1 and d; € Z for all i > 1.

Proof: Part a: by Lemma 5.3 a, £; = 1 for all but finitely ¢ and so, since coo € Z, £; will
divide ¢; for all ¢ > 1. Suppose d;, € Z for some ig. Then, since diy1 = (kici + &id;)/n
and #; divides both n and ¢;, it follows that d; & Z for all 7« > 3. Thus we can choose %g
so that d;, € Z and ¢; =1 for all 7 > 2.

By construction d; = x;/y; where x; and y; are coprime integers and y; |n®°. Since by
hypothesis d;, is not an integer, there is a prime p such that p|y;,. Let p”}n and p® | ys,.
For i > ip we have diy1 = (kic; +d;)/n and so pi=0)m+s |4, Let p*' [det(m1). To find the
exact power of p which divides |m;| note that det(m;) = det(m,) and that a;, b; and ¢; are
integers for all 7 > 1 and so p2(G=1+9)+5" [ |my| for all ¢ > 4. It then follows from Lemma
5.6 that GeomiGeo, © 2> 1 are infinitely many distinct double cosets, but ¢y, = ¢, Which
contradicts Lemma, 5.2. This establishes a.

To prove b, as noted above £; = 1 for all but finitely many 7 and as ¢; # 0 we must
have ¢ # 0 as required. If p{ged(coo,n) then ple; for all 2. If there is some ¢y for which
p)d;, then since d;1(n/€;) = kiciz1 + d; it follows that pfd; for all i > i,. However for ¢
sufficiently large d;; 11 = kiceo + d; 0 that pld;: a contradiction and so p|d; for all i > 1.

For part ¢ take W > Acy /r. If £; # 1 for some ¢ then there is some prime p|#; and the
condition on W implies that Ac;/4; < Acy/p < 71 a contradiction by Lemma 5.3 a. That

d; is an integer for all ¢ > 1 now follows from part a since co, = ¢; is an integer. |
Proof of Proposition 5.1: If all m € G have ¢,, = 0 then G = (-1g, ((1] 1))
Otherwise G contains
A1 =N o1 (l1+dd  —d?
m (O 1 m~ = o2 1—ae | € GNSL(2,Z) (5.2)

and ¢ £ 0.

Now consider any prime p which divides ¢’ but not K. Choose any n > 1 so that
p" =1 (mod K), and take n = p". Let notation be as in Lemma 5.7, then [], & =/ for
some j and let p7" |c'2. If 3/ > j then ¢ is an integer divisible by pandasd =1  (mod p)
Lemina 5.7 b yields a contradiction. Hence we have 5 > j'. Moreover if we replace A by
/\;}f"j and make the appropriate rescaling of the entries of m’ = my, then the hypotheses
of Lemma 5.7 a are satisfied and so pj_j‘(l,- € Z for all ©. As noted in the proof of Lemma
5.7 there is some 4o such that ¢;; = c. If we construct m;, and apply the transformation
of equation (5.2) then from the above comments the result is an integer matrix for which
p does not divide the lower left entry. Now iterate this process until all such primes are
exhausted. Finally applying the transformation of equation (5.2) and take the K'th power
of the resulting matrix. This is equivalent to applying the transformation of equation (5.2)
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with |m’| replaced by K|m'| and yields a matrix m = (Z’ Z
Kle,e#0andd=1 (mod K).
Let W(m) the constant of Lemma 5.7 ¢. As ¢ and d are coprime, by considering

1 b ) v
™ 0 1 )Wlth( =1

) € GNSL(2,Z) such that

dl’
(mod K), d" positive and divisible only by primes larger than W (m). Asm and g both have
A = 1 and the same bottom left entry we have W(g) = W (m) and so applying Lemma 5.7

for a suitable choice of k we find that G contains g = (z

1 r
c to g with n = d” and property 3 of Proposition 5.1 we find that G contains ad bl
All operations used preserve determinants, hence, premultiplying by a suitable translation,
. 1
we see that G contains (c 2

Consider any nonzero a, b € Z with ged(a, be) = 1 and hence ged(a, K) = 1 since K|c.
Choose any prime ¢ > bc/r, with 7 as in Lemma 5.3 a such that ag = 1 (mod K), and

any prime p > gbc/r such that p = a (mod bc). G contains (q%}c ?) so, postrultiplying

: . : 1 X
by a suitable translation, we know G contains an element of the form (qbc **) with

determinant equal to 1. By our choice of primes p, ¢, Lemma 5.7 a with n = pg implies
in equation (5.1) we must have £ = ¢ and & = 0, so G contains an element of the form

a x . . .
( lﬁ, :) and hence also (bc . ), both with determinant equal to 1. As these matrices

are a complete set of coset representatives for the subgroup (((1] })) in ['g(¢) the result
follows with NV = c. ]

§6. Generalized modular equations and Hauptmoduln.

The aim of this section is to prove Theorem 1.4. In outline the proof is similar to
that for the j function, see for example [Knapp, p.335]. However, we have been unable
to locate a discussion of this material in the literature and so we include a self-contained
treatment here.

Let Fn be the field of automorphic functions of I'(N) with Fourier coefficients in
Q(¢n). For n coprime to N, *n will denote the Galois automorphism of Q({x ) such that
(n *n = (Y. In Sections 6.1 to 6.5 of [Sh] it is shown that:

Theorem 6.0.
a Fn =QU, fo | @ € (Z/NZ)% a # (0,0)), for functions f,(z), known as the Fricke
functions, related to the the division points of order N of the elliptic curve C/(Z+2Z).
b Fn is a Galois extension of Q(j) = F1 with Galois group GL(2,Z/NZ}/{£1}. The
action of @ € GL(2,Z/NZ)} is given by fo = faa. If m € SL(2,Z) then foom = fom.

¢ Let n be an integer coprime to N. Then € GL(2,Z/NZ) acts on Fy by

1
0

h — h*n where h ¥ n Is obtained from I by applying *n to its Fourier coefficients.
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d Let My(Z) be the set of 2 x 2 integer matrices. Let U = [[,GL(2,Z,) X GL(2,R)7,
where the superscript denotes positive determinants. For every u € U and every N,
there exists an element o of Ma(Z)NGL(2,Q)* such that u, = a (mod N - Zy,,), where
up is the pth component of u. Set au = ac for all a € (Z/NZ)2. Then f, = fau
defines an element of Gal(Fn /Fi), call it T(u).

Proof:
a See [Sh, Proposition 6.9 (1)] and [Sh, p.134].
b See [Sh, Proposition 6.6 (1) and (2)] and [Sh, equation (6.1.3)].
¢ This follows from the explicit form of the ¢'/M-expansion of the f, in [Sh, equation
(6.2.1)] and parts a and b.
d See the proof of [Sh, Proposition 6.21] and the discussion in [Sh, section 6.4]. ]

In the rest of this section f will be a nonconstant element of Fy and where no
confusion can arise we shall write G for G(f) and G *n for G(f * n). The initial results of
this section hold without further restrictions on f. However later results require additional
hypotheses. For example, in Proposition 6.8 we require that G contains ['g(V) and that
G xn? = @ for all n coprime to N. From Proposition 6.14 to the end of the section we
shall require that f is a Hauptmodul of G and that G contains T'o(N).

Lemma 6.1. G is a discrete subgroup of SL(2,R) which contains T(N) with finite index.

Proof: As f € Fy, I'(N) is a subgroup of G and the index must be finite, since if not f
would give rise to a nonconstant function on X (T'(NV)) taking the same value at infinitely

many distinct points: a contradiction. It then follows that G is discrete by [Sh, Proposition
1.11]. ]

Lemma 6.2. There is a group homomorphism ¢ : G — PGL(2,Q)" with ker(¢) =
{£12}. G = ¢(G) is a discrete subgroup of PGL(2,Q)*.

Proof: As G is commensurable with SL(2,2Z), it follows ([Sh, Proposition 1.30]) that the
sct of cusps of G is the same as the set of cusps of SL(2,Z), i.e. QU {ic0}. Clearly
if wis a cusp and m is an element of G' then m(w) is also a cusp. It is not difficult,
for example by considering m(ico), m(0), m~1(ic0) and m~1(0), to use this fact to show
that any element of G is a multiple of a matrix with rational entries. We may define ¢
to be the corresponding map to PGL(2,Q)". The only elements of SL(2,R) which are
multiples of the identity are +12, however by definition —1; € G(f) and so ker(¢) = {12}.
As G contains Ig(N) = ¢(To(N)) with finite index and To(N) is a discrete subgroup of
PGL(2,Q)*, again by [Sh, Proposition 1.11] G is a discrete subgroup of PGL(2,Q)*. §

Recall from section 2 that elements of PGL(2,Q)* by angular brackets and that if
m 1s a nonsingular 2 x 2 integer matrix with positive determinant then (m) will denote
the corresponding clement of PGL(2,Q)T. Note also that by Lemma 6.2 any m € G is a
multiple of a primitive integer matrix. Recall the definition of |m| given in 5.5.

Lemma 6.3. [N2] If (m) € G then every prime p dividing |m| also divides N.
Lemma 6.4. Ifged(n, N) =1 and j = (G : T(N)) then

J i
= 1 nb.,' 7 ATy Ty (i; —T‘Lbi
G - L—_'Jl <TI.C,' di >F(N) - U P(N)< —Nec; a; >?

1=1
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where ( @ ‘), 1 <1< 718 a primitive integer matrix.
ne;  d;

Proof: Take (B) € G with B a primitive integer matrix, so that by Lemma 6.3 its

determinant is coprime to n. Since reduction of SL(2,Z) mod nN is surjective onto

SL(2,Z/nNZ) we can find m € SL(2,Z) such that m = ((1] (1]) (mod N) and m =

B! (det{gB) (1]) (modn). Then (Bm) is in the same T'(N) coset as (B) and Bm is

diagonal mod n.

The second equality follows from the first and the observation that for any group G
and subgroup H if {g;} is a complete set of left coset representatives of H in G, then {gi_l}
is complete set of right coset representatives. |

Theorem 6.5. [Sh, p.147]
a Forevery o € GL(2,Q)" and every h € Fn, hoa € Fn' for some N'.
b IfaeGL2,Q)", B GL2,Q)",ucU,v €U and au=vf then (joa)™™ =jop
and (fooa)™™) = f,, 0 8.

Corollary 6.6.
a Ifhe Fy and o € GL(2,Q)" N M3(Z) then hoa € FN det(a)-
b If G contains Uo(N), then for any n coprime to N G xn contains T'o{N).

Proof: For part a consider first f, € Fy. From Theorem 6.5 a, f, o @ is a modular
function of some level. Moreover, since al'(N det{a))a™! C I'(N), f, o @ is a modular
function of level N det{e). We may find v € SL(2,Z) such that v~ la = « is upper
triangular . Then by Theorem 6.0 b, f,oa = foo(ya') = foyo. Since f,y is an element
of Fn, it has a Fourier expansion with respect to exp(2miz/N) with coefficients in Q({n),
thus fey 0@’ has a Fourier expansion with respect to exp(2miz/N det(a)) with coefficients
in Q(Cn det(a)) and so it, and hence f, o @, is in Fiy ge(a)- The corresponding result for
j(z) follows similarly and so the corollary follows by Theorem 6.0 a.

To show part b note first that for any v € ['o(V) there exists a v’ € Tg(V) such that:

1 0 1 0
(0 n)fyz'y’(o n) (mod N).

So for any a € (Z/NZ)?, a # (0,0), we have, by Theorem 6.0 b and ¢, (f, *n)ovy =
(fao')xn. As Fy is generated over Q(j) by these f,, this relation holds for any element
of Fn, in particular (f *n)oy = (fov')xn = f xn since [o(N) C G. ]

The following result is given in [N2]. Tt is, however, a corollary of Shimura’s more
general result contained in Theorem 6.5 and we give a proof using this fact. Norton also
give an outline for the proof of Proposition 6.14 which again we obtain from Shimura’s
Theorem.

. a b a nb
Corollary 6.7. Let n be coprime to N and let o« = (nc d) and 8 = (c d

a primitive integer matrix and () € G, then (8) € G x n. Also if B is a primitive integer
matrix and () € G *n, then (o) € G.

). Ifa is

17



Proof: Define u,v € U by

1 0
Up = (0 n) for p| N
B for pf N and p = oo

1 0
_ (0 n) for p| N
o

for p/ N and p = 00

and

Here u and v are well-defined since det(3) = det(e) and by Lemma 6.3 det(c)|N°. If
1
0
6.0 ¢ and d, that if h € Fur then A7®) = h7®) = b« n. In particular for any f, € Fn
we have fo, 00 = (fg('”}) of3 = (fo *n)o B and by Lemma 6.3 and Corollary 6.6 a
(faoa)™#) = (fyoa)*n. Thus from Theorem 6.5 b we have ( fooa)xn = (f,*n)oB. Similarly
(joa)*n = jofB. So by Theorem 6.0 a, for any h € Fn we have (hoa)*n = (hxn)of.
Since f € Fy and (&) € G(f), we have f*n = (foa)*n = (f*n)oB and so (8) € G *n.

The proof of the second part of the Corollary is very similar to the first part. 1

Let A(n) be as in section 2. Note that card{(A(n)) = ¥(n) where ¢(n) =

'TLH pln (1 + %) AISO ﬁx Gy = <'8 :(l]> € A(Tl).

N'|N®° then since u, = vp = (mod N’ - Z,,) for all primes p we have, by Theorem

p prime

Proposition 6.8. Let T = {(0 1) € SL(2,R) |t € Z} and T = ¢(T). Let n be any

integer coprime to N. If G contains T'g(N), then

U TaG xn~! = U Ga =To(N)a,G *n1.
aGA(n) a€A(n)

Proof: We begin by showing

L) Talo(N)= |J To(N)a=Te(N)a,To(N). (6.1)
acA(n) aEA(n)

Define

M*(T'L,N):{(z Z) EM*lc=0 (mod N), ad — bec =n}.

Let (M*(n, N)) be the corresponding subset of PGL(2,Q)*. By Lemma 9.14 of [Knapp],
we get

(M*(n,N))= |J To(N

aEA(n)
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From this equality it is clear that U,¢ a(n) Co(N)a™'T C Uaga(m) Fo(&V)a. Moreover, the
reverse inclusion also holds, since for each & € A(n) we have @ = o/ ~!¢ for some translation
t and some o’ € A(n) and hence

U ToW)a= [J To(M)a 'T.

a€A(n) acAn)

The first equality of equation (6.1) now [ollows by taking inverses. The equality

(M*(n,N)) = To(N)a,I'y(N)

is established in [Sh, Proposition 3.32(1)], completing the proof of equation (6.1).
Now choose any a € A(n) and g € G. By cquation (6.1) we know a = hay,h' for

some h,h' € To(N). By Lemma 6.4 we may write gh € G as h'm; where m; equals
some <1’?;, Zbi> as in Lemma 6.4 and k" € ['4(N). Now m;a, = a,m; where m] =
i a4

<n{;z 2’ > € G *n~1 by Corollary 6.7. Thus we have shown that
3 1

U Goa C To(N)apG *n-1,
acA{n)

where we absorbed the I’ because by Corollary 6.6 b I'g(N) C G xn~!l. The reverse
inclusion follows by identical arguments. Finally, multiplying equation (6.1) on the right
by G *n~1, we get

U TaG +n~1 =To(N)a,G *n-1,
agA(n)

as required. ]
The following result is contained in the proof of [N2, Theorem 3].

Corollary 6.9. Let n_be any integer coprime to N. Suppose G contains ['o(N) and ¢
is a cusp of G. Then G(a(c)) = G(ico) for some a € A(n) if and only if Gxn~1(c) =
G * n=1(ioc0).

Proof: If G(a(c)) = G(ioo) then ga(c) = ioo for some g € G and so by Proposition 6.8
ta'g’(c) = oo for some t € T, for some o € A(n) and for some ¢’ € G *n~1, Since ta’
fixes 700 this yields ¢'(¢) = ico.

For the reverse implication, if ¢’(c) = ico for some g’ € G *n~! then a,¢'(c)
and so by Proposition 6.8 there is some g € G and some o € A(n) such that ga(c)
and so G(c(c)) = G(ioo) as required. ]

The following result is a small generalization of a result contained in the proof of [Sh,
Proposition 6.9]. It will be-used in the proof of Proposition 6.16.

= 200
= 700
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Proposition 6.10. Let G be a discrete subgroup of SL(2,R) which contains T'(N) and
let Ag be the field of automorphic functions of G. If Ag = C(f1, ..., fm) for some functions

fla---afm EfN; then AoﬂszQ(CN,fl,---,fm)-

Proof: The inclusion Q((n, f1,..., fm) C Ao N Fu is obvious. For the reverse inclusion,
consider any g € Ag N F and expand

9la) = Za"qi/N thf; ZZ(»J); qu-/N
i i=1 3

where each a;,b; ; € Q((n), ¢; € C. This equality yields a lincar system for the ¢; with
coefficients in () which has at least one solution in C and hence a solution in Q(¢x).1

Definition 6.11. For any n coprime to N we define w(n) € GL(2,Z/NZ) by w(n) =
B’ (mod N). By Theorem 6.0 b, w(n){x1} is an element of the Galois group of
Fn over Q(7) and we shall write its action on any h € Fy as h — h!n.

The next three results show that in the case that f is a Hauptmodul for G and n is
coprime to N then G xn? = G.

Lemma 6.12. Ifh € Fn, m € G(f) and n is coprime to N then (hom)!n = (h!n) om.
Proof: By Lemma 6.2, m = (m’), where m’ is a primitive integer matrix. The proof is
essentially identical to that of Corollary 6.7 with « = = m' and v = v where
n 0
vy = (0 ”) for p|N,
1o for p/ N and p = 0.

Lemma 6.13. If G contains To(N) then f'n = f xn? for all n coprime to N.

Proof: Any upper triangular matrix in SL(2,Z/NZ) is the image under reduction modulo
N of some element of I'y(NN). So for any n coprime to N we can find m(n) € To(N) such

-1
that m(n) = (n 2) (mod N). By Theorem 6.0 b and ¢ we find (f, o m(n))n =

0
(famm))In = fam(n)w(n) = f,*n?. Hence, by Theorem 6.0 a, for any I € Fn, (hom(n))in =
h +n?. In particular, since m(n) € G, fln = f xn? ]

In the remainder of this section will take f € ]:N to be a Hauptmodul of G which will
contain I'g(N). We shall also normalize f to have zero constant term.

Proposition 6.14. f«n? = f for any n coprime to N.

Proof: Let n be an integer coprime to N. Since *n? is an automorphism, f * n? € Fy.

Also, by Lemma 6.12 and Lemma 6.13, f *n? is fixed by G and so by [Sh, Proposition 2.6)
it is an automorphic function for G. Since f is a Hauptmodul the field of automorphic
functions of G is C(f) and hence by Proposition 6.10, f *n? € Q({y, f). Similarly f*n~2
can be expressed as a rational function of f and so applying *n? to this expression we
find that f € C(f * n?) and hence C(f) = C(f * n?). Thus f *n? is also a normalized
Hauptmodul for G and since there is only one such function we have f * n? = f. ]
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Lemma 6.15. For any n coprime to N, with A(n) as in equation (6.1), the functions
foa,a € A(n) are distinct.

Proof: Since f is a Hauptmodul its g-expansion is of the form f =1/¢g+.... Now use the
same proof as for the j function, see for example [Knapp, Lemma 11.31]. ]

We now follow the standard proof of the existence of modular polynomials for the j
function. See for example [Knapp, p.334-6] or [Sh, p.108-110]. Note that the possibility
that the coefficients of f are irrational introduces a slight complication into the proof of
the following result, as we do not know a priori that f *n is a Hauptmodul. In fact, once
we have proven Theorem 1.3 we can use it to show that f+n is a Hauptmodul for G*n; the
condition that the coefficients of f are algebraic integers is not required since, for example
by Corollary 6.6 b, G * n is not trivial.

Proposition 6.16. For any n coprime to N, any symmetric polynomial of {foa | o €
A(n)} is an element of H[f x n| where H is the field generated over Q by the coefficients
of f.

Proof: Let s be any symmetric polynomial with rational coefficients of the {foa | a €
A(n)}. By Corollary 6.6 a each foq, a € A(n) is a modular function of level nN, and
hence so is s. By Proposition 6.8 and Lemma 6.15, s(z) is invariant under G *n and
it follows from [Sh, Proposition 2.6] that s(z) is an automorphic function for G *n. In
particular s(z) has a g-expansion (rather than a ¢'/™-expansion) as it is invariant under
z — z + 1. Each coefficient in this ¢-expansion lies in Q(exp (27i/nN)), the Galois group
of which is (Z/nNZ)* =2 (Z/nZ)* x (Z/NZ)*. The action of r x 1 is to replace f o« by
/

fod where if o = <8 2> then o' = <g Z> where V' = rb (mod d). The effect of
1 x w is to replace f o a by (f * w) o c. It follows that the ¢ coefficients of s(z) are fixed
by (Z/nZ) x Fix(H) and so lic in H. In particular we have s(z) € Fy.

By Corollary 6.6 b, if G contains T'g(/N} then so does G * n and so G * n satisfies the
hypotheses of Proposition 6.8. The proof of Lernma 6.15 also works for f xn. Thus we
can repeat the argument at the start of this proof to deduce s n is invariant under G.
By Proposition 6.10, s xn = (P xn)(f)/(Q * n)(f) where P(z), Q(z) € Q({n}[z] and so
5= P(f +n~)/Q(f +n~1) = P(f +n)JQ(f *n).

It remains to show that ¢ is a constant. Suppose s = P(f 1) /Q(f * n) and that @
is not a constant. Then ¢ has some nontrivial factor f*n — ¢. Since f is analytic in the
upper half plane so is s and so there can be no point zo € H with (f * n)(25) = ¢. Also
since f xn is a modular function of level N it must take the value ¢ at some point in H*
(see, for example, [Mu, Corollary 1.2]). Thus ¢ must be a cusp value of f xn. Let 2y be
one of the corresponding cusps, so lim,_,,,(f * n)(2z) = ¢ (limits at cusps are taken in the
topology described, for example, in [Sh, Chapter 1]). We have (f * n)(z00) = oo and so
there is no (m}) € G * n such that (rn)(z¢) = ico and so by Corollary 6.9 for each a € A(n),
there is no (m’) € G such that (m')(a(zg)) = ic0. Since f is a Hauptmodul it is finite at
any cusp not in G(ioco) and it follows that for each « € A(n}, lim,—,,, f{a(z)) is finite and
hence lim,_, ., s(z) is finitc. This is a contradiction and so ¢ must be a constant and s is
a polynomial in f *n as required.
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Finally, if we write s = 3 ¢;(f*n)*, then equating the nonpositive g coefficients on each
side yields a linear system for the ¢; with cocfficients in H. It follows that s(z) € H[f xn].}

Let
Fu(y) = H (y— foa)

a€A(n)

Proposition 6.17. For each n coprime to N, the polynomial F, (y) has coefficients in
H|[f *n] and is irreducible over C(f xn).

Proof: By Proposition 6.16 the coefficients of F,(y) are in H[f*n] C C(f *n). Also F,(y)
splits in C(f o aa € A(n)); G * n acts on this field, fixes C(f * n) and permutes the roots
of Fun(y). By Proposition 6.8, each a € A(n) is in ['o(N)a,G * n so we have a = ya,7v/,
v € Tg(N) and 7' € G *n. Hence v~'a = @,y and so G * n acts transitively on the roots.
By Lemma 6.15 the roots are distinct and so Fy,(y) is irreducible over C(f = n). [

Since the ring H{f xn] is isomorphic to H[z] there is a unique polynomial F,(z,y) €
H{z,y] such that F,(f xn,y) = F.(y).

Proposition 6.18. For any n > 1 coprime to N, F,(z,y) is a generalized modular poly-
nomial for f.

Proof: By Proposition 6.17 F,,(z,y) € H(z,y] and by the definition of F,,(z) properties
MI.2 and MI.3’ are satisfied. Thus it remains to show that F,.(z,y) = (F, * n)(y, z).
We follow the proof in [K, Proposition 3.2]. Let a,b,d € Z with ad = n, ged(a,b,d) =1
!
and 0 < b < d Alsoletd =a-0b, f1 = <g ’;>, By = <g 2> and 2/ = B(2).
We have that F,((f x n)(2'), f(81(2'))) = 0. Since B; o 82(2) = 2z + 1 it follows that
Fu((f xn)(B2(2)), f(2)) = 0. Let »’ be such that n’ =n  (mod N) and n’ =1 (mod n).
Then applying *n’ we find (F,, * n){(f(B2(z)), (f * n)(2)) = 0. Thus the roots of x,(y) =
(Fu * n)(y, (f * n)(2)) include those of Fr(y) = Fu((f * n)(2),y). So c(y)Fu(y) = xn(y)
for some polynomial ¢(y}. We can compute ¢ as follows: a straightforward calculation
shows that the leading term in the g-expansion of F;,(0) is ¢*, t = —4(n). Since F,(0) is a
polynomial in f *n we can deduce that its leading term is (f * n)t. The other coefficients
of F,,(y) are lower degrec polynomials in f xn. It follows that the leading term of x,,(v)
is ¥* and as the leading term of F,(y) is y* the result follows. 1
Proof of Theorem 1.4 1: This follows from Proposition 6.14 and Proposition 6.18. |

§7. The main result.
In this section we obtain Theorem 1.3 and Theorem 1.4 2; before giving the proof we

start with two Lemmas.

Lemma 7.1. If f satisfies the hypotheses of Theorem 1.3 and if G is the group of sym-
metries of f, then G satisfies the hypotheses of Proposition 5.1.

Proof: First, assume for contradiction that G is not discrete. Pick a sequence of distinct
elements o; € G,i € Z>° which converges to @ € SL(2,R), such that for all 4 and j,
oy # . For each 4, 7, a,-aj_l has at most 1 fixed point in H, and thus we can choose
some z; € H which avoids those countably many points. It will obey o;(z1) # «;(21) V4, 5.
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We have lim;_, o, @;(21) = az1) and for all © f(ai(z1)) = f(21). But the points a;(z) are
distinct, so f takes on the same value infinitely many times in a compact neighbourhood
of ce(21), which is impossible since f is not constant. Thus & must be discrete.

Next, suppose that the transformation z — (az + b)/d is in G. Then a # 0 and for
Im (2) sufficiently large we have that both (az+b)/d € H, and z € H;. As f((az+b)/d) =
f(2} by Lemma 2.2 we must have (az + b)/d — z € Z. It follows that a = d and d divides
b so that z = {az 4+ b)/d is a translation by an integer as required.

Finally, note that the third condition of Proposition 5.1 is just Lemma 3.2 b in the
case that ¢ is a global symmetry. ]

Lemma 7.2. With f as in Lemma 7.1, suppose G(f) is trivial (i.e. consists only of
translations by integers) and that all the coefficients a,, of f are algebraic integers. Then
f= q—l + ¢q where Cgcd(24,1{)+1 = (.

Proof: If f = ¢~! then we are done, otherwise let a; be the first nonzero coefficient of
f- Then |a7} > 1 for some o € Gal(Q/Q), as can be seen by looking at the constant
term of the minimal polynomial of a;. Let A be the formal g-series corresponding to f
as in the introduction. It is straightforward to show that as a forinal series h7 satisfies
a modular equation of order n for all n = 1 (mod K). In fact this modular equation
is just F7. Thus, as discussed in the introduction, results of Mahler and Kozlov imply
that (h7)(exp(27iz)) extends to an analytic function on the upper half plane which we
shall call fo. It follows that f¢ satisfies the hypotheses of Theorem 1.3. By Lemma 7.1
and Proposition 5.1 either G(f7) is trivial or f? is a modular function of level N for
some N | K. The latter case, however, is impossible: By [Sh; Proposition 6.1] we have
f? = P/Q, where P and @ are polynomials with complex coefficients in j and the Fricke
functions (notation as in Theorem 6.0). Using a similar argument to that of Proposition
6.10 we can take the coefficients of P and @ to lic in Q. But then applying =1 to f7 it is
clear that f is also 2 modular function of level V so that I'(N) C G: a contradiction since
by hypothesis G is trivial.

Let fo be as in Lemma 2.2. We have shown that f° is injective on |¢| < 1. By
Theorem 1.4 of [Mark],

oo

> ilaf? < 1. (7.1)

1=j

Since |a7| > 1, it follows that [af| = 1 and a; = 0 for ¢ > 1. But then cxamining
the sum of the roots of the modular equation of order n = K + 1 for f shows that
1/¢5+ + 0165 = Qi 41(f(g)) and comparing the terms in ¢5+! yields o+ —a; =0
and so ay is a primitive sth root of 1 for some s|K. It remains to show that s|24.

Let n,5 € Z satisfy n = 1 (mod K) and s | K. Also let B = Q((¢n)[qg~ Y™, ¢/
where ( is a primitive sth root of 1. Let W be the group of automorphisms of R generated
by g1:¢"" = Cag'/™, and g : ¢V/™ = ¢"lg7 V" Let f=¢ ' +¢gand RY = {r e R |
g(r) =r,Vg € W}. Then it is not difficult to show that RY = Q(¢(.)[f)-

Thus if f satisfies a modular equation of order n, then the group W permutes the
roots of P(z) = F,(f,z). In particular if r; = C;“bq“‘z/“ + C(ﬁbq“z/” is one such root,
then so is go(r1), this can only be the case, however, if a® =1 (mod s). Repeating this
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argument for sufficiently many » we find that the exponent of the group (Z/sZ)* is either
2 or 1 and so s|24. |

Proof of Theorem 1.3: If f is such that for all 21,20 € H f(z1) = f(z2) implies that
z1—22 € Z and the coefficients of f are algebraic integers, then by Lemma 7.2 f must be one
of the trivial functions. If not, choose two points 21,29 € H such that f(z1) = f(z2) and
2y — 29 ¢ Z. By Proposition 2.3 and Proposition 4.6 there exists an element m € SL(2,R)
such that m(z1} = 2z and f(m(z2)) = f(z). Let m(z) = (az+b)/(cz + d). If ¢ = 0 then by
Lemma 7.1 m is a translation by an integer: a contradiction. Thus we must have ¢ # 0.
From Proposition 5.1 and Lemma 7.1 the symmetry group G of f contains I'g(N) for some
N, with N| K.

Thus f(z) gives risc to a function f on X (G) that is analytic except possibly at the
cusps. At the cusp corresponding to infinity f has a simple pole. At the other cusps, if any,
f is bounded and hence has removable singularities. It follows that f is an automorphic
function. By Proposition 2.3 and Proposition 4.6 f is injective on X (G), which is hence
of genus zero and f is a Hauptmodul for &, as required. ]
Proof of Theorem 1.4 2: If f(z) = ¢! + (¢ with ¢ a primitive sth root of 1 and
s|ged(24, K) then using the techniques in the proofs of Lemma 6.16 and Lemma 7.2 it can
be shown that any symmetric polynomial in {f o a | & € A(n)} lies in Q(¢)[f]. Defining
F,(z,y) as in Proposition 6.18, the proof of Proposition 6.18 shows that Fy, is a generalized
modular polynomial for f.

In the case that f(z) = ¢! the proof is identical, except that in this case the group
W of Lemma 7.2 is generated by g1 : ¢2/™ = (q'/™. ]

§8. Comments and conjectures.

Replicable functions In [N1] Norton introduced the notion of a replicable function. A

formal ¢-series
i Z hng”

n=1

is said to be replicable if for each a € Z>° there exists a formal g-series

h(“) (q) 1y Z h(“)
such that the analogue of equation (1.1) holds, namely:

S () = Qu(i(@),

ad=n
o<b<d

where J, depends on & and is the unique polynomial such that
Qn(h(q)) = ¢~ + terms of positive degree.
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One aim of this definition is to investigate to what extent the moonshine conjectures can
be extended to include other groups and automorphic functions. In the case that A has
rational integer coefficients Norton conjectured that h is replicable if and only if A is the
g-expansion of a function f analytic on the upper half plane and satisfying condition 2 of
Theorem 1.3. In [CuN] it was shown that any Hauptmodul with rational integer coefficients
is replicable.

QOur results do not provide a proof of Norton’s conjecture. However Norton also
introduced the notion of a completely replicable function of order K. These are replicable
functions which satisfy the additional constraints * that for all a, b € Z>° h(®) is replicable,
h(“)(b) = h{8®) and h(e) = plecd(e.K))  Thege propertics are satisfied by the moonshine
functions. Completely replicable functions are discussed in more detail by Kozlov [K]. He
proves in particular that if f is a completcly replicable function of order K then f satisfies a
modular equation of order n for all . coprime to K ([K, Proposition 4.1] and [K, Proposition
3.2]), see also [Mar]. Thus from Theoremn 1.3 we deduce that every completely replicable
function of order K with coeflicients which are algebraic integers satisfies condition 2 of
Theorem 1.3. The converse is not truc even if we retrict to the case where h(¢) has rational
coefficients: there arc Hauptmoduln satisfying condition 2 of Theorem 1.3 which are not
completely replicable [N1].

A generalization of the Mahler recurrence relations Mahler [Mah] used the modular
equation of order 2 to give recurrence relations for the coefficients of the 7 function. More
generally these recurrences determine the cocfficients of any odd level Hauptmodul, f =
g+ 30 ang™, a, € Q n=1,2,..., once a1, az, az and as are given. Using Theorem
1.4 we can derive a similar set of recurrence relations that hold for any Hauptmodul of
level N whose coefficients lie in Q({x) when N is odd. These recurrences are, for k > 1:

k-1
1
Qaf = A2k41 * 2 + Z(ajagk_j) * 2 -} 5(((]* * 2)2 — (Lk),
Jj=1
u 1 1
Aqk41 = Agk43 * 2+ Z(aja2k+2_j) * 2+ -2-((ak+1 * 2)2 — (I.k+1) + -é(a%k = Qog * 2)
j=1
k-1 2k—1 )
— (agagr)* 2+ Z QjQ4k—45 + Z (1) ajaak—j,
=1 =1
k
Gak4+2 = Ogkt2 * 2+ Z(ajazk+1—j) * 2,
=1

* Note although these conditions can be imposed on any h(g), Norton originally pro-
posed them only for the case where the coefficients h,, are rational. A conjecture has
been made as to how the definition of a replicable function should be modified when the
h, lie in a composite of quadratic fields [N2]. That such a modification is necessary if
Hauptmoduln with irrational coefficients are to be replicable can be seen, for example, by

considering the sum of the roots of a gencralized modular equation F,,((k *n)(¢),y) when
n#1 (mod N).
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and
k+1

]‘ 2
Qak+3 = Qokya * 2+ Z(ag‘ﬂzk+3—j) *2 — §(azk+1 — azk1 * 2)
j=1
k 2%
— (a2agk41) ¥ 2+ Z @jak42-45 T Z(—l)’ajﬂqkw—j-
Jj=1 i=1

Weakening the hypotheses of Theorem 1.3 [t seems probable that the condition in
part 2 of Theorem 1.3 that the coefficents of f are algebraic integers can be weakened. We
make the following:

Conjecture 8.1. Let f be an analytic function on H with Fourier expansion f(z) =
g 4+ 307 ang™, g = exp(2miz), a, € C, n € Z>Y and let K be a positive integer. Then
the following are equivalent:
1 f satisfies a modular equation of order n for allm =1 (mod K).
2 f iseither g~ 4(q where (844K} = ¢ or is a Hauptmodul for a subgroup
G of SL(2,R) satisfying:
a G contains To(N) with finite index for some N | K.
b G contains (é ;1") if and only if k € Z.

¢ X(G) has genus zero.
d a; € Z[(n], 1€ Z7°.

Some evidence is provided for this conjecture by the following:

Proposition 8.2. Let K € Z>% and P C Nk be any infinite set of primes. Then there
are only finitely many formal g-series h of the form h = ¢=' + 3 | anq™, a, € C such
that h satisfies a modular equation of order p for all p € P. Moreover the coefficients of
any such h lie in a finite extension of Q.

Proof: In sections 13 and 29 of [Mah] it is shown that if / satisfies a modular equation
of order £ for some prime £ and m = £2 4 £ — 1, then the a;, i > m are polynomials in
ai, ..., 0. The coefficients of these polynomials are in QQ by a argument similar to that of
Proposition 6.16. Consider p € P and Fp(z) = Fp(h(q),z) = co(q) + c1(g)z + . .. + c(g)z
where F,(z,y) is a modular polynomial for h and t = p+1. Initially we only know that the
coefficients of F,(z,y) are complex numbers. Once again, however, an argument similar to
the one in the proof of Proposition 6.16 shows that the c;(q) are g-series with coefficients in
Qla1, az,...] and as noted above Q[aq, ag,...] € Qlay, ..., a;]. Since F,(z,y) is a modular
polynomial each ¢;(g) is a polynomial P, say, in h(g) which can be calculated by equating
the coeflicients and the nonpositive terms in the g-expansions of ¢;(q) and P;. The fact that
the leading term of h(g)! is ¢~* means that P; has coefficients in Qlai,. - ., am). Hence cach
modular polynomial Fy(z,y) for h(q) has coecfficients in Qay,...,a,]. It is not difficult
to see that h(g) will satisfy M.3 if and only if F,(h(q), h(¢P)) = 0. Thus h will satisfy a
modular equation of order p for all p € P if and only if (ay,...,an) is a zero of some ideal

I'in Qz1,...,%m]
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As noted in the introduction, the results of Mahler and Kozlov imply that f({z) =
h(exp(2miz)) extends to an analytic function on the upper half plane. Not all of our
previous results apply. However the results of section 2 are still available by the following
argument: For any analytic function g(z) on H such that g(z) = g(2 - 1) define the Hecke
operators

Ta(g)= Y. gllez+b)/d), Tile)= D  gllaz+b)/d).

ad=n,0<b<d ad=n,0<b<d
- ged{a,b,d)=1

The standard algebra of Hecke operators gives

Tn(Tm(g)) = Z O!J-Tirrm/d2 (g) (81)
d| ged(m,n)
and we also have
Z n/d2 (82)
d?|n

We observe that f(z) obeys a modular equation of order n if and only if T:(f7) is a
polynomial in f(z) for all j € Z>°. If all the prime divisors of n are in P, then equations
(8.1) and (8.2) by induction show that T;¥(f?) is a polynomial in f(2) for all j € Z>° and
so f(z) satisfies a modular equation of order n.

The results of sections 3 and 4 still apply and together with the first part of Lemima
7.1 show that if f(z;) = f(z2) then there exists m € SL(2,R) such that m(z,) = 22 and
that G(f) satisfies conditions 1 and 2 of Proposition 5.1. Let U be as in Lemma 5.3 b. If
21,22 € U, f(21) = f(z2) and m(z1) = 2z then by Lemma 5.3 b we must have m € G
Thus f(z) is injective modulo 1 on U. Moreover if m € G then m’ =m ((1) i) mleG
and ¢y, = c2,. Iterating this procedure we see from Lemma 5.3 a that for all m € G we
must have |cm| > 1. Thus we may choose » = 1 in Lemma 5.3 so that f(2) is injective
modulo 1 on {2z € H | Iin(2) > 1}. Making an appropriate rescaling and applying equation
(7.1} we find that the ¢ coefficients of f(z) are bounded by

la;| < 2 Ut i =12 ..., (8.3)

It can be shown, for example by constructing a Grobner basis using a reverse lexico-
graphic term ordering, that either there are only finitely many zeros of I all of which lie

in some finite extension of Q or there are zeros (a1,...,a,,) of I with max; |a;| arbitrar-
ily large (see for example [BW, Propositions 7.42 and 7.52]). However the latter case is
impossible by equation (8.3). The result now follows. [
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