Topogonov's Theorem for Metric Spaces II

by

Conrad Plaut

Max-Planck-Institut für Mathematik
Gottfried-Claren-Straße 26
D-5300 Bonn 3

Federal Republic of Germany

Toponogov's Theorem for Metric Spaces II

 by Conrad Plaut
Abstract

In this note we correct some errors in "Toponogov's Theorem for metric spaces" (henceforth referred to as [P3]), prove a "rigidity" theorem, and generalize Toponogov's Maximal Diameter Theorem.

We use the same notation and references as in [P3], and refer to results in [P3] by number only (e.g., "Lemma 2" refers to Lemma 2, [P3]). The most important error in [P3] is the omission of geodesic completeness from the hypothesis of the main theorem, which should should have been stated:

Theorem A. If X is geodesically complete of curvature $\geq k$, then every proper triangle in X is Al and every proper wedge in X is A2.

Definition. We say that a wedge $\left(\gamma_{a b}, \beta_{a c}\right)$ is A2 with equality if there is a representative wedge $\left(\bar{\gamma}_{A B}, \bar{\beta}_{A C}\right)$ in S_{k} (i.e., whose sides are minimal with $L\left(\bar{\gamma}_{A B}\right)-\mathrm{L}\left(\gamma_{a b}\right), \mathrm{L}\left(\bar{\beta}_{A C}\right)-$ $\left.\mathrm{L}\left(\beta_{\mathrm{ac}}\right), \alpha\left(\bar{\gamma}_{\mathrm{AB}}, \bar{\beta}_{\mathrm{AC}}\right)-\alpha\left(\gamma_{\mathrm{ab}}, \beta_{\mathrm{ac}}\right)\right)$ and $\mathrm{d}(\mathrm{B}, \mathrm{C})=\mathrm{d}(\mathrm{b}, \mathrm{c})$.

Using results of [P2] one can formulate rigidity theorems analogous to the rigidity part of Toponogov's theorem in the

Riemannian case, but the statements are long, and at present we have no applications for a theorem stronger than what we give below.

Theorem R. Suppose X is geodesically complete of curvature $\geq k$ and $\left(\gamma_{1}, \gamma_{2}\right)$ is proper and $A 2$ with equality, with representative $\left(\bar{\gamma}_{1}, \bar{\gamma}_{2}\right)$ in S_{k}. Let $L_{i}=L\left(\gamma_{1}\right), i=1,2$. Then for all $0 \leq t \leq L_{2}, d\left(\gamma_{1}\left(L_{1}\right), \gamma_{2}(t)\right)=d\left(\bar{\gamma}_{1}\left(L_{1}\right), \bar{\gamma}_{2}(t)\right)$. In addition, if γ_{2} is minimal, $d\left(\gamma_{1}(s), \gamma_{2}(t)\right)=d\left(\bar{\gamma}_{1}(s), \bar{\gamma}_{2}(t)\right.$ for all $0 \leq s \leq L_{1}$.

Theorem D. If $k>0, X$ is geodesically complete of curvature $\geq k$ and dia $(X)=\pi / \sqrt{k}$, then X is isometric to S_{k}^{n} for some n.

Before proving Theorems R and D, we give corrections to [P3]. In the statement of Lemma 5, "there exists a $\chi>0$ " should be replaced by "for all sufficiently small $\chi>0.0$ Rather than giving a list of corrections for the proof of Theorem A we will simply give below a simplified and corrected proof in its entirety. What follows should replace the arguments in [P3] beginning with the last paragraph on page 6 to the beginning of the proof of Theorem C on page 11. We assume throughout this proof that X is geodesically complete (although this is only directly used in Step 2).

For $0<D<\pi / \sqrt{k}$, fix a closed ball $B=\bar{B}(p, D) \subset X$ and a cover U of $\bar{B}(p, 2 D)$ by regions of curvature $\geq k$, and let $\chi(U)<D$ be as in Lemma 5 and also less than $1 / 12$ of a Lebesque number of U. Let $\tau(U)$ small enough that if $\bar{c} \bar{\alpha}, \bar{\gamma}$ are unit geodesics in S_{k} with $\alpha(\bar{\alpha}, \bar{\gamma}) \leq \tau(U)$, then for all $0 \leq t \leq D, d(\bar{\alpha}(t), \bar{\gamma}(t)) \leq$ $\chi(\mathrm{U})$. If $\alpha, \beta:[0,1] \rightarrow B$ are minimal curves starting at p, we call a proper triangle $(\alpha, \gamma, \beta) p$-based. A p-based triangle (α, γ, β) is $U-t h i n$ if $\alpha(\alpha, \beta) \leq \tau(\mathrm{U})$ and γ is minimal. At present we do not require that γ lie in B in either definition, but $\chi(U)<D$ implies γ lies in $B(p, 2 D)$. Consider the following statements:
$\mathrm{S} 1(\mathrm{n}, \mathrm{m})$. If (α, γ, β) is U -thin such that $(n-1) \cdot \chi(\mathrm{U}) \leq$ $L(\alpha) \leq n \cdot \chi(\mathrm{U})$ and $(m-1) \cdot \chi(\mathrm{U}) \leq L(\beta) \leq m \cdot \chi(\mathrm{U})$, then (α, γ, β) is A1.
$\mathrm{S} 2(\mathrm{n}, \mathrm{m})$. If (α, γ, β) is $\mathrm{U}-\mathrm{th} \mathrm{fn}$ such that $(n-1) \cdot \chi(\mathrm{U}) \leq$ $L(\alpha) \leq n \cdot \chi(U)$ and $(m-1) \cdot \chi(U) \leq L(\beta) \leq m \cdot \chi(U)$, then (α, β) is $A 2$.

S3(n). If (α, γ, β) is p-based and lies in $\bar{B}(p, n \cdot \chi(U)$, then (α, γ, β) is $A 1$.

Note that by monotonicity $S 1(n, m)$ and $S 3(n)$ state equivalently that (α, γ) and (β, γ) are $A 2 . \quad S 1(6,6), S 2(6,6)$, and $S 3(6)$ are true by the way $\chi(U)$ was chosen. We will prove
by induction that $S 3(n)$ holds for $n \leq(D-3 x) / \chi$.

Step 1. $S 1(n, n)$ and $S 2(n, n)$ imply $S 2(n, n+1)$.

Proof. Fix a U-thin triangle (α, γ, β) such that $n \cdot \chi(U) \leq$ $L(\alpha) \leq(n+1) \cdot \chi(U)$ and $(n-1) \cdot \chi(U) \leq L(\beta) \leq n \cdot \chi(U)$. Let q lie on α such that $d(p, q)=L(\beta)$, let $x=\alpha(1), y=\beta(1)$ and η be minimal from y to q. If ν is the segment of α from p to q, we obtain from $\mathrm{S} 2(\mathrm{n}, \mathrm{n})$ that (β, ν) is A 2 and from $\mathrm{S} 1(\mathrm{n}, \mathrm{n})$ that (ν, η) is A2. $S 2(n, n)$ implies dia $(x, y, q) \leq 3 \chi(U)$; if 5 is the segment of α from q to x we have that both (η, ζ) and (ζ, γ) are $A 2$, and that (α, β) is A2 follows from Lemma 1.

Step 2. $S 3(n)$ implies that if ω is minimal from p to a point $a \in B(p,(n-1) \cdot \chi(U))$ and ξ is minimal starting at a with $L(\xi) \leq 4 \chi(\mathrm{U})$, then (ω, ξ) is A2.

Proof. Let $R^{\prime}=\mathrm{L}(\omega)$, assume both ω and ξ are unit, and let $x=\xi(L(\xi))$. Choose a representative $(\bar{\omega}, \bar{\xi})$ in S_{k}, denoting the corresponding points with capitals. Let $\bar{\mu}$ be unit minimal from P to $X, R=\min \left\{R^{\prime}, L(\bar{\mu})\right\}$, and $\bar{\kappa}$ be minimal from A to $\bar{\mu}(R)$. Since $\mathrm{n} \leq(\mathrm{D}-3 \chi) / \chi, \mathrm{L}(\bar{\omega})+\mathrm{L}(\bar{\xi}) \leq \mathrm{D}$, and by Lemma 5 , for all s , $d(P, \bar{\kappa}(s))<R+\chi(U) \leq n \cdot \chi(U)$. For any sufficiently small $\delta>$ 0 , by Lemma 2 and geodesic completeness there exists a geodesic κ $:[0,1] \rightarrow X$ starting at a of length $L=L(\bar{\kappa})$ with $|\alpha(\kappa, \omega)-\alpha(\bar{\kappa}, \bar{\omega})|<\delta$ and $|\alpha(\kappa, \xi)-\alpha(\bar{\kappa}, \bar{\xi})|<\delta$. For small
enough $\delta, S 3(n)$ implies that $d(p, \kappa(s))<n \cdot \chi(U)$ for all s and (κ, ω) is $A 2$. On the other hand, by the triangle inequality $L(\bar{\kappa}) \leq 8 \chi(U)$ and dia $\{\kappa(1), a, x\}<12 \chi(U)$; thus (κ, ξ) is A2. Lemma 4 now implies (ω, ξ) is A2.

Step 3. $S 1(m, m), S 2(m, m)$ for $a 11 \mathrm{~m} \leq n$, and $S 3(n)$ imply $S 1(n, n+1)$.

Proof. Let (α, γ, β) be as above. The proof that (α, γ) is A2 is similar to the argument in Step 1 . Let a be the point on β such that $d(a, y)=\chi(U), R=d(p, a), \omega$ denote the segment of β from p to a and ξ be minimal from a to x. By the triangle inequality (and the fact that $\alpha(\alpha, \beta) \leq \tau(U)) L(\xi) \leq 4 \chi(U)$ and Step 2 implies (ω, ξ) is A2. By a proof similar to that of Step $1, \operatorname{Si}(\mathrm{n}, \mathrm{n})$ and $\mathrm{S} 2(\mathrm{n}, \mathrm{n})$ imply (α, ω) is A2. If λ denotes the segment of β from a to $y,(\xi, \lambda, \gamma)$ is also $A 1$, and the proof is complete by Lemma 1.

Step 4. $S 1(n, n+1)$ and $S 2(n, n+1)$ imply $S 1(n+1, n+1)$ and $S 2(n+1, n+1)$.

Proof. This is a straightforward application of Lemma 1.

Step 5. $S 1(m, m), S 2(m, m)$, for all $m \leq n+1$, and $S 3(n)$ imply $S 3(n+1, n+1)$ (and the induction is complete).

$$
\text { Proof. Let }(\alpha, \quad \gamma, \quad \beta) \text { be p-based, with }
$$

$\gamma:[0,1] \rightarrow \bar{B}(p,(n+1) \cdot \chi(U))$. We first $c l a i m$ the following: If ζ is minimal from p to $q=\gamma(t)$, for some $t, t_{i} \rightarrow t$ and η_{i} is minimal from p to $\gamma\left(t_{i}\right)$, then for all sufficiently large 1 , ($\zeta_{i}, \gamma_{i}, \eta_{i}$) is Al, where γ_{i} is γ restricted to the interval between t_{i} and t. By using two subsequences, if necessary, we can assume $\lim _{i \rightarrow \infty} \alpha\left(\eta_{1}\right.$, 5) is either 0 or $2 \epsilon>0$. In the first case the proof is complete by $S 1(m, m)$ for $m \leq n+1$. In the second case $\alpha\left(\eta_{i}, \zeta\right)>\epsilon$ for all large i. Choosing a subsequence if necessary we can find a minimal η from p to q such that $\alpha\left(\eta_{1}, \eta\right) \rightarrow 0$; in particular, $\left(\eta_{1}, \gamma_{1}\right)$ is A2 for all sufficiently large i by $S l(m, m)$ for $m \leq n+1$. On the other hand, let a be the point on ζ such that $d(a, q)=2 \cdot x(U), \omega$ denote the segment of 5 from p to a, ν that from a to q, and μ_{i} be minimal from a to $\gamma\left(t_{1}\right)$. Since $L(\omega)+L\left(\mu_{1}\right) \rightarrow L\left(\eta_{i}\right)$, if $\left(\bar{\zeta}, \bar{\eta}_{1}\right)$ represents $\left(\zeta, \eta_{i}\right)$ in S_{k} then $\alpha\left(\bar{\zeta}, \bar{\eta}_{i}\right) \rightarrow 0$. Now $\alpha\left(\eta_{1}, \zeta\right)>\epsilon$ implies ($5, \eta_{i}$) is A2 for large 1 . By Step 2, (ω, μ_{i}) is A2. Since γ_{1} is minimal for large enough 1 and $\left(\mu_{1}, \nu\right),\left(\nu, \gamma_{1}\right)$ are $A 2$, the proof of the claim is complete by Lemma 1.

For $s>0$, let γ_{s} denote $\left.\gamma\right|_{[0, s]}$, and denote by $A 1(s)$ the statement: for every minimal β_{B} from p to $\gamma(s),\left(\alpha, \gamma_{\mathrm{B}}, \beta_{\mathrm{s}}\right)$ is A1. The above claim implies that $\mathrm{Al}(\delta)$ is true for sufficiently small $\delta>0$, and the claim and Lemma 1 prove that if $A 1(T)$ is true for some T, then $A 1(T+\delta)$ is true. Likewise, if $A 1(s)$ is true for all $s<T$ then $A 1(T)$ is true; it follows that $A 1(T)$
holds for all T.

Proof of Theorem A. Step 5 implies that every p-based triangle in $\bar{B}(p, D-3 \chi(U))$ is $A 1$. Letting $\chi(U) \rightarrow 0$ we conclude that every proper triangle (α, γ, β) in X such that $d(\alpha(0), \gamma)<$ π / \sqrt{k} is Al. The proof is now complete for $k \leq 0$, and is easily completed for $k>0$ using a limit argument and Lemma 1.

Before proving Theorem R we reconcile the conclusion of Theorem A with our original definition of curvature bounded below (in the sense of Rinow, cf. [P2], [R]).

Proposition 1. If X is geodesically complete of curvature \geq k then all of X is a region of curvature $\geq k$.

Proof. By definition, we need to show that if $\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ is a triangle of minimal curves in X represented by $\left(\bar{\gamma}_{1}, \bar{\gamma}_{2}, \bar{\gamma}_{3}\right)$ in S_{k}, then $d\left(\gamma_{1}(s), \gamma_{3}(t)\right) \geq d\left(\bar{\gamma}_{1}(s), \bar{\gamma}_{3}(t)\right)$ for $a 11 s$ and t. We assume all curves are unit parameterized and $s, t>0$. By monotonfity we may show equivalently that if γ is minimal from $\gamma_{1}(s)$ to $\gamma_{3}(t), \alpha-\left.\gamma_{1}\right|_{[0, s]}, \beta=\left.\gamma_{3}\right|_{\{0, t]},(\bar{\alpha}, \bar{\gamma}, \bar{\beta})$ represents (α, β, γ) in S_{k}, and $\bar{\mu}$ and $\bar{\nu}$ are extensions of $\bar{\alpha}$ and $\bar{\beta}$ of length $a=L\left(\gamma_{1}\right)$ and $b-L\left(\gamma_{3}\right)$, respectively, then $d\left(\gamma_{1}(a), \gamma_{3}(b)\right) \leq$ $\mathrm{d}(\bar{\mu}(\mathrm{a}), \bar{\nu}(\mathrm{b}))$. Suppose first that $\mathrm{t}-\mathrm{b}$ and let $\zeta=\left.\gamma_{1}\right|_{[\mathrm{a}, \mathrm{a}]}$ and $\bar{\zeta}=\left.\bar{\mu}\right|_{[\mathrm{s}, \mathrm{a}]} . \quad$ By A1, $\alpha(\bar{\alpha}, \bar{\gamma}) \leq \alpha(\alpha, \gamma)$, so $\alpha(\bar{\gamma}, \bar{\zeta}) \geq \alpha(\gamma, \zeta)$ and by A2 $\mathrm{d}\left(\gamma_{1}(\mathrm{a}), \gamma_{3}(\mathrm{~b})\right) \leq \mathrm{d}(\bar{\mu}(\mathrm{a}), \bar{\nu}(\mathrm{b}))$. Now suppose $\mathrm{t}<\mathrm{b}$. Let η
be minimal from $\gamma_{3}(b)$ to $\alpha(s)$ and let $\left(\bar{\alpha}, \bar{\eta}, \vec{\gamma}_{3}\right)$ be a representative in S_{k}. Then if $\bar{\kappa}$ is the extension of $\bar{\alpha}$ of length a, by the above argument and monotonicity, $\mathrm{d}(\bar{\kappa}(\mathrm{a}), \bar{\eta}(\mathrm{b})) \geq$ $\mathrm{d}\left(\gamma_{1}(\mathrm{a}), \quad \gamma_{3}(\mathrm{~b})\right)$ and $\mathrm{d}\left(\bar{\alpha}(\mathrm{s}), \quad \bar{\gamma}_{3}(\mathrm{t})\right) \leq \mathrm{d}\left(\alpha(\mathrm{s}), \quad \gamma_{3}(\mathrm{t})\right)$. The proposition now follows from monotonicity.

Proof of Theorem R. The proof when $\alpha\left(\gamma_{1}, \gamma_{2}\right)-0$ or 1 is trivial; we assume otherwise below. The second statement of Theorem R follows immediately from Proposition 1 and A2. If γ_{2} is not minimal, partition the domain of γ_{2} into finitely many intervals $\left[t_{1}, t_{1+1}\right]$ such that the restriction α_{i} of γ_{2} to [t_{i}, t_{i+1}] is minimal. Let β_{i} be minimal from $\gamma_{1}\left(L_{1}\right)$ to $\alpha_{i}\left(t_{i}\right)$ (e.g. $\beta_{1}=\gamma_{1}$). Then by an argument similar to the proof of Lemma 1 we see that $\left(\beta_{i}, \alpha_{1}\right)$ is A2 with equality for all i, and that if $\bar{\beta}_{1}$ is minimal in S_{k} from $\bar{\gamma}_{1}\left(L_{1}\right)$ to $\bar{\gamma}_{2}\left(t_{i}\right)$, then $L\left(\bar{\beta}_{1}\right)=$ $L\left(\beta_{i}\right)$. The proof is now finished by the special case proved above.

Proof of Theorem D. By Corollary B, we can find points p, $q \in X$ such that $d(p, q)=\pi / \sqrt{k}$. Choosing a minimal curve from p to q we can apply A2 (via Theorem A) to conclude that every geodesic of length π / \sqrt{k} starting at p is minimal from p to q, and geodesics starting at q behave likewise. Therefore the exponential map (cf. [P2]) is a homeomorphism on $B(0, \pi / \sqrt{k}) \subset T_{p}$ $=R^{n}$ (and X is homeomorphic to a sphere). We identify T_{p} with the tangent space at a point on the sphere, and lift the metric
of the sphere to $B(0, \pi / \sqrt{k})$. It now suffices to prove that the exponential map is an isometry, i.e., by Theorem R , if α, β are minimal from p to q then $\left(\left.\alpha\right|_{[0, \mathrm{t}]},\left.\beta\right|_{[0, \mathrm{t}]}\right.$) is $A 2$ with equality for all large enough $t<\pi / \sqrt{k}$. Using geodesic completeness we extend α to a geodesic γ passing through q and returning to p. Then γ is minimal on any interval $[a, b]$, where $a-c-\epsilon, b=$ $c+\epsilon, c-\pi / \sqrt{k}$, and small enough $\epsilon>0$. If $\eta-\left.\gamma\right|_{[0,0]}$ and $\nu=$ $-\left.\gamma\right|_{[b, 20]}$ (i.e. with parameterization reversed), then by $A 1$, $\alpha(\eta, \nu)=\pi$ (i.e., γ is a closed geodesic). Thus (η, ν) is A2 with equality. Since $\alpha(\alpha, \beta)+\alpha(\beta,-\nu)=\pi$, from the triangle inequality and $A 2$ we obtain the desired conclusion.

We do not know of a counterexample to Theorem A with geodesic completeness removed from the hypothesis; however, the diameter theorem obviously does not hold in this case-e. g. a hemisphere. For a more interesting example, one can "suspend" RP^{n} (with the metric of constant curvature 1) by attaching two "endpoints" to the warped product, using the sine function, of $R P^{n}$ and $[0, \pi]$. A simple argument due to K. Grove shows that the resulting space X satisfies the conclusion of Theorem A with $k=$ 1. On the other hand, dia $X-\pi$, but X is not a manifold, let alone a sphere. Of course, X is not geodesically complete at the "endpoints." In fact, from Theorem A, [P1] (since the endpoints are codimension 2 they cannot form a boundary), and Theorem D we obtain the following theorem, where $S_{s i n g} X$ denotes the suspension
described above:

Theorem S. If X is a complete Riemannian manifold of sectional curvature ≥ 1 then the following are equivalent:
a) $S_{\text {sine }} X$ has curvature $\leq K$ for some K,
b) $S_{\text {tine }} X$ is geodesically complete, and
c) X is isometric to a standard sphere.

