ON GOLOMB’S NEAR-PRIMITIVE ROOT CONJECTURE
PIETER MOREE

ABSTRACT. Golomb conjectured in 2004 that for every squarefree integer g > 1,
and for every positive integer ¢, there are infinitely many primes p = 1(mod t)
such that the order of g in (Z/pZ)* is (p — 1)/t (we say that g is a near-primitive
root of index t). We show that this conjecture is false and provide a corrected
and generalized conjecture that is true under the assumption of the Generalized
Riemann Hypothesis (GRH) in case g is a rational number.

1. INTRODUCTION

Let ¢ € Q\{—1,0,1}. Let p be a prime. Let v,(g) denote the exponent of p in
the canonical factorization of g. If v,(g) = 0, then we define r,(p) = [(Z/pZ)* :
(g mod p)], that is 74(p) is the residual index modulo p of g. Note that r,(p) = 1 iff
g is a primitive root modulo p. For any natural number ¢, let N, denote the set of
primes p with v,(g) = 0 and 7,(p) =t (that is N, is the set of near-primitive roots
of index t). Let A(g,t) be the natural density of this set of primes (if it exists).
For arbitrary real = > 0, we let N,,(z) denote the number of primes p in N,; with
p <

In 1927 Emil Artin conjectured that for g not equal to —1 or a square, the set
N, is infinite and that N, (z) ~ ¢,Am(x), with ¢, an explicit rational number,

(p—1)

and 7(x) the number of primes p < z. The constant A is now called Artin’s constant.
On the basis of computer experiments by the Lehmers in 1957 Artin had to admit
that ‘“The machine caught up with me’ and provided a modified version of ¢,. See
e.g. Stevenhagen [I2] for some of the historical details. On GRH this modified
version was shown to be correct by Hooley [4].

During the summer of 2004 Solomon Golomb related the following generalization
of Artin’s conjecture to Ram Murty [2].

1
A=T] (1 _ —) ~ 0.3739558,
» p

Conjecture 1. For every squarefree integer g > 1, and for every positive integer
t, the set Ny, is infinite. Moreover, the density of such primes is asymptotic to a
constant (expressible in terms of g and t) times the corresponding asymptotic density
for the case t =1 (Artin’s conjecture).

In a 2008 paper Franc and Murty [I] made some progress towards establishing
this conjecture. In particular they prove the conjecture in case g is even and t
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is odd, assuming GRH. In general though, this conjecture is false, since in case
g = 1(mod 4), t is odd and g|t, N, is finite. To see this note that in this case we
have (]%) = 1 for the primes p = 1(mod t) by the law of quadratic reciprocity and
thus r,(p) must be even, contradicting the assumption 2 1 ¢.

Work of Lenstra [5] and Murata [10] suggests a modified version of Golomb’s

conjecture (with as usual g the Mébius function and ¢, = e*™/*).

Conjecture 2. Let g > 1 be a squarefree integer. The set Ny, has a natural density
A(g,t) given by

oo

p(n)
2 [ o7 Q) W

n=1

which is worked out as an Euler product in Table 1. The set Ny, is finite if and only
if g = 1(mod 4), 21t and g|t. We have

A(g,t) =0 iff g =1(mod 4), 21t, glt.

Note that if a set of primes is finite, then its natural density is zero. The converse
is often false, but for a wide class of Artin type problems (including the one under
consideration in this note) is true (on GRH) as first pointed out by Lenstra [5].

We put
-1
B(g’t) = —’
H pP—p—1
Pls

and let E(t) be as in (22).

Table 1: The density A(g,t) of N,; (on GRH)

gl T=1w(t)[glt? A(g; 1)
g=1l(mod4)| 7=0 |YES 0
NO | (1-B(g,1)E()

7>1 |YES 2E()

NO | (1+ B(g,t))E(t)

g=2(mod4)| 7<2 E(t)
T =2 (1—B(g,1)/3)E(t)

T>2 (1+ B(g, t))E(t)

g=3mod4)| 7=0 E(t)
T=1 (1 - B(g,1)/3)E(t)

T>2 (1+ B(g, t))E(t)

Given a rational number g, let d(g) denote the discriminant of Q(,/g).
Theorem 1. Conjecture [2| holds true on GRH.

Proof. By work of Lenstra [5] it follows that N, is finite iff 2 { ¢ and d(g)|t.
By elementary properties of the discriminant this is seen to be equivalent with
g = 1(mod 4), 21t and g|t.
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Lenstra’s work also shows that N, has a natural density A(g,t) that is given by
(1), with A(g,t)/A rational. The explicit evaluation of A(g,t) as an Euler product
in Table 1 we took from a paper by Murata [I0]. (We leave it as an exercise to
the reader to show that the results of Wagstaff described below lead to the same
results. )

Since by the work of Lenstra Ny, is finite iff A(g,¢) = 0, the final assertion follows.
Alternatively, this can be deduced from Table 1. 0

Note that A(g,t) equals a rational constant times A(g,1). Thus the constant
alluded to in Golomb’s conjecture is actually a rational number.

2. GENERALIZATION TO RATIONAL ¢

A natural next question is what happens if we relax the condition that g need to be
squarefree 7 Here we propose the following conjecture. We put

2. n(n)(nt, h
S(h,t,m) = Z%,

n=1
m|nt

with ¢ Euler’s totient function. Put E(¢) = S(1,¢,1). This sum can be evaluated
as an Euler product and one finds:
p -1
-2 H )

pP-p—1
Write M = m/(m,t) and H = h/(Mt, h). Then we have [13, Lemma 2.1]

S(h,t,m) = p(M)(Mt, ) T] 21—1qu_1€]_ I - H alg —2

darn 4 alM a4 ¢ —q-
aft M qut

Conjecture 3. Let g € Q\{—1,0,1} and t > 1 be an arbitrary integer. Write
g = Fgl', where gy € Q is positive and not an ezact power of a rational and h > 1 an
integer. Let d(go) denote the discriminant of Q(\/g0). Put e = vyo(h) and T = 1»5(1).
In the following cases there are only finitely many near-primitive roots of index t:
1) 21, d(g)]t.

2)g>0,7>e,3¢tt, 3|h, d(—3g0)|t.

)g<0,T=e=1, d(290)|2t.

)g<0,7=1,e=0,31t, 3|h, d(3g0)|t.

)g<0,7=2,e=1,31¢t, 3|h, d(—6g0)|t.

)g<0,7>e+1,31t, 3|h, d(—3g0)|t.

In the remaining cases, there are infinitely many primes p such that g is a near-
primitive root of index t.

The natural density of the set Ny, exists, call it A(g,t), and equals a rational num-
ber times the Artin constant A. We have A(g,t) = 0 iff one of the conditions (1)-(6)
applies. To write A(g,t) as A times a correction factor, write gy = g193, where g
is a squarefree integer and g, is a rational. If g > 0, set m = lem{2°"! d(go)). For
g <0, definem =2g, ife=0 and g = 3(mod 4), or e =1 and g; = 2(mod 4); let

3
4
)
6
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m = lem(2°%2, d(go)) otherwise. If g > 0, we have A(g,t) = S(h,t,1) + S(h,t,m).
If g < 0 we have

1 1
A(g,t) = S(h,t,1) — §S(h,t, 2) + 5S(h,t, 2¢T1) + S(h, t,m).

Note that S(h,t,m;) has an Euler product that differs in at most finitely many
primes p from that of S(h, ¢, ms). This allows one to write A(g,t) as an Euler prod-
uct. It is a rational multiple of A. From the above description it is very cumbersome
to determine when A(g,t) = 0. However, from the work of Lenstra we know that
A(g,t) = 0 iff one of the conditions (1)-(6) is satisfied. In each of those cases, one
has that IV, is finite. Examples are given in Table 2.

Table 2: Examples of pairs (g,t) satisfying conditions (1)-(6)

1 2 3 4 5 6
(g,0) | (5,5) | (3%,4) | (=6%,6) | (—153,10) | (—65,4) | (=33, 4)

Theorem 2. Conjecture 3| holds true on GRH.

Proof. Most of the proof is a consequence of work of Lenstra [5]. However, he
merely indicated conditions (1)-(6) without working this out. Moree [§] by an in-
dependent method also arrived at these conditions (see also below). The explicit
evaluation of A(g,t) can be found in Wagstaff [13]. O

Moree introduced a function w,(p) € {0, 1,2} for which he proved (see [§], for a
rather easier reproof see [9]) under GRH that

Nolw) = (ht) 3wy ) =D (T2l
p<z, p=1(mod t) pP= lOg L
This function wy,(p) has the property that, under GRH, w,(p) = 0 for all primes p
sufficiently large iff N, is finite. Since the definition of w, (p) involves nothing more
than the Legendre symbol, it is then not difficult to arrive at the conditions (1)-(6).
For condition (1) we have that g is a square modulo p, and thus 2|¢, contradicting
2 1 t. Likewise for the other 5 cases the obstructions can be written down. In each
of the cases it turns out that v5(r,(p)) # v2(t). For the complete list of obstructions
we refer to Moree [8, pp. 170-171].

For a large class of Artin type problems there are conjectural densities, that can
be shown to be true on GRH, involving inclusion-exclusion. It is computationally
challenging to convert these expressions in to Euler products and determine exactly
when the densities are zero. Using the theory of radical entanglement as developped
by Lenstra [6] this problem is rather more easily resolved, for two examples see
Lenstra et al. [7] (Artin problems over base field Q) and De Smit and Palenstijn
[T1] (for arbitrary base field). A preview of [7] is given in [12].
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3. AN APPLICATION

Let ®,,(z) denote the n-th cyclotomic polynomial. Let S be the set of primes p such
that if f(z) is any irreducible factor of ®,(z) over Fy, then f(x) does not divide any
trinomial. Over Fy, ®,(x) factors into r2(p) irreducible polynomials. Let

Si={p>2:21rm}u{p>2:2<r(p) <16})\{3,7,31,73}.

Theorem 3. We have S; C S. The set S; contains the primes p > 3 such that
p = +3(mod 8). On GRH the set S, has density

1 1323100229
5(S)) = = + A2 2%7  0.950077195 - - - 3
(51) 5 T 1099324800 (3)

Proof. The set {p > 2 :2{ry(p)}} equals the set of primes p such that (}%) = —1,
that is the set of primes p such that p = £3(mod 8). This set has density 1/2. We
thus find, on invoking Theorem 1, that

1
6(S1) = 5 Z A(2,7)

2|5

:%+E@m+§%+%+£ﬂ+ﬂ®u+£?+EO®+MM%

which yields on invoking formula . That S; C S is a consequence of the work
of Golomb and Lee [3]. O
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