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Abstract

We show that if M is a compact simply connected riemannian manifold
whose geodesic flow is completely integrable with non-degenerate first integrals,
then the loop space homology of M grows sub-exponentially. We also show that
if for some point p € M, the geodesic flow of M admits action-angle coordinates
with singularities in a neighborhood of every vector in the unit sphere at p, then
M is Z-elliptic [9].

1 Introduction

In this paper we continue the investigation we began in (21, 22, 23] concerning topo-
logical properties of manifolds with completely integrable geodesic flows.

It is a classical result of Dinaburg [4] that the vanishing of the topological entropy
hiop of the geodesic flow ¢, of a compact riemannian manifold M implies that the
fundamental group, (M), grows sub-exponentially; but perhaps more interesting, if
71 (M) is finite then it follows from results of Gromov and Yomdin (cf. [21, Theorem
3.2]), that hs,p = 0 implies that the loop space homology of the manifold grows
sub-exponentially. In particular M is rationally elliptic (cf. [12]); a very restrictive
property. Thus a natural approach to the problem of finding topological restrictions
on manifolds with completely integrable geodesic flows is to investigate the vanishing
of the topological entropy of ;. In a more general setting the relevant question
is: does the topological entropy of a completely integrable Hamiltonian vanish? In
(21, 22] we showed that the topological entropy vanishes in the case of a collective
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integrable system [13] (collective complete integrability includes the Thim method
[26]), and it is the purpose of the present paper to investigate further this matter.

We will show that if the first integrals verify a rather “generic” condition, then the
topological entropy of the Hamiltonian flow on any compact invariant set vanishes
(cf. Theorem 2.2). We will also show that if for some point p € M, the geodesic flow
of M admits action-angle coordinates with singularities in a neighborhood of every
vector in the unit sphere at p, then M is Z-elliptic [9] {cf. Theorem 2.5).

2 Definitions and statement of results

We will always assume that all Hamiltonians vector fields are complete and that all
our objects are C*.

Let (X,w) be a symplectic 2n-dimensional manifold with Poisson bracket { , }
and let H : X — R a smooth (i.e. C*) Hamiltonian with associated Hamiltonian
vector field . The Hamiltonian H is said to be completely integrable if there exist
n smooth functions (called first integrals) fi,..., f, defined on X so that:

(1) {fi’ fJ} =0 yy3=1,..,n

(i) {f,H} =0 i=1,...,n

(111) the functions fi, ..., f, are functionally independent almost everywhere, i.e., there
exists an open set X' C X whose complement has zero measure so that dfy, ..., df,
are linearly independent for each point in X'.

Frequently one finds in the literature a definition of completely integrability that
differs sligthly from the previous one in the sense that in condition (iii) one only
asks for the set X’ to be dense. In the real analytic category the two conditions are
equivalent.

Set now F := (f1,..., fu) : X = R". As it is well known the flow of &5 leaves the
level sets F'~1(c) invariant and if c is regular value of F and F~1(c) is compact, then
the connected components of F~*(c) are n-dimensional tori 7™ and in a neighborhood
of these tori there exists a canonical coordinate system (7I,8), § € T", I € R™ such
that H is a function only of the n variables I = (I4,...,1,). This implies that the flow
of £y is periodic or quasi-periodic on the n-tori defined by 7 = const. The coordinates
(1,8) are called action-angle coordinates. The previous result was proved by Arnold
[2] under certain conditions, later removed by Jost [16] (see also [1, 6, 20]).

A crucial assumption for the existence of action-angle coordinates is that ¢ is a
regular value of F'. One could ask then : how is the dynamics of £y on the singular
set i.e, on the complement of X’? Can the flow of £y generate positive topological
entropy on the singular set? For arbitrary completely integrable smooth Hamiltonians
there 1s, a priori, no reason to expect an uncomplicated behaviour of the flow of £y
on the singular set, however the author knows of no example that exhibits positive
topological entropy (in [18] there are examples of geodesic flows on surfaces with
genus > 2 that possess a first integral independent of the energy integral on an open
set X' but X' is not even dense).



For a real analytic completely integrable Hamiltonian it is reasonable to expect
the vanishing of the topological entropy on the singular set. This is the case if the
symplectic manifold has dimension 4 (this a consequence of results of Katok and
Moser cf. [23]), however as far as we know the general case remains open.

Let us now describe our results. Let X be a symplectic 2n-dimensional manifold,
let H be a completely integrable smooth Hamiltonian and let F = (fy,..., f,). For
each point z € X consider O(z), the orbit of z under the flows of &;,,...,€;, and
suppose that the rank of dF; is k. Then without loss of generality we can assume that
&4y, ..., &y, are linearly independent at z (and thus they will be linearly independent
for every point in O(z)). Associated with O(z) we can define a Lie algebra F as
follows

F={g€C®0O): {fig)=0i=1,..,n},

where C*°(O(z)) denotes the set of all smooth functions that are defined on some
neighborhood of O(z). One easily checks that any two functions in F are in involution
(15, Prop. 2.1) (in the latter reference the setting is real analytic but analyticity is
not needed for the previously mentioned property).

Since &y, ...,&;, are linearly independent at = we can introduce {1} symplectic
coordinates (u,v,z) with (v,v) € R** and z € R*™ (m + k = n) in a neighborhood
U of £ =(0,0,0) such that in these coordintes we have:

f.'(u,v,Z)ZU.‘ i_—'l.}...,k,

k m

w=3Y du; Adv; + 3 d¢; Adn; z=((,7).
=1 =1
Respect to these coordinates a function ¢ belongs to F if and only if ¢ is indepen-
dent of u. For the following definition see also [15, Def. 2.3].

Definition 2.1 The orbit O(z) is said to be non-degenerate if there exists ¢ € F
such that ¢,(0,0) = 0 and ¢,,(0,0) is an invertible matrix.

We will say that H is completely integrable with non-degenerate first integrals if
every orbit O(z) is non-degenerate in the sense we defined above.

The definition is independent of the choice of coordinate system since it can be
reformulated in a more intrinsec language as follows. Set G := (f1, ..., fx) and consider
locally the symplectic reduction: 7 : G='(R)NU — (G~'(R)NU)/RF, where G(z) = h.
Then O(z) is a non-degenerate orbit if and only if for some g € F, &; has a non-
degenerate zero at 7(z), where § denotes the function induced by g on the symplectic
reduction.

We also observe that Definition 2.1 is void at points z € X for which F is a
submersion, hence non-degeneracy is in fact a condition on the first integrals over the
singular set. One can regard non-degeneracy as a fairly “generic assumption” on the
first integrals. In fact most of the well known examples verify this condition. For



instance it is easy to check that non-degeneracy holds in the case of the spherical
pendulum, the Kowaleskaya top and the Poisson sphere. The geodesic flow on the
n-dimensional ellipsoid and the Neumann problem also admit non-degenerate first
integrals; this is basically proved in [17, Section 6].

Our first result is the following:

Theorem 2.2 Let X be a symplectic manifold and let H be a smooth Hamiltonian.
Assume H is completely integrable with non-degenerate first integrals. Let £y be the
Hamiltonian vector field corresponding to H and let 1, denote the flow of £y. Let
N C X be any compact separable y-invariant subset. Then the topological entropy
of the flow Y, |y on N is zero.

Hence from our discussion in the Introduction it follows:

Corollary 2.3 Let M be a compact riemannian manifold whose geodesic flow is com-
pletely integrable with non-degenerate first integrals. Then mi(M) has sub-ezponential
growth. If m (M) s finite then the loop space homology of M, ELI dim H;(QM, K),
grows sub-exponentially for any coefficient field K .

We should mention that regarding = (M) and H,(M, Q) of a compact manifold
M with a completely integrable geodesic flow, some very satisfactory results have
been obtained by Taimanov (24, 25] using different methods from ours. He showed
in [24] that for real analytic integrable geodesic flows (and more generally for smooth
geodesic flows with a set of “geometrically simple” smooth first integrals), =;(M) is
almost abelian and dim H,(M,Q) < dim M. Moreover in [25] it is shown that the
rational cohomology ring of M contains a subring which is isomorphic to the rational
cohomology ring of a torus of dimension equal to dim H,;(M,Q). We refer to [10] for
related results for other mechanical systems.

Following Félix, Halperin and Thomas [9], we will say that a simply connected
compact manifold M is Z-elliptic if the loop space homology of M, Y5, dim H;(QOM, K),
grows polynomially for any coefficient field K. Spaces which are Z-elliptic possess
remarkable topological properties as it is shown in [9]. In general it is not known
whether sub-exponential growth implies polynomial growth for the loop space homol-
ogy unless the field K has carachteristic zero or the carachteristic p 3# 0 verifies the
condition p > -‘ﬁ'—’;— where r is the least positive integer such that M has homology
in degree 7 [14]. As a result we do not know if Corollary 2.3 as well as our previous
results in [21, 22] can be strengthend to prove that in fact M is Z-elliptic. Never-
theless we will show that Z-ellipticity is a property that must be verified by those
manifolds whose geodesic flows admit on a “nice” set action-angle coordinates with
singularities.

Let X be a symplectic manifold of dimension 2n, and let # : X — R be a smooth
Hamiltonian.



Definition 2.4 A system of action-angle coordinates with singularities around a
point z € X for the Hamiltonian H, consists of an open set U C X around z
and a diffeomorphism ¢ : U — T* x D; x D; where T* is a k-dimensional torus
with coordinates § = (8;,...,0:), D, is a domain of R* containing the origin with
coordinates I = (Iy,...,I;) and D; is a domain of R?™ containing the origin with
coordinates ({,7) = ({1, -+, Cms M5 -+, Tm ), Such that

(i) w = ¢*wo where wo = ¥5_, d6; AdL; + T7, d(; Anj, (k+m =n).

(ii) H o ¢7' is a function only of Iy,..., Iy and 7y,..., 7 with 7; = (C} +9%)/2.

The classical action-angle coordinates correspond to m = 0. Eliasson, Ito and
Dufour and Molino proved the existence of action-angle coordinates with singularities
for completely integrable systems of “elliptic type” (cf. [8, p. 9][15, Theorem 2.8][7,
p. 154] for details).

In Section 4 we will show:

Theorem 2.5 Let M be a compact simply connected riemannian manifold. Suppose
there ezists p € M such that for every vector in the unit sphere at p we can introduce
action-angle coordinates with singularities for the geodesic flow. Then M is Z-elliptic.

3 Vanishing of the topological entropy

Let X be a symplectic manifold and let H be a smooth Hamiltonian. Asume that H is
completely integrable with non-degenerate first integrals f1,..., fo. Set F = (fi,..., fa)
and define

Y. ={z € X: rank dF, = k}.

Lemma 3.1 X, is a symplectic submanifold of dimension 2k.

Proof: Fix £ € I} and consider as in Section 2 a symplectic coordinate system
(u, v, z) defined on a neighborhood U of z. It suffices to show that in these coordinates
UNZp = {(u,v,2) : z=0}. Observe first that (u,v,z) € £, if and only if every
g € F verifies g.(v,2) = 0. From [15, Prop. 4.1] (no analyticity is needed for this
claim) it follows that if the orbit is non-degenerate, any ¢ € F verifies g,(v,0) = 0
and thus {(u,v,2): 2=0} CUNZL;.

Now let § € F be a function so that §,(0,0) = 0 and g,.(0,0) is invertible. Hence it
is clear that UNEx C {{w,v,2): §.(v, z) = 0}, but since §,.(0,0) is invertible, the set
{(u,v,2): g.(v,z) =0} is a smooth submanifold of dimension 2k in a neighborhood
of the origin. Thus shrinking the set U if necessary, U N Z; = {(n,v,z): z = 0} as
" desired. o



Observation 3.2 For each point # € X consider the vector space R(z) obtained by
taking the quotient of Ker dF, by the subspace generated by £, (z), ..., &5, (). Now
observe that the 2-jets of the first integrals whose differential vanishes at z, give rise to
an abelian subalgebra H(z) of the space of quadratic forms on R(z). In the local coor-
dinates we introduced in Section 2, H(z) is generated by ( fx+1)::(0,0), ..., (f2)::(0,0).
One easily checks that if H(z) is a Cartan (i.e. maximal) sublagebra of the space of
quadratic forms on R(z) then the orbit O(z) is non-degenerate. Conditions of this
sort were studied by Eliasson [8] and were also considered by Desolneaux-Moulis [5].

Before we start we the proof of Theorem 2.2 let us recall a few known facts. Let
X be a symplectic 2n-dimensional manifold, let H be a completely integrable smooth
Hamiltonian and let F' = (fy,..., fn). Let I? denote some connected component of
F~'(c). Then if ¢ is a regular value of ' and 9, denotes the flow of £y, then 9, |0 is
differentiably conjugate to a translation-type flow on R* x T"~* [1, Theorem 5.2.24].
A flow ; : R* x T" % — R*¥ x T * is called a translation-type flow if for some vector
v = (v1,...,vn) € R™® we can write:

(pg(CE] yerny Thy 0k+1, teey 0,,) =

(z1 4+t .o, Tp + Lo, Opgr + g (mod 1), .., 0, + tu, (mod 1)).

Clearly for &£ = 0 the flow is periodic or quasi-periodic.

Recall that an orbit 4 of a flow 1, is called recurrent if ¥ C w(v), where w(7)
denotes the w-limit set of 4. Clearly it follows from the definition that a translation-
type flow has no recurrent orbits if £ # 0, i.e., if it acts on a non-compact space
(provided of course, one does not consider the trivial case vy = ... = 1 = 0 in which
the first k& coordinates can be ignored).

Proof of Theorem 2.2: Using the variational principle of the topological entropy
it suffices to show that if x is a Borel i,-invariant ergodic probability measure on N
then the metric entropy of the system (N,, |y, p) is zero. Consider as before the
strata X, as:

L,={z € X: rank dF, =r}.

Since ¥, 1s ¢y-invariant for all 0 < r < n and p is ergodic, there exists ry and a
connected component of E,, that we call £} , for which u(E) N N) = 1. We can
assume without loss of generality that df;,...,df,, are linearly independent every-
where on X0 . Let G := (f1,..., fr) |290: L2 — R™. Once again by ergodicity there
exists ¢ € R so that for some connected component, 1%, of G~'(c) we have that
p(I2 N N) = 1. By the Poincaré Recurrence Theorem [19, Theorem 2.3] the set R of
recurrent orbits of ¥, on I2 N N has full measure. Hence it suffices to show that the
metric entropy of the system (R, ¢, |r, 1) is zero.

Now by Lemma 3.1 if H is completely integrable with non-degenerate first inte-
grals, then the set 2 is a symplectic submanifold of X of dimension 2rq. Thus the
map G : L2 — R is a submersion and then it follows from the discussion after
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Observation 3.2 that ¥, |;o is differentiably conjugate to a translation-type flow on
R* x Tmo~* But if k # 0 it follows that 3, has no recurrence on I° and thus R
is empty which is absurd. Hence k¥ = 0 and the flow ¢, on I? is periodic or quasi-
periodic. In either case it is well known that the metric entropy of such flow with
respect to any invariant probability measure is zero and thus the metric entropy of
the system (R, ¥, |r, ut) is zero as desired.

o

4 Z-elhpticity

We briefly describe the idea of the proofl of Theorem 2.5. Via Morse theory we can
bound the growth of the loop space homology by the growth of the volume of the
iterates under the geodesic flow of the unit sphere at p. The existence of action-angle
coordinates with singularities will imply that the latter growth is polynomial.

We start with a preliminary discussion. Let M be a compact riemannian manifold
with geodesic flow ¢,. Let S, denote the unit sphere at p with canonical measure v.
For each ¢ € M define n,,(¢) as the number of geodesics connecting p and ¢ with
length < A. Consider the function

L) = /M .y

In [3] it was proved that this integral is well defined and

L) = fOA dt /q | det Ay(2) | du(v), (1)

where A,(t) : ($v)* — (h:v)* is the unique family of linear maps along the geodesic
defined by v verifying the Jacobi equation with initial conditions A,(0) = 0 and
AL(0) = Id.

For each v € S, take the geodesic exp,tv and an orthonormal basis {v, ey, ..., €,}

in T,M. Consider the Jacobi fields J;(t) such that J;(0) = 0, J/(0) = e;. Then
| det A,(2) |= \/[ det < Ji(t), J;(t) >|. Since

VI det < Ji(2), Ji(t) >] || Ja(0) || || Ju(t) |
and || Ji(t) ||<]l d¢, || we obtain from equation (1)
A
L) < /0 dt fs | i, ™" dv. (2)

On the other hand it follows from Morse theory and results of Gromov in [11] (cf.
also [21, p. 115]), that if (M) is finite there exists a constant ¢ > 0 depending only
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on the geometry of M so that for A > 1:

c(A-1)
Vol(M) S dim Hi(QM,K) < L(}).

=1

Hence if we combine the last equation with equation (2) we obtain:

C(/\—]) 1 A . d
I . < dt dy, ||*~ . 3
g dim H;(OM, K) < VoI(M)/o -/Sp | die || v (3)

Proof of Theorem 2.5: Equation (3) implies that to prove Theorem 2.5 it suffices
to show that || dy, || is uniformly bounded for each v € S, by a polynomial in ¢.

Fix v € S, and let U and ¢ be as in Definition 2.4. Our setting now is X =
T M with the symplectic structure obtained by pulling back the canonical symplectic
structure of T*M by using the riemannian metric and H = 1 || v ||%.

Conditions (i) and (ii) in Definition 2.4 imply that the flow @0 1, 0 ¢! of Epop—
is determined by the equations (k + m = n):

_OHo™) ik
0; = ar; , I;=0(3=1,..,k),
- O(Hog?! ) A(H o ¢! .
G = —(‘%ﬁ-—)ﬂj, 1= —%G (7 =1,..m).
2 2

These equations are easily solved and the following formula for the flow of {go4-1 is
obtained:

¢°1,[)1 °¢‘](Ca77a130) =
(Ccos(wrt) + psin(unt), neos(unt) — (sin(wit), I, wat(mod 1) + 0),

where

anl,m) = 2281,
woll,7) = %(I,r).

Thus the differential d¢ o di), o dp~! can be represented by a matrix whose entries
are bounded by linear polynomials in . Hence there exist constants a and b (that
depend on U) so that for v € U

| dipe ||< at +b. (4)

Since S, is compact and we can introduce action-angle coordinates with singularities
for every point in S,, we can cover S, with a finite number of sets for which the bound
(4) holds and thus || d3, || can be bounded uniformly in S, by a linear polynomial in
t as desired.

o



5 Final remarks

Corollary 2.3 also holds for a more general class of Hamiltonian systems on cotangent
bundles. It is sufficient to assume that H is optical (or convex) i.e. H has positive
definite Hessian restricted to the fibres of T*M. For such Hamiltonians the vanishing
of the topological entropy of the flow restricted to an appropiate energy level imposses
the same topological restrictions on the loop space homology as for the geodesic flow
case.

It would be very interesting to investigate under which conditions a completely
integrable Hamiltonian can be approximated by another with non-degenerate first
integrals. A statement of this sort, combined with the fact that optical Hamiltonians
are rough, will imply that Corollary 2.3 also holds for a much larger class of systems.
This idea was in fact what motivated the author to consider non-degenerate systems
in the sense of Definition 2.1.
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