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1. Introduction

The ground-breaking papers of Andersén and Lempert ([1], [3]) were a starting
point for intensive study of the holomorphic automorphism group of Cn (n ≥ 2). Their
central observation was that

Each polynomial vector field on Cn (n ≥ 2) is a finite sum of completely integrable
polynomial vector fields

where a holomorphic vector field on a complex manifold is completely (or globally)
integrable if its phase flow generates a holomorphic C+-action on this manifold. This
observation lead to their main result that implies, in particular, that any local holomor-
phic phase flow on a Runge domain Ω in Cn can be approximated by global holomorphic
automorphisms of Cn (for an exact statement see Theorem 2.1 in [14]). This theorem
has deep applications among which there are examples of non-rectifiable proper holo-
morphic embeddings of C into C2 1 [11] (see also [5], [8],[9]) in sharp contrast with the
algebraic situation where the famous Abhyankar-Moh-Suzuki theorem states that any
algebraic embedding of a line in a plane is always equivalent to a linear one ([4], [30]).
This was crucial for Derksen and the second author who constructed counterexamples
to the Holomorphic Linearization Problem (they showed existence of non-linearizable
holomorphic C∗-actions on Cm, m ≥ 4 and, moreover, existence of such non-linearizable
homomorphic actions for any compact Lie group K on Cn with n sufficiently large see
[7], [8]).

The next step in the development of the Andersén-Lempert theory was made by
Varolin who extended it from Euclidean spaces to a wider class of algebraic complex
manifolds. He realized also that instead of presenting algebraic vector fields as a finite
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sum of integrable algebraic fields one can use Lie combinations of those fields (see
Remark 4.6). This leads to the following.

1.1. Definition. A complex manifold X has the density property if in the compact-
open topology the Lie algebra Liehol(X) generated by globally integrable holomorphic

vector fields on X is dense in the Lie algebra VFhol(X) of all holomorphic vector fields
on X. An affine algebraic manifold has the algebraic density property if the Lie algebra

Liealg(X) generated by globally integrable algebraic vector fields on it coincides with
the Lie algebra VFalg(X) of all algebraic vector fields on it (clearly the algebraic density
property implies the density property).

In this terminology Varolin’s version of the Andersén-Lempert observation says that
C

n (n ≥ 2) has the algebraic density property. Varolin and Toth ([31], [28], [29])
established the density property for some manifolds including semisimple complex Lie
groups and some homogenous spaces of semisimple Lie groups.

In fact, in our next paper, using new criteria, we shall prove the algebraic density
for all linear algebraic groups different from tori or C+ [22]. However in some cases
this new approach does not work (at least in our hands) while computations that are
closer to the original ideas of Andersén and Lempert give the desired result.

One of the aims of the paper is to present this computation which implies, in partic-
ular, the algebraic density property for the following important class of affine algebraic
varieties (see Theorem 1).

Theorem (Main Theorem). Let p ∈ C[x1, x2, ...., xn] be a polynomial with a smooth
reduced zero fiber. Then the hypersurface

Xp := {(x̄, u, v) ∈ C
n+2 : uv = p(x̄), x̄ = (x1, x2, . . . , xn)}

has the algebraic density property.

Among such hypersurfaces there is a class of smooth contractible affine algebraic
varieties (which are automatically diffeomorphic to Euclidean spaces as real manifolds
starting with complex dimension 3, see [6]) that do not admit obvious (algebraic of
holomorphic) isomorphisms with Euclidean spaces (as an example one can consider
the hypersurface of C6 given by uv = x + x2y + z2 + t3). The question whether
such isomorphisms exist is central for several conjectures in affine algebraic geometry
and complex analysis. The theorem before shows that the automorphism groups of
these contractible hypersurfaces share a lot of properties with the similar groups for
Euclidean spaces.

Furthermore, we prove that any complex manifold X with the density property
satisfies the Oka-Grauert-Gromov principle since X admits a spray. Therefore, by
the work of Gromov (see [18] and for complete proofs see [12], [13]) we extend the
classical results of Grauert, Forster and Ramspott about the validity of this principle
to submersions with fibers that are smooth hypersurfaces of the form given in the Main
Theorem.

Another implication of the density property is that every point of a contractible
smooth hypersurface uv = p(x̄) in Cn+2, (n ≥ 2) possesses a (Fatou-Bieberbach) neigh-
borhood biholomorphic to Cn+1.
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The paper is organized as follows. In section 2 we give criteria ensuring the algebraic
density property for a hypersurface uv = p(x̄) (this is the main technical part of the
paper). In section 3 we give a holomorphic version of our results. In section 4 we
establish the existence of a Gromov’s spray for manifolds with the density property
and as a consequence we prove the Oka-Grauert-Gromov principle for morphisms with
fiber isomorphic to hypersurfaces from Theorem 1. Finally in section 5 we describe
relations between the density property for these hypersurfaces and some well-known
conjectures.

2. Algebraic Density Property For a Hypersurface uv = p(x̄).

Recall that a holomorphic vector field V ∈ VFhol(C
n) is completely (or globally)

integrable if for any initial value z ∈ C
n there is a global holomorphic solution of the

ordinary differential equation

(1) γ̇(t) = V (γ(t)), γ(0) = z.

In this case the phase flow (i.e. the map C × C
n → C

n given by (t, z) 7→ γz(t)) is
a holomorphic action of the additive group C+ on Cn, where index z in γz denotes
the dependence on the initial value. It is worth mentioning that this action is not
necessarily algebraic in the case of an algebraic vector field V ∈ VFalg(C

n).
In addition to the density property given in Definition 1.1, Varolin introduced the

following notion of volume density property.

2.1. Definition. Let ω be a holomorphic nowhere vanishing n-form on a complex

manifold X of dimension n (we call such ω a volume form). We say that X has the
volume density property with respect to ω if the Lie algebra Lieω

hol generated by globally
integrable holomorphic vector fields ν such that ν(ω) = 0, is dense in the Lie algebra

VFω
hol(X) of all holomorphic vector fields that annihilate ω.

If X is affine algebraic we say that X has the algebraic volume density property with

respect to ω if the Lie algebra Lieω
alg generated by globally integrable algebraic vector

fields ν such that ν(ω) = 0, coincides with the Lie algebra VFω
alg(X) of all algebraic

vector fields that annihilate ω.

Let us discuss some simple properties of the divergence divω(ν) of a vector field ν
on X with respect to this volume form ω. The divergence is defined by the equation

(2) divω(ν)ω = Lν(ω)

where Lν is the Lie derivative. Furthermore, for any vector fields ν1, ν2 on X we
have the following relation between divergence and Lie bracket

(3) divω([ν1, ν2]) = Lν1
(divω(ν2)) − Lν2

(divω(ν1)).

In particular, when divω(ν1) = 0 we have

(4) divω([ν1, ν2]) = Lν1
(divω(ν2)).



4 SHULIM KALIMAN AND FRANK KUTZSCHEBAUCH

Another useful formula is

(5) divω(fν) = f divω(ν) + ν(f)

for any holomorphic function f on X.

2.2. Lemma. Let Y be a Stein complex manifold with a volume form Ω on it, and X be
a submanifold of Y which is a strict complete intersection (that is, the defining ideal of

X is generated by holomorphic functions P1, . . . , Pk on Y , where k is the codimension
of X in Y ). Suppose that ν is a vector field on X and µ is its extension to Y such that
µ(Pi) = 0 for every i = 1, . . . , k. Then

(i) there exists a volume form ω on X such that Ω|X = dP1 ∧ . . . ∧ dPk ∧ ω; and
(ii) divω(ν) = divΩ(µ)|X .

Proof. Let x1, . . . , xn be a local holomorphic coordinate system in a neighborhood of
a point in X. Then P1, . . . , Pk, x1, . . . , xn is a local holomorphic coordinate system in

a neighborhood of this point in Y . Hence in the last neighborhood Ω = hdP1 ∧ . . . ∧
dPk ∧ dx1 ∧ . . . ∧ dxn where h is a holomorphic function. Set ω = h|Xdx1 ∧ . . . ∧ dxn.

This is the desired volume form in (i).
Recall that Lν = d ◦ ıν + ıν ◦ d where ıν is the inner product with respect to ν

([24], Chapter 1, Proposition 3.10). Since µ(Pi) = 0 we have t Lµ(dPi) = 0. Hence by

formula (2) we have divΩ(µ)Ω|X = LµΩ|X = Lµ(dP1 ∧ . . . ∧ dPk ∧ ω)|X = dP1 ∧ . . . ∧
dPk|X ∧Lνω+Lµ(dP1∧ . . .∧dPk)|X ∧ω = divω(ν)(dP1∧ . . .∧dPk)|X ∧ω = divω(ν)Ω|X
which is (ii).

�

2.3. Remark. (1) Lemma 2.2 enables us conveniently to compute the divergence of a
vector field on X via the divergence of a vector field extension on an ambient space.

It is worth mentioning that there is another simple way to compute divergence on X
which leads to the same formulas in Lemma 2.6 below. Namely, X that we are going to
consider will be an affine modification σ : X → Z of another affine algebraic manifold Z

with a volume form ω0 (for definitions of affine and pseudo-affine modifications see [21]
and Appendix 5.7). In particular, for some divisors D ⊂ Z and E ⊂ X the restriction
of σ produces an isomorphism X \E → Z \D. One can suppose that D coincides with

the zero locus of a regular (or holomorphic) function α on Z. In the situation, we are
going to study, the function α̃ = α ◦ σ has simple zeros on E. Consider the form σ∗ω0

on X. It may vanish on E only. Dividing this form by some power α̃k we get a volume

form on X. In order to compute divergence of a vector field on X it suffices to find
this divergence on the Zariski open subset X \ E ' Y \ D, i.e. we need to compute

the divergence of a vector field ν on Y \D with respect to a volume form βω0 where
β = α−k. The following formula relates it with the divergence with respect to ω0:

divβω0
(ν) = divω0

(ν) + Lν(β)/β.

In the cases, we need to consider, β will be often in the kernel of ν, i.e. divβω0
(ν) =

divω0
(ν) in these cases.
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(2) If the normal bundle of X ⊂ C
n is trivial we may choose ω as the restriction of

the standard volume form on Cn by Lemma 2.2. Indeed, taking n sufficiently large we
can always assume that X is a complete intersection in Cn (see for example [27]).

The condition in Lemma 2.2 that an algebraic field ν on X has an extension µ on Y
with µ(Pi) = 0 is also very mild. We consider it in the case of hypersurfaces only.

2.4. Lemma. Let X be a smooth hypersurface in a complex Stein (resp. affine alge-
braic) manifold Y given by zero of a reduced holomorphic (resp. algebraic) function
P on Y . Then every holomorphic (resp. algebraic) vector field ν on X has a similar

extension µ to Y such that µ(P ) = 0.

Proof. Consider, for instance, the algebraic case, i.e. P belongs to the ring C[Y ] of

regular functions on Y . Since µ must be tangent to X we see that µ(P ) vanishes on
X, i.e. µ(P ) = PQ where Q ∈ C[Y ]. Any other algebraic extension of ν is of form
τ = µ− Pθ where θ ∈ VFalg(Y ). Thus if θ(P ) = Q then we are done.

In order to show that such θ can be found consider the set M = {θ(P )|θ ∈ VFalg(Y )}.
One can see that M is an ideal of C[Y ]. Therefore, it generates a coherent sheaf F
over Y . The restriction Q|Y \X is a section of F|Y \X because Q = µ(P )/P . Since X

is smooth for every point x ∈ X there are a Zariski open neighborhood of X and an
algebraic vector field ∂ such that ∂(P ) does not vanish on U . Hence Q|U is a section

of F|U . Since F is coherent this implies that Q is a global section of F and, therefore,
Q ∈M which is the desired conclusion. �

2.5. Terminology and Notation. In the rest of this section X is a closed affine

algebraic submanifold of Cn, ω is a volume form on X, p is a regular function on X
such that the divisor p∗(0) is smooth reduced, X ′ is the hypersurface in Y = C2

u,v ×X

given by the equation P := uv − p = 0. 2 Note that X ′ is smooth and, therefore,

Lemma 2.4 is applicable. We shall often use the fact that every regular function f on
X ′ can be presented uniquely as the restriction of a regular function on Y of the form

(6) f =

m∑

i=1

(aiu
i + biv

i) + a0

where ai = π∗(a0
i ), bi = π∗(b0i ) are lift-ups of regular functions a0

i , b
0
i on X via the

natural projection π : Y → X (as we mentioned by abusing terminology we shall say

that ai and bi themselves are regular functions on X).
Let Ω = du∧ dv ∧ω, i.e. it is a volume form on Y . By Lemma 2.2 there is a volume

form ω′ on X ′ such that Ω|X′ = dP ∧ ω′. Furthermore, for any vector field µ such that

µ(P ) = 0 and ν ′ = µ|X′ we have divω′(ν ′) = divΩ(µ)|X . Note also that any vector field
ν on X generates a vector field κ on Y that annihilates u and v. We shall always denote

2By abusing notation we treat p in this formula as a function on Y , and, if necessary, we treat it

as a function on X ′. Furthermore, by abusing notation, for any regular function on X we denote its

lift-up to Y or X ′ by the same symbol.
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κ|X′ by ν̃. It is useful to note for further computations that uiπ∗(divω(ν)) = divΩ(uiκ)
for every i ≥ 0. Note also that every algebraic vector field λ on X ′ can be written
uniquely in the form

(7) λ = µ̃0 +

m∑

i=1

(uiµ̃1
i + viµ̃2

i ) + f0∂/∂u + g0∂/∂v

where µ0, µ
j
i are algebraic vector fields on X, and f0, g0 are regular functions on X ′.

For any algebraic manifold Z with a volume form ω we denote by Liealg(Z) (resp.
Lieω

alg(Z)) the Lie algebra generated by algebraic globally integrable vector fields on Z
(resp. that annihilates ω) and by VFalg(Z) we denote the Lie algebra of all algebraic

vector fields on Z. We have a linear map

P̃r : VFalg(X
′) → VFalg(X)

defined by P̃r(λ) = µ0 where λ and µ0 are from formula (7). The following facts are
straightforward calculations that follow easily from Lemma 2.2.

2.6. Lemma. Let ν1, ν2 be vector fields on X, and f be a regular function on X. For
i ≥ 0 consider the algebraic vector fields

ν ′1 = ui+1ν̃1 + uiν1(p)∂/∂v, ν ′2 = vi+1ν̃2 + viν2(p)∂/∂u

and µf = f(u∂/∂u− v∂/∂v) on Y . Then
(i) ν ′i and µf are tangent to X ′ (actually they are tangent to fibers of P = uv−p(x)),

i.e., they can be viewed as vector fields on X ′;
(ii) µf is always globally integrable on X ′, and ν ′i is globally integrable on X ′ if νi is

globally integrable on X;
(iii) divω′(µf) = 0, divω′(ν ′1) = ui+1 divω(ν1), divω′(ν ′2) = vi+1 divω(ν2), and

divω′([µf , ν
′
1] = (i + 1)ui+1f divω(ν1), divω′([ν ′2, µf ] = (i+ 1)vi+1f divω(ν2);

(iv) we have the following Lie brackets

[µf , ν
′
1] = (i+ 1)ui+1f ν̃1 + α1∂/∂u + β1∂/∂v,

[ν ′2, µf ] = (i + 1)vi+1f ν̃2 + α2∂/∂u + β2∂/∂v,

where αi and βi are some regular functions on X ′;
(v) more precisely, if i = 0 in formulas for ν ′1 and ν ′2 then

[µf , ν
′
1] = fuν̃1 − u2ν1(f)∂/∂u + ν1(fp)∂/∂v,

[ν ′2, µf ] = fvν̃2 − v2ν2(f)∂/∂v + ν2(fp)∂/∂u;

and

(8) P̃r([[µf , ν
′
1], ν

′
2]) = ν1(fp)ν2 − ν2(fp)ν1 + fp[ν1, ν2].
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2.7. Additional Notation. For every affine algebraic manifold Z let C[Z] be the
algebra of its regular functions, IVFalg(Z) be the set of globally integrable algebraic
vector fields on Z. If there is a volume form ω on Z then we denote by DivZ :

VFalg(Z) → C[Z] the map that assigns to each vector field its divergence with respect
to ω, and set IVFω

alg(Z) = Ker DivZ ∩ IVFalg(Z), VFω
alg(Z) = Ker DivZ ∩VFalg(Z).

For a closed submanifold C of Z denote by VFalg(Z,C) the Lie algebra of vector fields

on Z that are tangent to C. Formula (6) yields a monomorphism of vector spaces
ι : C[X ′] ↪→ C[Y ] and the natural embedding X ↪→ X × (0, 0) ⊂ Y generates a

projection Pr : C[Y ] → C[X]. Note that Pr(ι(f)) = a0 in the notation of formula (6).

2.8. Proposition. Let C be the smooth zero locus of p in X. Suppose also that the
following conditions hold:

(A1) the linear space VFalg(X,C) is generated by vector fields that are of the form

P̃r([[µf , ν
′
1], ν

′
2]) where µf and ν ′i are as in formula ( 8) from Lemma 2.6 with νi ∈

IVFalg(X);
(A2) VFalg(X) is generated by IVFω

alg(X) as a module over C[X];
(A3) DivX(VFalg(X)) is generated by DivX(IVFalg(X)) over C[X] (for instance, the

ideal generated by DivX(IVFalg(X)) in C[X] coincides with C[X]).
Then Liealg(X

′) coincides with VFalg(X
′), i.e., X ′ has the algebraic density property.

Proof. Let λ, f0, and g0 be as in formula (7) and Λ = ι(λ) be the extension of λ to Y
also given by formula (7). By formula (6) f0 and g0 can be written uniquely in the

form

f0 =
m∑

i=1

(aiu
i + biv

i) + a0 and g0 =
m∑

i=1

(âiu
i + b̂iv

i) + â0

where ai, âi, bi, b̂i ∈ C[X].
Since Λ is a vector field tangent to X ′ = P−1(0) we have Λ(P )|X′ = 0. Thus

0 = Pr(ι(Λ(P )|X′)) = p(a1 + b̂1) − µ0(p) (recall that P = uv − p(x)). Hence µ0(p)
vanishes on C, i.e. µ0 ∈ VFalg(X,C). Let µf , ν

′
i ∈ IVFalg(X

′) be as in Lemma 2.6.
Condition (A1) implies that adding elements of the form [[µf , ν

′
1], ν

′
2] to λ we can

suppose that µ0 = 0. Now we have p(a1 + b̂1) = 0, i.e. a1 = −b̂1. This implies that
Pr(ι(divΩ(Λ)|X′)) = 0. By Lemma 2.4 there exists a vector field of the form τ = Λ−Pθ

on Y such that τ(P ) = 0. Hence

(uv − p)θ(uv − p) = Λ(uv − p).

Formula (7) and the form of f0 and g0 imply that Λ(P ) does not contain nonzero
monomials ukvl with both k ≥ 2 and l ≥ 2 (as a polynomial in u and v). Thus θ(P ) is

of form given by formula (6). We have also Pr(θ(P )) = 0 because Pr(Λ(P )) = 0, and,
therefore, Pr(ι(θ(P )|X′) = 0. By Lemma 2.2 and formula (5) divω′(λ) = divΩ(τ)|X′ =
(divΩ(Λ)−P divΩ(θ)−θ(P ))|X′ . Since ι(P divΩ(θ)|X′) = 0 we have Pr(ι(divω′(λ))) = 0

now. By condition (A3) DivX(VFalg(X)) is generated by DivX(IVFalg(X)) over C[X]
and, therefore, adding vector fields of the form [µf , ν

′
1] and [µf , ν

′
2], we can suppose

by Lemma 2.6 (iii) that divω′(λ) = 0. Note that this addition leaves µ0 equal to
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0 since P̃r([µf , ν
′
i]) = 0. Taking into consideration condition (A2) and Lemma 2.6

(iv) we can make µj
i = 0 by adding fields of the form [µf , ν

′
i] with νi ∈ IVFω

alg(X).
Note that this addition leaves not only µ0 equal to 0 but also divω′(λ) equal to 0,

since divω′([µf , ν
′
i]) = 0 as soon as divω(νi) = 0. Hence λ = f∂/∂u + g∂/∂v and

Λ(P )|X′ = fv + gu = 0.
Using formula (6) one can see that f must be divisible by u, and g by v. That

is, there exists a regular function h on X ′ for which f = uh and g = −vh. Hence
λ = h(u∂/∂u − v∂/∂v). Note that Λ(P ) = 0 now. Thus 0 = divω′(λ) = divΩ(Λ)|X′ =
(u∂h/∂u − v∂h/∂v)|X′ . Taking h as in formula (6) we see that h is independent of u

and v. Thus λ is integrable by Lemma 2.6 (ii).
�

2.9. Lemma. Condition (A1) in Proposition 2.8 is a consequence of the following two
conditions:

(B1) VFalg(X) is generated as a C[X]-module by vector fields of the form [ν1, ν2]

where the vector fields ν1, ν2 ∈ IVFalg(X) are proportional;
(B2) If C is the zero fiber of p then the C[C]-module VFalg(C) is generated by vector

fields of the form γ|C where γ = ν1(p)ν2 − ν2(p)ν1 with ν1, ν2 ∈ IVFalg(X).

Proof. Note that when ν1 and ν2 are proportional P̃r([[µ, ν ′i], ν
′
2] = fp[ν1, ν2] in formula

(8). Condition (B1) implies that linear combinations of such vector fields produce

any vector field of the form pν with ν ∈ VFalg(X). Hence condition (B1) has the
consequence that for every κ ∈ VFalg(X) there exists λ ∈ Lie(X ′) (more specifically

λ is a linear combination of vector fields of the form P̃r([[µf , ν
′
1], ν

′
2]) as required in

Condition (A1)) with P̃r(λ) = pκ.
Note further that γ in condition (B2) differs from a vector field in formula (8) by a

vector field divisible by p, i.e., of the form pκ.
Now take an arbitrary θ ∈ VFalg(X,C). By condition (B2) its restriction to C is a

sum of fields of the form f(ν1(p)ν2−ν2(p)ν1). Thus subtracting from θ the correspond-

ing sum of fields of the form P̃r([[µf , ν
′
1], ν

′
2]) we get a field which is divisible by p, i.e.,

vanishes on C. The mentioned consequence of condition (B1) concludes now the proof.
�

As a first application we set p(x) in the definition of X ′ equal to a nonzero constant,
in that case C is empty and X ′ is isomorphic to X×C

∗. This special case seems worth
to be stated separately.

2.10. Corollary. Let X be an affine algebraic manifold with a volume form ω such that

condition (B1) from Lemma 2.9 and conditions (A2) and (A3) from Proposition 2.8
hold. Then X × C∗ has the density property.

Here comes the next application of Proposition 2.8 and Lemma 2.9:

2.11. Lemma. Let X = Cn with a coordinate system (x1, . . . , xn) and p1, . . . , pn be the
partial derivatives of p. Then:
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(i) Condition (B1) holds.
(ii) Condition (B2) follows from the smoothness of the zero fiber C of p (i.e. from

the fact that the partial derivatives pi = ∂p/∂xi of p have no common zeros on C).

(iii) In particular, condition (A1) from Lemma 2.8 holds, when the zero fiber C of p
is smooth.

Proof. Taking ν1 = ∂/∂xi and ν2 = xi∂/∂xi we get the vector field [ν1, ν2] = ∂/∂xi

which implies condition (i).
There is nothing to prove when n = 1. For n > 1 take ν1 = ∂/∂xi and ν2 = ∂/∂xj .

We get γ from condition (B2) equal to pj∂/∂xi − pi∂/∂xj . Hence C[X]-combinations
of such fields include any field of the form

(9) λ =
∑

i,j

qi,j(pj∂/∂xi − pi∂/∂xj)

where qi,j are arbitrary polynomials on X.

Since the partial derivatives of p have no common zeros on C, such vector fields
λ|C generate the tangent bundle TC of C at each point. By a standard application of

Theorem B of Serre they generate the global sections of TC as C[C]-module. This is
(ii). �

Combining Lemma 2.11, Lemma 2.9 and Proposition 2.8 we conclude the main result
of this section:

Theorem 1. Let p ∈ C[x1, x2, ...., xn] be a polynomial with smooth reduced zero fibre,
i.e., the partial derivatives pi = ∂p/∂xi of p have no common zeros on the zero fiber of
p. Then the hypersurface

Xp := {(x̄, u, v) ∈ C
n+2 : uv = p(x̄), x̄ = (x1, x2, . . . , xn)}

has the algebraic density property.

Proof. We check that the conditions in Proposition 2.8 are fulfilled. Lemma 2.11 (iii)

ensures condition (A1). IVFω
alg(C

n) with respect to the standard volume form ω con-
tains the fields ∂/∂xi and those generates VFalg(C

n) as C[x1, x2, ...., xn] module. Fi-

nally DivX(IVFalg(C
n)) contains divω(x1∂/∂x1) ≡ 1 and thus the ideal generated by it

is equal to C[x1, x2, ...., xn]. �

2.12. Example. (1) For n = 1 we get the density property for Danilievsky surfaces
uv = p(x) where the polynomial p has no multiple roots.

(2) For n = 2 (i.e. X = C2
x,y) we have the density property for the hypersurface X ′

in C4
x,y,u,v given by xy−uv = 1 which is, of course, SL(2,C). Thus we got a new proof

of the fact that SL(2,C) has the density property, established first in [28].

3. Generalizations to Analytic Hypersurfaces.

3.1. The Analytic case. We need to change terminology and notation in order to
give a holomorphic analog of the results in section 2.
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In this section X is a Stein manifold, ω is a holomorphic volume form on X, p is a
holomorphic function on X such that the divisor p∗(0) is smooth reduced, X ′ is the
hypersurface in Y = X×C2

u,v given by the equation P := uv−p = 0. Again by abusing
notation, for any holomorphic function on X (say p) we denote its lift-up to Y or X ′ by
the same symbol. Instead of working with holomorphic functions on Y = C2

u,v ×X we
use the polynomial algebra O(X)[u, v] in two variables u and v over the algebra O(X) of
holomorphic functions on X. We put A(X ′) := O(X)[u, v]|X′ (note that every function
f ∈ A(X ′) can be presented uniquely as the restriction of a function from O(X)[u, v]
of form given by equation (6) but with ai = π∗(a0

i ), bi = π∗(b0i ) being now the lift-ups
of holomorphic functions a0

i , b
0
i on X via the natural projection π : Y → X).

Consider the Lie algebra VFmixed(Y ) of vector fields on Y each of which maps the
algebra O(X)[u, v] into itself (if, say, Y is an affine algebraic variety then we have
VFmixed(Y ) := O(X)[u, v] ⊗C[Y ] VFalg(Y )). By VFmixed(X

′) we denote the restrictions
to X ′ of fields from VFmixed(Y ) that are tangent to X ′.

Every such vector field λ ∈ VFmixed(X
′) can be written again uniquely in the form

given by formula (7) but with µ0, µ
j
i being holomorphic vector fields on X, and f0, g0 ∈

A(X ′). In particular, we have the linear map

P̃r : VFmixed(X
′) → VFhol(X)

defined by P̃r(λ) = µ0.
Let Liemixed(X

′) denote the Lie algebra generated by the set IVFmixed(X
′) of globally

integrable vector fields in VFmixed(X
′). Then instead of Proposition 2.8 one has.

3.2. Proposition. Let C be the smooth zero locus of p in X and VFhol(X,C) ⊂
VFhol(X) consist of vector fields on X tangent to C. Suppose also that the follow-
ing conditions hold:

(A1′) the linear space VFhol(X,C) is generated by vector fields that are of the form

P̃r([[µf , ν
′
1], ν

′
2]) where µf and ν ′i are as in the holomorphic version of formula ( 8) from

Lemma 2.6 with νi ∈ IVFhol(X);

(A2′) VFhol(X) is generated by IVFω
hol(X) as a module over O(X);

(A3′) DivX(VFhol(X)) is generated by DivX(IVFhol(X)) over O(X) (for instance,
the ideal generated by DivX(IVFhol(X)) in O(X) coincides with O(X)).

Then Liemixed(X
′) coincides with VFmixed(X

′), i.e., X ′ has the density property.

The proof of this Proposition goes Mutatis Mutandis and the only place that requires
additional comments is the following. The holomorphic vector field µ from Lemma 2.4
such that µ(P ) = µ(uv − p) = 0 on Y may not be a priori from VFmixed(Y ). However
this µ is of form Λ− Pθ where Λ ∈ VFmixed(Y ) and then the argument as in the proof
of Proposition 2.8 shows that θ(P ) ∈ O(X)[u, v]. This fact suffices to continue the
argument practically without change.

Lemmas 2.9 and 2.11 have obvious holomorphic reformulations that lead to the
following.
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Theorem 2. Let p ∈ O(Cn) be a holomorphic function with a smooth reduced zero
fibre, i.e., the partial derivatives pi = ∂p/∂xi of p have no common zeros on the zero
fiber of p. Then the Stein manifold

Xp := {(x̄, u, v) ∈ C
n+2 : uv = p(x̄), x̄ = (x1, x2, . . . , xn)}

has the density property.

4. The Oka-Grauert-Gromov Principle.

4.1. Properties inherited from the density property. We suppose below that
Xp ⊂ Cn+2 is an algebraic hypersurface in Cn+2 given by uv = p(x̄) where x̄ =
(x1, . . . , xn) and (x̄, u, v) is a coordinate system in C

n+2
x̄,u,v. The zero fiber C ⊂ Cn

x̄ of p
is always smooth and reduced which implies that Xp is also smooth.

We list below some properties of Xp that hold for any complex manifold with the
density property (e.g., see [32] Corollaries 4.1, 4.3 ).

(1) (Fatou-Bieberbach maps of the first kind) For each point x ∈ Xp there is an injective
but not surjective holomorphic map f : Cn+1 → Xp with f(0) = x. In particular all
Eisenman measures on Xp vanish identically.

(2) (Fatou-Bieberbach maps of the second kind) For each point x ∈ Xp there is an
injective but not surjective holomorphic map f : Xp → Xp with f(x) = x.

(3) The holomorphic automorphism group of X acts k-transitively on X for all k ∈ N.

For the affine modifications from Theorem 1 property (3) was originally proved by
Zaidenberg and the first author in [21] even for the algebraic automorphism group. In
the holomorphic case it is a consequence of Theorem 0.2 in [32] whose weak version is
as follows.

4.2. Proposition. Let X be a Stein manifold with the density property, K be a compact

in X, x, y ∈ X be two points outside the holomorphic hull of K. Suppose also that
x1, . . . , xn ∈ K. Then there exists a holomorphic automorphism Ψ of X such that
Ψ(xi) = xi, Ψ|K is as close to the identical map as we wish, and Ψ(y) = x.

4.3. Density implies Gromov’s spray. The Oka principle is a fundamental principle
in complex analysis stating that on Stein manifolds analytic problems which can be
formulated in cohomological terms have only topological obstructions.

4.4. Definition. Let h : Z → W be a holomorphic submersion of complex manifolds,
and let Cont(W,Z) (resp. Holo(W,Z)) be the set of continuous (resp. holomorphic)

sections of h with compact-open topology. We say that this submersion h satisfies the
Oka-Grauert-Gromov principle if the natural embedding Holo(W,Z) ↪→ Cont(W,Z) is
a weak homotopy equivalence (see [18]) (this implies, in particular, that each continuous

section f 0 : W → Z of h can be deformed to a holomorphic section f 1 : W → Z through
a homotopy of continuous sections f t : W → Z (0 ≤ t ≤ 1), and any two holomorphic
sections which are homotopic through continuous sections are also homotopic through

holomorphic sections).
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The most powerful version of this principle was introduced by Gromov [18] who
extended the classical results of Oka [26], Grauert [17], and Forster and Ramspott [15]
to manifolds admitting sprays (for exact statements and proofs see [12], [13]).

4.5. Definition. (1) A (dominating) spray on a complex manifold F is a holomorphic
vector bundle ρ : E → F , together with a holomorphic map s : E → F , such that s is
identical on the zero section F ↪→ E, and for each x ∈ F the induced differential map

sends the fibre Ex = ρ−1(x) (which is viewed as a linear subspace of TxE) surjectively
onto TxF .

(2) A fiber-dominating spray for a surjective submersion h : Z → W of complex

manifolds is a vector bundle ρ : E → Z together with a map s : E → Z identical
on the zero section Z ↪→ E and such that h ◦ s = h ◦ p and for every z ∈ Z the

induced differential map sends Ez = ρ−1(z) (which is viewed as a linear subspace of
TzE) surjectively onto the subspace of TzZ tangent to the fiber h−1(h(z)).

Let us recall Theorem 4.5 from [18] (for a proof see [13])

Theorem 3. Suppose that h : Z → W is a holomorphic submersion of a complex
manifold Z onto a Stein manifold W for which every x ∈ W has a neighborhood

U ⊂ W such that h−1(U) → U admits a fiber-dominating spray. Then h : Z → W
satisfies the Oka-Grauert-Gromov principle.

Before we come to the main point of this subsection let us make a useful remark.

4.6. Remark. For a complex manifold Z the closure (in the compact-open topology)
of Liehol(Z) ⊂ VFhol(Z) (resp. Liealg(Z) ⊂ VFalg(Z)) coincides with the closure of the

linear span Span(Z) generated by globally integrable holomorphic (resp. algebraic)
vector fields. Indeed, it suffices to prove that the closure of Span(Z) is a Lie algebra.
This is so since the bracket of two globally integrable vector fields V and W , [V,W ] =

limt→0
(ϕt)∗(V )−V

t
can be approximated by (ϕt)∗(V )−V

t
for small t where ϕt is the phase

flow of W . The desired conclusion follows now from the fact that (ϕt)∗(V )
t

, V
t

are both

globally integrable because global change of variables and multiplication by a constant
factor preserve integrability.

Theorem 4. Any Stein manifold X with the density property admits a spray.

Proof. For each point x in X there are finitely many globally integrable holomorphic

vector fields which span the tangent space TxX. Indeed, assume the contrary, i.e.
there is a point x and a nonzero linear functional l : TxX → C such that l(V (x)) = 0
for all globally integrable holomorphic vector fields V on X. By the Remark before

l(V (x)) = 0 would hold for all vector fields in the closure of Span(X), i.e., for all
holomorphic vector fields on X, a contradiction to the fact that X is Stein. If a finite

number of holomorphic vector fields span the tangent space at a single point, they span
the tangent space at all points outside a proper analytic subset A. In the algebraic case
by standard induction over the dimension of A we find finally many globally integrable
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holomorphic vector fields V1, V2, . . . , Vn which span the tangent space TxX at each
point. Let ϕt

i be the phase flow of Vi on X and let s : X × Cn be given by

s(x; t1, t2, . . . , tn) = ϕt1
1 ◦ ϕt2

2 ◦ · · · ◦ ϕtn
n (x).

Then s(x; 0, 0, . . . , 0) = x and ∂s/∂ti = Vi(x). Since these vectors span TxX for each
x, holomorphic submersion s is a spray on X. This construction of a spray is due to

Gromov [18].
In the holomorphic case the argument must be a bit more accurate since A may have

an infinite number of irreducible components A1, A2, A3, . . .. By transitivity property
(3) from subsection 4.1 we can choose integrable vector fields θ1, . . . , θk that span
the tangent space at a given point x1 ∈ A1. Our aim is to construct a holomorphic

automorphism Φ ∈ AutholX such that Φ∗(θ1), . . . ,Φ∗(θk) span the tangent space at a
general point of each Ai, i = 1, 2, . . .. Then the induction by dimension will work as in
the algebraic case which yields the desired conclusion.

For this aim note that the topological space Authol(X) of holomorphic automor-
phisms of X (with compact-open topology) is metrizable by the Urysohn theorem.

More precisely, since X is Stein it can be treated as a closed analytic subset of C
m and,

therefore, each holomorphic map g : X → X is given by coordinate functions g1, . . . , gm.
Choose a sequence of compacts {Ki} such that

⋃
iKi = X. For g, h ∈ Authol(X) set

κi(g, h) = min(max(||g1 − h1||i, . . . , ||gm − hm||i), 1) where for any continuous function
λ on Ki its maximal absolute value is denoted by ||λ||i. Define the distance between h
and g by

∑
i κi(g, h)/2

i. This metric generates the compact-open topology and, what

is important, makes Authol(X) an open subset in a complete metric space. Denote
by Bi a subset of Authol(X) such that for each Ψ ∈ Bi the integrable vector fields
Ψ∗(θ1), . . . ,Ψ∗(θk) span the tangent space at a general point of Ai. Clearly, Bi is an

open subset of Authol(X). By the argument before there is a globally integrable vector
field νi not tangent to Ai. Then for its phase flow ψt

i and any automorphism Θ /∈ Bi the

composition ψt
i ◦Θ ∈ Bi for small values of time t. Therefore, Bi is dense in Authol(X).

By the Baire category theorem
⋂

iBi is not empty and we choose the desired Φ ∈
⋂

iBi.
�

4.7. Remark. In fact, instead of the density a weaker assumption ensures the existence
of a spray forX. That is, it follows from the proof that it suffices to require the existence

of a single globally integrable vector field on X, the transitivity on X of the group of
holomorphic automorphisms and the fact that for some point the isotropy subgroup of
this group acts irreducible on the tangent space.

One can include holomorphic dependence of parameters in the formulation of of
Theorems 1 and 2 with obvious adjustment of the arguments. This implies now the
following.

4.8. Corollary. Let h : Z →W be a surjective submersion of complex manifolds such
that W is Stein and for every w0 ∈ W there is a neighborhood U for which h−1(U) is
naturally isomorphic to a hypersurface in C

n+2
x̄,u,v ×U given by uv = p(x̄, w) where p is a
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holomorphic function on C
n
x̄ ×U (independent of u and v). Suppose, furthermore, that

p∗(0)∩ (Cn
x̄ ×w) is a smooth reduced proper (may be empty) submanifold of Cn

x̄ ×w for
every point w ∈ U . Then h satisfies the Oka-Grauert-Gromov principle.

5. Miscellaneous.

5.1. Contractible Hypersurfaces and Related Conjectures. Note that Xp from
subsection 4.1 can be viewed as an affine modification of C

n+1
x̄,v over the divisor D =

{v = 0} with center C = {v = p(x̄) = 0}. Then by Theorem 3.5 in [20] (see also [21],
Corollary 3.1), we have the following.

5.2. Proposition. Let C be contractible. Then Xp is contractible. Furthermore, Xp is
diffeomorphic as a real manifold to R2n+2 in the case of complex dimension dimXp =
n + 1 ≥ 3.

It is an easy exercise to check that when C can be sent onto a coordinate hyperplane
of Cn

x̄ by a polynomial automorphism of Cn
x̄ (we call such C rectifiable) then Xp is

isomorphic to Cn+1. It is not clear whether this isomorphism is preserved when C '
C

n−1 is not rectifiable. The existence of non-rectifiable embeddings C
n−1 ↪→ C

n is an
open question for n ≥ 3 and we have the following.

5.3. Conjecture (Abhyankar-Sathaye). Every polynomial embedding ϕ : Cn−1 ↪→ Cn

of Cn−1 into Cn is rectifiable.

However, one can use a smooth contractible C non-isomorphic to Cn−1. In this case
it is also unknown whether a hypersurface from Proposition 5.2 is isomorphic (or even
biholomorphic) to C

n+1. As an example one can consider as C a zero locus in C
3

of the polynomial p(x, y, z) = [(xz + 1)3 − (yz + 1)2 − z]/z which is a contractible
(Ramanujam) surface of Kodaira logarithmic dimension 1 [10] or the Russell cubic
which is the hypersurface in C4

x,y,z,t given by x + x2y + z2 + t3 = 0 [25]. That is, we
have hypersurfaces

H1 = {P1(x, y, z, u, v) = uv − [(xz + 1)3 − (yz + 1)2 − z]/z = 0} ⊂ C
5

and
H2 = {P2(x, y, z, t, u, v) = uv − (x + x2y + z2 + t3) = 0} ⊂ C

6.

If any of them were isomorphic to a Euclidean space we would have a counterexample
to the Abhyankar-Sathaye Conjecture since there is a singular fiber of P1 and nonzero
fibers of P2 are not homeomorphic to the zero one. By Theorem 1 the hypersurfaces
Xp from Proposition 5.2 have the algebraic density property. Hence H1 and H2 would
be biholomorphic to complex Euclidean spaces if the following were true.

5.4. Conjecture (Varolin-Toth). If X is a Stein manifold with the density property
and X is diffeomorphic to R2n, then X is biholomorphic to Cn.

Though we cannot say whether hypersurfaces like H1 and H2 are biholomorphic
to Euclidean spaces it is worth mentioning that by property (1) from subsection 4.1
every point of an ((n+ 1)-dimensional) hypersurface Xp from Theorem 1 has a Fatou-
Bieberbach neighborhood biholomorphic to Cn+1. These arguments give hope that a
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hypersurface like H1 or H2 can produce a positive answer to the following question of
Zaidenberg.

Question. (Zaidenberg) Is there a complex affine algebraic variety biholomorphic to
Cn but not isomorphic to Cn?

Summarizing we get

5.5. Remark. The hypersurfaces H1 and H2 are either counterexamples to one of the
conjectures of Abhyankar-Sathaye resp. Varolin-Toth or they give a positive answer to

Zaidenbergs question.

Surfaces like H1 and H2 may be also viewed also as “potential counterexamples” to
the problem of linearizing of an algebraic C

∗-action on a Euclidean space. Consider say,
the C∗-action on H2 given by (u, v, x, y, z, t) → (λu, λ−1v, x, y, z, t). Its fixed point set
is {u = v = 0} is isomorphic to the Russell cubic and, therefore, if H2 were isomorphic
to C5 the action would not be linearizable.

Furthermore, if the Toth-Varolin conjecture were valid one would be able to construct
in a similar manner a holomorphic C∗-action on a Euclidean spaces whose fixed point
set is a disc. This would yield examples of a new type for non-linearizable holomorphic
C∗-actions on Euclidean spaces (the examples constructed by Derksen and the second
author were based on a different fact; namely on existence of actions with a non-
rectifiable embedding of the fixed point set into the quotient).

More precisely, consider a proper holomorphic embedding of the unit disc ∆ := {ζ ∈
C : |ζ| < 1} into C2 which exists by the result of Kasahara, Nishino [23] (see also [2],
[16]). By the solution of the second Cousin problem the image of the disc coincides
with the zeros of a reduced holomorphic function F ∈ O(C2

x,y). Note that the partial
derivatives of F have no common zero on the zero fiber F−1(0).

As usual XF is the hypersurface in C
4
x,y,u,v given by

(10) XF = {(x, y, u, v) : F (x, y) = uv}.

5.6. Lemma. For all n ≥ 0 there is a holomorphic action of C∗ on XF ×Cn with fixed
point set biholomorphic to the unit disc ∆.

Proof. Consider the linear action C∗ × C4
x,y,u,v × Cn

w̄ → C4
x,y,u,v × Cn

w̄ given by

(θ, (x, y, u, v, w̄)) 7→ (x, y, θu, θ−1v, θw̄).

It leaves invariant the hypersurface XF × Cn and restricts therefore to a C∗-action on

XF × Cn. The fixed point set of this action is given by u = v = 0, w̄ = 0, F (x, y) = 0
which concludes the proof. �

By Theorem 2, XF and, therefore, XF×Cn have the density property. In combination
with Proposition 5.8 this would lead to promised examples provided the Toth-Varolin
conjecture were true. By the same reasoning one can prove that the Toth-Varolin
conjecture implies the existence of holomorphic C∗ actions on affine spaces with fixed
point set biholomorphic to any contractible domain Ω in Cn which can be properly
holomorphically embedded into Cn+1.
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5.7. Appendix: Topology of Pseudo-Affine Modifications. Let X be a Stein
manifold, D be its smooth reduced analytic divisor, and C be a proper closed complex
submanifold of D. Suppose that Z is the result of blowing up X along C and deleting
the proper transform of D. Then Z is smooth Stein and the natural projection σ : Z →
X is called a basic pseudo-affine modification [21]. Geometrically it means deleting D
and replacing it with a divisor E = σ−1(C) which is biholomorphic to the projectivised
normal bundle of C in X from which a section is deleted. In the case that C is
contractible this divisor is simply ' C × Ck in Z where k = codimDC.

5.8. Proposition. Let σ : Z → X be a basic pseudo-affine modification of Stein

manifolds with D and C as before. Suppose that the pair (X,D) is diffeomorphic to
(R2n,R2n−2) where the embedding in the latter pair is linear and n ≥ 3. Suppose also
that C is contractible and admits a proper surjective smooth function ϕ1 : C → R≥0

with all critical values less then some t0 > 0. Then Z is diffeomorphic to R2n.

Proof. (Sketch.) By Corollary 3.1 in [21] Z is contractible. Suppose that one can
construct a compact manifold K ⊂ Z with boundary ∂K such that K is a deformation

retract of Z and ∂K is simply connected. Then we are done by the h-cobordism
theorem which implies that K is diffeomorphic to a ball. Thus our aim is to show the
existence of such K.

Let ϕ3 be a distance on X ' R2n and ϕ2 = ϕ3|D on D. That is, Bi(R) = ϕ−1
i ([0, R])

is diffeomorphic to a closed ball for each R > 0 and i = 2, 3 while B1(R) is contractible

for R ≥ t0. Since X is Stein and contractible there is a holomorphic function p ∈ O(X)
generating the ideal of the divisor D.

Consider small closed tubular neighborhoods U1 of C in D (resp. U2 of D in X)

with projection %1 : U1 → C (resp. %2 : U2 → D). Choose smooth positive functions
R(t) and r(t) on {t ∈ R|t ≥ t0} such that

(i) R(t) is a strictly increasing function for which the interior of B2(R(t)) contains

%−1
1 (B1(t));
(ii) r = r(t) is a strictly decreasing positive function going to zero such that B ′

2(t) :=

p−1(∆̄r(t)) ∩ %−1
2 (B2(R(t)) is contained in the interior of U2 and B′

2(t) is naturally
diffeomorphic to ∆̄r ×B2(R(t)) where ∆̄r = {ζ ∈ C | |z| ≤ r}.

Since C is Stein contractible its normal bundle in X (resp. D) is trivial and U2

(resp. U1) can be viewed as neighborhood of its zero section. Choose a trivialization
C×Ck

w ×Cz of this bundle (where w is a coordinate system on the second factor) such
that ρ2 is the natural projection C×Ck

w×Cz → C×Ck
w and ρ1 is the natural projection

C × Ck
w → C. Set k = 1 for simplicity. Then U1 is biholomorphic to {|w| ≤ f(c)},

where c ∈ C and f is a strictly positive function. Also U ′
2 = ρ−1

2 (U1) is biholomorphic
to {|z| < g(c, w)} where the function g is also positive. Decreasing g if necessary one

can suppose that z = p|U ′

2
. Note that the preimage Ũ ′

2 of U ′
2 under the pseudo-affine

modification is biholomorphic to the hypersurface in U ′
1 × Cξ given by pξ = w.

Set B′
1(t) := %−1

2 (%−1
1 (B1(t))) ∩ p−1(∆̄r(t)) ⊂ B′

2(t) and S1
t = (B′

2(t) \ B′
1(t)) ∩

p−1(∂∆̄r(t)). Then the part Γ(t) of the boundary of S1
t that meets B′

1(t) consists of two
pieces given by the equations
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ϕ(c) = t, |p| = r(t), |w| ≤ f(c) (A1)

and

ϕ(c) ≤ t, |p| = r(t), |w| = f(c) (A2)

Note that Γ(t) can be also viewed as the boundary of the real surface S t
2 in Ũ ′

2

consisting of the two pieces

ϕ(c) = t, |p| ≤ r(t), |ξ| ≤
f(c)

r(t)
(B1)

and

ϕ(c) ≤ t, |p| ≤ r(t), |ξ| =
f(c)

r(t)
(B2)

Except for a simple case when C is a point (which we omit) S2
t is simply connected.

Also S2
t and S2

t′ are disjoint for t 6= t′. Furthermore, except for a compact piece the
divisor E = σ−1(C) is contained in

⋃
t≥t0

S2
t . Set S3

t = ∂B3(R(t))\p−1(∆̄r(t)). One can

easily check that Si
t is diffeomorphic to Si

t′ for i = 1, 2, 3 and t, t′ > t0.
Consider the compact piece-wise differential (2n− 1)-dimensional manifold St in Z

that is the union of S1
t , S

2
t , and S3

t . Using partition of unity and local phase flows one

can make diffeomorphisms between pieces of St and St′ agreeable on the boundaries so
that for W =

⋃
t≥t0

St the natural projection ϕ : W → [t0,∞) becomes a proper locally
trivial fibration with fibers St. Thus the closure of Z \W is a compact manifold which

is a deformation retract of Z and whose boundary is St0 . Application of the Seifert-Van
Kampen theorem implies that St0 is simply connected. At non-smooth points St0 is
locally a union of at most three smooth pieces meeting transversally. Thus rounding

these corners we obtain a desired compact manifold K.
�
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