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Toponogov's Theorem for Hetrlc Spaces 11

by Conrad Plaut

In this note we correct some errors in "Toponogov's Theorem

for metric spaces" (henceforth referred to as [P3] ), prove a

" r igidi ty" theorem, and generalize Toponogov' s Maximal Diameter

Theorem.

We use the same notation and references as in [P3]. and

refer to results in [P3] by number only (e.g., "Lemma 2" refers

to Lemma 2, [P3 ] ) . The mos t important error in [P3 ] is the

omission of geodesie completeness from the hypothesis of the main

theorem, which should should have been stated:

Theorem A. If X is geodesically complete of curvature ~ k,

then every proper triangle in X is Al and every proper wedge in X

is A2.

Definition. We say that a wedge ("(ab' ß )
BC

is A2 with

equality if there 1s a representative wedge ("(AB' ß
AC

) in S
k

(i. e. , whose sides are minimal with L(:Y )
AB

L(ß )
AC

L (ß ), Q ( "( , ß ) - a ( "( • ß )) and d ( B, C) - d (b, c).
BC AB AC ab BO

Using results of [P2] one can formulate rigtdity theorems

analogous to the rigidity part of Toponogov' s theorem in the
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Riemannian ease, but the statements are long, and at present we

have no applieations for a theorem stronger than what we give

below.

Theorem R. Suppose X is geodesiea11y eomp1ete of eurvature

~ k and (-v, 1 J
1s proper and A2 with equa11ty, with

representative (:y , :y) in S. Let Li - L("Y
i
), i-I, 2.

1 2 k
Then

for all 0 :5 t :5 L, d (1 (L ), "Y (t)) - d (1 (L ) J ..., (t)). In
2 1 1 2 1 1 2

addition, if 1 is minimal, d(-y (s), ..., (t)) - d(:Y (s), :y (t)) for
2 1 2 1 2

all 0 :5 s :s L .
1

Theorem D. If k > 0, X is geodesieal1y eomplete of

eurvature ~ k and dia (X) - ~/jk, then X 1s isometrie to Sn for
k

some n.

Before proving Theorems Rand D, we give correetions to

[P3]. In the statement of Lemma 5, "there exists a X > 0" should

be replaced by "for all sufficiently small X > 0." Rather than

giving a list of corrections for the proof of Theorem A we will

simply give below a simp1ified and corrected proof in its

entirety. What follows shou1d replace the arguments in [P3]

beginning with the last paragraph on page 6 to the beginning of

the proof of Theorem C on page 11. We assume throughout this

proof that X is geodesica1ly complete (a1though this is only

direct1y used in Step 2).
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For ° < D < ~/jk, fix a closed ball B - B(p, D) c X and a

cover U of B(p, 2D) by regions of curvature ~ k, and let X(U) < D

be as in Lemma 5 and also less than 1/12 of a Lebesque number of

u. Let T(U) small enough that if ca, ~ are unit geodesics in S
k

- -
with a(o, 'l) :S T(U), then for all 0 ~ t :S 0, d(o(t), )'(t)) :S

x(U). If 0, ß : [0, 1] -> B are minimal curves starting at p, we

call a proper triangle (a, )', ß) p-based. A p-based triangle

(0, 'l, ß) i5 U-thin if 0(0, ß) :S T(U) and )' is minimal. At

present we do not require that )' lie in B in either definition,

but X(U) < D implies ~ lies in B(p, 2D). Consider the following

statements:

SI(n,m). Jf (a, 'l, ß) 15 U-thin such that (n-l)·x(U) :S

L(a) :S n· X(U) and (m-l)· X(U) :S L(ß) :S m· X(U), then (0, 'Y, ß) is

Al.

S2(n,m). Jf (a, '1, ß) is U- thin such that (n-l)· X(U) :S

L(a) s n·x(U) and (m-l)·x(U) :S L(ß) ~ m·x(U), then (a, ß) 1s A2.

S3(n). Jf (0, ~, ß) is p-based and lies in B(p, n'X(U),

then (a, 'l, ß) is Al.

Note that by monotonicity S1 (n, m) and 83 (n) state

equivalently that (a, 'l) and (ß, )') are A2. 81(6,6), 82(6,6),

and 83(6) are true by the way X(U) was chosen. We will prove
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by induction that S3(n) holds for n ~ (D- 3X) / x.

Step 1. 5l(n,n) and 52(n,n) imply 52(n, n+l).

Proof. Fix a U-thin triangle (a, ~, ß) such that n'X(U) ~

L(o) s (n+l)·x(U) and (n-l)·x(U) ~ L(ß) ~ n·x(U). Let q lie on a

such that d(p, q) - L(ß) , let x - 0(1), Y - ß(l) and ~ be minimal

from y to q. If v is the segment of 0 from p to q, we obtain

from S2(n,n) thst (ß, v) is A2 and from Sl(n,n) that (v, ~) is

A2. 52 (n, n) implies dia {x, y, q} ~ 3X(U); if r is the segment

of Q fram q to x we have that both (~, r) snd (r, ~) are A2, and

that (0, ß) is A2 fol1ows from Lemma 1. o

Step 2. 53 (n) impl1es that if w 1s minimal from p to a

point a E B (p, (n-l)· X(U)) and e 1s minimal starting at a w1th

L(e) ~ 4X(U), then (w, e) is A2.

Proof. Let R' - L(w), assume both wand e are unit, and let

x - E(L(E)). Choose a representative (~, €) in S , denoting the
k

corresponding points with capita1s. Let p be unit minimal from P

to X, R - min (R', L(IJ)}, and K. be minimal from A to ~(R).

Since n ~ (D-3X) / X, L(~) + L(€) ~ D, and by Lemma 5, for all s,

d(P, K.(s)) < R + X(U) ~ n·x(U). For any sufficient1y sms1l 6 >

0, by Lemma 2 and geodesie comp1eteness there exists a geodesie K.

[0, 1] -> X starting at a of length L - L(~) with

10(K., w) - o(K., w)1 < 6 and 10(K., e) - o(K., E)I < 6. For smal1

4



enough 5, S3(n) 1mp11es that d(p, ~(s» < n'X(U) for all sand

(~, w) 1s A2. On the other hand, by the triangle 1nequa11ty

L(~) s 8X(U) and dia (~(l), a, xl < l2x(U); thus (~, E) 1s A2.

Lemma 4 now 1mplies (w, E) is A2. o

Step 3. 51 (m,m), 52(m,m), for all m ~ n, and S3(n) imply

51(n,n+l).

Proof. Let (a, 1t ß) be as above. The proof that (a, 1) 1s

A2 19 s1milar to the argument 1n Step 1. Let a be the point on ß

such that d(a, y) - X(U)t R - d(p, a), w denote the segment of ß

from p to a and E be minimal from a to x. By the tr1angle

inequality (and the fact that a(a, ß) ~ r(U» L(E) s 4X(U) and

Step 2 implies (w, E) 1s A2. By a proof s1m11ar to that of Step

1, Sl(n,n) and S2(n tn) 1mply (at w) is A2. If Adenotes the

segment of ß fram a to y, (Et A, ~) is also Al, and the proof 1s

camplete by Lemma 1. 0

Step 4.

52 (n+l ,n+l).

Sl(n,n+l) and 52(n,n+l) imply 51(n+l,n+l) and

Proof. This 15 a straightforward app11cat1on of Lemma 1. 0

Step 5. Sl(m,m). 52(m,m), for all m ~ n+l, and 53(n) imply

53(n+l,n+l) (and the induction 15 complete).

Proof. Let (a,

5
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1 : [0, 1] -> B(p, (n+1)·x(U». We first claim the fo11owing:

If r is minimal from p to q - 1(t), for some t, t -> t and fJ is
1 1

minimal from p to 1(t
1

) , then for all sufficiently large i,

(r l' 1
1

, '7
1

) is Al, where 1
1

1s 1 restricted to the interval

between t and t. By using two subsequences, if necessary, we
1

can assume lim a(", r) 1s either 0 or 2e > O.
1->CO 1

In the first

case the proof 1s complete by Sl(m,m) for m S n+1. In the second

case a(" , r) > € for all large i.
1

Choosing a subsequence if

necessary we can find a minimal " from p to q such that

a("1' ,,) -> 0; in particular, (" , 1 ) is A2 for all sufficiently
1 1

large i by Sl(m,m) for m S n+l. On the other hand, let a be the

point on r such that d(a, q) - 2·X(U), w denote the segment of r

from p to a, v that from a to q, and j.J be minimal from a to
1

1(t ) .
1

in S then a (r, ;j) -> O.
k 1

Now a(" ,
1

r) > e implies

(r, "1) 1s A2 for large i. By Step 2, (w, 1-'1) 1s A2. Since "1
1

1s minimal for 1arge enough i and (I-', v), (v, "1) are A2, the
1 i

proof of the claim 15 complete by Lemma 1.

For s > 0, let "'( denote 11 ,and denote by Al (5) the
8 (0,8]

statement: for every minima.l ß from p to 1 (s), (a, 1 , ß) 1s
8 8 8

Al. The above claim imp11es that A1(6) i5 true for sufficiently

small S > 0, and the claim and Lemma 1 prove that if AI(T) i5

true for some T, then AI(T+S) is true. L1kew1se, if Al (s) 1s

true for all s < T then AI(T) 1s true; 1t follows that Al(T)
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holds for all T.

Proof of Theorem A.

o

Step 5 implies that every p-based

triangle in B(p, D-3X(U» is Al. Letting X(U) -> 0 we conclude

that every proper triangle (0, 1, ß) in X such that d(a(O), 1) <

~/Jk is Al. The proof is now complete for k ~ 0, and is easily

completed for k > 0 using a limit argument and Lemma 1. o

Before proving Theorem R we reconcile the conc1usion of

Theorem A with our original definition of curvature bounded

below (in the sense of Rinow, cf. {P2], {R]).

Proposition 1. Li X 1s geodesica11y comp1ete of curvature ~

k then all of X 18 8 region of curvature ~ k.

Proof. By definition, we need to show that if (~, l' "'1 2 '

is a triangle of minimal curves in X represented by (~1' ~2' 1
3

)

in S, then d(-y (s), 1 (t» ~ d(:Y (s), ~ (t» for all sand t.
k 1 3 1 3

We assume all curves are unit parameterized and s, t > O. By

monotonicity we may show equivalently that if 1 is minimal from

1 (s) to 1 (t),
1 3 a - 1 1 1[0,11)' ß - 'Y3 1{O,tl'

(0:, 1, ß) represents

(0, ß, "'I) in Sk' and ~ and v are extensions of Q and ß of length

a - L("'I)' and b - L(l), respectively, then d("'I (a), 1 (b» :S
1 3 1 3

Suppose first that t - band let r - 1 I
1 [II,al

and

by A2 d(l (a), "'I (b» s d(~(a), ~(b». Now suppose t < b. Let ry
1 3
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be minimal from ~3(b) to o(s) and let (0, ~, ~3) be a

representative in S. Then if ~ is the extension of Q of length
k

a, by the above argument and monotonicity, d(~(a), ~(b» ~

d(~ (a),
1

~3(b» and d(a(s), ~3(t» ~ d(a(s), ~ (t».
3

The

proposition now follows from monotonicity. o

Proof of Theorem R. The proof when Q(~ , ~) .. ° or 1 is
1 2

trivial; we assume otherwise below. The second statement of

Theorem R follows immediately from Proposition land A2. If ~2

is not minimal, partition the domain of ~ into fini tely many
2

intervals [t ,
i

such that the restriction a
i

of to

Then by an argument similar to the proof of

is minimal.[ti' t i+1J

(e.g. ß
1

- ~1)'

Let ßi be minimal from ~1 (L
1

) to Q (t )
i i

Lemma 1 we see that (ß , Q) is A2 with equali ty for all i, and
i i

that if ß is minimal in S from ~ (L) to :y (t ), then L(ß) -
i k 11 2 i i

L(ß ).
i

The proof is now finished by the special ease proved

above. 0

Proof of Theorem D. By Corollary B, we can find points p,

q E X such that d(p, q) - ~/jk. Choosing a minimal curve from p

to q we ean apply A2 (via Theorem A) to conclude that every

geodesie of length ~/jk starting at p is minimal from p to q, and

geodesies starting at q behave likewise. Therefore the

exponential map (cf. [P2]) is a homeomorphism on B(O, ~/jk) c T
p

- Rn (and X is homeomorphic to a sphere). We identify T with
p

the tangent space at a point on the sphere, and lift the metric
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of the sphere to B(O, ~/jk). It now suffices to prove that the

exponential map i9 an isometry, i.e., by Theorem R, if Q, ß are

minimal from p to q then (Q 1 ,ß 1 ) is A2 wi th equality
rO,tl lO,tl

for all large enough t < 'Ir/jk. Using geodesie completeness we

extend Q to a geodesie ~ passing through q and returning to p.

Then ~ is minimal on any interval [a, b], where a - c - E, b

c + E, C - ~/jk, and small enough E > O. If ~ - ~I and v
[O,a]

Thus (~, v) is A2

-11 (i.e. with parameterization reversed),
(b,2o]

Q(~, v) - 'Ir (i.e., 1 is a closed geodesie).

then by Al,

with equality. Since Q(Q, ß) + Q(ß, ·v) - 'Ir, from the triangle

inequality and A2 we obtain the desired conclusion. o

We do not know of a counterexample to Theorem A with

geodesie completeness removed from the hypothesis; however, the

diameter theorem obviously does not hold in this ease - -e. g. a

hemisphere. For a more interesting example, one can "suspend Tl

Rpn (with the metric of constant curvature 1) by attaching two

" endpoints U to the warped produet, using the sine function, of

RP
n

and [0, 'Ir]. A simple argument due to K. Grove shows that the

resulting space X satisfies the conclusion of Theorem A with k -

1. On the other hand, dia X - 'Ir, but X is not a manifold, let

alone a sphere. üf course, X is not geodesically complete at the

lI endpoints. 1I In fact, from Theorem A, [PI] (since the endpoints

are codimension 2 they cannot form a boundary), and Theorem D we

obtain the following theorem, where S X denotes the suspension
lIine
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described above:

Theorem S. IE X 1s a complete R1emann1an manifold of

sect10nal curvature ~ 1 then the following are equivalenc:

a) S X h8s curvature ~ K for some K,
aine

b) S X 1s geodesically compiete, and
aine

c) X is isometric Co a standard sphere.
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