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LOCAL STRUCTURE OF QUASIPERIODIC TILINGS
HAVING 8-FOLD SYMMETRY

LE TU QUOC THANG

Abstract

Local ruIes, enforcing quasiperiodicity, are introduced for the dass of planar tilings having 8-fold sym­
metry. The Ioca! structure, when decorations Me not involved, is studied.

Introduction

In the first section we present a local rule, or matching rule, for the dass of planar tilings

having 8-fold symmetry. Without decorations this dass of tilings does not admit even weak

loeal rule in the sense of Levitov {ef.[B], [dB2], [Le2]. But it adrnits another type of loeal rule

deseribed below. This Ioeal rule is similar to that of Penrose-de Bruijn [dB]. In fact the loeal

rule presented here is equivalent to the matching rule suggested by Ammann [ABS]. Here we

show how to get it. This paper is a eonerete realization of the general ease presented in [LPS1].

However, this ease has many specifie properties and it is worthy to treat separately. We will

try to keep the paper self-eontained and make the method simpler and more understandable.

In §1.3 we define the dass of quasiperiodic tilings having 8-fold symmetry. Then we try to

find loeal rule such that every tHing satisfying this Ioeal rule must belong to this dass. Without

decorations on the tiles one ean never succeed. In seetion 2 we characterize the set of a11 tilings

having the same loeal strueture up ta a fixed radius as a11 the quasiperiodic tilings with 8-fold

symmetry have. We prove that in some sense they are elose to quasiperiodic tilings having

8-fold symmetry.

1 Local rules with decorations

1.1 Deseription of Ioeal rule

On the Euclidean spaee IR.2 consider a fixed regular oetagon with vertiees marked by 0, 1, ... ,7;

two rhombs and a square colored by numbers as indieated in fig. 1a. Here a colored polygon is

just a pair (P, j) where P is a polygon and j is a number from {O, 1,2,3,4,5,6, 7}, ca11ed the

color of this polygon. The eolored square will be denoted by (S, 1) and two colored rhombs by

(R, 1) and (R,4). Two eolorecl polygons (P,j) and (PI,jl) are congruent if pi is a translate of

P and j = jl. In fig.1a a11 the sides of the square and two rhombs have the same length.

Consider the group Da of a11 symmetries of the octagon. Each <p E Da is apermutation

of numbers 0,1, ... ,7. In addition, if P is a polygon in the plane then <p(P) is a polygon.

For a eolored polygon (P,j) let <p(P,j) be the colored polygon (<p(P), <p(j)). Note that here
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r.p also acts on calors. For example, from (R, 1), (R, 4), (5, 1) by actions of Da we can get 24

non-congruent colored polygons. (If we don 't take into account the colors then there are only

6 non-congruent polygons).

A star is any collection of colored polygons having a common vertex. Two stars are con­

gruent if the second is a translate of the first and the corresponding colors are coincident. If

S is a star consisting of (PI, jd, (P2,)2), ... , (Pk, jk) then let <p(S) be the star consisting of

r.p(P1 ,jl),CP(P2 ,j2),'" ,y(Pk,jk) where 'P E Da·
Let A be the set of all stars congruent to one of r.p(8) where 8 is one of 13 stars indicated

in fig. 1band cp E Da. There are 152 non-congruent stars in A.
A colored tiling is a tiling whose tiles are colored polygon. Ir T is a colored tiling of the

plane iR2 then the star-configuration of a vertex v of T is the collection of all tiles incident to

v.

Definition:A colored tiling T 0/ IR2 satisfies loeal rule A i/ the star-configuration 0/ every its

vertex is congruent to one 0/ A.

Vve will prove that every tiling satisfying this local rule must belang to a special class of

tilings, called the class of quasiperiodic tilings having 8-fold symmetry.

1.2 Quasiperiodic tilings having 8-fold symmetry

l.Tbe cut method. \Ve introduce here the cut method to obtain planar quasiperiodic tilings

having S-fold symmetry. Lefs consider the Euclidean space IR.4 equipped with a normal base

co, Cl, E2, E3, and actions of the cyclic group Zs = {g I g8 = I} on {R4 as follow: g(Ci) = ci+1

for i = 0,1,2; g(C3) = -':1' The space IR.4 falls into two 2-dimensional invariant subspaces E

and E=E.L. On E 9 acts as rotation by 1r /4 while on E 9 acts as rotation by 3rr /4. The

2-plane E is spanned by vectors (2, V2, 0, -V2) and (-V2, 2, y'2,0). The 2-plane E is its

orthogonal complenlent. \Ve have }R4 = E EB E, let p and p be the projectors corresponding to

this decomposit_ion~ p : IR-t ~ E, P : iR4
- E. Put ei = p{ed and ei = p{et}, for i = 0,1,2,3.

A set A in 1R4 is called an E-prism (ar simply a prism in this section) if A = p(A) + p(A).

For a prism A we define its parallel boundary ßIIA as p(A)+ß(p{A)), where ax is the boundary

of the set #~, in what follows ){ is a polygon.

Let A be the lattice generatcd by the base eo, EIl e2, e3 : A = Z4. Then it is easy to

check that both projectors p, p, when restricted to A, are one-to-one. Let i be the unit cube:

I = {l:l=o Aici I '\ E [0, I]} and 1\1 be the set of pairs (i, j) with °:S i < j :S 3. There are six

elements in 1\1. The cube " is a fundamental domain of group A hut it is not a prism. \·Ve now

introduce another fundalnental domain consisting of six prisms. For I = (i, j) E 1.'1 let PI be

the parallelogram generated by ei and ej~PI = {/\lei + A2 ej 1'\I,A2 E [0, I]}. If I = (i,j) let
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JC = (k, I) where (i,j, k, I) is apermutation of (0, 1, 2,3). Put Pt = {-Alek - A2e, I Al, A2 E

[0, In, where JC = (k, l). Each Pf is a para11elogram lying in E. The set CI = PI + Pt is a

prism. A theorem of [ODK] asserts that UIEM CI is a fundamental domain of A, i. e. the family

o of prisms {CI,e,! E Af.~ E Al, where CI,e = CI + e, is a tiling of IR.4 • Two fundamental

properties of 0 are:

i)it is periodic, i. e. invariant under translations by vectors from A.

ii)every its tile is a prism.

Every family of polybedra which covers the whole {R4 without holes and overlaps and satisfies

these two conditions is called an oblique periodic tilings ofR4 (tbe terminology is due to [ODK)).
For an oblique periodic tiling we define its parallel boundary as the union of a11 the parallel

boundaries of all the prisms contained in this family. Let B be the parallel boundary of 0:

B = UßII(CI,e), I E 1\1,( E A. The intersection of a plane E + 0', where Q E E, with a prism

CI,e is congruent to PI if it is not empty. vVhen E + Q dose not intersect B the intersections

of E + Q and members of the family 0 form a tiling of E + a~ and hence a tHing Ta of E by

projecting. A point 0' E E is called regular with respect to an oblique periodic tHing if E + a

. dose not meet the parallel boundary of this oblique periodic tHing.

The set of points irregular with respect to (9 can be descri bed as follow. Let 10, h, J2' 13
are lines in E generated by eo, el, e2, e3' Lemma IV.2 of [ODK] states that Q is not regular iff

Q belongs to cI> = (Jo U Jl U J2 U 13) + p(A). Note that the set p(A) is a dense set in E. The

set ~ is the union of 4 families of parallel lines, each family is dense in E, hut the set <P has

measure zero.

If Q is not regular then all the intersections of E + 0' and 0 do not form a tiling, they have

overlaps. In this case one can delete some intersections such that the remainings form a proper

tHing. There are many ways, sometime even infinitely, to do this. vVe can say that when Q is

irregular, it defines not one but a whole family of tilings, among them some will he considered

to he quasiperiodic.

Let T denote the set of all tilings of the type Ta or its translates for regular 0' E E. A

sequence of tHings Ti, i = 1. 2, 3, ... converges to a tiling T means that for every real number

r > °there exists a natural number IV such that T coincides with Ti for i ~ N inside the circle

with center at the origin of E and radius r. Let T be the closure of T, Le. T is the set of all

the limits of sequence of tilings TI, T, ... with Ti E T.

Definition:Every tiling T from 'T is calIed a quasiperiodic tiHng having 8-fold symmetry.

2.TheDrem abDllt IDeal rnle. Now we can state the main result of section 1.

Theorem 1.1: a)Every quasiperiodic liling having 8-fold symmetry can be colored such that the

resulted tiling satisfying local rule A.
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b) Every tiling satisfying loeal rule A is a quasiperiodie tiling having B-fold symmetry.

The remaining of section 1 is devoted to a proof of this theorem.

Remark:

1)There are two non-eongruent tilings satisfying loeal rule A hut they are the same if we

ignore color.

2)It 's easy to see that if all the tilings Ti satisfy our loeal rule A (or any loeal rule in

Levitov's sense [L]) then their linlit also satisfies this loeal rules. So, if a loeal rule always

enforees quasiperiodicity, the set of all quasiperiodie tilings must he dosed under the operation

"limit". This is the reason wby we eonsider not the set T but its dosure T. By this definition

there will be two different quasiperiodie tilings coinciding on a half-plane of E.

3)1f a and ,8 are regular then the tilings Tell Tß have the same loeal strueture, this means

that every finite part of Ta is eongruent to a finite part of Tß and viee-versa (cf. [L], [LPS2]).

4)Another ways to get quasiperiodic tilings having 8-fold symmetry are the strip projeetion

method, the dual multigrid method" (cf. for example [dBI], [GR]). But for us the geometry of

the cut method is more eonvenient.

\Ve briefly explain why the dass of tiling T is ealled the dass of tilings having 8-fold

symmetry. If T is a tiling from T then generally T is not eongruent to the tiling gT obtained

from T by rotation by 7r/4. But every tiling T E T has the same loeal strueture as Hs rotation

gT. Some authors say that they are loeally isomorphie. To see that T bas the same loeal

strueture as gT let us eonsider aetions of group Zs in IR4 • This group does not leave the family

o invariant but the group 91 'ZBgl1 leaves 0 invariant, where gl is the translation in IR4 by

veetor 8 = ~(e1 + e2 + e3 + eo). The element 919911 aets on E as the rotation by 7r/4 around

point 8 and on E+8 as the rotation by 37r/4 around point 8, it transforms E+a ioto E+g(a).

Henee the rotation on E by 1r /4 around 5 transforms the tiling Ta ioto the tHing Tg(a)' Beeause

both have the same loeal strueturel it follows that gT and T have the same loeal strueture.

3.Lifting a tiling Suppose P is a polygon eongruent to one of six PI (without any eolor)l

that iS l P = V + PI for some veetor v in E. Ir in addition P has one vertex lying in p(A) then

all the 'lertiees of P He in p( A) and there is a unique prism C from 0 such that p(C) = P.

Henee if T is a tiling whose tiles eongruent to PI and ooe vertex of T is lying in p(A) then

there is a map 1 : {tiles of T} -+ {prisms of O} such that p( I(P)) = P for every tile P of T.

This map I is ealled the lift of T into O.

1.3 Refined oblique periodic tHings

Let fi for i = 0,1. 2, 3 be the line spanned by ei. From now on 've identify the spaee E with the

2-dimensional Euelidean spaee }R2 introdueed in §1.1 such that the origin of E eoincides with

4



the center of the octagon. vertex °lies on Jo, vertex 1 lies on fl and the rhomb R is congruent

to P(O,lb then the square S is congruent to P(O,2)'

Each prism Cl is the surn of PI and Pt. There are 6 Pr up to congruence, which are listed

in fig. 2.

In order to point out the orientation in fig. 2 we also draw 4 vectors -eI, -e2, -e3, -eo· PI
is a rhomb or a square. \Ve divide each Pt into 4 parts by its diagonals (punctured segments

in fig. 2) and color these parts by numbers as there shown: Pt = Uj pt;j, here index j denotes

the color, for each I the color j takes 4 different values.

The prism Cl is divided into 4 prisms, CI =Uj ci, where ci = PI + pt;j. \Ve color ci by

j. Instead of 6 prisms CI we get 24 colored prisrns ci. They also form a fundamental domain

of A. The family of colored prisms {Gi + ~,l E IvI,~ E A} is called a refinernent of 0, and

denoted by OA. This family is also an oblique periodic tiling of IR.4 • This family has relation

with loeal rule A which will be explained later. Here Ci + ~ has color j.

Let BoA be the parallel boundary of the refined family VA, this is the union of the parallel

boundaries of all prisms from the refined VA. Of course BA ::> B.

Let 14 be the line in E generated by vectors el + e2 and J5 = g/4' that is, 15 is obtained

from 14 by rotation by 37r /4. Similarly let f~ = gls, 11 = g16' Eight lines Jo, ... ,11 form a

regular star as in fig.3.

Let 4> = (UiE{O.I •... ,7} h) + p( A). This is the union of 8 families of lines in E. Each family

is dense in E and contains lines parallel to one of h, i = 0, ll' .. ,7. Note that if C is a prism

frorn OA then the projection of C on E is a triangle having sides lying in ci-, hence we get

Proposition 1.2: The projection p(BA ) on E is 4>, p(BA) = cf-.
If Q' f1. <f> then the intersection of E + Q' with members of the refined family OA form a

colored tHing on E + a~ and on E by projecting. If we ignore colors then this tiling coincides

with Ta, we denote the colored tiling by T~ to emphasize the color. Every tile of T~ is congruent

to one of pA.

Proposition 1.3: The set A,. up to congruence .. is the set of all star-configurations 0/ T~ for a

point a E E not /ying in <i>.

In fact we begin wi th VA and then find that the set of all star-configurations of tHings of

type T~ is A., Note that since p( A) is dense in E~ if Q' and ß are two points of E not lying in

<l> then the set of all star-configurations of T~ and that of Ta are the same, up to translations.

This proposition can be proved by analyzing the tiling T~. \Ve present a proof in the §l. 9.

If P is a colored polygon congruent. to one of pA and if one vertex of P is lying in p(A)

then there is a unique prism /(P) froUl (JA such that p(/(P)) = P and the calors of P and

/(P) are the same. Hence if T is a tiling whose t.iles are congruent to elements of pA and one
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vertex of T is in p(A) then there is a unique map I : {tiles of T} -+ {prisms of OA} such that

p(I(P)) = P and colors of P and I(P) are the same for every tile of T. This map is called the

lift of T into OA.

1.4 N on-planar sections and idea of proof of theorem 1.1

l.SectioD.A section n is a 2-dimensional surface in IR4 such that Plo : n -+ E is a homeomor­

phism. If a section n dose not meet BA then it defines a colored tiling To by projecting on E

all the colored prisms meeting n. It is easy to see that all the star-configurations of this tiling

are the same as that of tiling of the type T~(cL also [ODK]). Hence if n does not meet BA

then the colored tiling To satisfies local rule A. Conversely, if T satisfies A, then after a shift

we may suppose that T has a vertex in p(A) and hence T has a lift I into OA. Because the star

of every vertex of T is a translate of a star of a vertex of T~, the lift of a star of T is a translate

of the lift of a star of T~. It is easy to prove the following

Proposition 1.4:Suppose T is a eolored tiling satisfying IDeal ru/e Athen T is eongruent to a

tiling To for some section n not meeting BA.

For a rigorous proof we refer ta [LPSl],[LPS2).

In order to prove theorem 1.1 we have to prove that every section not meeting BA defines a

quasiperiodic tiling having S-fold symmetry. lf Q' E E and not lies in ci- then the colored tiling

defined by section E + a is exactly T~.

For a section n not meeting BA let P(!l) be the set of all prisms from 0...4. meeting n. This

is just the set of all the prisms I(P) where P's are tiles the colorecl tHing defined by n. For a

point x in E let niet !l(x) be the point of !l lying upon x, i. e. f2(x) = !l n p-l(X). In the

case when !l = E + Q' with a ~ ~ a11 the projections p(C) where C's are prisms from P(O)

have a common point! it is Q. ~1oreover each projection p(C) is a tri angle and a lies inside

this tri angle because it is regular and a1l the sides of this tri angle are in ~. This means Q is an

interior point of this triangle.

Ir n is a section not meeting ~ such that all the projections p(C) where C's are prisms

from P(!l) have a common point a and this common point is regular then it is easy to see that

n defines the same colored tiling as Q', hence To belongs to T. We shall prove first that for

a section !l not meeting BA all the projections p(C) where C's are prisms from P(!l) have a

common, but in general not a regular point, the common point maybe irregular. One makes

use of the following

Proposition 1.5:Suppose n is a seetion not meeting BA and al/ the projeetions p(C) where C ··s

are prisms from P(O) haue a eommon point whieh is interior with respect to every projeetion

p(C). Then the tiling Ta is a quasiperiodic tiling having 8-fold symmetry.
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Proof: \Ve number the tiles of To, To = {PI, P2 , •.• } such that for every r > 0 the disk

Ur in E with center at 0 and radius r is covered by N first tiles, here N depends on r. Let

I(P) for a tile P of T be the prism from Tn lying upon P, p(I(P)) = P. Since the polygons

p(l(PI))' ... ,p(l(PN )) have non-empty interior intersection, the intersection of these polygons

is a polygon (with non-empty interior). There is a regular point O'r belonging to this polygon.

Then the colored tiling T;.. is the same as T inside the disk Ur' Hence the sequence of colored

tiling Tai , i = 1,2, ... converges to T. 0

2.Idea of prooe of theorem 2.1 For proving theorem 2.1 we need to prove that if fl is a section

not meeting BA then for every finite number of prisms GI, . .. ,Gm of Ta the projections on E
of Cl, ... ,Gm have non-empty interior intersection. Note that sides of a triangle ]3(G) where

G is a prism of P(fl) are lying in the set <1>. This set is a family of lines. We will introduce

orientation on lines from <i>, i.e. for eaeh line we associate anormal vector. Each line divides E
into two half-planes, the half to which the normal veetor directs is called the positive half-plane

of the oriented line. Here we consider that the half-plane does not contain the line itself, Le.

the half-plane is an open subset of E. \Ve will find the way to orient all the lines in ~ such that

(*) ifthe triangle ]3(C), where G is a prism ofP(n), has a side lying on a line h then the

interior of this polygon is lying in the positive half-plane 01 h.

~vloreover if in addition the following condition is fulfilled

(**) for every finite number 0/ lines hl , ... ,hn from <i- their positive half·planes have a

common point. ,

then it is easy to prove that for every finite number of prisms Cl, ... ,Cm of P(n) the projections

p(Cd, ... ,p(Cm ) have non-empty interior intersection. Hence we can apply proposition 1.5 to

conclude that Ta is a quasiperiodic tiling having 8-fold symmetry.

1.5 Structure of the parallel boundary

Let fi be the lines on E generated by ej, i = 0, 1,2,3; 14 by el + e2, /5 = 9(/5),16 = 9(/5), /7 =
9(/6). For i = 0, ... , 7 let Fj = h + li and F[ = Fi + 8 (recall that Ei = (eo + el + e2 + e3)/2).

Each F: is a prism, and p(Ff) = h, p(Ff) = fi + Ei. In the coordinate system (AO' Al, A2' A3)

the planes Fo and F4 are given by Fo = {Al + A3 = 0, A2 = O}, F4 = {Al +..\2 = 0,..\0 -..\3 = O}.

All the others are obtained by actions of the group Zs. All the 2-planes Fi are rational.

Ir C is a colored prism from P(D) then the parallel boundary of C is 8(p(C)) + p(C). Thc

first term is three sides of a triangle, hence the parallel boundary of C consists of 3 parts, each

isthe sum of a side and p (C). \Ve call each part a small wall of G. 0 bviously B.A. is the union

of all the small walls. Up to translations from 1\ there are 24 colored prisms and 24 x 3 = 72

small walls.
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Proposition 1.6:All 8 planes F[, i = 0, ... ,7 are contained in the parallel boundary BA .

Remark: In fact we begin with the system of 2-planes UJ=o Ft and then find a refinement of the

oblique periodic tiling such that the parallel boundary of the refiment cantains this system of

2-planes.

Proof: We prove, for example, that F~ is contained in BA.. Let:F~ = F~ + 1\, it is a family

of parallel planes in IR4
• This family is locally finite in the sense that every compact meets

only a finite numbers of planes from it because Fo is a rational plane. \Ve shall investigate the

intersection of the original family CJ with F~. Both are invariant under translations by veetors

from A. For each I E 1\1 the prism Cl meets only a finite numbers of planes from F~, more

precisely, it is easy to eheck that eaeh Cl meets uo more than two 2-planes from :F~, if we

do not take into account those which interseet Cl by a set of positive codimension, that is, a

segment. The projections of the intersections of Cl and these planes on E are segments lying

on the boundary of p(Cl) or on its diagonals. This ean be ehecked easily. From trus (and the

closedness of the intersection of F~'with BA) one sees at aoee that F~ is eootaioed io BA . 0

Denote FI = F! + A and F' = Ui:;;:;O•... ,i F[. Theo p(F') = ~. We have F' C BA.. Every two

2-planes from :F' either are parallel or have a unique intersection point.

Proposition 1.7:1/ the projection 01 a small wall w on E is contained in the projection 01 a

2-plane F from F' then w meets F.

Proof:Due to the actions of groups A and G we mayassume that F = F~. It's easy to check

that there are exactly 24 small walls having projections lying on the line 10, and others with

this property can be obtained from these 24 by translations by integer vectors from Fo. Small

walls and F are prisms, to investigate their intersection is very simple, it is sufficient to consider

the intersection of their projections on E and on E. One can check that these 24 small walls

intersect F~. Translations by vectors from Fo da not change F~ , hence all the above mentioned

small walls intersect F~. 0

1.6 Orientations for lines fron1 <i> and property (*)

From now on we fix a section n not meeting BA. Then n ean be regarded as the graph of a

continuous map p : E ~ E, n = {x + p(x)lx E E}.
A line h in E is called oriented if one half-plane separated by h is marked, this marked

half-plane is ealled the positive half-plane of the oriented line. Note that a half-plane here is

an open subset of E. i.e. it dose not contain the line h. A point x is greater than an oriented

line (we write x > h) if x belongs to the positive half-plane. The notion x 2:: h means that

x > h or x E h~ for a set ..\. C E the notion ..Y > h (resp. X 2:: h) means x > I (resp. x 2:: h)

for every xE.\.. A set of oriented lines is co'mpatible if there exists a point greater than all of
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them. Two parallel oriented lines have the same orientation if the intersection of their positive

half-planes is a half-plane.

\Ve introduce orientations for lines from <1> as follow.

The section 0 does not meet F for every 2-plane F from :Fbecause F C BA.. Consider two

lines ! = p(F) and / = p(F). The first is in E and the second is in E. We define 0(/) as

the set of point from 0 lying upon f, 0(/) = 0 n p-l(f). It is a connected set in IR4 • The

set p-l (f) is a 3-plane. In this 3-plane lie two sets: the 2-plane F = / +J and 0(/). They

do not have intersection hence O(f) lies in one half-space separated by F. By projecting on E
we see that p(f) = p(O(f)) does not meet J. This can be proved more rigorously as follow. If

x E (J n p(O(f)) then x = p(z) with z E f. Then y = (x + z) E (/ + J) aod at the same time

y E 0(/). This is a contradiction because F n 0(/) = 0.
\Ve have just seen that for every 2-plane F from F the set p(p(F)) does not meet the line

p(F). \Ve orient the line p(F) such that p(p(F)) > p(F). For the correctness we have to prove

that two different 2-planes from F'· have different projectioos 00 E.
Proposition 1.8:a) Suppose p(F) = p(F') where F, F' are 2-planes /rom:F' then F = F'.

b) Suppose p(F), p(F') and p(F") where F, F' and F" are 2-planes trom:F' have a common

point then F, F', F" also have a common point.

This proposition is easily proved and we omit the proof. It follows from the total irrational­

ity of E,E and rationality of Fi (cf.[LPS] for a rigorous proof).

Now we can establish property C':). Suppose C = I(F) is a lift of a tile of T. Then p(C) is

a polygon having sides lying on lines from <1>.

Proposition 1.9:Suppose Q = p(C) has a side s lying on the Une! from 4>. Then Q 2: J.
Proof: There is a 2-plane F from :F' such that f = p(F). The set p(C) + 8 is a small wall.

By proposition 1. 7 this small wall p(C) + 8 and the 2-plane F have a common point y. Let

x = p(y). Then p(x) is an interior point of p(C) and by definition of the orieotation p(x) > /,
hence p(C) ~ J. 0

1.7 Boundedness of sections

Four planes Fa, F1 , F2 and F4 (not F3 !) are complete in the following sense: there is uo linear

transformation 'IjJ : 1R4
-t 1R4 such that lj;(Fi ) = Fi , i = 0,1,2,4 and tj;(E) = E. This can be

checked easily. Another definition of completeness is the following. Every 2-dimensional plane

going through the origin in IR? can be given by two linear equations:
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bo)'o + b1A} + b-z A2 + b3 ),3 = 0

(
a. a.)Put A·· =det I )

I) b. b.
I J

Six numbers A ij for 0 :::; i < j :::; 3 are called the projeetive coordinates of the 2-dimensional

plane. Four planes are complete if their projective coordinates are linear independent. This

definition is equivalent to the previous one (cL [Le2) for a comprehensive consideration of

completeness)

It can be checked directly that the four 2-planes Fo, F1 , F2 , F4 are also complete in this

definition. From the completeness one can prove the following

Proposition 1.10: the map p is bounded.. that is p(E) is a bounded set in E.
This is proved in [LPS1]. It is a generalization of a proof of Levitov.

As a consequence we see that for a fixed i E {O, 1, ... ,T} all the lines from <1>i = p(Fd can

not have the same orientation.

1.8 Property (**)

Proposition 1.11:// severallines h11 ••• ,hm /rom <1> have a common point then they are com­

patible.

Prüof: Suppose Hh ... ~ Hm are 2-planes from F f such that p(Hi ) = hi , i = 1, ... ,m. By

proposition 1. Sb all the 2-planes Hh . .. ,Hm have a common point y. Let x = p(y). Then by

defini tion of orientations the point p(x) is greater than all the lines h1 , ••• ,hm.O

A set X is called bootstrapped by Y and Z if ..\. n Y = X n Z. For example, it's easy to

check that <1>0 = p(Fo) is b~otstrapped by «1>1 = p(Fd, 4>3 = P(.r3)' The set ~2 = p(F2) is

also bootstrapped by 4>1, <1>3' From the bootstrapped property one can prove

Proposition 1.l2:Every two lines h}, h2 /rom <I>o or <I>2 are compatible.

Prüüf: If they are parallel and are not compatible then by the bootstrapped property there

are lines from <1>1 and <1>3 whieh look like in fig. 4.

Here the two shadowed lines are h11 h2 , the shadowing shows the orientations (Le. the

positive half-planes are shadowed), all the other lines are from 4>1 and 4>3, all the intersection

points are tripie. \Vith the help of the previous proposition we ean easily find the orientation

of all the lines in fig. 4 if we know the orientation of one line, say the line going through points

A~ B. There are two possibilities for orientation of the line going through A, B. In both eases

it is easy to see that aB the lines in fig. 4 from <i>1 have the same direction. This is contradict

to the fact that p(E) is bounded. (For a more rigorous proof see [LPSl]). D

From this proposition and the boundedness of p(E) one sees easily that there is a unique

line 10 such that 10 ~ h for every line h from <1>0, similarly there is a unique line 12 such that

10



12 2:: h for every line h from ~2' Let a be the intersection point of 10 and 12 , Then proposition

8 of [LPSl] asserts that a 2:: h for every line h from ~. Now we can prove

Proposition 1.13: every finite number o/lines h1 , ••• ,hm from ci- are compatible.

Proof: If the point Q defined above does not belong to any of hi , i = 1, , m then Q is a point

greater than all these lines. Suppose some of hi contains Q, say hl) h2 , , hn where n ::; m.

Since Q is greater than hi for i = n +II ... , m there is a neighborhood V of Q' such that V > hi

for i = n + 1, ... , m. Since all the lines hi for i = 1, ...n go through 0', they must be compatible

by proposition 1. 11. The set of all points greater than all hi for i = 1, ... , n is a corner (or an

angle) with vertex at Q and this set have non-empty intersection with V. Hence we can choose

a point which is greater than all hi , for i = 1, ... , m.D.

Together with this proposition we have proved theorem 1.1.

1.9 Star-configurations, other loeal rules

Star-configurations of vertices of colored tiling T~ can be classified as follow. Let x be a point

of p(A), x = p(e), eE A. For a colored polygon (P, j) there is at most one colored prism CL,
which projects on (P,j), we call it the lift (if it exists) of the colored polygon. Let !( = -p(,),
it is an octagon lying in E. The tiling Ta has X as a vertex if and only if e+ !( intersects

E + a(cL [ODK]). Let (P,j) be a colored polygon having vertex x then Ta has (P,j) as a

colored tile iff E + a meets C where C is the lift of (P, j). In this case C must intersect e+ !(.

Let Q(P,j) be the intersection of C and the octagon e+!(. It is easy to see that Q(P,j) is

congruent to p(C) and lying on the boundary of C. All the triangles Q(P,j), when (P,j) runs

through the set of all colored polygons having x as vertex, partition the octagon ~ + K into

many small convex polygons. Each small polygon defines a type of star-configuration, i. e. if a

and ,8 s. t. the intersection points of a +E and ß+ E with e+!( lie in the same small polygon

then both tilings Ta and To have the same star-configuration at vertex x. Because everything

in invariant under A the partition of ~ + !( just looks like in the case ~ = O. In this case the

partition of !( is given in fig. 5.

There are 152 small polygons, they define 152 stars - exactly 152 stars defined in §1.1. This

set of stars has the symmetry described in §1.1 due to the following fact. Consider the group

G generated by two linear transformations of IR\9 and 9, where 9 is given in §l, 9 acts on E

as the reflection relative to the line 10 + 8 and on E as the reflection relative to the line 10' It

is easy to check that G consists of 16 elements and leaves invariant E and E. The restrietion

of G on E is 91DS911. If C is a prism of the refined 0 with color j then c.p(C) is another prism,

with color c.p(j). In fact we have chosen colors for Ci such that this property holds. In figure 5

we note 13 regions of J{ by numbers. the corresponding stars are in figure 1b.
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Remark:

l.Consider the following loeal rule. An edge·configuration of a tiling T at an edge of trus

tiling is the eollection of two (eolored) tiles incident to this edge. Two edge-configurations are

eongruent if the second is a translate of the first and the eorresponding colors are the same.

A tiling satisfies the loeal rule B if every edge-configuration of this tiling is eongruent to an

edge-configuration of an edge of a colored tiling T~ for some 0' f/; ~. Then every tHing satisfies

this local rule has a lift I which is connected in the sense that if PI, P2 are two tiles sharing

a common edge then the projections p{I(Pd), P(l(P2)) have non-empty interior intersection.

By using the simHar method as used here it can he proved that every connected lift defines a

tHing helanging to T (cf. a siInilar proof in (LeI]). Hence the the local rule B is as good as

A. From the loeal rule B one can easily construet a loeal rule involving only deeorations on

edges. This means, there are deeorations by eolors on edges of PI such that every tHing by

these polygon such that colors of a common edge eoming from different edge must be the same

is a quasiperiodic tiling having 8-fold symmetry.

2.If we divide 6 parallelograms Pf as in fig. 6 (more simply than what we da in fig. 2) then

we get a new oblique periodie tiling whieh is simpler than the above.

The parallel boundary of this new oblique priodic tiling contains Fo, F}, F2 , F3 , F4 , (hut not

FS1 FS1 Fr), and this oblique priodic tiling also defines a local rule, enforcing quasiperiodicity,

with 66 stars. The number of stars is less than that of S but the symmetry is broken. The

group of symmetries eonsists of 4 elements. \Vith the help of this group the number of stars is

reduced to 19.

3.The local ru le A is equivalent to the matching rule A5 suggested by R. Ammann (cf.

(AGSL [GS]). This means every tiling satisfies A can be decorated such that the resulted tiling

satisfies matching rule A5, and viee-versa. The fact that every tHing satisfying A5 is aperiodie

was proved in {AGS] by the composition method. DeBruijn proved, also using the composition

method~ that every tiling satisfying A5 must be quasiperiodic tiling having 8-fold symmetry.

But the method used here point out how to get such matching rule, and it can be easily

generalized to other cases, both for 2-dimensional and higher dimensional tilings (cf. [LPSl],

(LPS2], [LP]' [LeI]).

2 Local rules without decorations

2.1 Definitions

Note that we begin with the dass T of quasiperiodie tilings having 8-fold symmetry. There are

no colors in any of tilings from T. Now we consider the question about local rule without any
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deeorations. First we introduee the exaet definition of Ioeal rules.

An r-map 0/ a tiling T at vertex v is the colleetion of all the tiles lying inside the ball with

center at v and radius r. An ;-map with center at v is any r-map of any tHing at v. Two

r-maps are eongruent if the second is a translate of the first.

Definition: A set A 0/ r-maps is ealled a Zoeal rule 0/ radius r (or briefly a loeal ruZe). A

tiling T satisfies a loeal role A of radius r if every r-map ofT is a eongruent to one /rom A. A

set of tilings admit a loeal rule if thisis the set 0/ all tilings satisfying some Ioeal ruIe 0/ some

radius.

\Vhat we have proved in the previous part of this paper can be stated as follow. There is

a dass of colored tilings which admits loeal rules l and this dass of tilings, when ignoring the

eolors is exactly the dass of quasiperiodic tiling having 8-fold symmetry. Hence we ean say that

the dass of quasiperiodie tilings having 8-fold symmetry, after coloring , admits loeal rules.

The question whether the dass T admits loeal rule or not can be formulated more explicitly

as follows. Let B(r) be the set of all r-maps of all tili ngs from T. Let T (r) be the set of all

tili ngs satisfying this loeal rules, then T (r) is the sets of all tili ngs whose r·maps are translates

of r-maps of tilings from T. The set T admits loeal rule if there is r such that T(r) is the set

of all quasiperiodie tilings having 8-fold syrometry, T = T(r).

A negative answer to this quest ion is given by Burkov in [B]. This result is also proved by

DeBruijn in [dB2]. In [Le2] we prove a more general result on the absence of local rules, and

the ease of quasiperiodie tilings having 8-fold syrometry can be obtained as a special case of a

theorem there.

Here we prove that although T(r) is different from T, but the set T(r) eontains only

"pseudo-periodic~ tilings very elose to quasiperiodic tilings. Some tilings from T(r) may be

even periodie.

At first eonsider r-maps of tiling Tel' Suppose M is an r-map with center at 0 such that

every polygon in }.;{ is congruent to one of PI' Let Vl, V2, ... ,Vm be vertices of this r-map.

Then all Vi are projections of integer points, Vi = p(~i), ~i E A. The intersection of !( and

several translate of itself~ each of the form !{ - L:~;n aiei where ai = 0 or 1, is called the

existenee domain of the r-map M. It is a polygon lying in ]{. Tbe easy faet to check is that

Ta has .1\.1 as the r-map at 0 if and onIy if E + a meets the existence domain of .1\1. Similarly

a tiling Ta has the r-map at a vertex X congruent to M if and only if E + a meet the polygon

(~+ the existence domain of )\.1). Here ~ is the only point from A projecting into x.

The set of the existence domains of all possible r-maps with center ot 0 forms a partition

of !{ ~ for a fixed r. If a and ß are two regular points such that E + a and E + ß meets J{ at two

different domains then the r-maps of Ta and Tß at 0 are different. If Q is a polygon lying in
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the oetagon ]( and Q has sides lying on lines from cI» = p(F) then for sufficiently large r every

existence domain of r-maps with vertex at 0 is either lying in Q or has no interior intersection

with Q. This follows from the construction of the existence domains.

2.2 lifting a tHing

Let Ur be the disk with center at 0 and radius r. Recall that F is the union of 4 families of

parallel 2-planes, F = LJf=a(Fi + A).

Proposition 2.1: a)There is r such that the set :F is contained in B + Ur.

b)For every r there is d such that B + Ur is a subset of F + Ud'

Proof: a) vVe have seen that BA contains F. Hence it is sufficient to prove that there is r such

that BA. is contained in F + Ur' Ir w is a small wall of a prism ctii then there is a prism C

from the original family <9 sueh t hat p(w) is eontained in p(C). This ean be eheeked di reet1y.

Since w = p(w)+p(w) we can ehoose r such that w is contained in p(C)+p(C)+Ur for every

small wall of one of Cf;i. Then evidently B.A is a subset of B + Ur'

b) It suffices to prove that B is a subset of F +Ud for some d. Because up to translations

[rom A there are a finite number of small walls of prisms from 0 and the projection on E of

every small wall is contained in the projection of F, this ean be proved just as in the previous

case.O

Choose an ra such that F c (B + Ure) and B C F + Ure' From now on fix such an Ta. Note

that if w is a small wall of a prism from 0 and p(w) lies on the line p(F) for a 2-plane from

:F then w has non-empty intersection with F. Hence the sets p(w) and p(F) have non-empty

intersection. It follows that two sets p(w) and p(F) + Ure' being 2-dimensional in E, have

non-empty interior intersection.

Recall that a section n not meeting the parallel boundary B defines a tiling Tn.

Proposition 2.2:For a jixed r there is r' such that if T is a tiling satisfying B(r'), that lS

T E T (r' ) then after a shift T is a tiling Tn for a section n not -meeting B + Ur.

Proof: There is d} such that B + Ur is a subset of F +Udt • \Ve define a big wall as a set of

type F + Udt where F is a 2-plane from F. Every big wall is contained in a unique 3-plane.

Each prism Cl intersects with only a finite number of big walls. The 3-planes going through

theses big walls divide Cl into smaller prisms, each has the same projection on E as the prism

Cl itself has, only the projection on E of each smaller prism is a polygon which is apart of

the polygon Pf. \Ve spread this division to every prism from 0 by translation. By this way

we get a new family 6. This is also an oblique periodic tHing of IR:'. The parallel boundary of

this family is denoted by :8. By the construction all the big walls are contained in the parallel

boundary B, (F + Ud\) c B. But we have 13 C (F +Ud1 +1) where we consider that 1 is the
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maximal diameter of polygons PI. The set B + Ur is a suhset of :8.
For a point x = p(~) let I«(x) he the octagon j( +~. The intersections of I«(x) with prisms

[rom the refined family 6 divide I«(x) into many regions, each is a convex polygon having sides

lying in <I> = p(:F).

Lemma 2.3: There exists d2 such thai for regular Ci, ß where E + Ci and E + ß intersect I«(x)

at different regions, ihe d2 w maps oiTa and Tß at x are different.

Proof: "Ve choose d2 suffieiently large so that the existence domain of every d2-map is lying in

some region.D

\Ve claim that we can take r' = d2 + 1. Suppose T is a tiling from T(r'). First we will try

to find a lift of T into the refined family 6. After a shift we mayassurne that vertices of T are

in p(A).

The intersections of j«(x) with prisms from the refined family (; divide j«(x) into many

regions. For a every region Z and a prism C from the original family 0 there are at most one

prism D from the refined family 6 such that D is contained in C and at the same time the

region Z is lying in D.

Let P he a tile of T and x be a vertex of P. There is a prism C from the original family 0

projecting into P. By definition of the Ioeal rule there is a regular Ci such that E + a intersects

j«(x) and the dTmap of To at x eoincides with the d2-map of T at x. Let Z be the region

containing the intersection point of E + a with j«(x). Since Q is regular this intersection point

is an interior point of Z. This region Z is unique in the sense that if ß is regular such that E +ß
intersects j((x) at a point not in the region Z then the d2-map of Tß at x is different from that

of T by lemma 2.3. By the above observation there is a unique prism D of the refined family

{) which projects into P and eontains the region Z. \Ve see that D contains the set a + P. Let

this prisrn D be the lift I(P) of P.

\Ve .have to check the eorrectness: the lift of the tile P roust not depend on vertex x.

Suppose y is another vertex of P. Then the distance between x and y is less than or equal to

the maximal diameter of PT. Henee both r-maps of T at x and at y eontain dTmap at x and

dTmap at y. Suppose Z' is the eorresponding region of y eontained in j((y). There is a regular

Q such that E + Q interseets the region Z and r-map of Ta at x coincides with r-map of T at

x. Since r-map at X contains d2 Inap at y we see that E + Q must intersect Z'. \Ve conclude

that the lift is uniquely defined.

So far we have defined I(P) for every tile P of T. For each vertex x we ehoose a point i

lying inside the region Z defined above. If y is a neighboring \'ertex of T, that is, the segment

[x, y] is a side of a tile P of T, then by the construction the segment (x, y] is contained in

I(P). Consider T as a polygonal structure of E. \Ve transfer this polygonal structure into a
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simplicial structure by putting a diagonal in every tile of T, then linearly lift the simplicial

complex to anther (2-dimensional) simplicial complex with the help of x -+ x and linearity.

The new simplicial complex is a surface lying inside the union of all the prisms l(P). This

surface defines a tiling which is exactly T and it does dot meet the parallel boundary B of (;

and heuce does not meet B + Ur. Proposition 2.2 is proved.D

\Vhen r ---+ 00 the above d1 also tends to infinity, hence the maximal diameter of p(C) for

prism C from the refined family (; tends to zero. \Ve get the following

Corollary 2.4:For every tt > 0 there is r 1 r' such that ilT E T( r') then T = Tn for a section n
not meeting B + Ur and the slop of n is less than tt, that is, if n is the graph 01 the continuous

map P : E -+ Ethen there is a constant c such that

Ip(x) - p(y)1 < ttl x - yj + c

for every x, y E E.

2.3 Approximation of E

Recall that the intersections li = Fi n E and h = Fi n E are lines, for i = 0,1,2,3. Chaose

the coordinate systems (ao, ad in E and (ba, bd in E such that 10 is given by {ao = O}, /1 by

{at = O}, /2 by {ao + at = O}, Jo is given by {bo = O}, 11 by {bt = O}, 12 by {ba + b1 = O}.

Together (ao, all bo, bd form a coordinate system of IR4
• In t his coordinate system the 2­

plane E is given by bo = bt = O. Let E(t) be the 2-plane given by bo = tao, bt = tat for real

t E {-I, 1J. The most important property of these 2-planes is that they intersects all four

2-planes Fa, Ft , F2 , F3 by lines: dim(Fi n E(t») = 1, i = 0,1,2,3. Note also that the 2-plane E(t)

is ei ther totally irrational or rational. The family of 2-planes E(t) has been used in [B], [Le2]

to prove the absence of local rule for the dass of quasiperiodic tilings having 8-fold symmetry.

\Ve have IR" = E EB E(t) for every t. Denote p(t) ,p(t)the correspending projectors, p(t) is

the projector on E(t) along E, p(t) is the projector on E along E(t). A set A in IR4 is called a

E(tLprism if A = p(t)(A) + p(t)(A). For example the 2-planes Fi , i = 0,1,2,3 are E(tLprisms

for every t.

If we use the pair E(t) 1E to construct the oblique periodic tHing as in §1.2 then we get

a new family of E(t)-prisms O(t). That is, consider six E(tl-prisms C}t) where I E M and

CY) = p(t) (,d - p(t)(,d. These six E(tLprisms and their translates by vectors from A form a

cover of IR4 without holes and overlaps. This family of E(tLprisms is invariant under translations

by vectors from A. The parallel boundary is denoted by B(t). It is easy to see (as in the case

t = 0) that the projection of B(t) on E (by p(t)) is the projection of :F on E.
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If Q is a point in E not lying in pet)(.r) then the 2-plane Eet)+a does not meet the parallel

boundary Bet) and by projecting on E the intersections of Eet)+ a with members of the family

O(t) we get a tHing, called the tiling defined by Q and Oet ). The set of all such tHings (when

a varies in the set E and not belongs to p(t)(F)), their translates and their limits is denoted

by y<t) and a tiling of this set is called a quasiperiodic tiling associate with E(t). Note that all

they are tilings of E, and every tile is conruent to one of the six PI.

If Ee t ) is rational then every tiling from T(t) is periodic, and up to translations there are

only a finite number of tHings from Tt). 'vVe consider a larger dass of tHings t(t) as follow.

'vVhen Eet ) is rational the set pet)(A) is a discrete 2-dimensional lattice in E, and p(t)(.r) is

the union of four families of parallel lines, each family is locally finite. If a E p(t)(.r) then

all the possible intersections of E(t) + Q' with members of the family O(t) cover the whole

E(t) + Q, but with overlaps. vVe can delete same of them such that the remaining form a

proper tHing of E(t) + 0', and hence of E by projecting. Let T(t) be the set of all such tilings

and their translates. Other words,' T E Te t ) if and only if after a shift T has a lift into O(t),

I : {tiles of T} ~ {prisms from Oft)}, such that all the projections pet)(/(p)) have a common

point where P's are all the tiles of T. Perhaps a tHing from Tet ) should be called "pseudo­

periodic" .

For t such that E(t) is totally irrational let ret) be simply the set r t
). 'vVe will prove that

if r is large and T E T(r) then T is a tiling from Te t ) for same t very elose to O.

For a prism C from O(t) its parallel boundary is the sum of 8(pet)(C)) and p(t)(C). The

first term is the boundary of a polygon. \Ve call the sum of a side of this polygon and pe t )( C)

a small wall 01 C. The parallel boundary B(t) is the union of all the small walls of all ,prisms

from O(t).

If n is a section not meeting B(t) then by projecting on E the intersections of n with

members of the family O(t) we get a tiling, called the tiling defined by n and O(t).

Recal that Ur is the disk in E with center at 0 and radius r. Let u~t) be the projection of

Ur on Ee t ), U;t) = p(t)(Ur). \\Te have seen that if 10 is a small wall of CJ and p(10) lies on the

line ! = p(F) for some 2-plane F from .r then p(10) and p(F) + Uro have non-empty interior

intersection. This means the small wall and the set F + Uro have non-empty intersection. It

is easy to see that when t is small enough then this property still hold: if 10 is a small wall of

a prism from Oet) and p(t)(1O) is lying on the line p(t)(F) for some 2-plane F from :F then the

small wall 10 and the set F + U;~) have non-empty intersection. Suppose to is a number such

that for Itl < to this property holds. Fix such to.

Proposition 2.5:Suppose 0 is a section not meeting F + U!~) and not meeting B(t). 11 p(t)(O)

is bounded then the tiling defined by n and O(t) i8 a quasiperiodic ti/ing associate with Ee t ), that
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is , it belangs to T(t).

Proof: First note that the set :Fo is bootstrapped by :F1 and :F3 , that means if F, F' are two

2-planes from :Fo then there are 2-planes Bi, i E Z, H2i+1 lies in :F1 , H2i lies in :F3 such that

F, !f2i1 H2i+1 have a common point: F', H 2i+1 : H2j+2 have a common point for every j E Z.

This can be checked easily, for example, by considering the projections (hy p) on E of these

family of 2-planes. The set :F1 is bootstrapped by:Fo and :F2 , the set :F3 is also bootstrapped

hy :Fo and F 2 .

vVe can regard n as the graph of a continuous map p : E(t) ~ E, that is, n = {x +
p(x)lx E E(t)}. Since F + uj~) does not meet n where F is a 2-plane from :F and since

F + uj~) is a E(tLprism~ it is easy to check that the set p(F + U~~») does not meet the line

h = p(t)(F) = p(t)(F + U;~)). A set of type F + uj~) is called here a hig wall.

Suppose now E(t) is totally irational. Then analogue of proposition 1.8 holds true, that is,

if F, F' are two different 2-planes from F then their projections p(t)(F), p(t)(F') are different

and if three 2-planes have projections on E having a common point then they themselves have

a common point. In adition, if w is a small wall of a prism C from O(t) and p(t)(w) lies on the

lines p(t)( F) then the small wall wand the set F + uj~) have non-empty intersection. Hence the

proof of theorem 1.1 can be applied and we see that the tiling defined hy n and CJ(t) belongs
to y(t) = T(t).

Now if E(t) is not totally irrational (then it can be checked that E(t) is rational). The trouble

is that in this case there may be different 2-planes F, F' from :F such that p(t)(F), p(t)(F') are

the same. For the correctness we will say about "orientation" of 2-planes from F. By orientation

of a 2-plane F from :F (or the orientation of the big wall F + U~~») we mean the orientation of

the liDe p(t)(F) = p(t)(F + U~~») such that p(p(F + U;~»)) > p(t)(F). If h is a line from p(t)(:F)

and h = p(t)(H) then the orientation 0/ h induced from H, by definition, is just the orientation

of H. Several 2-planes from:F (or several big walls) are compatible if their projections on E
(hy p(t») are compatible. \Ve call a line from p(t)(:F) special if there are two 2-planes from :F

projecting into this line and induce different orientaions.

First note that if three big walls have a common point then they are compatible. Hence if

F, F' are two parallel 2-planes from F such that p(t)(F) =1= p(t)(F') then they are compatible.

This follows from the bootstrapped property as in the case t = O. Hence in tbe system of

parallel lines p(t)(Fd there is at most one special lines, for a fixed i E {O, 1,2, 3}. Excluding

the speciallines and then applying the proof of theorem 1.1 we see that all the lines from p(t)(:F)

are compatible~ except special lines. It follows that there is a point a greater than or equal to

every lines from p(t)(F) and every special line goes through a. This means the projection on

E (hy p(t») of every prisn1 from O(t) Ineeting n contains Q. Hence the tiling defined by n and
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o(t) belangs to T(t).O

2.4 Local structure of T

Lemma 2.6:Suppose f : IR --7 IR. is a function satisJying lf(x + y) - f(x) - f(Y)1 < 1 for every

x, y E IR and If(x) - f(y)1 < 1 when Ix - yl < 1 then there is aE IR such that If(x) - axl < 11.

Proof: Let a be the upper limit of I~) when x --7 00, this exists due to the second condition.

Set h(x) = f(x) - ax. First we prove that for x > 0 the value of h(x) is less than 2, h(x) < 2.

In fact, if h(x) 2: 2 then h(2x) 2: (2h( x) - 1) = 3, ... ,h(2n x) ~ (2n
-

1 + 1). Hence the upper

limit of~ is not less than 1/2x, a contradiction.
x

Now we prove that there is a sequence Xl! X2l' .• , tending to infinity such that h(Xi) > -2.

If not such t he case, then there is r such that h(x) < - 2 for every x > r. Then h(x) < - 3 for

r < x < 2r, h(x) < -5 for 2r < x < 4r, ... ,h(x) < _(2n
-

1 + 1) for 2n r < x < 2n +l r. Hence

the upper limit of~ when x --7 00 is less than -rJ4 and can not be O.
z

Now if x > 0 then we can choose X n > x such that h(xn ) > -2. Let Y = X n - x then

h(xn ) - h(x) - h(y) < 1 and h(y) < 2 hence h(x) > -5. Vve see that for x > 0 Ih(x)1 < 5.

If x < 0, choose y, z > 0 such that y = x + z, using the fact that If(Y) - /(x) - f(z)1 < 1

one easily see that 1/(x) I < 11. 0

A corollary of theorem 3.2.1 and proposition 3.3.2 of [Le2J is the following

Proposition 2.7: There t"s t ll 0 < t l < to such that i/ It I < t l then there is a continuous map
<p(t) : IR4 --7 }R4 such that

a)<p(t)(x + E) = x + E for every x E IR4.

b)<p(t)(F + Uro) = F + Uro' (<p(t»)-I(F + Uro) = F + Uro, <p(t)(F) = F, (<p(t»)-I(F) = F.

c)If C is a prism of 0 then <p(t)(C) is a prism of O(t).

d)I<p(t)( x) - x I < const for every x E IR4
•

It follows that if n is a section not meeting F + Uro (hence not meeting B) then the tHing

defined by n and 0 is the ~ame as the tiling defined by <p(t)(f1) and O(t).

Proposition 2.8: There is rl, rl > ro such that ij T E T(rd then there exisfs t, Itl < t l such

that;

a) After a shift T is defined by a section n and 0 where n does not meet F + Uro '

b) The set ep(t)(f1) is bounded in E.
Proof: By corollary 2.4 for r = ro there is rl such that if T E T(rd then after a shift T is

the tHing defined by a section n and 0 where f1 does not meet B + Uro ' Recall that we have

a coordinate system (ao, ab ho, bl in E. The section n can be regarded as the graph of a map

p: E --7 E, pis defined by two functions bO(aO,al),bl(ao,al)' The notation / =9 for two

functions /, 9 on E will mean that maxi! - 91 < const. A corollary of the proof of proposition
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7 of (LPSl] is there ia a function f such that

bdao, ad =f(a))

in addition If(x+y)-f(x)-f(y)1 < const and jJ(x)-f(y)1 < const if Ix-yl < 1. By lemma

2.6 there is areal number t such that If(x) - txl < const. This meana p(t)(O) is a bounded set

because p(t) is the projector along E(t) and E(t) is given by {bo = tao, b) = tal}.

Since the slop of n is less than t) by corollary 2.4, we have Itl < t).D

Now we can prove the main reault of this section.

Theorem 2.9: There exist r > 0 such that if T is a tiling satisfying B(r), that is, T E T(r)
then T belongs to t(t) for some t.

Proof: Choose r = r) of the previous proposition. If T E T(r) then after a shift T = To for

some section n not meeting :F + Uro and there is t such that p(t)(n) ia bounded. Consider

~(t)(O). It is also a section. By proposition 2.7 it does not meet B(t) and:F. The projection

p(t)(r.p(t)(O)) is bounded by boundedness of p(t)(O) and proposition 2.7d. Hence by proposition

2.5 the tiling defined by r.p(t)(O) and O(t) belangs to t(t). But the tHing deflned by <p(t)(O) and

O(t) is the same as the tiling defined by n and 0, it is T. Hence T belongs to t(t).D

Remark: One might hope that for large rand T E T(r) the tiling T roust belong not only to

T(t) hut also to T(t) for same t, that iso T must be quasiperiodic in our definition. But it can

be proved that for every r there is a tHing T E T(r) which does not belong to T(t) for every t.
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