BETTI NUMBERS OF HYPERSURFACES AND
DEFECTS OF LINEAR SYSTEMS

by

Alexandru Dimca

Max—Planck—Institut

fiir Mathematik
Gottfried—Claren—Str. 26
5300 Bonn 3

Federal Republic of Germany

MPI/89 —6






BETTI NUMBERS OF HYPERSURFACES AND
DEFECTS OF LINEAR SYSTEMS

by

Alexandru Dimca

Let w= (wo, ,wn) be a set of integer positive weights and denote by S the
polynomial ring € [xO, ,xn] graded by the conditions deg(x;)=w; for
i=0,...,n. For any graded object M, let Mk denote the homogeneous component of
degree k . Let fe Syy be a weighted homogeneous polynomial of degree N with
respect to w .

Let V be the hypersurface defined by f = 0 in the weighted projective space

P(w) = Proj$ = €1\ {0}/¢"

W

* w *
where the € —action on €T is defined by t - x=(t 0, t x)) for teC

0
x € €8+ | Assume that the singular locus I(f) of f is 1-dimensional, namely

2(f) = {xe @ dix) =0} = {0} U U Ca,

i=1,8

for some points 3 € o+l , one in each irreducible component of E(f) .
*
Let Gi be the isotropy group of a; with respect to the € —action and let H, be

*
a small Gi—invaria.nt transversal to the orbit € a, at the point a, . The isolated
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hypersurface singularity (Y;,a,) = (H, N{" 1(()),ai) is called the transversal singularity

of {f along the branch ?;'—i of the singular locus X(f) . Note that (Yi,ai) is in fact a
G,—invariant singularity.

The hypersurface V is a V-manifold (i.e. has only quotient singularities [8]) at
all points, except at the points a, where V has a hyperquotient singularity (Yi/ Gi'a'i)
in the sense of M. Reid [15].

In this paper we discuss an effective procedure to compute the Betti numbers
b(V) = dim HI(V) (€ coefficients are used throughout) for such a weighted projective
hypersurface V . It ig known that only b _,(V) and b (V) are difficult to compute
and that the Euler characteristic y(V) can be computed (conjecturally in all, but surely
in most of the interesting cases!) by a formula involving only the weights w , the degree
N and some local invariants of the G,—singularities (Y;.3,) , see [6], Prop. 3.19. Hence
it 18 enough to determinee b (V).

On the other hand, it was known since the striking example of Zariski involving
sextic curves in P2 having six cusps situated (or not) on a conic [25], that b (V) isa
very subtle invariant depending not only on the data listed above for y(V) but also on
the position of the singularities of V in P(w).

In the next three special cases the determination of bn(V) has led to beautiful and
mysterioug (see H. Clemens remark in the middle of p. 141 in [2]) relations with the
dimension of certain linear systems o’ of homogeneous polynomials vanishing at the

singular set ¥ = {a, .. ,a;} of V:

(i) Some cyclic coverings of P2 ramified over a curve B:b=0
(H. Esnault [12]). In fact the object of study in [12] are the Betti
numbers of the associated Milnor fiber F:b—-1=0 in ¢ , but it is

easy to see that they are completely determined by the Betti numbers of
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F, the closure of F in P3 . And the closure F is a cyclic covering of
P2 of degree deg B ramified over B . Beside several implicit results,
one finds in [12] an explicit treatment of the Zariski example mentioned

above.

(it) Double coverings of P3 ramified over a surface B:b =0 having only
nodes as singularities (H. Clemens [2]). By a node we mean an

Al—singula.rity of arbitrary dimension. Note that such a covering is
defined by the equation b —t2 =0 in the weighted projective space
P(1, ... ,1,e) with 2e =deg B [7].

(if)  Odd dimensional hypersurfaces X CP?™  having only nodes as
singularities (T. Schoen [17], J. Werner [24]).

In our paper we show that such relations exist without any restriction on the
transversal singularities (Y,a,) . The general answer is however mot an obvious
extension of the above special cases, i.e. the linear systems which occur are not defined
by some (higher order) vanishing conditions on X , but by some subtle conditions
depending on fine invariants of the singularities, i.e. the MHS (mixed Hodge structure)

on the local cohomology groups H:.(Yi) [20]. Unlike the authors mentioned above, we
i

do not use here the regolution of singularities (which is quite difficult to control in
dimension > 3), but we essentially work on the complement U = IP(I)\V , which is an
affine V—variety and compute everything in terms of differential forms on U in the
spirit of [13].

In this way we get in fact more than b (V) , namely we obtain a procedure to

compute all the mixed Hodge numbers hP*3(H™(V)) . See also Remark (2.7).
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Let F:f—1=0 be the Milnor fiber of f in €n+1 . Then F is a smooth affine

hypersurface and ;[k(F) =0 exceptfor k=n—-1, n.

Moreover, one has again a "simple" formula computing the Euler characteristic
x(F) in terms of w, N and the singularities (Y;,3,), [6], Prop. 3.19. Hence it is
enough to compute b . (F) . And the results described in this paper combined with
some results in [6] allow one to compute not only b__,(F) , but also all the Hodge
numbers hp’q(Hn—l(F)) , a8 explained in Corollary (3.6) below in. the special case when
all the transversal singularities are of type A; . For related computations of Betti
numbers of Milnor fibers of non isolated singularities see Siersma [18] and van Straten
[22].

It will turn out that in order to get very explicit results the assumption that the
transversal singularities (Y;,a,) are weighted homogeneous is quite helpful. In
particular, we establish several explicit formulas as in the special cases (i)—(iii) above in
the last section of our paper.

During this paper we recall and use some of our results in [6]. But all the results
in this area should perhaps be regarded as attempts to understand and to generalize
Griffiths fundamental work in [13].
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§ 1. A global and a local spectral sequence

Since U =P(w)\V is an affine V—variety, it follows by (a slightly more general
version of) Grothendieck Theorem [14], [21] that the cohomology of U can be
computed using the deRham complex A" = H°(U,Q'U) , where (2", denotes the
sheaves complex of algebraic differential forms on U .

The complex A~ has a polar filtration defined as follows
(1.1) FoAl = {we A-‘ w has a pole along V of order at most j—s}

for j—8>0 and FSAJ =0 for j—s<0.

By the general theory of spectral sequences, the filtration F® gives rise to an
E,—spectral sequence (E (U),d ) converging to H"(U) . For more details see [6] and
also H . Terao [23].

Let F°H"(U) =im{H"(FPA") — H'(A) = H'(U)} be the filtration induced
on H*(U) by the polar filtration on A* . Note that on the cohomology algebra H*(U)
one has also the canonical (mixed) Hodge filtration Fﬁ constructed by Deligne [3]. It
is not difficult to prove the next result, see [6], Theorem (2.2).

(1.2) Proposition
Srre 8+14. O . 1,. e
One has F°H"(U) I Fg" "H'(U) forany s and F H'(U) = FgH"(U) =H"(U) .
For an example where the above inclusion is strict we refer to [6], (2.6).

Since we shall be concerned especially with H"(U) , we recall the explicit
description of A", given by Griffiths in the homogeneous case [13] and by Dolgachev
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in the weighted homogeneous case [8]. Let Q¥ denote the S-module of algebraic
differential k—forms on €**! , graded by the condition deg(x;) = deg(dx,) = w; for
i=0,...,n. Consider the differential n—form Qe Q7 with w=wg+ .. +w
by

n given

. AN
i
(1.3) Q= 2 (-1) Wixid.x0 A.LA dxi AA dxn )

i=0,n

Then any element w e A™ may be written in the form

(1.4) w= lflt—ﬂ for some h e S

—-w
and, if h is not divisible by f, then t is precisely the order of the pole of w along V.
Next we consider a similar spectral sequence, but associated this time to a (local)
hypersurface singularity. Let g: (C",0) — (€,0) be an analytic function germ and let
(Y,0) = (g‘1(0),0) be the associated hypersurface singularity. Let ﬂé denote the
localization of the stalk at the origin of the analytic de Rham complex for €* with
respect to the multiplicative system {gs,s >0}.
Choose ¢ > 0 small enough such that Y has a conic structure in the closed ball
B, ={ye €% |y| <€} [1]. Since BE\Y is a Stein manifold, Theorem 2 in [14]
implies the next result

(1.5) Propogition
H'(B,\Y) = H‘(Qé) .

One may define a polar filtration F® on Qé exactly as in (1.1) and get an E,—spectral



S

sequence (E (Y),d ) converging to H"(B E\Y) . Assume from now on that (Y,0) is an
isolated singularity. Even then the spectral sequence (Er(Y)’dr) is quite complicated,
e.g. one has the next result [6], Cor. (3.10%).

(1.6) Proposition

The spectral sequence (Er(Y)’dr) degenerates at E, if and only if the singularity
(Y,0) is weighted homogeneous (i.e. there exist suitable coordinates Yp» ¥y OB "
around the origin and suitable weights v, = wi(y;) such that (Y,0) can be defined by
a weighted homogeneous polynomial g, of degree M say, with respect to the weights

y= (vl’ )vn)) .

If this is the case, then the limit term Em = E2 can be described quite explicitly

as follows [6], Example (3.6). In fact we restrict our attention only to the terms Eg_t’t

for t > 0, since this is all we need in the sequal.
Let M(g) = 0n/‘]g be the Milnor algebra of g, where J8 = [.g_% ey _g_;ic;]

is the Jacobian ideal of g [5]. Note that in our case M(g) has a grading induced by

the weights y . Then one has a {—linear identification

(17) ERTHHY) = M(g),pp_y

. . L . a .
with v=v, + ..+ v , by associating to the class of a monomial y~ in M(g),pr_

-t

the class of the differential form y* . g~ - w, , where o =dy, ALLA dy, -Since

Y\ {0} is a smooth divisorin B 8\{0} , the Poincaré residue map

B"(B,\Y) 2 B*}(v\{0})



in the associated Gysin sequence [21] ig an isomorphism (assume n 2 3 from now on).

Moreover, the exact sequence of the pair (Y,Y\{0}) gives an isomorphism
B" v\ {0}) & B (Y, Y\ {0}) = HX(Y)

where H(‘](Y) denote the local cohomology groups of Y at the origin. Note that this
cohomology Hy(Y) carries a natural MHS according to Steenbrink [20] and Durfee
[10]. Finally we get an isomorphism

(1.8) B'(B,\Y) = Hy(Y)

and in this way the filtration F° on Qé induces a filtration F* on HE(Y) . It is easy
to check, using (1.7) and Steenbrink description of the MHS on Hy(Y) when (Y,0)
is weighted homogeneous [19], that in this case F° coincide with the Hodge filtration
FESI for all s and that HE(Y) has a pure Hodge structure of weight n .

Consider next a semi_weighted homogeneous singularity Y, :g, =g +g’ , where g is
as above and all the monomials in g’ have degrees > M with respect to the weights
¥ [5] . Inspite of the fact that the corresponding spectral sequence (E[(Y,).d,) is much
more complicated, we can obtain directly (by some obvious u—constant arguments) the

next simple description of the cohomology group H"(B c\Yy) . Let {y*g awn;

a € A} be a basis for Hn(Be\Y) obtained as above. Then the forms {y® gItawn ;
a € A} give a basis for H"(B c\Y;). Here of course t = (deg(ya)+v)-M_l.
Moreover, using the fact that in a u—constant deformation the dimensions of the Hodge
filtration subspaces remain constant, it follows that on HE(YI) the polar filtration

coincides with the Hodge filtration, exactly as in the weighted homogeneous case.
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In general, one may compute the MHS on Hg(Y) if one knows the MHS on the
cohomology Hn_l(Ym) of the Milnor fiber Y_ of the singularity (Y,0) , since
B"(Y\{0}) is just the fixed partin " '(Y_) under the monodromy action and §
is an isomorphism of MHS .

We say that the singularity (Y,0) is nondegenerate if Hpy(Y) =0 . The name
comes from the fact that this condition is equivalent to the Milnor lattice of (Y,0)
being nondegenerate [4]. Otherwise the singularity (Y,0) is called degenerate. We
make next a list of the simplest nondegenerate and degenerate singularities, using

terminology which is standard in Singularity Theory [5], [9].
(1.9) Examples (nondegenerate singularities)

(i) If n=dimY +1 is odd, then the singularities A, , D, , Eg, E, and

E8 are nondegenerate

(ii) If n=dimY + 1 is even, then the singularities A,y , Eo and Eg are

nondegenerate.
For more examples we refer to Ebeling [11].
(1.10) Examples (degenerate singularities)

(i) Assume that n = 2t is even and that we consider an A,, , singularity,

i.e.

_ 2%, 2 2 _ -
B=7¥] *typt . #yp, vy=1, vi=kfor j>1
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v=1+4+ (2t -1)k , M =2k . The graded pieces M(g) j of the Milnor
algebra are nontrivial only for je {0,1,...,2k —2} . Hence the equality
s M—v=j has a unique solution in this range, namely s=t ,
j=k-1.

It follows by (1.7) that dim H"(B é:\Y) =1 and that a generator of
H'(B e\Y) is provided in this case by the form 8= yk—lg_tw]1 .

Note moreover that the class of a foom y=h- g-twn (with

he o) in H'(B,\Y) is precisely

-1
[ = iy jkﬁy;%w)-[ﬂ]

It follows from [19] that G is a class of type (t,t) with respect to the
MES on H2Y(Y).

1

Assume that n=2t + 1 is odd and let g=0 be the usual weighted

~ ~

homogeneous equation for a unimodal singularity of type E6 , E7 or

E8 . Then it is'known that the weights v and the degree M of g satisfy
the next equality

deg(hess(g)) = nM — 2v = M = deg(g)

2
where  hess(g) = det [?;Lﬂgy_] is the hessian of g and also
)

M(g)j=0 for j> M, see [5], [16]. Hence the equality sM~v =
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has just two solutions with j< M , namely j=0, s=t and j=M,
8 =t + 1. The differential forms

—t-1
B, = g_twn and f, = hess(g)-g ~ v,
form a basis of H"(B e\Y) in this case and it follows from [19] that g,
has type (t + 1,t) and f, hastype (t,t +1) with respect to the MHS
on HE(Y) :

Note that the class of a differential form 4 =h - g"twn with
he On i8 just

[7] =h(0)[B,] -

In what follows we are particularly interested by the local cohomology groups H:‘(V)
1

corresponding to the hyperquotient singularities of V .

The obvious isomorphisms
(1.11) Hn(V)—Hn(Y/G)—Hn(Y)Gi
) a - 3 iVl = 3; i

shows that Hg.(V) can be computed (together with its MHS) as the fixed part of the
i

natural action of G, on H:.(Y) . This description is quite effective as soon as we have
i

explicit forms giving a basis for H:(Y) . Note also that it may happen that H:.(V) =0
i i

evenif Hy (Y;)#0.
1
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(1.12) Example

Let (Y,0) bethe A, , singularity considered in (1.10.i) and let G = {#£1} act on
(Y,O) by the rule (_ 1) Y= (yls - y2sY3r syn) . Then

(=1) - [A =-[4]

and hence ]E['(;(Y)G =0.

§2. A basic MHS exact sequence

* *
Let P =P(w)\L, V =V\Z and consider the exact cohomology sequence of
X % %
the pair (P P \V ):

(2.1)

* *

j i
— e P \V) — B¥ e — BX e \v) L EF et e\ —

Note that there is a Thom isomorphism

T BUvY) — mEH e pR\WV)

obtained as follows. Let X = €®T\E(f) and D = £}(0)\B(f) . Then D is a smooth
divisor in X and hence there is an usual Thom isomorphism
T : B¥7}(D) — B¥*}(X,X\D) . Since the normal bundle of D in X may be chosen

* *
C —invariant , it follows that T is compatible with the € —actions which exist on both
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sides. Hence T induces an isomorphism between the fixed parts
k1,0 € k1 ® T okl of R kb ¢
o)t = Yv) et p\v) =T xx\p)* .
In the same way, the Poincaré regidue
R : B5(X\D) — HY(D)
induces a map
* 1. %
R:EXP\V') — BE (V)

suchthat T - R=4.

It is easy to show that in the middle dimensions j* = 0 and that if we define the
primitive cohomology of a by HO(V*) = ker(j* ° T) , then this has the expected
properties. For instance one may define in the same way the primitive cohomology of
V, denoted H(‘)(V) and the inclusion ¢: V. — V induces a morphism
L;:Hé(V) —'H(')(V*) and carries isomorphically the nonprimitive part in H"(V)
onto the nonprimitive part in H* (V*) (except of course the top dimension).

*  *
As a result of this definition and since P \V = U, we get the next

(2.2) Lemma

o *
The Poincaré residue R: Hk(U) — Hg 1(V ) is a type (—1,—1) isomorphism of
MHS .
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Consider now the long exact sequence of MHS [20]:

— BE(V) — BY (V) — B5(v") L BEF Y v) —

and note that excision gives us the next isomorphism of MHS .

G.
k i
. ® Ha.(Yi) .

k
Hgo(V)= @
Z i= i=1s8 i

k
H_ (V)=
i=1,8 a'i( )

Hence H}kJ(V) is a computable object as soon as we know enough about the transversal

singularities (Y;,a,) .

The final part of the above long exact sequence, Lemma (2.2) and our remark on

*
4 give us the next exact sequence of MHS

(2.3) 1"(U) -2 BE(V) — B(V) — 0

with #=46R a morphism of type (—1,—1) . (There is no danger to confuse the

primitive cohomology H(‘)(V) with some local cohomology of V , since 0 £ P(w)). Let

t be the maximal positive integer such that Fﬁ Hy (V) = Hg (V) . Then using the

strict compatibility of MHS morphisms with the Hodge filtrations Fp [3] we get a

finer version of (2.3), namely
rit ERU) - BE (V) — BY(V) —0.

Using now Proposition (1.2) it follows that the composition

F'E%(U) — BY(U) -4 BE(V)
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has exactly the same image as 6.

Let T' be the linear map given by the obvious composition
t,n t
S(n—t)N—w —S F'A" — F'HY(U) — Hg(V) .
We may summarize our result as follows

(2.4) Theorem

The image of the linear map T is a MH substructure in Hy(V) and Hy(V) with its
canonical MHS is isomorphic to the quotient Hgy(V)/im (TY) .

Note that the proof in [20], Theorem (1.13) adapts to our more general situation
and shows that Hg(V) has a pure Hodge structure of weight n . Consider now a subset

¥/ C X defined as follows:

2’={aieE;H];i(V)=I=0}.

We may call ©’ the set of essential singularities of V . It is clear that we may replace

HE(V) with H%;(V) everywhere. More important, note that Tt(h) =0 means that

h satisfies certain (linear) conditions # at the points a, € B . Indeed, it is easy to

check that 6§ corresponds to the composition of the morphism

B'(U) £ e HY(D.\V)
a.eX’ !
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induced by the restriction of n—forms (with D; being an open neighbourhood of a; in
P(w) of the foorm D, =B,/G, , for B, a small ball in H; centered at a, and
Gi-invariant) with the isomorphism induced essentially by local Poincaré residue

isomorphisms

® B(D;\V) 2+ @ B"(V N D;\{3;}) - @ H} (V) = H/(V).
1 1 1 1

Let o=ker T' be the linear system in S( defined by the conditions ¥. We

n—t)N-w
define the defect of the linear gystem o by the formula

def( &) = dim H%/(V) — codim o

i.e. the difference between the number of linear conditions in ¢ and the codimension of
¢ in S(n—t)N-w . It is clear that def( ¢/) depends not only on o but also on the set
of conditions # used to define it and that def( &#) =0 says that the conditions in €

are independent. With this definition, we may state the next.

(2.5) Corollary
dim Hy(V) = def( &) .

The next section contains several examples where it is possible to work out explicitely
the conditions # and hence to state several special cases of Corollary (2.5) in more
down—to—earth terms. When on H%(V) the polar filtration F® coincides with the
Hodge filtration FIBI (this is the case for instance when all the singularities (Y;,a,) are
weighted homogeneous), one may increase the number t (and hence decrease the degree
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of the elements in S( n —t)N—w) by the following simple observation. We present only
the case n = 2m + 1 is odd since we shall apply this in the next section and leave the
analogue statement in the case n even to the reader. As remarked above, HE(V) has a

pure Hodge structure of weight n and it is clear that

dmBY(V) =2 Y B PTE(V)).

i>m
Let T ™1 be the composition

~ o am+l m+1 n m+1 0
S(n—m—l)N—w —F A—F H(U)—F Hg(V)

~ ~

and let & be the linear system ker T m+1

If we set as above
def( # ) = dim F™F! Hp (V) - codim "
then we get the next result.
(2.6) Corollary
dim B (v) = 2 def (& ).

(2.7) Remark
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Unlike Hg(V) which has a pure Hodge structure of weight n, the middle cohomology
group Hn_l(V) has in general a nonpure Hodge structure, whose associated MHS
numbers can be computed as follows (at least in the homogeneous case).

In the MHS sequence

BE (V) — BE V) — BYV) -l B} (V) — 0

used above, one has

(i) Hy(V) has weights > n,ie. W__ Hy(V)=0 by Durfee [10].
(ii) BS (V) has weights <n—1,ie W__,HS (V)= HS }(V) since V is
proper [3].

— *
It follows that one can determine hp,q(onl 1(‘V )) for p+q=m2n from short

exact sequences

0— GrY Hn_l(V ) — Gry BYV) -1y GrVED(V) — 0
(using of course computations with linear systems to determine the kernel of j). Using
duality results for the MHS on Hy(V) and on H'(U) explained in [6] and Lemma
(2.2) we get

hPYEZL(v)) = kP PEYEY(U)) = nV P LR LS hy )

for any p,q and s.
Hence the above short exact sequences give all the numbers hp’q(HB_l(V)) for

p+q < n-1.
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To determine the remaining MHS numbers, it is enough to recall that the coefficient of

(n—p) in the gpectrym Sp(f) of f is precisely

Y nPA(E™(U)) - ¥ nPHE" (D))
8 t

This formula contains exactly one unknown number, namely
R PR (1)) = KPP DT (V)

On the other hand, the spectrum Sp(f) is computed (at least in the case of a
homogeneous polynomial f) explicitly in terms of the spectra of the transversal
in itieg (Y;,3;) by J. Steenbrink in his recent (unpublished) manuscript: "The
spectrum of hypersurface singularities". _

As a result, in this way one is able to determine all the MHS numbers for V, V* and
U , provided one knows enough about the transversal singularities (Yi,a.i) :

In particular, one gets the next obvious consequences of this discussion.

(2.8) Corollary
(i) Hn_l(V) has a pure Hodge structure of weight (n—1) if and only if the

morphism j above is an isomorphism. This can be rephrased by saying that
codim( &’) = 0, i.e. the conditions ¥ in (2.5) are automatically satisfied

by all the polynomials in S( n—t)N—w *

(ii) The subspace W, _3Hn"1(V) depends on the transversal singularities

Y.,a.) , but not on their position.
171
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By general properties of Hodge structures it follows that the subspace Wn_2Hn-1(V) is
precisely the kernel of the cup—product pairing

B vy x BB v) — B2 2(v) = ¢ .

Moreover, when dim(V) is even, one can use in the usual way the numbers
wWPYH'(V)) to compute the signature (u +,p0,p_) of the cup—product pairing over R
[19].

(2.9) Corollary

V is a (~homology manifold (i.e. there are no essential singularities for V) if and only
if the cohomology algebra H'(V) is a Poincaré algebra (i.e. for any k the cup—product
pairing

B5(v) x B2 2K y) — g2 2(vy = ¢

is non degenerate).

Proof

If H'(V) is a Poincaré algebra, it follows that HS(V) = 0 . Then using (2.8 i) and the
above description of the kernel of the cup—product on Hn_l(V) it follows that
H%(V) = 0, i.e. there are no essential singularities for V .
The other implication is standard.

Similar consideration lead to the computation of the MHS numbers of H"(F) , but

we leave the details for the reader (use the same method as in the proof of (3.6) below).
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§ 3. Some examples

Let us discuss first the case when dim V is even. Then the simplest singularities

~ ~ ~

which are degenerate in this case are EG , By and Eg.

(3.1) Proposition

Let VCP(w) be a hypersurface with deg V=N and dim V =2m . Assume

4
that the set ¥ of essential singularities for V consists only of singularities a, whose

~ ~N ~

associated transversal singularities are of type Eg , E7 or E8 . Then the only
(possibly) nonzero Hodge numbers of Hgm"'l(v) are given by the next formula

R EHE () < P HRERE(Y) = det( o )

where the linear system o’ is defined by

~

/
o ={heS_y . ih|T =0}.
Proof Use (1.10.ii) and (2.6).
(3.2) Corollary (including Zariski example [25], [12])

Let BCP2™ bea hypersurface of degree N having only isolated singularities
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andlet V—P 2@ bea cyclic covering of order 6 ramified over B . Assume that all
the points a, € %’ correspond to points Ei € B such that B has an A2 singularity

at Ei . Let I denote the set of all these points Ei .

Then the only (possibly) nonzero Hodge numbers of Hgm+1(V) are given by the

next formula hm’m+1(Hgm+1(V))=hm+1’m(Hgm+1(V))=def(af) where the

linear system of  is defined by o = {h e HO(P 2™ 0(mN —2m — 1 —N/6)) ;

Let b=0 be an equation for B . Then V is a hypersurface defined by the equation
b—t8=0 in the weighted projective space P(1,...,1,N/6) and all the singularities

~

a; € B’ have associated transversal singularities (Y;,a;) of type Eg . Hence we can
apply (3.1) and note that an element he S , - with w=2m+1+N/6 can be
written as a sum h= X hjt-i where hj is a homogeneous polynomial in XgXqs e KXo
of degree deg(hj) = mN -w—jN/6.

Moreover the condition h|E’ =0 is clearly equivalent to hy|E=0.

Assume from now on that dim V =2m —1 is odd. Then the simplest degenerate

singularities are A, , for k> 1.

(3.3) Proposition

Let V be a hypersurface in P(w) with dim V=2m -1, deg V=N and such that
any essential singularity a € ¥’ corresponds to a transversal singularity of type Al .

Then the only (possibly) nonzero Hodge number of Hgm(V) is given by the formula
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A™(H2P(V)) = def( o#) where

#={heS$ h|E’ =0}.

mN-—w’
Proof Use (1.10i) with k =1 aand (2.5) with t=m.

Note that (3.3) extends the computations of Betti numbers in Clemens [2],
Schoen [17] and Werner [24].

A more complicated example involving several types of A, ,-singularities is the

next.

(3.4) Proposition

Let V CP(wg, ... ,wo ) be a hypersurface of degree N such that the set B/ of

essential singularities satisfies the next two conditions:
(i) T’/ is contained in the hyperplane xg =0
(ii) any transversal singularity (Yi’ai) corresponding to a point a; € T/ is
of type Ay 41 for some k and (Yi n HO’ai) is an A,—singularity in
(Ho,ai) , where H0 denotes the affine hyperplane Xy = 0 . Let

T, ={8,eZ" ; (Y;3) is of type A2k+1} and for any k with

Ty # ¢ consider the linear system

Then the only possible nonzero Hodge number of Hgm(V) is given by the formula
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AEINV) = Y def(@)
S

Here S denotes the polynomial ring C[xl, ,x2m] graded by the conditions
deg(x;) = w; for i21.

Proof

According to Theorem (2.4) we have to analyse the kernel of T™ on § mN—w °

. _ i <
Write an element he S o _ asasum h=ZXhxy with hj eS

mN-w—jw ’ It

a, € I, , then the component of T™(h) corresponding to H:.(V) is zero if and only if
1

h (a;) =0,ie if b e o ,use(1.10i) and the second part of the condition (ii) above.
It follows from (3.4) that the singularities situated in one X, do not interact at all
with the singularities situated in a different T, (with ¢ # k) and this fact is ngt at all

obvious from purely topological considerations.

A special case of (3.4) is the next

(3.5) Corollary

Let BC P20l e g hypersurface of degree N having only isolated singularities. Let e
be a divisor of N and let V—P2™ 1 pea cyclic covering of order e ramified over

B . Assume that all the essential singularities of V a, € £/ correspond to points Ei

which are nodes on B . Let ¥ denote the set of all these nodes Ei )
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Then either
(i) e isodd, B/ =¢ and Ho™(V)=0,or
(ii) e is even, N is even and the only possibly nonzero Hodge number of

B2™(V) is given by h™™(HE™(V)) = def( &) where

&= {b e B°P¥™ ! p(mN —2m —N/2) ,h|T=0}.

Proof Apply (3.4) with 7 = T, for 2k+2=e, wy=Nje, wy=..=wy =1.
Note that the answer in case (ii) does not depend on the degree e of the covering
v — p2m-ly

(3.6) Corollary

Let F:f—1=0 be the Milnor fiber of the weighted homogeneous polynomial f .

Assume that all the transversal singularities of f are nodes. Then:
(1) b _(F)=0if n and N are both odd;

(ii) If n=2m is even, then the only possibly nonzero Hodge number of
H2U(F) is given by K™ ™(HYX(F)) = def( ##) where
&#={heS h|Z/ =0}

mN-w"'

with £/ the set of essential singularities for V : f = 0 . Moreover in this
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case H"'(F)=H"7(F), , i.e. all the elements in H"'(F) are fixed

*
under the monodromy operator h .

(iit) If n=2m-1 is odd and N is even, then the only possibly nonzero
Hodge number of H™L(F) is given by
R L@ () = def( @) , where @’ = {heS_y . o /2
h|Z =0} with I the set of essential singularities for V:{— N =0 in
P(w,1) . Moreover in this case Hn_l(F) = Hn_l(F):'(:0 , i.e. there is no
*

nonzero element fixed under the monodromy operator h .

Proof

*
For a € I/NI, let H'(F), denote the eigenspace of h corresponding to the
cigenvalue t*. If we set H‘(F)#0= : H(F), , then one clearly has the
a¥0

decomposition H'(F) = H'(F), GH'(F)#0 . It follows from [6], (1.19) and (2.5) that

one has isomorphisms Hn"l(F)0 = HE(V) and Hn-l(F)a‘,:0 = HS'H(V) which are (in

some precise way) compatible with the MHS. See the remarks after (2.5) in [6].
Assume first that n=2m is even. Then all the singularities of V are

nondegenerate and hence Hg‘”(V) = 0. The result follows using (3.3). Assume next

that n =2m —1 is odd. Then all the singularities of V are nondegenerate and hence
HB(V) =0.If N is also odd, the same is true for V and we get the case (i) above. If
N is even, then the singularities in ¥ are of type Ay_; and we can apply (3.4). Note

that since ¥ is contained in the hyperplane t = 0, we regard ¥ as a subset in P(w) .

* [ ] -
Recall that the monodromy operator h : H (F) — H (F) is induced by the mapping

¥o0 ¥n
h:F—F,h(x)=(t "xp ...t " x) for t=exp(27/N).
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