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§ 1. Introduction.

For any Riemannian manifold (M,g) , the second Bianchi iden-

tity implies the relation

(0 §R=-gr

. : . o8 - .
lwu local coordinates : V wum ik = <.mu.wr <_nu.m i }» R being the
curvature tensor and r the Ricci tensor of (M,g) with u.wu -

- :w-u- . B8imilarly, we have

(2) a:llmymw.n?..MﬁW.qnv .

vhere n = dim M 23, W is the Weyl conformal tensor and u =

- mmunwu is the scalar curvature of (M,g) . One says that (N,g)

has hawmonic curvature if SR =0, i.e. {cf. (1)), if the Ricci

tensor r satisfies the Codazzl equation ar =0 ([4], (5)).
The following examples of compact Riemannian manifolds with

harmonic curvature are known :

(i) Compact E.wﬂowau with parallel Ricei tensor, including com~

pact Einstein spaces.

(ii) Compact conformally flat manifolds with constant scalar cur-

vature (cf. (2) and (1)). For existence results, see [T].

(iii) Certain bundles with fibre N over 8! endowed vwith suit-

able fQuisted warped product metrics, wvhere N is an arbitrary com-

© pact manifold admitting an Einstein metric with positive scalar

curvature (see [5]). If the Einstein wmetric of N is not of con-
stant curvature (and hence dim N 2 4), these examples are not of
type (i) or (ii).

{iv) Compact manifolds locally isometric to prody:-+-



The aim of this note is to describe some new examples of com—
pact Riemannian manifolds with harmonic curvature. More precisely,

ra prove the following existence result.

THEOREM . Llet (M,g) be a compact Riemannian manifold with con-
stant curvature K < O . Suppose that p 48 an integer with

uvslzn.»_ y

where n = dimM>2 and A, 4 the Lowest positive eigenvalue of
the Laplacian of (M,g) , acting on functions.

Then, for any compact p-dimensional Einstein manifold (N,n)
with positive scalar curvature, other than a space of consfant cur-
vature, the product manifold M x N admits a metric G with har-
monic curvature, which {8 not Locally isometric to any of the ex-
amples desendbed in (i), (ii), (idi), (iv) above.

Note that the compact manifolds with harmonic curvature ob-
tained in this way have infinite fundamental groups and are of ai-
mensions n +p 2 T-

The proof .ow the theorem is a trivial consequence of the fol-
loving special case of a result of H. Yamsbe : On any compact n-di-

mensional Riemannian manifold, the equation
af + af = cg37!

with real =a, q, ¢ &such that 2 < q < ma?n.ﬁad s &8> »_?umvn_

and ¢ > 0, is satisfied by some non-constant positive function f .

The required metric G is obtained from a product metric 6n M x N

by a conformal deformation involving such a function f on (M,g) .

Throughout this note, considering two or more Riemannian met-
rics, we shall endow the symbols of their geometric quantities with
appropriate subscripts or superscripts (like <r . ts . awzv for
s metric h). The Laplacian & =4_: c"(M) + CT(M) of (M,g) is

alvays defined to have negative principal symbol : A = -~ wu<w<u

and »d = ».Az.wv denotes its lowest positive eigenvalue.

§ 2. Proof of the theorem.

LEMMA 1 .(cf. [3], Chapter XVI). Suppose that we are given a space
(M,g) o0f constant curvature K , a p-dimensional Einstein manifold
(N,h) with scalar ewrvatiure u = - p({p-1)X , and an arbitrary po-
sitive € function w. on M. Then, fok any real q , the metric

6 =192 (g x n)
on M x N satisfies the condition 83Ws = 0 . Moreover,

(1) @ is not conformally {lat unless h 48 of constant cuava-
ture.

(i1) 1§ M is compact, K <O, q¢2 and £ L8 non-constant,
then (M x N,0) admits no parallel symetric 2-fenson {ields other
than constant multiples of G .

PROOF. For conformally related metrics y , G in dimension m ,

ve have

8oV = &V, - ?.3:«?4.:....;



whenever G = omq.< . Our product metric y=gxh on Mx N has

a« t< =0 (ef. (2)) and its Weyl tensor annihilates vW(10g £)
since f£ is constant along N . Therefore aato =0 .

If G is conformally flat, then so is g x h , vhich easily
implies that h has constant curvature. This proves (i).

Assume now that the hypotheses of (ii) are satisfied and B

e/

is a symmetric 2-tensor field on M x N with VE =0 . In a local

1 n__n+t n+p

product ooonnwrgo ByStem X ,...3X § X geeesX for Mx N,
n =43im M, this implies

8 . . - g% 3 0s
(3) <w mu_.n =2 uwa umn + umq nwa g opq m-awwn ’

where o = wﬁalm:.on £ . Here and in the sequel, the ranges of in-
dices are : i,j,k,2,8 = 1,...,n , a,B,u,v =n+l,...,n+p . For a
uaumannw is a vell-defined global i-formon M.

By (3), Vv = v Ado - v(v%)-g . Hence By + (vEy)* = - 2v(vE0)eg

fixed a, v = e

and 80 v represents a conformal vector field on (M,g) . Since M

is compact and K < O , this implies v =0 and

(h) um =0 for 1 <ign<a gnép .

G

Other consequences of VE =0 are <wwwa = owq.mau - muw ouo.ukwwwu s
SR & PRy
- omq thﬂﬂt . By :’vv

L] - ”u L)
WEE,, = 23,0°F,, and <_~__unn =g a0 ny

%mumn = <ﬂunu = 0 and hence these relations give
20, ij

(s) B, =cCen_ , u:»q.u

af af Jk 3

with a constant C . Moreover, E-0 gives, by (k), <”Mwu = 0

s
and <mw5 20,08 + 3o, + B0oR, — g OE gy -

- n-.- o-.q.n-.mnwr » The symmetric 2-tensor field P = m»uﬁxw&nu with

- e3¢0 , 15k <n <ua,B gnitp,

P, =e %

13 15 ~ %83

is, clearly, well-defined everyvhere in M . In viev of (5), the

preceding formula gives

a) <mﬁ_..w - owa.v%« + uua.wm.w

(6)
b) n.uw uun.wrw = 0.

Transvecting (6)a) with m: , auw or with nwww.mp_vw , respecti-

vely, ve see from (6)b) that

(n aT=aq =0, %waﬁ = T30,

vhere T = nnonoam = nwuwm.m and Q = g(P,P) = wmxmunmm.umrn + More-
over, (6)b) and (7) give

(8) g(P,v8a0) = - Teg(do,do) .

Applying to P the contracted Ricei identity (Weitzenb3ck formula)

and using (6), we obtein

T(v80 - do @ o) + P © vBgo - vBas o p 4 (8,9 + gldo,a0))+P =

= K+(Tg - nP) .

Suppose nov that P does not vanish identically, i.e., the constant
Q= g{P,P) (cf. (7)) is positive. Taking the inner product of the
last formula wvith P we then have, in view of (6)b), (T) ana (8),

the relation pan - n.w;n.bqv + <,
vhich obviously contradicts the non-constancy of ¢ on the compact

manifold (M,g) . Therefore P = 0 everyvhere, i.e., nﬁ = oomq.nw..-

for some constants €y s S

for 1 <1,§J &£n . Together vith (k) ana ($), this gives E = C-G,

completing the proof.



WAN . e metric O required in our theores can nov bs construct-

od as follows. If (M.g) is compect and bas constaat curvetwre K
aad (N,h) is Rinsteis, vith scaler curvetwre u ©* - piprtx ,
where GinMoa>2, diaBep end s *p2h, thea (M=i,0)
E.a‘occ. Dlaw being dsfined as in lomms ' vith any po-
sitive fumction £ on N end vith

(9) ..hFlF-...-» .

The scalar curvature w, of hlen ie constent along ¥ and one
easily verifies (of.[1], p. 126) that, oa X,

(10) o 3 (ap)aep-2dr = m..a.-.v'»:-:..:-_ na-.

vith q gives by (9). If £ is such that u, is constast, thes, by
{2) and (1), $gRg = 0. erefore, all ve oeed in order to comstruct,
ia this vay, & (oev) metric G wvith & R, 0, is to find & Aoa-
constant positive solution f of (10) vith (9) e (M.g) . for eome
Aeal number g and an integer p> 0 . Wen K20, suchan ¢
does not exist, which one can easily prove using integratiocn by
parts. On the other hand, if K <O and p>n-K 'd/, A =

- —.As.uu » the existence of such sn £ is immsdiate from the fol-

loving result.

LDoU 2 (N, Yemabe (8], cf. [1], p. 115-119). Llet (M,g) be & com-
pact Riemannian mani{fold, aim M =2 > 2 . Then, for any Aeal o, g,
o with 2 <qec2ama2)’, a(e2)> 1, =2 (Mg and ¢>0,
theas exists & non-constant positive C function £ om M such
that

(1) ot ¢ af = 0P,

PROOF. The required function f can be found using Yemsbe's meibad

(see (1], p. 115-119), vhich consists in minimiszing the functional
1(g) = (f]vejde atgd)(sga) 20
A 'l » "

ia the class of all nomn-negative functions ¢ in he first Bobolev
space  LA(M) which do not vanish ideatically. A minimms f of L
exiots if 2 < q < m-.-qnvo_ and it is o positive C functios oo
M, satisfying (11) wvith soms o » O | by rescealing £ , eay ¢ » 0
cen be attained. Buppose pow that this miniswm £ je & positive
constent. Calculating the second veristion of na st £, we thea
obtain

7 (vl 2 alg-2) 7 #?
[ ] o

for each C function ¢ vith / ¢ = 0 . Neace a(g-2) 31, (see
]
[2]. ». 186), which contradicts our hypothesis. Therefors ¢ is

son-oconstant, vhich completes the proof.

Proof of the theorem. Lot (M,g) , p end (H,0) satisfy our hypo-
theses. By rescaling b , ve may sssume it has scalar curvature -
« - p(p-1)K . Fix a non-constant positive function £ satisfying
(10) vith (9) o (M,g) . for s constent w, > O, vhich existe by
leama 2. According to the remark preceding Lemms 2, the metric G =
..noun.:-: oa M x ¥ then has harmonic curveture, ¢ being
siven by (9). Joreover, O is neither conformally flet ((i) of
Leama 1), sor locally reducible (by e receat result of . DeTurck
adé B. Goldsehmidt (6], all metrics vith harmomic curvature are ens-
irtic ia suiteble ccordisates, so that loeal reducidility of (N=N,0)
would contredict (ii) of Lewma 1). If G Dhed parslisl Rieci temsor,



it would be Einstein in view of local irreducibility. Therefore,
-.A: x N} would be finite (since G has scalar curvature u, > 0),
vhich would contradict the negativity of the curvature of (M,g) .
Thus, (M x N,0) is not, even locally, of the type represented by
examples (i), (ii) or (iv) of §1. If it were locally of type (iii),
then, in view of -,bwgwomw%. MxN end a compact bundle over S!
vhose fibre has finite fundamental group, would have homeomorphic
universal no<mu,.w=m spaces, which is obviously impossible as daim M >

2 2 . This completes the proof.
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