Holomorphic curvature of Finsler
metrics and complex geodesics

Marco Abate and Giorgio Patrizio

Dipartimento di Matematica Max-Planck-Institut fiur Mathematik
Seconda Universitd di Roma Gottfried-Claren-StraBe 26
00133 Roma - Italy D-5300 Bonn 3

Germany

MPI /92-41






Holomorphic curvature of Finsler metrics and complex geodesics

by Marco Abate and Giorgio Patrizio

0. Introduction

If D is a bounded convex domain in €™ , then the work of Lempert [L] and Royden-
Wong [RW] (see also [A]) show that given any point p € D and any non-zero tangent
vector v € C" at p, there exists a holomorphic map ¢: U — D from the unit disk U C €
into D passing through p and tangent to v in p which is an isometry with respect to the
hyperbolic distance of U and the Kobayashi distance of D. Furthermore if D is smooth
and strongly convex then given p and v this holomorphic disk is uniquely determined.

For a general complex manifold it is hard to determine whether or not such complex
curves, called complex geodesics in [V], exist. Therefore it is natural to investigate the
special properties enjoyed by the Kobayashi metric of a strongly convex domain. In this
case 1t is known that the Kobayashi metric is a strongly pseudoconvex smooth complex
Finsler metric. Furthermore, for a suitable notion of holomorphic curvature (see below),
this metric in convex domain has negative constant holomorphic curvature (cf. [W], [S],
[R}).

In [AP] it was started a systematic differential geometrical study of complex geodesics
in the framework of complex Finsler metrics. As in ordinary Riemannian geometry it is
natural to study geodesics as solutions of an extremal problem and not as globally length-
minimizing curves, so in our case the natural notion turns out to be the one of geodesic
complex curves, i.e., of holomorphic maps from the unit disk into the manifold sending
geodesics for the hyperbolic metric into geodesics for the given Finsler metric. For instance,
the annulus in € has no complex geodesics in the sense of [V], whereas the usual universal
covering map is a geodesic complex curve in the previous sense.

It was shown in [AP] that geodesic complex curves for complex Finsler metrics satisfy
a system of partial differential equations and, under suitable hypotheses, it was given an
uniqueness theorem. Here we shall be concerned with the question of existence.

The further ingredient needed to attack this problem is the notion of holomorphic
curvature of complex Finsler metrics. Given a complex manifold M and a complex Finsler
metric F:T'°M — R, i.e., & nonnegative upper semicontinuous function such that

F(p; Av) = |A|F(p;v)

for all (p;v) € TV°M and A € €, the holomorphic curvature of F at p in the direction v is
the supremum of the Gaussian curvature at the origin of the (pseudo)hermitian metrics on
the unit disk obtained by pulling back F via holomorphic maps ¢: U — M with ¢(0) = p
and ¢'(0) = Av for some A € €*. Here, following [H], we make the choice of computing
the Gaussian curvature using the weak laplacian rather then using Ahlfors’ notion of
supporting metrics; this approach seems to be more natural for our applications and has
& better connection with the usual hermitian geometry. We remark that if F' is the norm
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associated to a hermitian metric, then Wu in [Wu| showed that this definition yields the
usual holomorphic sectional curvature in the direction v.

In section 1 we give a survey of the elementary implications of this notion of holo-
morphic curvature of complex Finsler metrics gotten by application of Ahlfors’ lemma
and of its sharp form due to Heins [H]. For instance, as one could expect, it is easy to
prove a hyperbolicity criterion in terms of negatively curved upper semicontinuous Finsler
metric (cf. Corollary 1.5). As for the investigation of geodesic complex curves and differ-
ential geometric properties of intrinsic metrics, not much can be achieved without some
smoothness assumptions. One of the few general facts obtained here is the explanation
(Proposition 1.6) in terms of the holomorphic curvature of the known property of the
Carathéodory metric that a holomorphic disk which is an isometry at one point is in
fact an infinitesimal isometry at every point (i.e., an infinitesimal complex geodesic in the
terminology introduced in [V]). Furthermore, in Proposition 1.7 it is given a very weak
characterization of the Kobayashi metric which nevertheless is useful later in the paper.

In order to prove more significant results it is necessary to consider the case of smooth
Finsler metric, i.e., such that F € C®(T"°M \ {Zero section}), which are in addition
strongly pseudoconvex, that is such that for every p € M the indicatrix

L(M)={veT'°M | F(p;v) < 1}

is strongly pseudoconvex. Under these assumptions in section 2 we show how to compute
the holomorphic curvature Kr of F' by means of a tensor explicitly defined in terms of
F and which agrees with the usual one in case F is the norm associated to a hermitian
metric. The tensor K is also considered from a slightly different point of view by Royden
in [R].

After this preparation we address the problem of the existence of geodesic complex
curves in section 3. Let o

A= 1
for ( € U, and

Pf: = GaﬁG‘];ig

where G = F?, lower indices indicate derivatives (with respect to the coordinates of the
manifold those after semicolon, with respect to the coordinates of the tangent space the
others), (G*#) = (G,3)"'and we are using the usual summation convention. From results
of [AP] it follows that the geodesic complex curves are holomorphic maps ¢:U — M
satisfying, fora =1,...,n,

(") + A (') + T 9" ) =0, (0.1)

and an additional set of equations which automatically hold if along the curve the metric
F satisfies a Kéhler condition introduced by Rund [Ru2], which reduces to the usual one
for hermitian metrics.

The holomorphic solutions of (0.1) have nice properties on their own. For instance,
they realize the holomorphic curvature at every point for the direction tangent to the
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disk, and if they are isometry at the origin then they are infinitesimal complex geodesics
(cf. Proposition 3.2). Our first main result (Theorem 3.3) describes necessary and suffi-
cient conditions for the holomorphic solvability of (0.1), and hence for the existence (and
uniqueness) of complex geodesics through a given point and direction.

The characterization given in Theorem 3.3 is completely expressed in terms of the
metric, but rather technical; to give a clearer geometric characterization it is necessary
to bring the curvature into the picture. The previous list of properties of holomor-
phic solutions of (0.1) shows that a natural necessary condition is that F' has constant
negative holomorphic curvature. This is almost sufficient; to get the correct geometric

conditions it is necessary to introduce a further tensor, defined on the sphere bundle
S1OM = {(p;€) e T'®M | F(p;¢) =1}. Set fora=1,...,n,

Ha(v) = Haigy¥%0'v7 = [(Gralaz)i = (Gral'j)a] 77’7,

where I'Y; = (G**Gy;i);;. To understand the meaning of this tensor, let us consider
the case of a hermitian metric. Then Hyip; = Riapj; — Raiaj, where R is the Riemannian
curvature tensor of the Chern connection associated to the hermitian metric. In particular,
Hqia; = 0 is equivalent to oT = 0, where T is the torsion form of the Chern connection; T
is a 719 M-valued 2-form vanishing exactly when the given metric is Kahler. In conclusion,
H may be interpreted as torsion of a curvature tensor, and H, = 0 as a simmetry condition
on the curvature — cf. (3.29).

Using the tensor H we may finally summarize our main results. We have (Theo-
rem 3.6):

Theorem 0.1: Let M be a complex manifold equipped with a strongly pseudoconvex
smooth complete Finsler metric F. Then there exists a unique holomorphic solution
p:U — M of (0.1) with ¢(0) = p and ¢'(0) = ¢ for any (p;¢) € SV'°M iff the holo-
morphic curvature Kgp = —4 and H, = 0 for all a.

In other words, the existence and uniqueness of holomorphic solutions of (0.1) is
equivalent to constant negative holomorphic curvature and a simmetry condition on a
curvature tensor. Furthermore, it turns out the the Kahler condition along a holomorphic
solution of (0.1) holds iff it holds at one point, and thus (Corollary 3.9)

Theorem 0.2: Let M be a complex manifold equipped with a strongly pseudoconvex
smooth complete Finsler metric F. Assume that the holomorphic curvature Kr = —4 and
that Hy = 0 for all @. Take (po; &) € SY°M. Then there is a (a fortiori unique) geodesic
complex curve passing through py tangent to {, iff the Kihler condition holds at (pg;&p).

From this result it is also possible to obtain a geometric characterization of the
Kobayashi metric. The following corollary (Corollary 3.10) improves results of Pang [P]
and it is closely related to those of Faran [F):

Corollary 0.3: Let F be a strongly pseudoconvex smooth complete Finsler metric with
constant holomorphic curvature Kr = —4 and such that Hy, = 0 for all «. Then F is the
Kobayashi metric of M.

The second named author thanks the Max-Planck-Institut fiir Mathematik of Bonn
for its hospitality and support while this paper was completed.
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1. Holomorphic curvature for semicontinuous metrics

Let U denote the unit disk in the complex plane. A pseudohermitian metric p, of scale g
on U is the upper semicontinuous pseudometric on the tangent bundle of U defined by

pg = gd ®dC, (1.1)

where g: U — R™ is a non-negative upper semicontinuous function such that S, = g=*(0)
is a discrete subset of U.

If p, is a standard hermitian metric on U, i.e., g is a C? positive function, the Gaussian
curvature of u, is defined by

1
K(pg) = —-Z-EAlogy, (1.2)

where A denotes the usual Laplacian

0%u

Au=4 ot ' (1.3)

~ The (lower) generalized Laplacian of an upper semicontinuous function u is defined by

.11t i
Au(g)=4h§33fr—2{2—ﬂ/0 w(C +re )dB-—u(C)}. (1.4)

It is worthwhile to remark explicitely some features of this definition. First of all, when u
is a function of class C? in a neighbourhood of the point (g, (1.4) actually reduces to (1.3).
In fact, for r small enough we can write

o +re) = u(Go) + Z(Ga)ret® + Zr(Gre™

18%u,, | 5 959 , O*u
+ Ea_cg(co)r e’ + 2C5C

10%u

(o)r® + Ea—zz(Co)rzfm + o(r?);

hence \ \
% ‘/0 u(Co + rcio) df —u(¢) =r? ;C_auz(co) + ofr?),

and the claim follows.

Second, if u is an upper semicontinuous function, it is easy to see that Au > 0 is
equivalent to the submean property; so Au > 0 iff u is subharmonic.

Finally, if (o is a point of local maximum for u, then clearly Au({p) < 0.

Now let 4 be a pseudohermitian metric on U. Then the Gaussian curvature K(u,)
of pg is the function defined on U \ §y by (1.2) — using the generalized Laplacian (1.4);
clearly, if ¢, is a standard hermitian metric, K(u,) reduced to the usual Gaussian curva-
ture.
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The idea behind the classical Ahlfors lemma is to compare a generic pseudohermitian
metric with an extremal one — usually the Poincaré metric. For a > 0, let g,:U — R*

be defined by )

94(¢) = a =[P

then pg = go d{ ® d{ is a hermitian metric of constant Gaussian curvature K(u,) = —4a.
Of course, yu, is the standard Poincaré metric on U.
The classical Ahlfors lemma is true in this more general situation:

Proposition 1.1: Let u, = gd{ ® d{ be a pseudohermitian metric on U such that
K(py) < —4a on U\ S, for some a > 0. Then g < g,.

Proof: The proof follows closely the classical one due to Ahlfors. For the sake of com-
pleteness we report it here.
For 0 <r <1, define U, = {¢( € C||¢| <r} and g5: U, - RY by

r _— 1 —
(€)= sy = 94/,

and set f, = g/g5:U, — IR*. Being upper semicontinuous, g is bounded on U,; since
g5(¢) — +o0 as [¢| — r, there is a point {; € U, of maximum for f,. Clearly, (¢ ¢ S,;
hence

02> Alog f:;(Co) > Alog g(¢o) — Alog g7(¢o) = —29(Co)K(1g)(Co) — Baga(Co).  (1.5)

By assumption, K(u,)({o) £ —4a; therefore (1.5) yields g({o) < g7(¢o) and thus, by the
choice of (o,

V¢ € U, 9(¢) £ 9a(¢/7)-

Letting r — 1™ we obtain the assertion. a

To complement this result, we recall a theorem due to Heins [H, Theorem 7.1], showing
that uy, # pe in the statement of Proposition 1.1 implies that g is strictly less than g,
everywhere:

Theorem 1.2: (Heins) Let u, = gd{ ® d{ be a pseudohermitian metric on U such
that K(p,) < —4a on U \ S, for some a > 0. Assume there is (o € U \ Sy such that

9(Co) = 9a(€o). Then py = f,.

Now we start looking to the several variables situation. If M is a complex manifold, we
shall denote by T M its real tangent bundle endowed with the almost-complex structure J
induced by the complex structure of M; by T°M the complexification of TM and by T1°M
the (1,0)-part (i.e., the i-eigenspace of J) of T°M. As well known, T!°M is naturally
complex-isomorphic to TM. In this paper we shall mainly use 7':°° M as representative of
the tangent bundle of M, except for an argument needed in section 3.

A complex Finsler metric F on a complex n-dimensional (n > 1) manifold M is an
upper semicontinuous map F: T1M — IR™ satisfying
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(i) F(p;v) > 0forall pe M and v € T °M with v # 0;
(ii) F(p;Av) = |A|[F(pjv) forallpe M, v € T, M and X € C.

We shall sistematically denote by G:T'°(M) — R* the function G = F?. Note that,
thanks to condition (ii), the definition of length of a smooth curve in a Riemannian manifold
makes sense in this context too; so we may again associate to F' a topological distance on M,
and we shall say that F is complete if this distance is. For the same reason, it makes sense
to call (real) geodesics the extremals of the length functional. General introductions to
real Finsler geometry are [Rul, BJ.

Take p € M and v € T;°M, v # 0. The holomorphic curvature Kr(p;v) of F at (p;v)
is given by

Kp(p;v) = sup{K(9*G)0)},

where the supremum is taken with respect to the family of all holomorphic maps p: U — M
with ¢(0) = p and ¢'(0) = Av for some A € C*, and K(*G) is the Gaussian curvature dis-
cussed so far of the pseudohermitian metric ¢*G on U. Clearly, the holomorphic curvature
depends only on the complex line in T, M spanned by v, and not on v itself.

The holomorphic curvature may also be defined (see e.g. [S]) taking the supremum
with respect to the family of all holomorphic maps ¢: U, — M with ¢(0) = p and ¢'(0) = v,
where U, C C is the disk of center the origin and radius r. We chose the given definition
to stress the similarities with the definitions of the Kobayashi and Carathéodory metrics.

If F is a complex Finsler metric on U — and so G = F? is a pseudohermitian metric
G = gd¢ ® d on U —, a priori we have defined two curvatures for F: Kp((;1) and
K(G)(¢). As anybody may guess, they actually coincide; this is a consequence of

Lemma 1.3: Let yy = gd( ® d( be a pseudohermitian metric on U, and ¢o:U — U a
holomorphic self-map of U. Then on U \ [p~1(S,) U Sy

K(¢ ng) = K(pg) 0 .

Proof: Let {gn} be a sequence of C? functions such that g, > gn+1 and with g,(z) — g(z).
Then on U \ [p~2(S,,)U Ser] DU\ [¢71(Sy) U S| we have

1 '
K(¢*ng,) = —mmog(hﬂ 12gn 0 9)
- 2 [62 log(gn o) 8%log |<p'|2]
l©'|2(gn o @) a9¢a¢ a¢ac

__ 2 ,2(6210gg,,) ]
"2 (gn 0 0) [""' acac ) °¥

1
e — AIO n e =K n (o] .
2gno gy B108gn) 0@ = Klug) 00

Letting n — 400 and applying the dominated convergence theorem we get the assertion.(d
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The holomorphic curvature defined in this way is clearly invariant under holomorphic
isometries. More generally, if f: M — N is holomorphic and F is a Finsler metric on N,
we have

Kr(f(2)idf:(v)) 2 K- r(z;v),

that is f*Kp > Ky p.

When F is a honest smooth hermitian metric on M, K(p; v) coincides with the usual
holomorphic sectional curvature of F' at (p;v) (see [Wu]). The aim of this section is to
extend a couple of results already known for hermitian metrics to this more general case.

A piece of terminology: we say that a complex Finsler metric F has holomorphic
curvature bounded above (below) by a constant ¢ € R if Kp(p;v) < c (respectively,
Kp(p;v) 2 ¢) for all (p;v) € T°M with v # 0.

Our first result is the usual several variables version of Ahlfors’ lemma:

Proposition 1.4: Let F' be a complex Finsler metric on a complex manifold M. Assume
that the holomorphic curvature of F' is bounded above by a negative constant —4a, for
some a > 0. Then

@*F < pa (1.6)
for all holomorphic maps @: U — M.

Proof: ¢*F is a pseudohermitian metric on U; by assumption (and by Lemma 1.3),
K(p*F) € —4a. Then the assertion follows from Proposition 1.1. O

As a consequence, we obtain a generalization of a well-known criterion of hyperbolicity:

Corollary 1.5: Let M be a complex manifold admitting a (complete) complex Finsler
metric F with holomorphic curvature bounded above by a negative constant. Then M is
(complete) hyperbolic.

Proof: Up to multiplying F' by a suitable constant, we may assume Kr < —4. Let d denote
the distance induced by F' on M, and w the Poincaré distance on U. Then Proposition 1.4
yields

d(¢(C1), ¢(C2)) < w((a,C2),

for all (3, {(z € U and holomorphic maps p:U — M. But this immediately implies
(cf. [K, Proposition IV.1.4]) that the Kobayashi distance kps of M is bounded below by d,
and the assertion follows. O

In particular, then, a complex manifold admitting a complete complex Finsler metric
with holomorphic curvature bounded above by a negative constant is necessanly taut.

The notion of holomorphic curvature for (non-smooth) Finsler metric has been intro-
duced recently in connection with the Carathéodory and Kobayashi metrics. In particular,
Wong [W] and Suzuki [S] (see also [Bu]) have shown that the holomorphic curvature of
the Carathéodory metric is bounded above by —4, whereas the holomorphic curvature of
the Kobayashi metric is bounded below by —4.

An interesting immediate consequence of this is an interpretation in terms of curvature
of a well known property of the Carathéodory metric:
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Proposition 1.8: Let F' be a complex Finsler metric on a manifold M with holomorphic
curvature bounded above by —4. Let ¢:U — M be a holomorphic map. Then the following
are equivalent:

(i) ¢*F(0;1) = F(p(0);¢'(0)) = 1, that is ¢ is an isometry at the origin between the
Poincaré metric on U and F;

(11) ¢ is an infinitesimal complex geodesic, that is p*F is the Poincaré metric of U.

Proof: By definition and Lemma 1.3, the Gaussian curvature of ¢*F is bounded above
by —4. The assertion follows from Heins’ Theorem 1.2. O

Bounds on the holomorphic curvature allow to compare a complex Finsler metric to
the Kobayashi metric — and maybe to prove that a given Finsler metric actually is the
Kobayashi metric. For instance, Pang [P] and Faran [F] gave conditions under which a
smooth complex Finsler metric of constant negative holomorphic curvature coincides with
the Kobayashi metric. We shall discuss the smooth case in detail in the next two sections;
here, to provide the right set-up to the problem, we examine a bit the general situation.

We need an auxiliary notion to formulate our observation. Let F be a complex Finsler
metric on a manifold M, and take (p;v) € TV°M. We say that F is realizable at (p;v)
if there is a holomorphic map ¢:U — M such that ¢(0) = p and Ap'(0) = v with
|A} = F(p;v). In other words, ¢ is an isometry at the origin between the Poincaré metric
of U and F.

Obviously, the Kobayashi metric is realizable in any taut manifold; on the other hand,
as a consequence of the next result, the Carathéodory metric is realizable iff it coincides
with the Kobayashi metric.

Proposition 1.7: Let F' be a complex Finsler metric on a manifold M, and choose
(po;vo) € T M. Then:
(i) If F is realizable at (po;vo), then F(po;vo) 2 wp(po;vo);
(it) f Kp < —4, then F < k)5
(iii) If F is realizable at (py;vo) and Kp < —4, then F(po;vo) = sum(po; vo).

Proof: (i) Let ¢:U — M be a holomorphic map with ¢(0) = py and v = Ap'(0) such
that F(po;vo) = |Al. Then

F(po;vo) = |A] 2 £p(po; vo).

(i1) Take (p;v) € TH°M and let p:U — M be a holomorphic map with ¢(0) = p
and v = Ap’(0). Then ¢*G is a pseudohermitian metric on U with Gaussian curvature
bounded above by —4 (by Lemma 1.3); it follows from Proposition 1.1 that ©*G < u;.
Thus

F(p;v) = F(p(0); A¢'(0)) = " F(0; A) < [A[.

Since this holds for all such ¢, we get F' < k4.
(iii) Obvious, now. O

This i1s the best it can be done on the basis of Ahlfors’ lemma and Heins’ theorem
only. In order to get deeper results it is necessary to use more tools — as we shall see in
the smooth case discussed in the rest of the paper.
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2. Holomorphic curvature: the smooth case

In this section we shall derive a tensor expression of the holomorphic curvature of a smooth
complex Finsler metric.

First of all, we need a few definitions, notations and general formulas. Let F be a
complex Finsler metric on a complex manifold M, and set G = F?, as usual. We shall
assume that F is smooth, that is that F is of class C* (k > 4) out of the zero section of
T'°M. By the way, (T*°M), will denote the complement in T1'° M of the zero section.

If (2',...,2z") are local coordinates on M, a local section of T1®M will be written as
n
> viss
; 823’
Jj=1
and we shall use (z!,...,2z";v!,...,v"™) as local coordinates on TV'°M.

We shall denote by indexes like a, 8 and so on the derivatives with respect to the
v-coordinates; for instance,

e

BvoduP
On the other hand, the derivatives with respect to the z-coordinates will be denoted by
indexes after a semicolon; for instance,

G,z

9*G G
Cii = gigs 7 CGer= 5o

A smooth complex Finsler metric F will be said strongly pseudoconvex if the F-
indicatrices are strongly pseudoconvexes, i.e., if the Levi matrix (G,3) is positive definite

on (T*®M)o. As usual in hermitian geometry, we shall denote by (G*#) the inverse matrix
of (G,3), and we shall use it to raise indexes. The usual summation convention will hold
throughout the rest of the paper.

The main (actually, almost the unique) property of the function G is its (1,1)-homo-
geneity: we have

G(z; A\v) = AAG(z;v) (2.1)

for all (z;v) € T""°M and A € €. We now collect a number of formulas we shall use later
on which follows from (2.1). First of all, differentiating with respect to v™ and v# we get

Galz; Mv) = AGa(2;v),
Gap(z; M) = Gap(z;v),
Gap(2;20) = (A/A)Gap(z; ).

Thus differentiating with respect to A or A and then setting A = 1 we get

Gag?? = Gay  Gapv? =0, (2.2)
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and

GapyvY = —Gag, Gopx VT = Gag, Go, v =0, (2.3)

afy

where everything is evaluated at (z;v).
On the other hand, differentiating directly (2.1) with respect to A or A and putting
eventually A =1 we get

Gav® =G, Gaﬂ vof = 0, GGB v*v8 = G. (24)

It is clear that we may get other formulas applying any differential operator acting only
on the 2-coordinates, or just by conjugation. For instance, we get

Ga;,'v_"= G;,‘, . (2.5)

and so on.
Assuming now F strongly pseudoconvex, we get another bunch of formulas we shall
need later on. First of all, applying G®? to the first equation in (2.2) we get

G2G, = VP, (2.6)
and thus, applying (2.5),
G5:G°°Gy = Gy (2.7)

Recalling that (G°P) is the inverse matrix of (Gop), we may also compute derivatives
of GoB: ] "
DG*? = —G**G*#(DG,;), (2.8)

where D denotes any first order linear differential operator. As a consequence of (2.3)
and (2.8) we get
G35 = —G°"G*P G 5s 07 = 0, (2.9)

and recalling also (2.6) we obtain
G3GP = —G3G*P GG 5y = —G°PG 0" = 0. (2.10)

Now we may start to work. Our first goal is to compute the holomorphic curvature
of our strongly pseudoconvex smooth complex Finsler metric F. Set

S'OM = {€ € TOM | F(§) =1},
and choose p € M and ¢ € S}°M. To compute Kp(p;£) we should write the Gaussian
curvature at the origin of ¢*G, where p:U — M is any holomorphic map with ¢(0) = p

and v = ¢'(0) = A, where |A| = F(p;v) = [¢*G(0; 1))1/2.
Writing ¢*G = g.d({ ® d(, we have

a(¢) = G(e(C) #'(€)),  9(0) = [A]%,
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and

. 2 &(logg)
K(#"6)0) = - 5(Blogg)(0) = ~ 1o D @)
The computation of the Laplacian yields

&(logg) _ 1
8¢ Glpiy')?

1 ) {Giser ' \@) TPV + Gaplirs @ N TP

S N
G(p; ¢’
+ 2Re[Ga;i(¢; ¢")(¢") (¢")°] }

|G;.'(<p; ") e') + Cv'a(t,o;t.a')(sv")""2

Hence writing 7 = ¢''(0) we get

K(¢*G)(0) = — 2[Gi5(pi €) ~ Gii(p; €)G5(p; )] €67
- 77 [Cap(ri€) = Gl G0 )" @11)

|;|4 Rﬁ{'\z[Ga i(p; &) — Galp; €)Gi( p,f)]g',, }

We must compute the supremum (with respect to A and 5) of this formula. For the
moment, let us consider A fixed, and look for the infimum of

[Ga5(P;€) — Galp; €)G5(p; €)]n°1P + 2Re{ N2 [Gasi(p; €) ~ Galp; €)Giilp; €)]€'77},

that is of . ‘
I(n) = Aagn™nf + 2Re[A2Ba;,- {'n_"], (2.12)

where

Ayp = Gop(p &) — Ga(p; €)Ga(p; ),
Bs;i = Gai(p; €) — Ga(p; €)Gi(p; €).

Let us study the hermitian form (A,3). By assumption, the matrix (G,5(p;€)) induces
a positive definite hermitian product on C"; so we may decompose C" accordingly as the
orthogonal sum of €£ and its orthogonal (€¢)L. Since, by (2.4) and (2.5),

Aaﬁ U"f_ﬂ = Gaﬁ ﬂ“fﬁ - GaGﬁ 17“5_»3 = Gan® — Gan® =0,
B fif_a = Gg;i E"Z’E -GG {'F = G;'{" - —— G;.‘fi =0,

for every n € C", if we denote by
h=n- (Gaa n“f_ﬂ) 3

the orthogonal projection of 7 into (€C¢)t, we get
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Lemma 2.1: Let F be a strongly pseudoconvex smooth complex Finsler metric on M,
and take p € M and £ € S;°M. Then Iy = 0 on €£ and I\(7) = Ix(n) for all n € C".

So it suffices to study Iy on (C€)*. Note that 7 € (C¢)* iff
0= Gaﬁ ﬁas_ﬁ = Gl
therefore on (C¢)+ we have
Az % =Gz, (2.13)
In particular (A,3) is positive definite on (C¢)~.

Thus I is a quadratic polynomial on (€£)+ with positive definite leading term; hence
I, attains a minimum at 7 € (C¢)L given by

A,37% =—A'Bg, €', B=1,...,n,
that is, by (2.13),

7* = -A2G°* By ¢!,  a=1,..,n (2.14)
Putting (2.14) into (2.12) we find that the minimum of I is
’ ~IA*G*? (Bays &) (Bp: ') < 0,

and thus (2.11) yields
Kr(pi€) = —2[Giy — G,iG,5 — G Boyy By, €6
Now, using (2.4) and (2.6) we get .
GQBBG;JBH;:' = GaﬁGu;JGB;i -GG

therefore —
Kr(p;€) = —2[G.i; — G*PGay3G5,5) €60 (2.15)

It is easy to check (cf. [Wu]) that when F is a standard hermitian metric on M, then
(2.15) reduces to the usual holomorphic sectional curvature in the direction £.
There is a shorter way of writing K. Set

= G*Gp.i;
then it is easy to check that

I'=T% 9

13 ava
is a (1,1)-tensor on (T"°M)o. Put I'}; = (T'});5; then, by (2.8),

® dz*

Ty = G** Gy — G*P G Gpo 3Gy
and so, by (2.6) and (2.7),
Gal'f; = Giis - GﬂﬂGﬂ;JGﬁ;i- : (2.16)

Summing up, we have proved the
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Proposition 2.2: Let F be a strongly pseudoconvex smooth complex Finsler metric on
M, and take (p;£) € S'°M. Then the holomorphic curvature of F in the direction of £ is

Kp(p;€) = —2GaT% €0, (2.17)

For future reference, we note here that more generally the holomorphic curvature of F°
in the direction of a non-zero vector v € T; O M — which coincides with the holomorphic
curvature in the direction of { = v/F(p;v) — is given by the formula

Kr(pi0) = = g Calpi o)1) v (2.18)

3. Holomorphic curvature and geodesic complex curves

Let F' be a (smooth) complex Finsler metric on a manifold M. Let U, denote the disk
{¢e C||¢] <r}in € (with 0 < r < 1), endowed with the restriction of the Poincaré
metric of U; note that U, is a convex subset of U with respect to the Poincaré metric.
A holomorphic map ¢: U, — M is a segment of infinitesimal complex geodesic if ¢*F is
the Poincaré metric on U,, that is if ¢ is a local isometry from the Poincaré metric to F.
On the other hand, ¢ is said segment of geodesic complex curve if the image via ¢ of
any (real) geodesic in U, is a (real) geodesic for F' in M. In other words, ¢ is a local
isometry and ¢(U,) is a totally geodesic complex curve in M. When r = 1, we shall talk
of infinitesimal complex geodesics and geodesic complex curves tout-court. In any case, if
(p;v) = (¢(0); ¥'(0)) we say that ¢ is tangent to (p;v).

In [AP] we showed that ¢ is a segment of geodesic complex curve iff it is a holomorphic
solution of the system

(") +Alp")* = T )N¢'),  a=1,...,n (3.1)

Gaplp; )" + AP ) = [Gialei¢') — Caiili )] (@),  a=1,...,n, (3.2)
where the prime stands for 8/9(, and A:U — C is the function

%
T-1CP°

As we shall see later on, the main amount of informations is contained in equa-
tion (3.1). For the moment, however, let us discuss equation (3.2) a bit.

Let ¢:U, — M be a holomorphic solution of equation (3.1). Then, putting (3.1)
into (3.2), we find that ¢ is a segment of geodesic complex curve iff

A(Q) =-

Gas(0: @ L5030 )(¢') = [Gayi(;¢') — Giali; )] (¢")Y,

— that is iff along the curve ¢ we have

[Gi;a —Ga;i + Ga,ﬂrg]vi =0, a=1,...,n. (3.3)
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In a more symmetric way, following [Ru2] we may introduce the torsion tensor
Taip = (Giga — GigpT'’) = (Gapii — GapsTh);
it is a (3,0)-tensor defined on (T1°M),. Then (3.3) is equivalent to
Ta;pﬁv‘=0, a=1,...,n.

If G(p;v) = ga3(p)v®vP is a standard hermitian metric, then Gop = 0 and (3.3)
reduces to
99ap _ 99i
8z¢ ~ 9z¢’
that is to the usual Kahler condition. For this reason, a strongly pseudoconvex smooth
complex Finsler metric satisfying (3.3) will be said Kahler. Summing up, we have proved

Proposition 3.1: Let F' be a strongly pseudoconvex smooth complex Finsler metric on
a manifold M. Then a holomorphic solution ¢ of (3.1) is a segment of geodesic complex
curve iff F' is Kahler along .

It is possible to write (3.3) in still another way. Set I'g; = (I'})s; then, using (2.3),
(2.6) and (2.8),

g;i = _GwGaFGvPﬁGﬂ;i + GaﬁGﬁﬂ;is (3.4)
and so
Gal; = Gpi — GpaI}),
GaaPS;.- = Gpp;i — Gﬂﬂ'rrg’
Gal’f’;’ﬁvi = Gigv'.
Then
Tain = Gaa(Th, — T5,), (3.5)
[Giia = Gaii + GapTiilo* = G(Tf, — To)0", (3.6)

and (3.3) is equivalent to Gﬂ(I‘ﬁa - I‘g;.«)v‘ =0for a =1,...,n. We remark that when G
is a hermitian metric then 5
98
Pg;i = gaﬁ aziﬁ H

and so they are the coefficients of the Cartan-Chern connection associated to the hermitian
metric. In particular, then, (3.5) shows that in this case T actually coincides with the
torsion tensor of the connection.

But let us now return to equation (3.1) and holomorphic curvature. We shall say that
a holomorphic curve ¢: U, — M realizes the holomorphic curvature at 0 if

K(¢*G)(0) = Kr((0);¢'(0)).
More generally, ¢ realizes the holomorphic curvature at (o € U, if p oy, realizes it at 0,

where .
==
7(0(() 1+ GoC

is the unique automorphism of U sending the origin to (o with positive derivative at 0.
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Proposition 3.2: Let F be a strongly pseudoconvex smooth complex Finsler metric on
a manifold M, and let ¢: U, — M be a holomorphic solution of (3.1). Then

(i) ¢ realizes the holomorphic curvature at every point of U,;

(ii) if (¢(0);¢'(0)) € S"'°M, then ¢ is a segment of infinitesimal complex geodesic for F.

Proof: (i) By Lemma 2.1 and (2.14), a holomorphic ¢: U, — M realizes the holomorphic
curvature at 0 iff

n® = =X2G*(p;)Bp(m &) € + €%, a=1,...,n, (3.7)
where p = ¢(0), v = ¢'(0) = A with £ € S53°M, 5 = ¢"(0) and ¢ € C. Since, by (2.6), we
have _

G*’By,; =T? - G;i€®,
it follows that (3.7) is equivalent to
n* = -T'%(p; v)v' + ¢ v, a=1,...,n, (3.8)

with a possibly different ¢; € €. But (3.8) with ¢; = 0 is just (3.1) evaluated in 0; so a
holomorphic solution of (3.1) realizes the holomorphic curvature at the origin.
Now take {p € U,, and set ¢ = ¢ 0~y,,. Then

#(0) = ¢(o);
¥'(0) = (1= 16l*)#' (o);
$"(0) = (1 = 1¢o)*)* (" (o) + A(So)¥' (Co))-
So ¢ realizes the holomorphic curvature at (o iff
(¢"(Co) + A(C0)#'(C0))™ = —T%(2(¢); '(€0)) (#'(¢0))" + e2(¥' (%)),
and (i) follows.
(ii) Assume (3.1) holds. Then, recalling (2.6), we get
Calp; ' )(¢")* + AG(p; ") = Galwi ") [(¢")" + Al¢')7]
= —Galp; ¢ (0 #')(¢') = =G il "))
Therefore
a%[G(so;sa’)] = Gi(2;¢')(@') + Gale; ¢')(¢")* = —AG(p;¢).
Now, along the curve t - e*% we have
9 —ie 4,
aC dt’
therefore ¢ = G(p(e%t); ¢ (eiotj) is a solution of the Cauchy problem

{f’(t) 0]

_1
T2

t2
f(0)=1.
But f(t) = (1 —t?)~? is a solution of the same problem; therefore
0. 1oy — 1
G(p(e’t); o' (e*t)) = a—ae

and we are done. O
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So the main point now is to find when (3.1) has a holomorphic solution. Assume
p: U, — M is such a solution, and apply 9/9¢ to (3.1). We get

a _2|C|2)2 ()™ = T30 ' )@ ) (@) + T35 ")) ("), (3.9)

where, as before, I'f; = (T'7),5 and Fg_i = (I'%)z-
Now, (2.2) and (2.9) yield

5407 = G Gy P + GGy 0P = 0. (3.10)
So we can replace 9" by ¢" + A’ in (3.9) and, calling in (3.1) again, we obtain
1 |C|2)2 A (P =Th5(es0')(¢")! o) )J gy A" )I‘ (e 0@ ) (). (3.11)

Now, if (¢(0);¢'(0)) € S*°M, then Proposition 3.2.(ii) yields

1
G , ! = e—r)
therefore — setting v = ¢'(¢) — (3.11) becomes
% - T8 THv'v =260,  a=1,..,n (3.12)

So (3.12) is a necessary condition for (3.1) to have a holomorphic solution. The interesting
fact is that it is sufficient too:

Theorem 3.3: Let F be a strongly pseudoconvex smooth complex Finsler metric on a
manifold M. Then the Cauchy problem

{ (") + A(p")® = =T5(p; 0" )¢’ ) fora=1,...,n,
©(0)=p, ¢'(0)= vy,

admits a holomorphic solution for all (p;ve) € SV°M iff (3.12) holds. Furthermore, the
solution, if exists, is unique.

Proof: We have already proved one direction; so assume (3.12) holds.
For any €' € 8!, let consider the Cauchy problem

{ (§(1)° = —A(t)(é(t))a — T3 (g(1); 9(1)) (4 #)', fora=1,...,n, (3.14)
g(0)=p, §(0) = e*vy.

The standard ODE theory provides us with an ¢ > 0 and uniquely determined maps
geir: (—€,€) = M. solving (3.14). Define p: U, — M by

v(¢) = g¢7161(1¢1), (3.15)

(3.13)
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and assume for a moment that ¢ is holomorphic. Since, writing ¢ = te*®, we have

0 ie“a 3 A I B

it follows that 5
3= Klgmqucn,

and thus ¢ is a holomorphic solution of (3.13). In conclusion, we must prove that, assuming
(8.12), the map ¢ defined by (3.15) is holomorphic. Note that, since a holomorphic map is
uniquely determined by its restriction to the real axis, the uniqueness statement for (3.14)
implies that ¢ is the unique possible holomorphic solution of (3.13).

First of all, set f5(t) = tanht and

o9(t) = g.is(tanht). (3.17)

Then
6o =(fo)(ger 0 fo)  and  Go = (f3) [(Jeie + Ageiv) 0 fo;
so oy satisfies .
o5 = —I'(0e;96) 05, fora=1,...,n,
{69(0) =p, &¢(0)=e"%,.
Set h = G(a;; &g). Then

h’ = G;,'(O'e; O'a) U; + Ga("'&? 09)03
= G,i(04;56) &b + Gop(06; 66) 5565
= G;i(aﬂ; C.l"a) C.T; - Gp;i(a'ﬂ; 6'9) &bg =0.

So h(t) = h(0) =1, and the curve oy lifts to a curve 65 = dog = (0;04) in S1OM.
Now, we define a global vector field X € I‘(T1 (ST M )) by setting

. 0 o g
= 5 I v (3.18)
where (z!,...,2";v!,...,v") are the local coordinates of & € (T1°M)y. X is globally
defined because, as already remarked, the I'’s are the components of a (1,1)-tensor field
over (T1® M),; furthermore, it is easy to check that for & € S»°M it is actually true that
X; € T;°(§'° M), as claimed.

To proceed, we need to recall a basic fact of complex differential geometry. Let N be a
complex manifold, of complex dimension m. If we consider N with its real structure, then
TN is a (4m)-dimensional real vector bundle on N endowed with a complex structure J.
If we denote by T°N its complexification, then T!°N is the i-eigenspace of J, and the
canonical isomorphism TN — TN is given by

YHYO=Y+?,
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where Y is the complex conjugate of Y in T°N. In particular, then,
JY° =i(Y -Y).

The aim of this observation is that, by construction, &, is the integral curve in $1:°M
of the vector field X starting at (p;e'®vy). If we denote by e!X” the local one-parameter
group of diffeomorphisms induced by X° on §°M, we may then write

Go(t) = X" (e%00)  and  o4(t) = w(e'X e5y), (3.19)

where 7: §7"°M — M is the canonical projection, and % = (p;v) € SV M.

We need another vector field on S*°M. The map (e, (p;v)) — (p;e®v) is a one-
parameter group of diffeomorphisms of $1° M; therefore it is induced by a vector field Z,
namely

Z = iv“(;% € P(T"”(Sl"’M));

note that m.(Z) = 0. Then (3.19) becomes
Go(t) =X e?%°5y  and  op(t) = n(e'X ®Z ). (3.20)
Now, we need to compute
(X°,JX°] =i[X + X, X - X] = -2i[X, X],

and

[X°,2° = [X +X,2 +Z) = [X, 2]’ + [X, Z)"
Using local coordinates we find

0 0 ] 0
Y ol NS B . _T°
(X, 2] = I 30a v [azﬂ I‘ﬁ'J . P;ﬁavﬂ
, P 3 (3.21)
—_ : a —_ .
= ~i[ g - Tgvi ] = %

because, by (2.2) and (2.9), I'g, uﬂ = I'%. It is clear by the definitions and (3.10) that
[X,Z] = 0; finally,

[X’Y]="' [ Pﬁrﬂﬁ] viuh __-I- [F P%Pgh] h._.?._

Ove
YR L

where we used (3.12) on S'°M. So we get

[X°,JX°)=—-4Z° and [X°, 2Z°=-JX"°
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Now fix 7 > 0, and set ¢, = e™X’ §p. Put
u(t) = eX° 2 x5, € T, (SOM).

Then
du d  1x° o tX* ° tX°( 7o
it (t) = dt (Ct Ze-““" i},.) = —e, {CX'Z }e“x'ﬁ,- =e, (J )e“x"ﬁ,.i

where L x. is the Lie derivative, and

dau d . ° . 0 ° po
F(t = a (eix (JX )e"x'in,.) = —Cix {ﬂxa(JX )}e-t.x';,r = 46:,)( e—tX% -+

In other words, u(t) is a solution of the Cauchy problem

ti = 4u,
{U(0)=Z§,, 4(0) = (JX)s,.

Therefore 1 1
u(t) = €% (225, + (JX")s,) + 77 (228, — (JX°)s,),

and, in particular,

e21’ _ 6—21' 6‘21' _ 6_2
moelX 28, = mau(r) = ———m(JX)s, = —

Jm. X2 . (3.22)

We are almost done. Recalling (3.15), (3.16), (3.17) and (3.20), it is clear that we
should prove that

o o oo
ag_ﬂ, (e(.unh:)x 0% ﬁo)

’

=tJ ﬂw (e(ata.nht)X"eOZ‘ 60)
ot 6=0

=0

where we may take 8 = 0 because ¥y is generic. Let us compute; using (3.22) we get

17, o pge o "
il (atanh ) X° 6Z° ~ ) = (atanh 1) X 7° = Jn. X2
6871' (e [ Yo st TeCa v 1 _ t2 Ta Vatanht ’-
whereas
d atanh ) X° 6Z° ~ 0 (atanh t)X° ~ 1
Et-w (c( e UO) 8=0 - Eﬂ. (c vo) T 1o T X ouam e
and the proof is complete. O

So we have found a necessary and sufficient condition for the existence of segments of
geodesic complex curves:
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Corollary 3.4: Let F be a strongly pseudoconvex smooth complex Finsler metric on a

manifold M. Then:
(i) if (3.12) holds, then for any (p;¢) € S1'°M there is a segment of infinitesimal complex

geodesic tangent to (p;€);
(ii) there exists a (unique) segment of geodesic complex curve tangent to (p;£) for any

(p; £) € S'°M iff F is Kéhler and (3.12) holds.

Proof: (i) Theorem 3.3 and Proposition 3.2.(ii).

(i1} In {AP] it is shown that a segment of geodesic complex curve is a holomorphic
solution of the system (3.1)-(3.2). The assertion then follows from Theorem 3.3 and
Proposition 3.1. O

A natural question now is whether the completeness of the metric F — together with
Kéhler and (3.12) — would imply the existence of geodesic complex curves defined on
the whole unit disk U/. The answer is positive, but for the proof we beforehand need a
discussion of the geometrical meaning of (3.12).

Thanks to Proposition 3.2.(i), we know that a holomorphic solution of (3.1) realizes the
holomorphic curvature and it is an isometry from the Poincaré metric to F'; in particular,
thus, the holomorphic curvature along the curve should be —4. This suggests to look for
a connection between (3.12) and the holomorphic curvature; and indeed the next result
shows that the connection is provided by a sort of simmetry condition on the curvature.
Analogously to the tensor T4;; previously introduced, set

Haipy = Grn(I‘.-';a - I‘;;:');I + Gfﬂl'r;ra} - Gfﬁ“FiriJ
= (Grﬂr‘:.aj)i - (Grﬁr‘;j)ﬁ

it is a (4,0)-tensor on (T"°M),. Note that

< e—

HaipgvPv'vl = [Go (T, — T5.)i5 — Gralhs]viod. (3.23)

Then

Theorem 3.5: Let F' be a strongly pseudoconvex smooth complex Finsler metric on a

manifold M. Then (3.12) holds iff Kr = —4 and
Haig;vPv'vi =0, a=1,...,n. (3.24)

Proof: We start by showing that (3.12) implies Kr = —4. Indeed, take (p;¢) € SM°M.
Then, recalling (2.2), (2.6), and (2.10), we get

Garg;i = GaGgﬂGﬂ;i + GaGapGpﬂ;i = 0
Therefore (3.12) yields

KF(p;E) = —'26011;] 613 = —4G.£" — Garg;,’rg 6'5 = —4G,£" = —4.
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From now on we shall assume Kr = —4; we ought to prove that in this case (3.12) is
equivalent to (3.24), that is, by (3.:23), to

G (Tia—Toi)i vivi = G,.O,I";-Jv";, a=1,...,n. (3.25)
By (2.18), Kr = —4 is equivalent to
GpTlsvivl = 2G2.
Differentiating with respect to v¥ we get
4GGy = [Gpoll; + Gl 5]v'v7 + Gl v,
multiplying by G*¥, and recalling (2.6), we obtain
4G v = [T5; + G°PGolh s]v'v7 + GG 0. (3.26)

Now,
T =GP Gy — G Gor, T (3.27)

TS5 =G Guiy+ GP*Grpis — G Gory T — GPTGoro TG — GP G o T,
Therefore, using (2.2), (2.3), (2.4), (2.6), (2.8) and (2.10), we get
GQDG’BI"E"I = _GapGa;ng;" = _GGFGUJ(G;ﬁGﬁ,I + GaaG‘]ﬁ,l)

= —PgGaﬁG’]p;g + P;GaiGaﬁGb‘ymei
= —F;‘}(GQFGW;; + Ggﬁcb;i) = —PE;,‘P?-

So (3.26) becomes
4G v* = [I% = I, Th]v'v7 + GG, o', (3.28)
Now, in (2.16) we showed that
G GpI, vt = G [Gip — TG0,

Since, by (2.4) and (2.9), . .
[fpvi =G Goypvi =T7;,
we get
G GpTYip v' = G [Grip — G |v vl
= G [Gpi5 - Gr;.-I"a';j]v‘5+ G [(G30 — Goyg)ii — Gri(T35 = F;;i)]vi;'
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Now (2.8) yields
Gapr;,'F;;] = GapGgp;II‘; - G“G,g,—,pl‘;‘}l‘f,-
= GapGgp;jI‘; + I"g;,-I‘g - GQFG‘;g;,‘P;‘;;
so, by (3.27),
G (Gryiy — Grily5) = (D5 — T5T) + G Gy

Summing up, we have found

G*?Gplfyv' =[5, - T Th]viv?

+ G [G*F:ir;,j + (Gj;iii - Gl";i);i - G?;i(P;;n - PE;,)] v'vd.
For the moment, set
Tp = [Gj;p - Gp;j + Gﬂ;r’,}]ﬁ = Tpn‘ U“;’r;

recall that (3.6) says that .
Therefore

(G35 — Gri3)i v3 = (To)yi — (Gral)i 09 = (To)i — [GrouiTy + Grolly] v

Gﬁ‘(rf;f' - Pz;j)ﬁ = (TF);-' - G?(P;;n - P;;j);iw'

In conclusion, we have shown that

GGl v* = [P — T4, Thlv'vi + G [Go(T5, — Thp)i — GosT Ty ] v'vd.
Recalling (3.28), we have obtained

4G v® = 2[T%; — 9. Thlv o7 + GP[G#(T}, — T — Gos D] w03,

and the assertion follows. O

If G(p;v) = g,5(p) v#v¥ is an hermitian metric, then the tensor H,;; becomes

ad
Hoiz; = 9ri 5'2=jT.'Z = Riap; — Raipy

where T is the torsion of the Chern connection associated to the hermitian metric, and
R,izj is the Riemannian curvature tensor of the connection. Setting

Vu, v, w, z € T"°M  R(u,v,9,%Z) = Raiz; uv'whzd,
a few standard computations show that (3.24) is equivalent to
R(v,w,7,®) + R(v,w,w,?) = R(w,v,7,¥) + R(w,v,w,7), (3.29)

for all v, w € T M. So (3.24) may be interpreted as a simmetry condition on a curvature
tensor, as anticipated in the introduction. Finally, we also remark that — always in the
hermitian case — (3.24) holds when 8T = 0, because the latter is equivalent to

Vv, w € TVWOM R(v,w,-,") = R(w,v,,").

Now that we have an idea of the geometrical meaning of (3.12), we may return to the
study of geodesic complex curves. As anticipated, we are now able to prove the following
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Theorem 3.6: Let F be a strongly pseudoconvex smooth complete complex Finsler metric
on a manifold M. Assume that the holomorphic curvature of F is identically —4 and
that (3.24) holds. Then for every (p;€) € S'°M there is a unique holomorphic solution
p:U — M of (3.1) defined on the whole unit disk U such that ¢(0) = p and ¢'(0) = €.

Proof: First of all, we remark that the distribution €X° @& €Z° C T(S''° M) is involutive.
Indeed, Theorem 3.5 shows that (3.12) holds, and in the proof of Theorem 3.3 we have
already computed [X° JX°] = —4Z° and [X°,Z°] = --JX°. For the remaining brackets,
using (3.21) we get

[(X°,JZ°l = X°, [JX° Z2°=X°, [JX°JZ°l=JX°, |[2°,0JZ2°]=0.

Let N denote the integral leaf of this distribution passing through (p; £). From the proof
of Theorem 3.3 it follows that N = ﬂ(ﬁ ) C M is a Riemann surface locally parametrized
by the holomorphic solutions of (3.1). In particular, F restricted to N is a complete
hermitian metric of constant Gaussian curvature —4, because of Proposition 3.2. Thus
there is a unique holomorphic covering map #: U — N which is an isometry between the
Poincaré metric on U and F restricted to N and such that 4(0) = p and 4'(0) = £. But if
¢: U, — N is the holomorphic solution of (3.1) with ¢(0) = p and ©'(0) = £, then ¢ too is
an isometry between the Poincaré metric restricted to U, and F restricted to N; it follows
that ¢ = Y|y, , and ¥ is the extension of ¢ to the whole U we were looking for. O

Corollary 3.7: Let F be a strongly pseudoconvex smooth complete complex Finsler met-

ric on a manifold M. Assume that the holomorphic curvature of F is identically —4 and
that (3.24) holds. Then:

(i) for any (p;€) € S*®M there is an infinitesimal complex geodesic tangent to (p;£);
(ii) if moreover F is Kahler, then for any (p; &) € S''°M there is a unique geodesic complex
curve tangent to (p; £).

Proof: Theorems 3.5, 3.6 and Propositions 3.1 and 3.2. O

Actually, we can even get a sort of punctual version of the latter result. As usual, we
need a computation, which by the way clarifies the relationship among (3.12) and the two
torsion tensors we introduced, T and H. For the sake of simplicity, set

E;J = P;O:'I - Ff—,';,-l“g.

In particular, (3.12) becomes I, v¥v) = 2G v°.

Proposition 3.8: Let F be a strongly pseudoconvex smooth complex Finsler metric on
a manifold M. Then

Haig; V707 = X (Taip 0F) + (GioTiu; = Gao )07,

foralli,a = 1,...,n, where X is the complex conjugate of the vector field defined in (3.18).
In particular,

Haiﬂjv_“vi;r = Y(Taip 57‘-0") ~ Gaolly vi;JF, a=1,...,n.
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Proof: By (3.5) and (3.18)

- 0 —.6
= pl— T yf —.
X vaz_Jr P’vav_‘f

Thus _
X(Tuia 0%) =G [(T5, — T8, — THITY, — T5.)5]v7

+[Gpiy — GpsT ](1'"fj - T5,)v.

Now, G5I'}, = Gg,3, and so the second addendum in (3.30) vanishes. Next, recalling (3.4)
and the usual formulas,

(3.30)

Gﬁ(rﬁ - Fﬂ )'{ = _[Giﬂr;;a - Gaﬂr;;i]'

Therefore
X(Tain ) = Go(T2, —T2.)5 97 + [CioT%e T — GaoTZ, T 07
= Gp(Th, - rﬂB D37 = [Gio 255 — Gao E55J07 + (GioT iy — GaoI7y)07
= Hoipz 0" v — (GieZo5 - G”Z;ii]v ’
and the assertion follows. O

As a corollary we have

Corollary 3.9: Let F be a strongly pseudoconvex smooth complex Finsler metric on a
manifold M. Assume that the holomorphic curvature of F is identically —4 and that (3.24)

holds. Take (pg; &) € SY°M. Then there is a segment of geodesic complex curve tangent
to (po; €o) Iff F is Kéhler at (po; &), that is iff

Toip(po; &) EEE =0, a=1,...,n. (3.31)

The segment, if exists, is unique. Furthermore, if F is complete then the segment of
geodesic complex curve actually extends to a whole geodesic complex curve.

Proof: One direction is known. Conversely, assume (3.31) holds. By Theorem 3.5,
GME;‘;J vivd = 0;

hence, by Proposition 3.8, X (Taiz v'vF) = 0. So Taiz v'v¥ is constant (and thus zero) along

the solution of (3.1) tangent to (pg; & ); the assertion then follows from Proposition 3.1.0J

As already discussed in the introduction, one of the motivations behind this work
was to find a differential description of the properties of the Kobayashi metric in strongly
convex domains. We conclude then with the following:

Corollary 3.10: Let F be a strongly pseudoconvex smooth complete complex Finsler
metric on a manifold M. Assume that (3.12) holds or, equivalently, that Kr = —4 and
(3.24) holds. Then F is the Kobayashi metric of M.

Proof: By Theorem 3.5, in both cases the holomorphic curvature of F' is —4. Furthermore,
by Theorem 3.6 F is realizable. The assertion then follows from Proposition 1.7. O
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