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§1. Introduction.

A symplectic structure w on a manifold M provides the one-to-one correspondence
between closed 1-forms and infinitesimal automorphisms of (M,w), i.e. vector fields X
satisfying Lyw = 0. An infinitesimal automorphism X is called a Hamiltonian vector
field, if it corresponds to a exact 1-form. A symplectomorphism ¢ on M is called exact, if
it is the time 1 map of a time-depending Hamiltonian vector field. In fact, one can find a
periodic Hamiltonian function such that ¢ is the time 1 map of the Hamiltonian system.
For each symplectomorphism ¢ isotopic to the identity through symplectomorphisms, one
can assign a cohomology class Cal(p), which is called the Calabi invariant of ¢. Banyaga
[B] showed that ¢ is exact if and only if Cal(p) = 0. The Arnold conjecture states
that the number of fixed points of an exact symplectomorphism on a compact symplectic
manifold can be estimated below by the sum of the Betti numbers of M provided that
all the fixed points are non-degenerate. Arnold came to this conjecture by analysing the
case that ¢ is close to the identity (see [A]). If ¢ is the time 1 map of a time-independent
Hamiltonian vector field corresponding to a Morse function f which is C3-small, the fixed
points coincides with the critical points of f and the conjecture is verified in this case,
which is nothing but the Morse theory.

There are many partial results in the Arnold conjecture. A great progress was done
by Floer, who combined the variational approach (see [C-Z]) and theory of pseudo-
holomorphic curves due to Gromov and proved the Arnold conjecture for monotone:
symplectic manifolds {F1]. He developed an analogue of the Morse theory for the ac-
tion functional on the loop space and led to the notion of Floer homology. The Arnold
conjecture is derived from the fact that the Floer homology group is isomorphic to the
ordinary homology group of M. Recently, Hofer and Salamon [H-S] define the Floer ho-
mology group for a wider class of symplectic manifolds (which are called weakly monotone

symplectic manifolds). An almost complex structure J on M is calibrated by w, if

{€&m) = w(& JIn) (1.1)

defines a Riemannian metric on M. J is defined unique up to homotopy and we denote
¢1 = ¢1(M) the first Chern class of the almost complex manifold (M, J). (M,w) is called
monotone, if the evaluation of ¢; on 73(M) is positively proportional to the one of w.
The condition of weak monotonicity [H-S] implies the non-existence of J-holomorphic
spheres with negative Chern number for a generic J. Hofer and Salamon computed the
Floer homology in the case that (M,w) is monotone, or ¢;(7m(M)) = 0, or the minimal

Chern number is at least half of the dimension of M, and verified the Arnold conjecture in
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these cases. Later, the second author defined the “modified Floer homology group” and
verified the conjecture for weakly monotone symplectic manifolds. However we do not
know whether the Floer homology group defined by Hofer and Salamon and the modified
Floer homology group coincide or not.

In this note, we consider an analogue of the Arnold conjecture for non-exact symplecto-
morphisms isotopic to the identity through symplectomorphisms. In the case of non-exact
symplectomorphisms, the fixed point set may be empty. For example, an irrational rota-
tion on an even dimensional torus with the standard symplectic structure preserves the
symplectic form, however the fixed point set is empty. That is the reason why we have to
consider the Novikov homology instead of the ordinary homology. The aim of this note
is to show the following:

Main Theorem. Let (M,w) be a closed symplectic manifold which satisfies the following

condition

€1 [xa(M) = AWmy(r)y A F 0,

and if A < 0, the minimal Chern number N > n — 3. Suppose ¢ is a symplectomorphism
on (M,w) which is isotopic to the identity through symplectomorphisms. If all the fized
points of ¢ are non-degenerate, the number of fizred points of ¢ is at least the sum of the

Betti numbers of the Novikov homology over Zy associated to the Calabi invariant of ¢.

It is well-known that Novikov homology groups are isomorphic for almost all cohomol-
ogy class in H'(M;R) and the rank of this group is minimal in the class of Novikov
homology groups associated to all the cohomology class in H'(M;R) (see Appendix 3).
Hence we get the estimate of the number of fixed points in terms of Novikov homology
of generic 1-forms. We reduce the problem to the one concerning the 1-periodic solutions
of a periodic Hamiltonian system and define the Floer homology in this setting. The
argument in [F1],[H-S] yields that Floer homology groups are isomorphic under the defor-
mation keeping the Calabi invariant constant. However we have to consider deformations
changing the Calabi invariant in order to compute it. To apply the weak compactness
argument, necessary is the estimate of the energy functional for solutions of “chain ho-
momorphism” equation. This is done for specific deformations with the help of a variant
of the Palais-Smale condition (§5).

This note also contains Appendices. The first one is concerning the classification of

loops in a symplectic manifold under symplectomorphisms. We prove that two embedded
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contractible loops are congruent under a time 1-map of a time-dependent Hamiltonian flow
if and only if the Poincare integral invariant of them coincide. The second one contains
a proof of a fact, which is needed in the computation of the Floer homology groups (see
also [H-S]). The third one is a note on Novikov homology theory. Since it seems difficult

to find a reference containing proofs, we give proofs for the sake of completeness.

Acknowledgement: This work is carried out during both authors’ stay at the Max-
Planck-Institut fiir Mathematik, Bonn. They thank its hospitality and financial support.
Thanks are also to Lé Tu Quéc Thang, who gave them a series of lectures, had fruitful
discussion on the Novikov homology theory, and wrote Appendix 3 with them, Dietmar
Salamon for helpful discussion and comments on the preliminary version, and Nguyén
Tién Zung for his improvement of the proof of Proposition A1.3 in Appendix 1.

§2. Calabi invariant and a variational approach.

Given a symplectic form w on M there is an isomorphism ¢ from the space of vector

fields to the space of differential forms on M:
(VW) = —w(V,W). (2.1)

Let g, be an element of the identity component Diff®M of the symplectomorphism group
and {g.} a path connecting the identity element and ¢g;. We define the vector field D:(g:)
by

Dl5)(=) = (3r00(s2).

Clearly, ®(D:(g;)) are closed differential forms. Recall that g, is said to be an ezact
symplectomorphism if all ®(D,(g;)) are exact 1-forms. The fluz homomorphism ® from
the universal cover DiffSM to H'(M,R) is defined as follows (see [B]):

o(4:) = [ @(Dilg0) dt).

This homomorphism was first considered by Calabi and we call the image ®(§) the Calabi
invariant of an element § € Iﬁw Passing to the group Diff°M the Calabi invariant
of a symplectomorphism on M is an element of the quotient H'(M,R)/T, where T is the
image of the subgroup m(Diff®M) (which is identified with the kernel of the projection
from m to DiffSM) under the homomorphism @®. It is known ([B], see also Lemma
2.1) that T is a discrete subgroup in H'(M,R) if and only if the subgroup of exact

symplectomorphisms is closed in Diff°M. Kahlerian manifolds, or more generally, any
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symplectic manifold M such that the multiplication by w"™! induces an isomorphism
from H'(M,R) to H>»~1(M,R), are such examples [B].

Deformation Lemma 2.1. Let [6] € H'(M,R) be the Calabi invariant of an element
G1- Then there exists a smooth path {g,} in DiffoM, joining the identity element Id and
g1, and a periodic Hamiltonian H, on M such that ®(D,(g,)) = 6 + dH, for all t.

Proof. First, we show that we can choose a path ¢; connecting the identity element and
g1 such that all the cohomology class of 8, = ®(D;(g,)) is [f] and b, = 8,. Put

V(z) = / Di(g.)(z) dt.

Let G;(z) be the one-parameter subgroup of symplectomorphisms generated by the vector
field V(z): G: = exptV. Then the Calabi invariant for the path g; - G_; is zero. It is
known that there exists a smooth path p, in the subgroup of exact symplectomorphisms,
Diff.. M, such that py = Id, py = g1 - G_; (see {B]). By reparametrizing the parameter
t, we may assume that p; is constant around 0 and 1. Now let us consider the path

g'(t) = p: - Gy, so we have g = Id, gy = g;. We obtain
(Di(p: - Gi)) = ®(dGi(Di(pe)) + (V). (2.2)

From (2.2) we obtain that the form ®(D;(¢'(t))) = 6; is of the same cohomology class [f]
for all t. Let p; be as above. Then ®(D,(p,)) is the differential dH, for a smooth function
H; on M. Now, the periodicity condition 8y = ¢, is equivalent to the following:

dHo + ®(V) = dG2(dH,) + (V). (2.3)

Since p; is constant around 0 and 1, dHy = dH, = 0, i.e. Hy and H; are constant
functions. Hence (2.3) holds. Consequently, we have that H; = Hy + a, where a is some
constant. Now put H; = H, + 1(t), where £(0) = 0; (1) = —a and ¢'(0) = ¢’'(1) = 0.
Then the path g; associated with 8, = & + dH, satisfies the condition of Deformation
Lemma. O

With the help of our Deformation Lemma we reduce the problem of finding fixed points
of a symplectomorphism g to a variational problem on the loop space L(M). Suppose
that g is given by the following equation:

go = Id; ®(D¢(g:)) = b,
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where 6, satisfy the condition in Deformation Lemma. Clearly, the fixed points of g are

in 1-1 correspondence with the 1-periodic solutions of the following differential equation
(1) = Xo(t, 2(2)), (2.4)

where Xy = ®71(8). (It is easy to see that ®~1(8) = JV Py where P, is a local primitive
of the closed 1-form 6.) The set P(6;) of 1-periodic solutions of (2.4) coincide with the
critical points set (i.e. the zero set) of the following closed 1-form dA; on L(M):

dAg(z / w(z,€) + 0,(2(2))(6). (2.4')

The (minus) gradient flow for the multi-valued functional Ay is defined by the following

equation.

Baa(u) = 32+ J(u)( T Xo(u)) = (2.5)

where u is a mapping R x S' — M. For a solution u of (2.5) we define its energy as

follows.
oo 1
1
=5// |—|“+|—-Xg(t w)|?) dtds. (2.6)
—-00 0

As in the case of exact symplectomorphisms, the space of the solution (2.5) with the
bounded energy is the space of connecting orbits, that is, lim, 4+ u(s,t) = z*(t) where
z*(t) are periodic solutions of (2.4).

We will restrict ourselves in the component of contractible loops on M. For the sake
of simplicity, henceforth, we also denote the latter space by £(M). We construct an
associated covering space LM such that the action functional A, on this cover is well-

defined function. Consider the following commutative diagram.

LM 25 M 5 M
[ A
LM 2 M = M

Here M denotes the covering space of M associated to the period homomorphism of 8,
Iy : 7 (M) — R. This means that the covering transformation group is isomorphic to the

quotient group
Iy = m(M)/ker I,.

Furthermore, e denotes the evaluation map: z(t) +— z(0), and j denotes the projection

from the covering space LM of LM associated to the action of homomorphims Beyy Put



SYMPLECTIC FIXED POINTS 7

73(M) — R. This means that the covering transformation group is isomorphic to the

quotient group
__ m(M)
ker ¢, Nker ¢,

An element of £M is represented by an equivalence class of pairs (Z,1), where 7 is a loop

Iy

in M and i is a disk in M bounding Z. A pair (Z, 1) is equivalent to (7, ¥) if and only
if £ = § and the values of ¢, and ¢, are zero for uf(—v), where u = (%),v = =(9)
(see [H-S]). Hence, the covering transformation group of LM — LM is the direct sum
=T, @7,

‘ (91 © 92)[E,4) = [g1 - &, Auifgn - ], (2.7)
where A, is any representative of gz in my(M). (Geometrically, u is a disk bounded by
z € LM. By the homotopy lifting property, there exists a unique disk @ € M bounded
by Z. The second homotopy groups of M and M are same, so we consider g, as a sphere
in M and # denotes the connected sum of 2-spheres with the bounding disk (see [H-S])).
Namely we get the following

Lemma 2.2. The group I' is commutative. We have

(91 0 92)[2, 8} = (92 0 91)I[Z, 1],

where g; denotes its image in the group I'.

Since the 1-forms 8, t € S, satisfy the condition in Deformation Lemma there exists
a periodic Hamiltonian H, on M such that dH, = ©*0,. Clearly, the time-dependent
Hamiltonian flow on M generated by H is the pull-back from the original symplectic flow
on M. In particular, the set of contractible periodic solutions P(H,) is the set 7=1(P(8,)).
Furthermore, P(H) = j~'P(H,) is the critical point set of the following functional

Ag((E,a) = = [#w+ [ H(t,5(t)dt (2.8)

We now consider on LM the space of connecting orbits # : R x S$' — M satisfying the

lifted equation :

9, 5(%) = % + J(u)(% ~ Xz(a)) =0, (2.9.1)
Jimi(s,1) = [#4(0), ] (29.2)

and the condition:

[z%,47§a) = (2%, 4%). (2.9.3)
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The paths in LM are in one-to-one corerespondence with the paths on the covering space
LM modulo the action of I'; (see condition (2.9.3)). Consequently, for these connecting
orbits we have the following energy identity (cf. [H-S], [S-Z]):

1

E(als, 1)) / f |—|2dtd3_ 25, 37)) — Ag((E*, @%). (2.10)

—o0 0

where # is a mapping from R x §! — M.

§3. Transversality and compactness.

From now on, we will deal with a weekly monotone symplectic manifold M, i.e. M
satisfies w(A) < 0 for any A € m(M) with 3 — n < ¢(A4) < 0 [H-§], and a generic
almost complex structure J calibrated by w. This condition yields the non-existence of J-
holomorphic spheres of negative Chern number. Moreover, denote by M;(c; J) the set of
all points £ € M such that there exists a non-constant J-holomorphic sphere v : §2 - M
such that ¢;(v) < k, w(v) < c and z € v(S5?), then the set My(oo;J) is a subset of M of
codimension 4, and the set M{(co; J) is a subset of codimension 2 [H-S].

All transversality and compactness theorems in this section can be easily obtained by
the same arguments in [H-S].

Given any smooth periodic 1-from 6, = 8 + dH, we denote by Us(6,) the set of all
periodic 1-forms 8 + dH; with ||H] — H;||. < é, where the norm ||A{|. is defined as follows:

©0

||h|]¢ = E Ek”hHC*(sl xM)-

k=0

Here €; > 0 is a sufficiently rapidly decreasing sequence [F2].

Theorem 3.1. There is a dense subset ©y C Us(0:) such that the following holds for
0, € Op.

(i) Every periodic solution z € P(8,) is non-degenerate.

(it) z(t) & Mi(o0; J) for every = € P(8;) and every t € R.

Theorem 3.1 is obtained by applying the Sard-Smale theorem to certain Banach manifolds.
More precisely, for the proof of (i) we consider the Hilbert manifold B of contractible W2
loops z : S — M, and the bundle £ — B whose fibre at z € B is the Hilbert space of
L?-vector fields along z. Let the section F : B x Us(8;) — € be defined by

f(:c,() + dH:) =z — X(H.dy:(t,:l:).
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The differential dF(z,8 + dH,) is onto [H-S). Hence F intersects the zero section of £
transversally. Thus, the set

P = {(z,0') € B x Us() | F(z,6;) = 0}

is a separable infinite dimensional Banach manifold. A periodic form 8} = 6+dH; € Us(6,)
is a regular value of the projection P — Ug(0,) onto the second factor if and only if
every periodic solution =z € P(8}) is non-degenerate. By the Sard-Smale theorem the set
©" € Us(8,) is generic in the sense of Baire. O

To prove (ii) we consider the evaluation map
xp: M,(A;J) xg xS x S' x P ([v,2),t,2,0) — (v(2),z(2)),

where M,(A; J) denotes the moduli space of simple J-holomorphic spheres realizing ho-
mology class A € H,(M,Z), and G is the automorphism group PGLy(C). It is shown
that the evaluation map e, : P — M : (z,6:) — z(t), is a submersion for every t € 5!
[H-S]. Therefore, the map e, is transversal to the diagonal Ay in M x M. Hence the

space
N = {[v,2),t, 2,0, [v(z) = 2(t), (z,8,) € P}

is an infinite dimensional Banach submanifold of M,(A; J)xex S?x S! x P of codimension

2n. The projection
N - u&(a) : ([v,z],a:,f)t) = Bt

is a Fredholm map of Fredholm index 2¢,(A) — 3. Applying the Sard-Smale theorem
we obtain that the set ©(A) of regular values of the above projection is of the second
category in the sense of Baire. Denote Qg the intersection of ©' with N,er©(A), where T
is countable set of integral (and spherical) 2-homology classes in M, for which ¢;{A) < 1.
Then 6 is the desired set in Theorem 3.1. O

By the previous theorem there exists a periodic 1-form 8, = 8 + dH, in a prescribed co-
homology class [f] such that all contractible 1-periodic solution of (2.4) are non-degenerate
and do not intersect the set M;(oco, J). Choose disjoint compact neighborhoods Uy, ..., U,
C S x M of the graphs of the finitely many contractible periodic solutions of (2.4). We
denote by Vs(8;) the set of all periodic 1-forms 6, = 6 + dH] with ||H; — H,||. < § and
H] = Hyon U; for j = 1,...,m. If § > 0 is sufficiently small then there are no con-
tractible 1-periodic solution of (2.4) outside the set U; for 8, € Vs(8;). For an element
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[£,4) € P(H), we assign an integer u([#,i]), which is called the Conley-Zehnder index
[H-S],{S-7Z].

Theorem 38.2. There is a generic set ©, C V;(0,) containing 8, such that the following
holds for 8, € ©,.

(1) The space M([z~,u"),[z*,ut];0;, J) of solutions of (2.9.1), (2.9.2) and (2.9.8) is a fi-
nite dimensional manifold for all [£%, %] € P(0)). The dimension is given by u([Z~,47])—
w([E*, 4]}

(i) u(s,t) &€ Myo(oo;J) for every u € M([z~,a7],[z%,at];6;,J) with pu([z~,47]) —
p([Z,4%]) <2 and every (s,t) € R x SL.

The proof of Theorem 3.2 is also obtained by applying the Sard-Smale theorem to
certain Banach manifolds [H-S]. For the proof of (i) we consider the Banach manifold B
of W' maps u: R x S' — M, p > 2, whose limit are periodic solutions z* of (2.4). Let
& — B be the bundle whose fibre at u € B is the Banach space of L?-vector fields along
u. Define the section F : B x Vs(8;) — £ as follows

du du

F(u,0) = 35 T J(“)(E — Xgi(t,u)).

The linearized operator of F(u, #}) coincides with the one of the similar operator in [H-S].
Further arguments in [H-S] can be repeated word by word here. 0O
In the following we consider the lifted Hamiltonian system on M. Note that the equation

(2.9.1) is invariant under translations in s-variable. We denote the quotient space by

M([z, 4], (&%, @], H, J)/R.

Theorem 3.3. Suppose that J and 0; are regular (in the sense of Theorem 3.1 and Theo-
rem 3.2). Then M([z~,a"}, [z, a*]; H,J)/R is compact, if u([z~,4"])— p([E*,at]) = 1.
M([&=,47), (&, at); H,J)/R is compact up to splitting into two elements in

M([5™, 5, (2,3)5 7, J) /R and M([5,5), (5%, 5 1, J)/R, if p(5=,57]) — (&, 5%)) =
2.

Remark 3.4.  For the proof of Theorem 3.3 (in the case of exact Hamiltonian) Hofer
and Salamon use the uniform lower bound of the energy for holomorphic spheres and
connecting orbits. They prove the existence of such bounds by bubbling analysis (Gro-
mov’s compactness theorem). Alternatively, we can use the (explicit) lower estimate for
the volume of (globally) minimal cycles in a compact Riemannian manifold [L] to esti-

mate the energy of holomorphic spheres. Using Cauchy integral inequality one can obtain
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lower bounds for energy of connecting orbits in terms of the distances between periodic
solutions. More precisely, we define a distance p(z(t),y(t)) between loops z(t) and y(t)
by

oo 1

inf{] /lg—:ldtda lu:R x ' = M,u(=00,t) = z(t), u(co, t) = y(t)}.

—oo 0
Clearly p(z(t),y(t)) > Jo dist(z(),y(t)) d¢t > min, dist(z(t),y(t)), where “dist” denotes
the Riemannian distance on M. If C°-distance max,dist(z(t},y(t)) < Rar (injective

radius of M), then p(z(t),y(t)) < max, dist(z(t),y(t)). Given a finite number of periodic
solutions z;(t) of (2.4) let A denote the minimum of the distance between z;(t) and z;(t),

i# 7.

Lemma 3.5. Given a positive ¢ < min{R(M), k/2} there ezists a number c(e) > 0
depending on 6, such that

E(u) > c(e)( - 2)

for any connecting orbit u on M, satisfying (2.5), whose limits as s tends to ‘oo are
different periodic solutions of (2:4).

Proof. Denote B;(e) the neighborhood of z;(t) which consists of loops whose distance p
to z;(t) is less than or equal to €. Let B(e)} = UB;(e). By the Palais-Smale condition (see
Lemma 5.1 below) there exists ¢(g) > 0 such that the following inequality holds such that
outside of B(e) we have

|1£(2) = Xo,(2(t))llz2 > e(e)*. (3.1)

Suppose u is a connecting orbit from z;(¢) to z;(¢). Since lim wu(s,.) (in C°-sense) are
=00

periodic solutions z;(t) and z;(t), we obtain

Claim 3.6. There exist number R~ and Rt such that
i) u(R™,t) € B;(e), u(s,t) ¢ B;i(e) for all s > R~

i) u(R*,t) € B;(e) u(s,t) ¢ B;(e) for all s < R*.

We observe that

E(u) > j}j|%|'2 dt ds = 7 (J/llti(s,t) - Xo,(u(s,t)))? dt) ds.

R- R- 0
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Applying Cauchy’s inequality we get

Rt [ 1 2
E(u)zﬁ (,l J Oj (s, t) — Xp, (u(s, t))|?dt ds) :

Taking (3.1) and Claim 3.6 into account we get

>c5)/ /l-——-Pdt ds.

Once again applying Cauchy’s inequality, we get

Rt 1

E(u) > c(e) / / 5ol dtds 2 c(e)(plai(t), 25() - 2). O

§4. Floer homology.

In this section we define Floer homology of fixed points of a symplectomorphism isotopic
to the identity and prove its invariance under exact deformations. As a result, if two
symplectomorphisms have the same Calabi invariant then the associated Floer homology
groups are isomorphic. We will deal with the covering space LM.

In the paper [S-Z], Salamon and Zehnder use the Conley-Zehnder index (which they
also call the Maslov index) of a non-degenerate contractible periodic solution as a natural
grading for the Floer complex. Remember that the Conley-Zehnder index of a contractible
periodic solution z(t) bounding a disk u depends only on the trivialization of the induced
complex bundle u*T'M and the linearized flow along z(t). Therefore, the Conley-Zehnder
index of a periodic solution [%,4] € LM is T invariant, that is p([Z,4]) = p(g - [3,4])
for any g € T'y. Recall that I’y is the covering transformation group of M. This Conley-
Zehnder index satisfies the following identities (cf. [S-Z],[H-S]).

w((Z, Adta]) — p((2, 1)) = —2¢1(4), (4.1)

dim M([z,%7], (8%, %) H, J) = u(1&™, 7)) - u((*, 37)). (4.2)

As we have seen, the Conley-Zehnder index of a periodic solution z() is well-defined up to
modulo 2N : p(z(t)) € Z/2N, where N is the minimal Chern number. Later on we also
say u(z(t)) = k € Z that means that there is a bounding disk u, such that u([z,u.]) = k.

Denote by Py(H) the subset of all periodic solutions [, %] with p([Z,)]) = k. Consider

the chain complex whose k-th chain group Ci(H) consists of all the formal sums Y-
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[2,4) , [&,4) € Py(H), {iz,a) € Zy, satisfying that the set {[Z,4]|{z 4 # 0, Ag([2, %)) > c}
is finite for all ¢ € R.

Let Ty be the following subgroup of Iy,

ker ¢,
ker ., Nker

Denote by Ay, the completion of the group ring of I C T over the field Z; with respect
to the weight homomorphism ¥y, = Iy @& —¢, : I" =TI'y @Iy — R, i.e. the set of all the
formal sum Y A4 - 84, Mg € Z3, such that {A € TV| 4 # 0,¥g.(A) > ¢} is finite for all

¢ € R. In fact, Ay, is a commutative algebra over Z; without zero divisors.

Remark 4.1. If M satisfies the condition in Main Theorem, then Iy is trivial and
Ag., = Ay, where Ay is the Novikov ring associated to the closed 1-form 6 (see Appendix
3). It is easy to see that in this case the ambiguity of the Conley-Zehnder index of a
periodic solution z(t) can be controled. More precisely, if u(z(t)) = k(mod 2N) then
there exists a bounding disk u,, which is unique up to the connected sum of an element
in T3, such that p({z(?),us)) = k.

The algebra Ay, acts on PM in the following way:
(A * Oiza1 = 2 Agbgolz,al-
g€l

We easily deduce the following lemma.

Lemma 4.2. The chain group C‘k(f{-) is a torsion-free module over the algebra Ag,,. The
rank of this module is the number of contractible 1-periodic solutions = € P(6,) with the
Conley-Zehnder indez pu(z) = k.

For a generator [Z,4] in Cx(H), we define the boundary operator d; as follows:
a(z,al)= 3 nall2allg,2)F,9], (4.3)
w([#,3])=k-1

where ny([Z, @], [#,7]) denotes the modulo 2-reduction of the number of elements in the
space M([%, 1], [7,); H,J)/R. The weak compactness argument yields that 8, is well-
defined. To verify that 0x([Z,%]} € Cx_; we can use compactness argument as in the
proof of Lemma 5.5 below or combine it with Lemma 3.5. In fact, let 9y([z,1]) =
g, e 9pilZir ], where &;, ¢ = {1,---, K}, is an arbitrary chosen lift to M of a pe-

riodic solution z; € P(6;) and #; is an arbitrary chosen bounding disk of #;. We need
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to show that for any given c and ¢ the set S. = {g,:|Ag(gp,ilZi,%]) > c} is finite. Tak-
ing into account the energy identity (2.10) and Lemma 3.5 we get that the distance
p(z(t),g-z:(t)), g € S. is bounded. Hence for each i, there is only finite number of g € Ty
such that the coefficient of [g - Z;, %] in Jz(t) is not zero and Ag([g - zi(t),&]) > c. If I
is trivial (e.g. M satisfies the condition in Main Theorem), then we are done. If not, we
use Gromov’s compactness theorem to show that there is only finite number of homotopy

types of connecting orbits between z(t) and z;(t) whose energy is bounded. O

Since J; is invariant under the action of I, we extend J; as a Agg-linear map from

— a—

Ci(H) to Cx—1(H). Using gluing argument and the weak compactness argument, we also
deduce that 82 = 0. The homology groups

ker 0y

HFk(M!w70hJ; Zg) = im ak 2
+

are called the Floer homology groups of the quadruple (M,w, 6, J) with the coefficients
in Z,. Obviously, they are a graded Ay,-modules. The following theorem shows that

Floer homology groups are invariant under exact deformations.

Theorem 4.3. For generic pairs (07,J%), (Gf, JPY such that 62 = 0° + df, there exists a

natural Ay, -module homomorphism
HFPe . HF.(0,J°) — HF.(8?,J°)

which preserves the grading by the Conley-Zehnder index. If (07,J7) is any other such

pair then
HFY¥ o HFP* = HF"™ HF* = Id.

In particular, HF°? is a Ay,-module isomorphism.

Proof. The proof of Theorem 4.3 is carried out in the same way as in [F1], [H-S] (see also
the section 5 below). Namely, we construct a chain homomorphism with the help of the
“chain homomorphism equation” which is a s-depending analogue of the connecting orbit
equation (2.9.1), (2.9.2), (2.9.3). Let 6,, denote a generic path connecting 6* and 8{ in
the fixed cohomology class. More precisely, there is a 2-parameter family of functions H,,
on M, such that

6, = 07 + dH,
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and for a sufficiently large R,

H,, = 0 fors<—R,
H, = f, fors>R.

To construct a chain homomorphism ¢# : C.(62,J%) — C.(67,J7), we consider the

following equation

Ju Ou

—+Ju){=——-Xp, - X =0 4.4).

9s + (u){at A H-,c} ( )
Here, the key problem is to control the energy of solutions i”*(s,t) “connecting” two
periodic solutions [#%,4°] and [Z?,#"]. Let H be a Hamiltonian function on M such

that dH = 7*0%. Then H' = H + =*f, satisfies dH' = 7°67. Let (#,u~] € P(H) and
[7,u*] € P(H'). We have the following inequality.

. _ i dH,,

|E(u) — {Ag((&v7]) = Az([fw* DI € [ max_|—==

teMeS! - Os

~—Qo0

lds

for a solution u of (4.4) with lim,__ u(s,t) = n(&) € P(6]), lim, u(s,t) = n(§) €
P(6?) and [§,u"fu] = [§,ut]. Hence we have the weak-compactness of M(Z,;0; +
dH,;,J,) and the argument in [H-S] yields Theorem 4.3. O

§5. A variant of the Palais-Smale condition and continuation.

To compute the Floer homology groups we need to use deformations which change
the Calabi invariant. There arise two difficulties in proving the chain homomorphism
between the Floer homologies associated with different Calabi invariants: to control the
energy of solutions of the “chain homomorphism equation”, and to make it sure that the
chain homomorphism preserves the “finiteness condition” which arises in the definition
of the chain complexes. We overcome the first one by using a variant of the Palais-Smale
condition. We have to restrict ourselves to the case of symplectic manifolds satisfying the
condition in Main Theorem in order to avoid the second difficulty. First of all, we show

a variant of the Palais-Smale condition as follows:

Lemma 5.1. Let z; : S* — M be a sequence of contractible W**-loops in M. If
| £; — Xo,(z;) ||L2 tends to 0 as j — +oo, there ezists a subsequence, which we also

denote by {7} such that z; converges to a contractible periodic solution z, in C°-sense.

Proof. Without loss of generality, M is assumed to be embedded in R¥ for a sufficiently
large N and z; € W12(S!,R") such that Im(z;) C M. Since M is compact and
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limj_eo || Z;(t)— Xo,(;(2)) ||L2= 0, there exists a constant C' > 0 such that || z; ||p12< C.
By the Rellich lemma, z; converges to z., in C*-topology for 0 € a < 1/2, and z, is the
weak-limit of z; in W?(S', RV). In particular, z,, € W3($', RV).

Since z; converges to T, in C’-topology, X, (z;) converges to Xy, (zo) in C°-topology.
Thus it is easy to see that

[(zenlt), ¢t = = [(Xau(awo(t)), ()t

for any ¢ € C=(S1,RV), i.e. Zoo(t) — Xg,(Too(t)) = 0 in L2(S',RN). By the regularity
argument, T, satisfies Zo,(t) — Xp,(2o0(t)) = 0 in classical sense. Contractible loops z;

converges to ., in C%-topology, therefore z., is a contractible loop. O

For a generic periodic time-depending symplectic vector field X,,, the set of periodic
solutions is finite. Let xz;,--- ,z; be all the contractible periodic solutions and Uy, - , U
tubular neighborhoods of the graphs of z; in M x S'. The following lemma is a direct

consequence of Lemma 5.1.

Lemma 5.2. There ezists ¢ > 0 such that || £ — Xy, ||z2> ¢ for any contractible loop =

in M whose graph is not contained in either of U;.

Let 5 be a closed 1-form on M, p: M x S' — M the projection to the second factor.
Since each z; is contractible, the restriction of p*n to U; is exact. Hence we can find a
periodic family {:} of closed 1-forms on M which are cohomologous to 1 and vanishes on
U; for any j. Let {8} be a regular periodic family of closed 1-forms on M (see Theorems
3.1 and 3.2). Using perturbation of 7; we also assume that 8, + ¢- 5, is regular. Then we

can show the following

Theorem 5.3. Suppose that M satisfies the condition in Main Theorem. For a periodic
family {m} in the cohomology class 1 = Cal(8,), there ezists h > 0 such that

HF.(Gg, J) = HF.(Bg +€- ﬂg,J’)

for e < h and . Moreover the above isomorphism is Ag-linear.

To construct a chain homomorphism, we consider the following equation.

%‘- + J,(u)(% - Xo,,) =0 (5.1)
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with
(Jsy85) = (J,8,) for s < —R,
(J5y0,50) = (J',0; + €n,) for s > R,
and
0o = O + S(s)e " 7t
Here ¢(s) is a monotone smooth function on [— R, R] which vanishes near — R and equals
to 1 near R.
Define the energy by

7 /1|a|2dtds

~oo 0

If a solution u of (5.1) has finite energy, lim,_,+0 4(3,t) exist and

z= = lim u(s t) € P(6) ]

8= —

(5.2)
¥ = limu(s,t) € P(0 +en,)

Using perturbation of J, we assume that the path (J,,8,,) is regular (in the sense as
in the section 3}, and moreover, we assume that J’ is sufficiently close to J such that
|Js — J|(z) < & for all s,z and a positive § small enough (which will be specified later).

The following lemma contains a key estimate needed in our compactness argument.

Lemma 5.4. Let € be a real number such that |e- 0| < ¢/3 for all t. For a solution
% of (5.1) with (5.2) and the boundary condition [2* u~fi] = [2+,ut], then E(2) <
3(Aﬁ‘([5',u‘]) — Ag ([£*,u*])), where H, is a Hamiltonian function on M such that
dH, = ©*6,.

Proof.

0Ag { oa . O

_THyg=y . [ 0¥ 408

ds (%) 0/( S’J( It Xo,))dt
If u,=moi,:S" — M factors through U; = M for some j, X,, = 0 along u,, hence we
get
aA~ 1 au au au
3s = Of 3007 (57 — Xeddt =|| o= |Iz2 - (5.3)

If not, we have

(5, IO = X5 ) 2 5o = 1921152 (5 Xo,) (5.4)
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Since u satisfies (5.1) we get from (5. 4)

Ou  Ou Ju Ou
(5057 —Xed) 21521 - |—| (I6(s) - enel + | Jo = |- |55 = Xa,|)- (5.5)
Our assumptlon that |¢( ) - e < ¢f3 yields
d
s = J119% = Xol = 10— T 12+ 8(s) - end < 61521 +¢/3). (5:6)
Applying the Cauchy inequality to f; | 5% |dt, we obtain from (5.5) and (5.6)
0A; . d ad
—5ak(i) 2 (1= 8) || 5= IF = Il 5 llza |1 + 6)e/3)] (5.7)

Our assumption and Lemma 5.2 irnphes || Ou/0s ||L22 c. Now it is easy to verify the

following inequality
2 Ou
|| HL (3 157 llee —5) > 0.

Therefore, for é small enough (whlch depends only on c), we obtain

A-8)l ; o - lz= - || |IL= (1 +8)e/3| 2 || IILz - (5-8)

Combining (5.3), (5.7) a.nd (5.8) yields the desired estimate. O

Once we get the uniform bound of the energy functional, the weak-compactness holds.
In particular, M(Z7,2%;0,,,J,)} is a finite set if ug,(27) = po,4eq (27). We define a chain
homomorphism ¢ : C.(0:, J) = C.(8; + en,) as follows:

¢(Z) = Y. ma(E,3)-4,
Hoy+on, (W)= He, (E)
where m2(Z,§) denotes the modulo 2-reduction of the cardinality of M(Z,¥;0,,,J,). Now
we show that ¢() € C.(H)).

Lemma 5.5. For each ¢ and a fized periodic solution § € P(H!) there is only finite
number of elements g € I'1 such that the coefficient of g - § in ¢(Z) is not zero and

A;};(g - §) > c.

Proof. The same argument in the proof of Lemma 5.4 yields that Aﬁ:(E"‘) < AE‘,(E") -
1/3 x E(i), where Hj is a Hamiltonian function for 7#*(6; + en:). In other words, Ajj, 18
also a Liapunov function for the “flow” defined by equation (5.1). This inequality yields
that if g satisfies the condition in Lemma 5.5 then the energy of the solution u of (5.1),
the lift of which to M joins Z and g - , is uniformly bounded by ¢. Assume the contrary,

1.e. there exists infinite number g; € T'; satisfying the condition in LLemma 5.5. Then there
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exists infinite number of solutions #; of (5.1) on M such that ‘,Er_noo i = T, ,]l.r& U, =gi 9
and E(u;) < ¢. By Gromov compactness theorem, there exists a limit u,,. Let g, be an
element in I'; such that alirg oo = Joo * ¥ Pull back to M such that all iy, hoo have T as
one of the ends. Then the other end of #;, when [ is sufficient large, is also g, - . We

arrive at the contradiction. O

It is easy to see that ¢ is invariant under the I';-action. By Lemma 5.5 we can extend ¢

as a chain homomorphism of Ag-modules C,(H) and C,(H!). The same argument yields

that ¢ is a Ag-linear isomorphism. 0O

§6. Floer homology and Novikov homology.

First of all, we recall fundamental facts on Novikov homology. Let X be a closed
manifold and 7 a closed 1-form on X. Denote 7 : X — X the covering space associated
to the homomorphism I, : 7;(X) — R. Then there exists a function f : X — R such
that #*n = df. For a generic Riemannian metric ¢ on X, the gradient flow of f with
respect to m*g is of Morse-Smale type, and the Novikov complex C¥°¥(5, g) is defined in
the same way as the Morse complex (cf Appendix 3). CN¥°¥(n, g) is a graded module over
the Novikov ring A,. The homology group Nov.(n,g) of C¥°(n, g) is called the Novikov

homology associated to . In this note we consider only Novikov rings over Zj.

Fact 6.1. Nov.(7,g) does not depend on the choice of a Riemannian metric g which
makes the gradient flow of f being of Morse-Smale type.

Fact 6.2. Nov.(n) = Nov.(n,g) depends only on the projective class of the cohomology

class of 1, i.e.

Nov.(n) = Nov.(n') if [5] = A[p'] in H'(X;R) for some X # 0.

The following Fact (6.3) tells us that the Novikov homology can be computed from the
Morse complex é,.(h) of ™h: X — R.

Fact 6.3. Nov,(1) = H.(C.(k) ® A,).
The goal of this section is to show the following

Theorem 6.4. Let (M,w) be a symplectic manifold of dimension 2n satisfying the con-
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dition in Main Theorem. For a generic periodic family {8,} of closed 1-forms in a fized

cohomology class [n)] there exists a natural isomorphism

HFE(0,7)= €@  Novjya(n)
j=k(meod IN)

as graded A,-modules.

Proof. For a generic pairs ({02}, J%) and ({67}, J®) with the same Calabi invariant,
HF,(62,J%) = HF,(6?,J?) by Theorem (5.1).

In other words, the Floer homology does not depends on the choice of a generic pair
({6.},J) with the prescribed Calabi invariant . We denote it by HF,(7). Theorem (5.4)
implies that

HF,(n) 2 HF,((1+¢€) - ) for |¢| < A(n).

Let h be a Morse function on M. We can consider the action functional A, : £(M) —
R. Note that this is the pull-back of the action functional on £(M) in the case of exact
symplectomorphisms. We shall define a chain complex C.(w*h,J). The chain group
consists of ¥ az,3)(Z, ©], where sum is taken under the condition that Z is a critical point
of #*h and [%,i] € L(M) satisfying the following finiteness condition: {[Z, @]|az5) #
0 and A;([Z,]) > c} is a finite set for any c. We choose h to be a sufficiently C'?-small
function such that all periodic solution z(t) are precisely the critical points of k. Moreover
we assume that the critical points of A and the gradient trajectories with Hessian index
difference 1 do not intersect the holomorphic spheres of J with Chern number less than
or equal to 1. The following lemma yields that the boundary operator d depends only on

the gradient trajectories of h.

Lemma 6.5 [O,Corollary 4.2]. Let (M,w) be a closed symplectic manifold of dimension
2n which satisfies the condition in Main Theorem or ¢y |n,m) = 0. Suppose h is a Morse
function on M. Then there ezists a number 7 > 0 such that if u is a solution of (2.9.1),
(2.9.2) and (2.9.8) corresponding to the (time-independent) Hamiltonian Th, and besides,
pu(u) <1 then u is independent of t.

We also have the non-degeneracy of the linearized operator for (2.9.1) at the gradient
trajectories of h (see Appendix 2). The boundary operator 9 is defined exactly same as
(4.3). We denote the homology group by HF,(7*h,J). Then as in the proof of Theorem
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(5.4), the fact that Ay is a Liapunov function for (5.1) yields that
HF.(h,J) = HF,(e-q) for |e| < k(D).

Therefore HF.(n) & HF.([dh]). Now remember that the Conley-Zehnder index of the
pair [z(t), u,], where u, is the unit element in I'y, is given by : p([z(t), u;]) = indz(z) —n
[S-Z, H-S]. Therefore the set of all z(t) with Conley-Zehnder index k coincides with the
set of all eritical points 2 = z(t) of Morse index j = k(mod 2N). Taking Fact 6.3 into
account, the Lemma 6.5 implies that the Floer complex C.(dh,J) is isomorphic to the
Novikov complex CN°*(dh). O

Theorem (6.4) implies our Main Theorem. O

§7. An example.

By Theorem A3.4 the Euler number of the Novikov homology corresponding to a free
abelian covering over M is the same of the original manifold M. Hence, our theorem also
implies the Lefschetz fixed point formula for symplectomorphisms which are symplectically
isotopic to the identity. Here we will give a non-trivial example of symplectic manifolds
satisfying the condition in the Main Theorem such that the sum of the Betti numbers of
the Novikov homology corresponding to any free abelian covering of M is greater than
the Euler number of M. By Theorem A3.2 it suffices to consider the maximal free abelian
covering M of M.

The following example of Fano 3-folds with non-vanishing odd Betti number was pointed
out to us by Keiji Oguiso. Let X; be the hypersurface in CP* defined by the equation
{zk + ... + 2% = 0}. Denote h the generator of H*(CP* Z). A direct calculation yields

Claim 7.1. The first Chern class of Xy satisfies ¢ = (5 — k)hx,. If k > 3 the Betti

number by(X*) is non-zero.

Let ¥, denote a Riemannian surface of genus g # 0. We have m3(X;) = 0 and any

non-degenerate 2-form w, on ¥, is a symplectic form.

Claim 7.2. The product manifold (X; X L,,wx ® w,), k # 5, is a symplectic manifold
which satisfies the condition in Main Theorem. Further suppose that k > 3 and g 2> 2.
Then the sum of the Betti numbers of the mazimal free abelian covering of Xy x ¥, is

greater than the Euler number of Xi X Z,.
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Proof. The first statement is trivial. The maximal free abelian covering of X x ¥, is
X x X’J; where &, denotes the maximal free abelian covering of Z,. Using Theorem A.3.4
it is easy to see that the Betti numbers of fg are 0, 2g — 2,0. With the help of Claim 7.1
and Theorem A3.3 we obtain the second statement in Claim 7.2. In particular, if £ =3
we have the Euler number of X3 x £, = 12(g — 1) while the sum of its Betti numbers
equals 28(g — 1), if k = 4 we have the Euler number of X4 x ¥, = 112(g — 1) while the
sum of its Betti numbers equals 128(¢ — 1). O

Thus,if & > 3,k # 5, and g > 2, the number of the fixed points of a symplectomorphism
f € Diff’(Xy x L,) is greater than the Euler number of X, x &,, provided that all the
fixed points are non-degenerate. In particular, if £ = 3 (or k = 4, resp.) this number is
at least 28(g — 1) (or 128(g — 1), resp.).

§8. Concluding remarks

If ¢ {ryp) = O the Novikov ring A, ¢ changes when the cohomology class § changes.
That is the main obstruction to the control of the "finiteness condition”, therefore, to the
construction of "chain homomorphisms”, and to the computation of the corresponding
Floer homology groups. However, if the Calabi invariant is small enough we still have the

following theorem.

Theorem 8.1. Let (M,w) be a closed symplectic manifold and ¢; |r,(ar) = 0. There exists
€ > 0 such that if |[0]] < ¢ then

HF,(0) 2 Nov.(0) @, Aow-

Consequently, the sum of ranks of HF,(0) equals the one of Nov,(8).

Here we suppose that M is provided with some Riemannian metric and the norm |[6]|

is defined as infimum of the norm of 1-form 8 in this cohomology class [f].

Proof. By Theorem 4.3 (invariance under exact deformations) it suffices to show that
for each regular periodic 1-form #; on M there exists a positive number 7 such that
HFE.(1-0,,J) = Nov.(0) @, Apw. First we observe that if ¢; |r,(a) = 0 then the Floer
homology of a Morse-Smale function A which is C? small enough is still well defined, and
moreover, it is isomorphic to the Morse homology group of & (that is isomorphic to the
homology group of M). The proof of this fact is similar to that one in the section 6 and

relies on Lemma 6.5. Now we lift the function k on the covering space M corresponding
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to the form . By the same way as in the section 6 we define the Floer complex C.(k,J)
for the lifted function k. Further we choose 7 small enough so that the energy estimate
for the "chain homomorphism” solution u between HF.(k,J) and HF,(r-8,J') holds (see
Lemma 5.4). Finally we compare the Floer homology H F, (k) with the Novikov homology
Nov,(6). Denote C.(k) (without J) the Novikov complex. We have (see Appendix 3)

ranka, Nov,(8) = rankpa) H.(C(R)) ®4 F(A).
In the same way as in the proof of Theorem 6.4, we have
HF,(h,J) = Nov.yn(8) ®a, Aus.

Therefore, the rank of the Floer homology corresponding to k equals the rank of the
Novikov homology corresponding to k. Observe that these homology groups are vector
spaces over the corresponding fields. (Note that the Novikov rings over Z/2 are fields.)

Hence follows Theorem 8.1.

Appendix 1: On the Poincare invariant of symplectomorphisms.

In this section, we prove the converse statement of the Poincare theorem, namely, if
two embedded loops on a symplectic manifold M have the same Poincare invariant then
there exists an exact Hamiltonian flow on M which sends one loop to the other.

Originally the Poincare theorem was stated for the symplectic manifold R?" and then
for the cotangent bundle 7*M with the canonical 1-form ¢ = pdg and the canonical
symplectic form w = da [A]. In the general case of an arbitrary symplectic manifold
M we replace the Poincare integral by the action functional A defined on an appropriate
covering space of the space EL(M) of contractible embedded loops. Namely, this covering
space EL(M) can be identified with the quotient space of pairs {[y,u]] du = 4} by the
equivalence relation defined by the homotopy equivalence of the bounding disk u. We

have

Al ) = [ww (A1)

Passing to the base space, the action functional is only defined with modulo of the group
w([m2(M)]). However, it also means that the differential of the action functional is well-

defined on the loop space:

dAX) = [w(X,5) = ~e(X)([]), | (41.2)

y
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where ® is defined in (2.1). From (A1.2) we obtain immediately the following well-known

theorem.

Theorem Al.l1. Any Hamiltonian flow f, on M preserves the generalized Poincare

invariant - the action functional on the covering space of the space of embedded contractible

loops EL(M)
A(ly,u]) = A([fa(‘f),f-(")])

Note that if the symplectic form w is exact on M, that is w = de, then

Ay, )= [ (AL3)

&

Theorem A1.2. Let (M,w) be a symplectic manifold of dimension 2n < 4. Suppose
that two embedded contractible loops [0, ug] and [y, u,] have the same Poincare invariant.
Then there ezists a Hamiltonian flow f, such that fo = Id; fi(yo) =m.

Proof of Theorem A1.2. We infer Theorem A1.2 from the following propositions.
Proposition A1.3. Every level surface A~'(a) C EL(M) is path-connected.

Proposition Al1.4. Suppose the path [v,,u,], s € [0,1], of embedded loops lies on a level
surface A™'(a). Then there ezists a Hamiltonian flow f, such that f,(vo) = 7,

Proof of Proposition A1.8. It is easy to see that the space EE(M) is path-connected.
Suppose that [v,,u,] is a path in EL(M) which joins two points [yo, to] and [y, %,]. Our
aim now is to find a deformation of the path {v,,u,] to a new path of constant Poincare
invariant, and besides, this new path also joins [vo, ug] and [y1,uy].

We consider the path u,(0),s € {0,1], in M of the center of bounding disks u,. Using
Darboux’s theorem we can find the number £ > 0 and the smooth family of embeddings
¥, : D*(e) x I — N such that the following conditions hold.

1) The restriction of ¢, on D?*(e) x 7 is a symplectic embedding. Here the disk D?(g) of

radius € carries the standard symplectic structure.

2) ,(g,0) x 0 = 4,(0), where (r,0) denotes the polar coordinate on the disk D?*(¢).
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By the conditions (1) and (2) we can find the sequence 7y,...,7, € I and construct the
embedding ¥ : [0,1] x S? — N with the following properties

3)¥(s, S!) is the connected sum of n circles ¥(S*(x(s) - €) x 7i. Here x is a fixed smooth
positive function on the interval (0, 1) and vanishes at the end points, and (S'(r)) denotes
the circle of radius r in D?(¢).

4) The Poincare invariant A(¥(s, S?)) > |A(7,) — A(7)].

Now we consider the new path +, of the connected sum (4)(s) and ¥(s, S?). By
the condition (4) the Poincare invariant of each circle v/ is greater than or equals to
A(v) = A(m1). Applying the construction of connected sum of v, with ¥'(s,S?), we
obtain a new path ;" such that the Poincare invariant of each 4. is less than or equal
to A(yo) = A(m). Using deformation by multiplication with a number less than 1 for
¥'(s,S') we can deform the path 47 to a new path of constant Poincare invariant. This
completes the proof of Proposition A1.3.0

Proof of Proposition Al.4. Let ¢, be a 1-parameter family of embeddings of S! into M
with the same Poincare invariant. Differentiating it with respect to s, we get a 1-parameter
family V, of vector fields along ¢,. It is sufficient to show that V,, which is defined on
7s = $,(S") can extend to a Hamiltonian vector field of M. Using the isomorphism ® (cf.
(2.1)), we get a cross section ®(V,) of T*M|,,. We shall extend this section to a closed 1-
form on a tubular neighborhood N(4,). Since symplectic manifolds are orientable, N(v,)
is diffeomorphic to S x D"~ such that S x {0} corresponds to 7,. Let {zy, - ,Z2,_1}
be coordinate functions of D**~!. Then there exist functions a(t), b,(t),- - ,b2.-1(¢) on

S such that
2n-1

O(V,) = a(t)dt + Y bi(t)dw;.

Put
" db;
a(t, .'D,‘) = a(t) + E‘ Ty,
It is easy to see that
2n-1

n= &(t,z;)dt + Z b,-(t)da:.-

1=1
is a desired extension as a closed 1-form. Since the embedded loops -, have the same
Poincare invariant, from (A1.2) we conclude that ®(V;) is an exact 1-form on +,. Note
that S? x {0} is a deformation retract of S* x D?*"~!, hence 7 is also an exact 1-form, i.e.

7 = dh for some function h.
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For a cut off function ¢ which equals 1 near S* x {0}, the Hamiltonian vector field of
¢ h coincides with V; on %, and vanishes near the boundary of the tubular neighborhood.
Therefore it naturally extends to a Hamiltonian vector field ¥; which vanishes outside of

the tubular neighborhood. This completes the proof of Proposition Al.4. O.

Remark A1.5. Theorem Al.2 can be generalized to embedded loops of non-trivial homo-
topic class by the same line of argument. We can also show the case that M = R? with

the standard symplectic structure.

Appendix 2: Non-degeneracy of the linearized operator for time independent

Hamiltonians.

In this appendix, we shall show the surjectivity of the linearized operator at gradient
trajectories (see also [S-Z]). Let f be a C%-small Morse function on a symplectic manifold
M such that the Conley-Zehnder index at critical points with trivial bounding disks
coincide with the index of the Hessian of f. We also fix a metric, for which the gradient
flow of f is of Morse-Smale type and which is compatible with an almost complex structure
calibrated by w.

Let v : R — M be a trajectory of the gradient flow joining two critical points p and
q. Denote u, : R x §' — M the mapping defined by u(s,t) = v(s). The linearization
operator DEJ,H of 51,;1 at u. is given by

DEJ'Hf = V_&f + JV_%{ + Hess (f)¢, (A2.1)

where Hess (f)¢ = V¢V f. Since the Hamiltonian f and the connecting orbit u., are -
independent, we have a symmetry in t-variable. Hence Dd;y decomposes into Fredholm

operators
pl . Vi — Wy,

where W2(uTM) = @rezVi and L*(u}TM) = @rezWi are decompositions as S'-
modules according to weights. From (A2.1), P(F)¢ = Vol +(—k+ Hess (f)).

For k = 0, P® is surjective and moreover we have index P©® = dim ker P® =
index Hess,(f) — index Hess,(f), which follow from the assumption that the gradient
flow of f is of Morse-Smale type. (P®) coincides with the linearization operator for the
gradient flow of a Morse function [S,Sch].)

From now on, we assume that f is C?-small such that || Hess (f) ||< 6 < 1 for some

§> 0. Let ((€,m)(s) = Jo (€(s, ), n(s, 1)) dt.
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For k > 0, the solution ¢ of P()¢ = () satisfies

SEIE = 2(Vg68)
= 2({(k — Hess ())&, £))
> (-8 HEr.

Hence || ¢ ||* grows exponentially as s tends to 400, unless ¢ = 0. Since ¢ is square
integrable, we get ¢ = 0, i.e. ker P(*) = 0 for k > 0. The same conclusion holds for k£ < 0.
Therefore we get index D = dim ker PO _ Y kzodim coker P®)_ On the other hand,

index DB3; = dim ker P® hence P*) are surjective for all k, i.e. D3,y is surjective.

Appendix 3: Note on Novikov homology theory.
(Collaboration with Lé Tu Quéc Thang)

In this appendix, we shall give simple proofs of some fundamental facts on the Novikov
homology theory, which seem folklore to specialists (see also [Pa],[Po]). Floer [F3] inter- -
preted the Morse complex in terms of gradient trajectories for generic Morse functions.
Details are carried out by Matthias Schwarz [Sch] (see also [Sa]). For a closed 1-form
7 on M, there is the smallest covering space on which the pull back of 5 is exact. We
denote this covering space by = : M — M. Let f be a function on M such that w*n = df.
For a generic Riemannian metric on M, the gradient flow of f with respect to the pull
back metric is of Morse-Smale type. An element of the k-th Novikov chain group of 7 is
3" a;Z where the sum is taken under the condition that the index of Hessian of f at % is
k and {Z|az # 0 and f(Z) > c} is a finite set for any ¢. The Novikov ring A¢ is defined
as the completion of the group ring of the covering transformation group of = : Mo M
with respect to the weight homomorphism I;. The argument in Lemma (3.5) implies that
there are at most finite many trajectories joining critical points %4 and we can define
the boundary operator, which is linear over the Novikov ring, exactly same as (4.3). The
Novikov complex, hence the Novikov homology, are finite generated modules over the
Novikov ring. Note that the Novikov complexes of  and Ay with the same Riemannian
metric are same for A # 0. The argument in Theorem 4.3 yields Fact 6.1 and Fact 6.2.

We shall prove Fact 6.3. Qur argument is a finite dimensional analogue of the proof of
Theorem 5.3. Let h be a Morse function on M and U; be a contractible neighborhood of
a critical point p; of h. Since M is compact, there exists a number € > 0 such that the
norm of the gradient vector field Vh satisfies || V& ||> € outside of UU;. Since each U;

is contractible, we can find a closed 1-form ' which is cohomologous to  and vanishes
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identically on UU;. Then we can find A > 0 such that || A- 5" [|< ¢/3, where 5! is the
vector field associated to n’ with respect to the given Riemannian metric. From now on
1 denotes A -1’ defined as above. This implies that f and f + #*h are Liapunov functions
for both of the gradient flows of f and f + x*h. Note that the critical point sets of f and
f + 7*h coincide. We can define chain homomorphisms between the Morse complex of f

and f + m*h by using the following ordinary differential equation.

I L9 47RO =0, (43.1)

where h, is a 1-parameter family of functions on M such that
h, =0for s< —R and h, = h for s > R,

for some R > 0. The energy of a solution v of (A3.1) is defined by E(y) = [°2 |2 {%ds.
The set of solutions of (A3.1) with bounded energy coincides the set of solutions of (A3.1)
satisfying the asymptotic condition, i.e.

lim y(s) =2 and lim y(s) =7

A=—t+=00

for some critical points Z, § of f. Moreover, we can estimate the energy in terms of Z, §

as follows:
E(y) <3-(£(2) - f(3)),
and
E(y) <3-((f +7"h)(&) - (f + ="R)(#))-

The bound of energy implies the weak compactness of the set of solutions and no bubbling
phenomena occurs. We define ¢(Z) = 3 m3(Z,§)-§ where my(Z, ) denotes the modulo 2-
reduction of the number of solutions of (A3.1) satisfying the asymptotic condition. To get
a chain homomorphism from ¢, we have to show that ¢ preserves the finiteness condition
with respect to f + 7*h. However this can be derived in the same way as Lemma 3.5. We
can also define a chain homomorphism in the other direction and they are inverses each
other on homology groups.

We define the rank of a module L over a commutative algebra A with a unit by the
dimension of the vector space L ® F(A) over the fractional field F(A) of A. The rank of
the Novikov homology is defined as the rank of it over the Novikov ring. Now we shall

show the following:
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Theorem A3.1. Let £ and &' be closed 1-forms on M whose corresponding abelian
coverings are same. Then ranks of the Novikov homology of £ and the Novikov homology

of & are same.

Theorem A3.2. Let ¢ and &' be closed 1-forms such that &' vanishes on the kernel of
&. Then the rank of Nov,(€) is less than or equal to the rank of Nov.(¢').

Proof of Theorem A%.1. Let M — M be the abelian covering of M corresponding to a 1-
form ¢. Let h be a Morse function on M and C.(h) = C.(n*h) the Morse complex of 7*h.
Let A be the group ring of the covering transformation group and A, the Novikov ring
of . Then Fact 6.3 implies that Nov,(¢) = H.(C.(h) @4 A¢). Since A is faithfully flat
over A (this fact is due to Sikorav, see [Pal, but in fact, we need only the flatness , which
can be derived from the well-known facts of commutative algebra [A-M,Chap.10]), we get
Nov,(£) & H.(C.(h)) ®x A¢. Then we have ranka, Nov.(¢) = rankp(s,) H.(C.(h)) ®a
F(A¢) = rankpag{H.(C.(h)) @ F(A)} ®Fn) F(A¢) = rankp(H.(Cu(k)) ®a F(A).
Therefore the rank of the Novikov homology depends only on the covering space M,
i.e. the ranks of Nov,({) and Nov.(£') are same. O

Proof of Theorem A8.2. Let M — M and M — M be the covering spaces corresponding
to ¢ and ¢ with the covering transformation groups I'; and T'; respectively. We can
choose generators of covering transformation groups such that abelian groups I'y and I';
are generated by t;,--- ,1; and t,--- ,t} (I < k) respectively. Here t; is the image of ;
by the quotient homomorphism I'; — T';. Let A, and A; be group rings of I'; and I',
respectively. Then there is a natural homomorphism ¢ : A; — A, which maps ¢; to 1 for
[4+1 <1< k. We may assume that { = k — 1. By Theorem A3.1 and Fact 6.3, it is
enough to show that ranks, H.(C.(k)) < ranky, H..(C'._.(h) ®a, Az).

Claim. The natural map H.(C.(h)) ®a, Az = H.(C.(k) ®a, As) is injective. Therefore
we get rankp(a,) { Ha(Cu(h))®@a, A2} @, F(Az) > rankpay) {Hu(Cu(R))®a, Az} ®a, F(A3).

This Claim follows from the observation that B.(C.(k)) ® A; = B.(C.(h) ® A;), where
B.(*) denotes the submodule of boundary cycles.

In order to complete the proof of Theorem A3.2, it is sufficient to show that

rankr(a,) H.(C.(f)) ®a, F(A3) > ranky, H.(C.(f)).
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Put R = F(A,)[tf]. Denote L = H,(C,(f)). Then R is a principal ideal domain and
has the same fractional field as A;. Hence for the A;-module L, we have rank,, L =
rankr L ®,, R. Since R is a principal ideal domain, we have L ®,, R = R? @ Torsion,
which yields that {L®a, R} ®r F(A;3) D (F(A3))". Hence we get rankp(x,) L®a, F(A3) 2
rank,, L. We get the desired inequality. O |

We have the Kinneth formula in Novikov homology theory.

Theorem A3.3. Let M, and M; be closed manifolds and §{ and 3 closed 1-forms on
M, and M; respectively. If the kernel of the weight homomorphism for m1€ + w3n is the

direct sum of the kernels of the weight homomorphism for { and n, we have

Nov.(My x My;wi§ + m3n) = (Nov.(My; §) @z, Nov.(Ma; 1)) ®acen, Aneanyn:

Proof. We denote by I'; and I'; the group ring of the covering transformation groups
corresponding to ¢ and 7. The Kiinneth formula for the corresponding covering spaces
yields that

Ho(C.(rihy + m3he)) & H(Cu(miha)) @ Ho(Cu(m3ha),

where h; and h, are Morse functions on M; and M, respectively. Since the kernel of
the weight homomorphism for #{¢ + 737 is the direct sum of the kernels of the weight
homomorphisms for £ and 5, the Novikov ring for #7¢ + 737 is the completion of the
tensor product of the Novikov rings for £ and 5. Note that Nov.(M; x Ma; 7€ + m3n) is
isomorphic to H.(C.(n7hy +73h3)) ®z,[r1@rs] Axse4nyn. Combining these facts, we get the
fact that Nov.(M; x My; m1€ + m37) is isomorphic to the completion of the tensor product
of

Nov.(M;;€) = Ho(C.(h1)) ®zyir) Ac

and

~

Nov.(My;n) & H.(Cu(h)) ®z,(ry) Ag

with respect to the weight homomorphism for 77§ + 737, 1.e.

{Nov.(My;€) ® Nov.(My;n)} @a,en, Axpesngn: O

Since the Euler number of the homology equals the alternating sum of ranks of the

complex, we get
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Theorem A3.4. The Euler number of the Novikov homology, i.e. the alternating sum
of the ranks of the Novikov homology groups, equals to the Euler number of the ordinary
homology of M.
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