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ON REES ANTI FORM RINGS OF ALMOST

COMPLETE INTERSECTIONS

1. Introduetion. The problem of deseribing the behaviour of a given

variety X under blowing up a subvariety YC X can be phrased as folIows:

How does the blowing up morphism X' --> X depend on the properties of

X and Y? From the homological point of view it makes sense to study

also arithmetical properties of Xl and its exceptional divisor, sinee

the cohomology of X' Cl Proj R is closely related to the Ioeal cohomology

of the graded ring R with respeet to the maximal homogeneous ideal of

R . Following this aspect we consider mainly for complete intersection ­

and almost complete intersection - ideals in a loeal Noetherian ring A

some relationships tbat hold between the Gorenstein and Cahen-Macaulay

(GM) property of the Rees ring R(I) = ~~ntn , the assaciated graded
n n+l n_. .

ring grA(I) = i 1 11 and the correspondlng propertles of A and in
n~O

particular of All itself.

One starting point are investigations of Brodmann [1 ], Valla [18] and

Goto-Shimoda [2], where in particular the Cohen-Macaulay - and the Goren­

stein-property of the form ring grA(l) of an almost camplete intersec­

tion ideal I in a Cohen-Macaulay ring were studied. Dur notion of an

almost camplete intersection is slightIy more general as in [ 1 ] and

[ 18] , s. definition (2.1), since l is not necessari1y unmixed. [i.e.

by abuse of usual language - all minimal primes have the same height].

Brodmann ] , proposition (5.2) proved that for an almost complete inter-

section I in a Gorenstein ring A the Cohen-Macaulay-property of All

is equivalent to the Cohen-Macaulay-property of grA(I) if moreover
Ass(A/I) = Assh(A/I)

Valla [18], .theorem 8 has shown that under the same. assumptions as in

Brodmann's resu1t the Cohen-Macaulay property ef All does imply even the

Gorenstein property ef grA(I) ~

Gete and Shimeda [ 2] investigated almest camplete interseetions ideals P,
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which are prime. The main theorems in [2] can also ~e shown, if the

prime ideal property is rep1aced by Ass(A/I) = Assh(A/I) . Moreover it

fellows from [2 ] that - under the same assumptions as in Brodmann's

result - the Cohen-Macau1ay. property of All is equivalent to the Goren­

stein property of grA(I) .

We will show in theorem (4.1), that the same statement is also. true without

the unmixed-condition on the a.c.i. ideal I.

More explicitely, we treat in the first part of this report the fo110wing

problem: Let I be an a.c.i. ideal (def.(~.l)) in a local Noetherian

ring. When is All Cohen-Macaulay? We consider essentially 3 situations:

1) The associated graded ring grA(I) is Gorenstein.

2) The Rees ring R(I) is Gorenstein, where I is any ideal with

JJ (I) S 3 • This problem is reduced to a corresponding problem· for an

a.c.i. ideal in R(I)M' where M is the maximal homogeneous ideal

R(I) .

3) A is a regular local ring.

If I is in particular a prime ideal of height 2 in the third situation,

then All is .always Cohen-Macaulay, provided that A contains a fie1d.

That fellows from the syzygy-theorem oi" Evans-Griffith. Moreover if

dirn A :;; 5 and Ass(A/I) = Assh(A/I) in this situation, then All is

Cehen-Macaulay. As far as we knew there exists an exp1icit counter example

for situation 3 by Huneke, where I is prime and All is not Cohen­

Macaulay. This is based on the following idea: Take a non-Cohen-Macau1ay

UFD ring All and link the defining ideal generical1y with an a.c.i. prime

ideal [13]. We will describe necessary conditions on the multiplicity

e(A/I) for I being aBuehsbaum, non-Cohen-Macaulay ideal. Aseries of

exarnples is given.

In the next part of this report we ask for the Gerenstein property of

Rees and form rings of powers of ideals. First we mention the fact (5.

proposi tion (6.2)) that for any ideal I of ht (I) ;;:: 2 in a Noetherian
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ring A there exists at most one power In such that the Rees ring

R(In
) is Gorenstein.

Moreover if A is Gorenstein and I an almost eomplete interseetion

ideal of ht(I) ~2 such that All is Cohen-Macaulay, then

R(I
m

) is Gorenstein iff m "" ht(I) - 1

m is Gorenstein iff ht(I) 9 1(m)gr(I )

Finally for equimultiple ideals I in a Cohen-Macaulay ring A we get

the following equivalent eonditions:

(i) A is Gorenstein and I is a complete intersection

(ii) R(Iht (I)-l) is Gorenstein.

As a consequenee one has for a d-dimensional local Cohen-Maeaulay ring

(A,m)

A is.regular iff R(md- 1) is Gorenstein.

This result is due to Goto-Shimoda for d c 2 . Independently it was
also shown by A. Ooishi, using quite other methods (s. Appendix).

Furthermore, if A is regular, then gr(mn) is Gorenstein for all n

such that d - 1 E (0) .

2. Preliminaries.

Part I: In this section we recall some results on almost complete

intersections needed in the sequel.

(A,m, k) is a loeal Noetherian ring, I an ideal in A; J.l (I) denotes the

minimal number of generators of I.
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Definition (2.1):

(i) I is a complete interseetion (e.i.) if ht(I) = ~(I)

(ii) I is locally a complete intersection (l.c.i.) if

Y P E Min(A/I) IA is c.i. in A
p P

(iii) I is an almost complete intersection (a.c.i.) if I is

1 . c •i. and J.J (I) = ht (I) + 1 •

Remark (2.2): In [1] and [18] there is a somewhat s tronge r notion : 11 I is an

almost compiete intersection and a generic complete intersection" if

J.l (I) = ht ( I) + 1 and

Note that the ideal

jJ (I ) = .ht (I) for all PE Min(A/I) •
p

I = (X,Y) n (2) c k [X,Y,2 TI is an a. c. i. ideal by

definition (2.1) but not in the strang sense af [1] and [18]. We come

back to this example in section 4, where theorem (4.1) shows immediately_

that grA(I) cannot be Gorenstein.

As a consequence of the "primbasissatz" , we .have the fo11owing result

[ 5 ] :

Proposition (2.3):

(i) Let Ikl = 00 • Then if I is a.c.i. we find an ideal Jf; I

and an element a EI, not contained in J , such that

I = J + aA and J is c.i.

Moreover if J is height-unmixed then
2

(J : a) c (J: a )

(ii) Cenversely, if I = J + aA such that J is a complete inter­

sectien and (J : a) = (J : a2) , then I is either c. i. er

a.c.i.

An impertant point is that in Cohen-Macaulay rings a.c.i. ideals are of

linear type. (s. also [ 2 ] ,[ 5 ] , [ 19]) :
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Let A be a Cohen-Macaulay ring, such that all

localizations A ,P E Spec (A) , have infinite residue field. Let I be
p

an ideal of A such that peIl ~ ht(I) + 1 • Then the following are equi-

valent:

(i) I is an almost complete intersection.

(ii) I is of linear type, i.e. R(I) = Sym(I)

Remark (2.5): In Cohen-Macaulay rings almost complete intersections can-

not be equimultiple, s. [5], proposition (1.2).

But in non-Cohen-Macau1ay rings we can have both properties for. I as the

fo11owing examples show:

Examp1e (2.6), s. [6 ]: Consider·the fo1lowing situation:

5 6 789
R : = k [t ,t ,t ,t ,t ]] [ X, Y, Z]

where k is a fie1d, and t,X,Y,Z are indeterminates. Let:

t 5
b

8 t 9a :=> :;:1 t c :=

2 where f = + bY + cZG :0 R/ (f :R a ) aX

m := maximal homogeneous ideal of G

A := Gm and P .- (X ,Y, Z) Gm c A

.By 1(1) we denote the .analytic spread of I.

Then one has: (1) A is non-Cohen-Macaulay of dim A CI 3

(2) ht(P) 1 (P) = 2 < p (P) 1:1 3

(3) A/P is Cohen-Macau1ay

(4) ~ is regular.

This shows that P is an equimultiple,.a1most complete intersection idea1~

We remark that R(P) ~s Cohen-Macaulay, but not
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Gorenstein. Note that.almost all results of the.next sections need at

least the Cohen-Macaulay-property of A, i.e. example (2.6) had to be

treated by quite other methods; see [6].

Examp1e (2. 7) : A: = k [[ s2 , s 3., s t, t Il isa non-Cohen-Macaulay, Buchs-

baum ring of dimension 2. Consider the prime ideal p:c (st,t) •

Then we have: (1) ht (P) = 1 (P) = 1 < JJ (P) z:I 2

(2) ~. is regular.

Hence P is a.c.i. (and equimultiple), but not of linear type, since

SYm(P) ;; A[X, y] /a where

2 3 3 4 2
a = (tX - s tY, s X- s Y, s X - s Y, s tX - s tY)

and

Remark (2.8): In. the last example A/P is Cohen-Macaulay but R(P)

is not, since otherwise depth A ~ dim(A/P) + 1 = 2 ,which is -not the case.

Proposition. (2.9) (Depth-Formula): Let

section ideal (in the sense of (2.1») in

the following hold for G = grA(I) and

I be an almost complete inter­

a Cohen-Macaulay ring A. Then

R = R(l) :

(i) depth (G) = min {dim A ; depth (A/l) + ht (I) + 1 }

(ii) depth (R) = min {dirn A ; depth (A/I) + 2 } if ht(I) = 0

= m"in {dim A+ 1 ; depth(A/I) + ht(I) + 2} if ht(I) > 1

These formulas were shown by Brodmann [ 1 ] for a.c.i. ideals in the strong

sense. But one can check that the same proof works for a.c.i. ideals in the

sense of (2.1), since the only thing needed in Brodmann's proof is the fact
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n n-1that I na
1
A :::0 a

1
·1 , where

a1,···,~,ah+1 (and al'···'~

I is generated by a d-sequence

form a regular sequence).

Part 11. Brief survey of the theory of Approximation Comp1exes.

To study the relationships between the various graded rings associated to

an ideal I in a (commutative) Noetherian ring A one can also use the

soealled Approximation Complexes of I; see [8], [9], [10]. The situa­

tion is in particular good when these eomp1exes are exact, a condition that

is fu1fil1ed for some important families of ideals. In .this ease it is

possible to investigate the arithmetieal properties of those graded rings

as if they were Cohen-Maeaulay or Gorenstein. One important point in this

theory i8 .that un~er the IIgoodll situation I is of linear type. Assuming

for simplicity that A is loeal with maximal ideal m and . dimA = d

we consider the Koszul eomplex of R w.r.t. a,:= {a 1, .•. ,a } , where
- n

a 1, ... ,an generate I. By S we denote the polynomial ring A[X
1

, ••• ,x
n
].

We then get two complexes:

and

l(a) O->l ->
n

->l->l->O
1 0

M(a) -: 0 -> M ->
n

-> Af -> M -> 01 0

where l. = Z. K(a) ~A Sand Ai. "" H~ K<,~) ~A S . Here the
~ ~ - ~ ~

the cyeles of the Koszul complex K(a)' and the H.K(a)- ~ -

Z.K(a) denotes
~ -

the Koszul homology.

Both eomplexes can be taken as complexes of graded modules ovar S with

mappings of degree -1 . We list the main properties of· these complexes:

The homology of l(a) and M(~) is independent of the system

of generators a.

HO(l(~)) SymA(I)

HO(M(~)) J:I SymA(I/I 2 )

The following are equivalent:
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is acyclic ..

is acyclic and I is of linear type.

Now·we assume that A is Cohen-Macaulay .

.Suppose (i) For any prime ideal P.2 I , JJ (lp) :S ht (P)

(ii) For any r ~ 0 and for any prime ideal p~ I

Then M(a) is acyclic.

It turns out that c'ondition (~i) above is '.independent of the system of

generators of I, and that it is fulfilled if I is strongly Cohen-Macau-

lay (sCH:) , that is, if for any

Cohen-Macaulay All-module.

r ~ 0 , H (K (a) )
r -

is zero er a maximal

Assume: .(i) For any prime ideal P~ I , JJ (Ip) ~ ht (P) + 1 •

(ii) For any r ;;;:.0 and for any prime ideal P~ I ,

~ inf(ht(P/l),r) - 1

Then ~(a) 18 acyclic.

There is an important connection between the theory cf Approximation Com­

plexe8 and the theory of d-sequences. In fact:

(7) lf I is generated by a d-sequence, then Al(a) is acyclic.

~ Assume that lA/mi = ~ • If M(~) is acyclic, then I can be generated

by a d-sequence (but the given a is not necessarily a d-sequenceJ).

(10) Finally we give a list of some important families of sCM-ideals. For

this we mainly follow [8 ]. A is. always Cohen-Macaulay.

The following ideals are strongly Cohen-Macaulay:
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a) Complete intersection ideals

b) Ideals I.s; A such that All is Cohen-Macaulay and

.u (I) = ht (I) + 1 .

c) If A is Gorenstein, All

~ (I) :::: h t (I) + 2 , t hen I

is Cohen-Macaulay and

is sCM.

3. R(I). is Gorenstein and .u(I):::: 2 (domain-case).

To motivate the special case .u(I) = 2 we mention the following result,

see [3], proposition 1.1 and also proposition.2.4:

Proposi tion (3. 1) : Let I be a parameter-ideal- in A. If dim(A);;;: 2

and depth(A) '= 2 , then the following conditions are equivalent:

(i) R(I) is Gorenstein.

(ii) A. is Gorenstein and dim(A) ~ 2 .

The. proof of (i) => (ii) is in [ 3 ]. The· converse follows also from [ 3 ]:

From A is Gorenstein (Cohen-Macaulay is enough) we conclude that R(I)

is Cohen-Macaulay. Moreover I is_generated by a regular sequence, hence

All and grA(I) are Gorenstein. Therefore by [15], theorem (3.7)

R(I) is Gorenstein [see also §4 , where we show that in this case the

a-invariant of . grA(I) is - ht (I) = - 2 ].

Corollary (3.2): Let IcA be a complete intersection ideal (i.e~

.u(I) = ht(I) ,hence I is -generated by a subsystem of parameters).

Assume that grade(I);;;: 2 . If R(I) is Gorenstein then ht(I) = 2 •

These facts may convince us to star4.with a~. ideal generated by 2 elements

with ht(I) '= 1 • In the following proposition due to J. Ribbe we do not

assume that I is an a.c.i ..
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Let IcA and assume that (A,m) is a domain.

(i) R(I) is Gorenstein

(ii) ]J(I) 11:1 2 and ht(I) ~ 1 •

Then A is a Cohen-Macaulay ring.

Remark (3.4): Proposition (3.3) is also true if (A,m) "is any local

Noetherian ring. This general fact will be proven in section 4, theorem

(4.1).

Corollary (3.3.1): Assume (i) and (ii) of proposition (3.3). If

ht(I) c 2 , then grA(I) is Gorenstein.

Proof'of (3.3.1): Since A is Cohen-Macaulay hy (3.3) and

]J(I) c ht(l) ~ 2, I is generated by a regular sequence öf two elements.

Moreover A ~ KA .(where KA is the canonical module of A) by [15],

theorem 3.1, hence A and A/l are Gorenstein.rings. This.implies that

grA(I) ~ A/I[X
1

,x
2

] is Gorenstein.

Corollary (3.3.2): Assume (i) and.(ii) of proposition. (3.3).. lf l is

an unmixed ,(Ass(A/I) c Assh(A/I») . almost complete intersection ideal of

ht(I) cl, then A is a.non-Gorenstein, hut Cohen-Macaulay ring.

Proof.of (3.3.2): This follows from (3.3) and [2.], corollary (4.6).

2 3 2Example for (3.3.2): Let A ck[[.s ,s ,t, st,s u,tu]] ,where k

is a field and s,t,u are indeterminates.Let P c (s2u , tu) , which is

an almost complete intersection ideal of ht(P) = 1 • A is Cohen-Macaulay,

but not Gorenstein and R(P) is Gorenstein by [2].

Proof of proposition (3.3): We put R = R(I) and
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2 2
R+ = OlBltiI t IB •••

M := m + R+ ' the maximal homogeneous ideal of R

Then we have:

1) B/P ~ A and ht(P) cl. P is prime since A is a domain.

2) ~B(P) = 2 = ht(P) +

3)

4) Bp is regular.

That means, P is an almost camplete intersection prime ideal such that

gr
B

(P) ;; R is Gorenstein by assumption. This implies that B/P;; A is

Cohen-Macaulay by [2 ], . theorem (1. 1) .

Remark (3.5): To extend proposition (3.3) ~to any local ring (A,m) we

first need to prove theorem (1.1) of [2] for any almost complete inter­

section ideal (which is by our definition in general not unmixed). This

we do in section 4.

Remark (3.6): The method used in the proof of proposition (.3.3) does

not work in the same way for an ideal I with ~ (I) 2: 3 , since

ht(R+B) m and ~(R+B) ~ 3 .

4. R(I) is Gorenstein and ~(I) = 2 or 3 •

The main tool for this 5ection 15 the following theorem generalizing

theorem (1.1) in [ 2] . For simplicity we assume that lA/mi = m •

Theorem (4.1): Let

ring A. If grA(I)

I be an almost complete intersection in a local

is Gorenstein, then A/l is Cohen-Macaulay.
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The ideal I = (X,Y) n (Z)c:A =k[[x,Y,Zll is an a.c.i.

ideal.by definition (Z.l). Since I is not unmixed, .grA(I) cannot be

Gorenstein by this theorem. This can of course also be seen by the following

weIl known argument:

grA(I) = A[T
1

,T
Z
]/J , where J ~s generated by the homogeneous

polynomials F(T
1

,T
Z

) satisfying F(XZ,YZ) E I deg
(F)+l • Hence

So we have ~(J) = 3 = ht(J) + 1 , and J is ,an a.c.i. in the strict sense

of [ 1 ], [18], hence grA(I) .cannot be Gorenstein by an old result of Kunz.

Proof of (4. 1) :

assume that

By (Z.3) and the Primbasissatz [5], theorem 4.2 we may

ht(I) = 0 and

Then we have I n (0 : I) = (0) and by the deptt'l-formula (2.9) we have

depth (A/I) ~ d - 1 , where d = dim(A/I) . So i t is enough to show

(*)
d-l

Ext
A

(k,A/I) o

Put J = 0 : I • Note that in Dur situation (ht(I) a 0) we have

cl "" dim(A/I) = dirn A .

Claim 1:

Praof:

A/J. lS Cohen-Macaulay af dimension d

Consider the exact sequence

. -ao -> A/J -> A -> A/I -> 0

and note that depth(A/I);;;; d - 1 and depth(A) = cl •
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J is a CM-A-module of dimension d

This follows from the exact sequence

o -> J -> A -> AIJ -> 0

since A and A/J are d-dimensional Cohen-Macaulay rings.

To use the assumption that grA(I) is Gorenstein, we recall (see [1 ],

[2], [18J) that

( 1) ;; A[XJ
X-JA[X] + IA[X] .

where X is an indeterminate. We denate the right side of (1) by G , and

the irrelevant maximal ideal of G by m •

If t. is a non-zero element of Athen

(2) Gm/(X-t)G
m

;; A/(tJ + I)

Now the next step is to choose same special. t , such that AI (tJ + l)A

becomes Gorenstein as a ring:

Claim 3: There exists an element tE J , such that

i.e. t is a parameter'on All.

t E: U P
PE Assh(A/l)

Proof: By assumption (I

PE Min(A/r) • Hence (-T) "P
is a.c.i.) we have ~(IAp) = ht(P) far all

IA = 0 for PE Assh(A/l) . Therefore
P

there exists an element t i l-J
PE Assh(A/I)

hence t E J , which proves the claim.

such that a·t = 0 ,

This element t we use in the isomorphism (2) above. Since also t
2

is

a parameter on All we have:

dim(Gm/(X-t)Gm) = dim(A/(tJ+I):ii dim(A/(t
2
A+I») :;;:d-l.
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hence (X - t) is a parameter on G" , so A/ (tJ + I)

ring of dimension d - 1 .

Now consider the canonical exact sequence

(3) 0 -> A -> A/l e A/tJ -> A/l + tJ -> 0

The corresponding Ext-sequence induces

is a Gorenstein

(4)
d-1 d-1 d-1o -> Ext
A

(k,A/I) 9 Ext
A

(k,A/Jt) -> Ext
A

(k,A/l+Jt)

Putting 1+ tJ =: a , we have

;; Ext~/~(k,A/a)

where x
1

, ... ,x
d

_
1

form a regular sequence on A/a . Therefore
d-l

ExtA (k,A/a);; k in (4), because A/a is a Gorenstein ring.

Thus it is enough'~to show that

(**)
d-l

Ext
A

(k,A/Jt) ~ 0

For that we consider the exaet sequenee

(5) 0 -> J/tJ --> A/tJ --> A/J --> 0

Note that J/tJ a J/(a + t)J .

Claim "4:

Proof:

a + t is regular on A.

Suppose a + tE P for some PE Ass(A) • Sinee ln J l:Z (0) SP ,

we have to eonsider two eases:

Case 1: l cp • This implies tE P • Sinee A is Cohen-Maeaulay (even

Gorenstein) , dim(A/P) = dirn A :c dim(A/I) , i. e. PE Assh(A/I) . That is a
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contradiction to the choice of t.

Case 2: JcP then t E P , which gives again a contradiction.

From claim 2 and claim 4 we eonelude that J/tJ is a Cohen-Macaulay-A­

module of dimension d - 1 •

Now consider the exaet sequenee induced by (5)

(6) 0 --> Ext~-l(k,J/tJ) ~> Extd- 1(k,A/tJ) --> 0

d-1i.e. ~ is an isomorphism and Ext
A

(k,J/tJ) ~ 0 ,sinee J/tJ is

Cohen-Maeaulay of dimension d- 1 • This implies the desired relation

(**), q.e.d. (Theorem (4.1)).·

Now we ean prove the following theorem, which generalizes proposition (3.3).

Theorem (4.3): Let I be an ideal of a loeal ring A satisfying the

following eondition:

(i) R = R(I) is Gorenstein

(ii) J-I (I) "" 2 and ht (I) '= 1

Then A is Cohen-Maeaulay and depth(A!I) '= dim(A!I) - 1 •

Proof: We use the same ideas as in the proof of proposition (3.3).

Put R = R(I) , M = m + R+

As in section 3 it can be seen that

1) B/J i:i A and ht(J) =

3) grB(J);;:;R is Gorensteinby (i).
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Note that MinB(B/J) = {J+qB/qEMin(A)} since B/J ~ R/R ~ A •
+

Claim: a) J.l(JB
J

+qB );Sl for all q E Min(A)

b) ht (J + qB) ~ 1 for all q E Min(A)

c) J.l(JB
Q

) = ht(Q) for all Q E Min
B

(BI J)

Proof: a) Let

any q EMin (A)

B .... ~
J+qB::I -R +qR

+

a
1

, .•• ,a be any system of generators of I, and take, n

. Since ht (I) ~ 1 , say a
1

(/.. q • Then we get in the ring

a.t
1

1
= for i 2, ... , n

(Note that a
1

(/.. R+ + qR in our situation).

This proves a), because J = (a1t/1, ••. ,ant/l)

b) It is enough to show that ht (R + qR) ;;;: 1 • But this follows from
+

I~q .

c) From a) and b) we obtain

this gives the claim.

Therefore J is an a.c.i. ideal in Band grB(J) is Gorenstein by

assumption, hence BIJ ;:: A is Cohen-Macau!ay by (4.1).

Since R(I) is Cohen-Macaulay,· depth(A/I) ~dimA -1(1) by [16].

Moreover 1 ~ ht (I) ::i 1 (I) ~ 2 , hence depth(A/I);;;: dimA- (ht (I) + 1) . This

proves the last claim of (4.3).

We can prove a somewhat similar statement for J.l(I) = 3 provided that we

assume from the beginning that A is Cohen-Macaulay~
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Theorem (4.4): Let (A,m) be a Cohen-Macaulay ring and l an ideal

in A. Assume that

(i) R(l) is Gorenstein

(ii) J.l(l) = 3 and 1:;a ht(l) :;a 2

(iii) 1 is an ideal of linear type.

Then depth(A/l) ~ dim(A/1) - 1 •

Proof: We use the same notations as ~n the proof of (4.3).

Since B ·is Gorenstein, J.l(J):::I ht(J) + 2 . and B/J = A is Cohen-Macaulay,

we know by [8], prop. (5.5), that J is strongly Cohen-Macaulay. More­

over J is of linear type. Then we know by [14] , theorem (2.4), that

for all k ~ 1 :

k k+1
depth(J /J ) ~ depth(B/J) - k .

For k = 1 we get depth (J I J2) = depth (1) ~ depth (A) - 1 , hence (s ince

A is CM):

depth(l) 2:: dimA-1

From the exact sequence 0 --> I --> A --> All --> 0

depth-lemma the inequality

depth (All) ~ dim A - 2 ~ dim(A/I) - 1 •

we get by the

Remarks: a) Using the same argument as in the proof of theorem (4.3),

part d), which was based. on the inequality depth (All) ~ dim A - 1 (I) in

[16] , we would only get that depth (All) 2:: dim(A!I) - 2 •

b) The condition (iii) in theorem (4.4) can be replaced by a weaker con­

dition(iii)': J.l (lA):iä 2 for all associated height one prime ideals P
p

of I.

c) lf we assume ht(I) = 2 in (ii) of (4.4), then the statement of

the theorem follows immediately from the depth-formula (2.9). The
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interesting ease in (4.4) is the height one ease.

The following example (mentioned to us by P. Sehenzel) shows thaC in

ease hC(I) ~ 1 in theorem (4.4) with (iii)' instead of (iii) we eannot

expeet Air to be Cohen-Maeaulay:

• <"JB k [[ a+b b a a b a+b TICons1der ehe ring = s ,s·c, s ·C ,t ,where a - 2n-1 ,

b ZI 2n + 1 that deseribes a non-singular eurve. The ,defining equations
<"J

of B in C ~k[[X,Y,Z,WIl are

Q = YZ - XW

FO = y2n+1 _ X2Z2n- 1

F 1
= y2rv _XZ 2n

F2 = y2n-1 W2 _ Z2n+1

where b is generated by

WT
O

- YT
1

- XZ 2n- 1U

ZT
O

- XT
1

- y2nU

WTO'- YT
1

- Z2~

ZT - XT - y2n-1 WU
1 2

T T - T2 + y2n-1 Z2n-1 U2
o 1 1

Then by writing these elements as ehe Pfaffians of a suitable skew

symmetrie matrix, one ean see that R(P) is a Gorenstein ring (of dimen­

sion 5), henee grc(P) is Gorenstein of dimension 4.

Now take A :=k[X,Y,Z,W ]]/(Q) and P:"" PA/Q. Sinee the initial form Q*

is a non-zero-divisor in grC(P) ,. the ring grC(P)/(Q*) ~ grA(P) is

Gorenstein.
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1J(P) ,;:l 3

ht(P) = 1

A is regular
p

A and R(P) are Gorenstein ,

but B= AlP is not Cohen-Maeaulay.

At the end of this section we deseribe two situations where

JJ (I) ~ ht (I) + 2 and R(1) is Gorenstein. The proof-strategy is somewhat

different from eorresponding strategies in [2], [11], sinee we use the

eomputation of the a-invariant a(grA(1» •

Reeall that for a positively graded Noetherian ring R = i~aRi defined

over a loeal ring Ra and a Noetherian graded R-module G the a-invari­

ant of G is defined as

a ( G) = max{j E Z : ~ (G) j l' a }

where r = dim(G) and ~(G) 1S the r-th loeal,cohomology w.r.t. the

maximal homogeneous ideal M ·of R. Then R is Gorenstein if and only

if R is Cohen-Macaulay and the eanonieal module of R is ~ == R(a(R»

We start with the following lemma. For eompleteness we sketch a proof.

Lemma (4.5): Let R = n~aRn be a Noetherian graded .algebra defined

over a loeal ring Ra and G = maG a Noetherian graded R-module.
nii:. n

Let x E R
1

be a regular element on G . Then we get for the a-invariants

of G and G/xG

a(G) ~ a(G/xG) - 1

Moreover, if G is Cohen-Maeaulay, the equality holds.

Proof: Consider the exaet sequenee of graded modules

(1) 0 --> G(-l) ~> G --> G/xG --> 0
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Putting r D di~(G) and M D maximal homogeneous ideal of R, we

get from (1) the long exact cohomology-sequence

(2)
r-l r-l r r

... -> HM (G) i -> HM "(G!xG) i -> HM(G) i-l -> ~(G) i -> 0

For i = a(G) + 1 Vle have

(3) and

r-l
then (2) implies HM (G/xG) i " 0 , i.e. a(G!xG);;:: i = a(G) + 1 • This

proves the first part of the claim. The second part follows immediately
r-1

from (2) since now HM (G) ~ 0 .

Proposition (4.6): Let (A,m) be a Cohen-Macaulay ring of dimension

d • Let I be a strongly Cohen-Macaulay ideal in A . Assume

p(I ) ~ht(P) for all prime ideals P.=!1 . Then
p

a(grA(I») - ht (I)

Proof-idea: Put s =. ht (I) :::I grade (I) and .l.I (I) Cl s + t . Note

that the homology H.(K.) of the Koszul complex K. of A with respect
1.

to same minimal system of generators of I is zero for all i> t

Moreover grA(I) is CM and the

implies in particular that I

aresolution of grA(I)

M-complex is exact by [8], which

is of linear type. The M-complex gives

(4) 0-> M
t

'-Pt
-->

Vlhere M. D H. (K) 0 A[X" ••• ,X ], dim(M.) = d + t and M. is CM
1 1. s+t 1. 1.

over A[X
1

, ••• ,x ]. The idea is now to compute a:~ a(gr
A

(I) vias+t
the a-invariants aOI.)

1
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Applying lemma (4.5) exaetly (s+t) times we see that

(5) a(M.) = a(H.) - J.l(I) = -J.l(I)
1 1

sinee (4) is eonsidered as a sequenee of A [X
1

' ... ,X ]-modules. Notes+t
that by eonstruction the morphisms ~. are of degree 1. Therefore we

1

get the following exaet sequen~es for the eokernels Di of ~i+1

with morphisms of degree zero.

Since G and M. are.GM, we ~et for the loeal eohomology w.r.t. the
1

maximal homogeneous ideal M .of A/I[X1, .•. ,X ]s+t

(6) ~(G)j _ Hd+ t - 1 (D )
-M t-1 j-t+1

Moreover we have the exaet sequenee

(7)
d+t-1 d+t d+to -> R - (D 1)· 1 -> R-- (D). -> li--: (M 1) . 1

-~ t- J-t+ -~ t J-t -~ t- J-t+

Note that

(8)

o -> D (-1) -> Al -> D -> 0t+1 t

sinee

Gase 1.: j > -h , where

fore R~+l(M). = 0 ,
-rt t J-t

know that

h :::l ht (I) ,

s~nee a(M t )

i •e • j - t > - J.l (I) : ". - n . There­

= - n . But by (6), (7) and (8) we
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~ Hd+t - 1(D ) . c Rd+1 (M ). = 0
M t-l J-t+l M t J-t

hence a(G) S - h •

Case 2: J = - h • Then (6) implies:

R~(G)_h - R~+t-l(D) ~
-~ -~ t-l -h-t+l

hence a(G) = ht(I) .

ad+t (M) 1- 0
-~ t-n

Proposition (4.7): Let (A,m) he a Gorenstein ring and let I be an

ideal in A of height 2, satisfying the following properties

( i) A!I is Cohen-Macaulay

(ii) JJ (I) S ht(I) + 2

(iii) JJ (~) S ht(P) for P=> I

Then R(I) is Gorenstein.

2
The assumptiom imply that I i5 sCM. Therefore Sym(I!I);:; grA(I)

is Gorenstein by [10], theorem (6.1), and a(grA(I)) = -2 by proposition

(4.6). Since R(I) ;:Sym(I) 1.S CM by [10], theorem (6.1), this implies

that R(I) i8 Gorenstein by [15], theorem (3.1).

For almost complete intersections we can formulate a natural generali­

zation of theorem (1.2) in [2 ].

Proposition (4.8): Let A be a local Cohen-Macaulay ring and let I

be an almost complete intersection ideal of ht(I) ~ 2 . Then the following

hold:

(i) R(I) is not Gorenstein if ht(I) > 2

(ii) Assume ht(I) ~ 2 • Then R(I) is Gorenstein if and only

if grA(I) is Gorenstein.
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Corollary (4.9): Let I be an almost complete inter8ection ideal in

A of ht (I) 2: 2 • Assume that grA(1) is Gorenstein. Then

(i)

(ii)

a(grA(I» = - 2

a(grA(I» i: - 2

if

if

ht(l) = 2

ht(l) > 2

To (ii): Assume that R(l)

depth-formula (2.9). Therefore

theorem (3.1).

Proof of (4.8): To (i): Since R(I):= Sym(I) , this follows from a

result of Rossi, s. [17] , theorem (6.7).

is Gorenstein. Then grA(I) is CM by the

grA(l) i8 even Gorenstein by [15],

Conversely, assume that grA(I) i8 Gorenstein. Then R(I) is GM , A

is Gorenstein and All is Cohen-Macaulay by theorem (4.1), hence 1,

issCM of linear type.- [Note that HO(K.) = All and H1(K.) = KAlI which

is CM. Moreover H. (K.) = 0 for i > 1 • So I is indeed sCM]. This1.
proves the claim because of (4.7).

Remark (4.10): The second part of the proof of (ii) is US1.ng the fact

that grA(I) Gorenstein implie8 All is CM by theorem (4.1). Another

proof-idea is to show that the a-invariant of an a.c.i. ideal I with

a Cohen-Macaulay graded ring grA(l) is -ht(I) .[Note that here we do

not assume that All i8 GM]. Then by [15], theorem (3.1) we get the

claim.

5. A is regular.

The most interesting problem of this section is the following question
of Valla [18]:

If (A,m) is regular and P an a.c.i. prime ideal 1.n A. When is AlP

a Cohen-Macaulay ring?
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Proposition (5.1). Let (A,m) be a regular local ring containing a

field and P an a.c.i. prime ideal in A. Then the following hold:

(i) If ht(P) g 2 , then AlP is Cohen-Macaulay

(ii) If dim(A) S 5· , then AlP is Cohen-Macaulay.

Proof: (i) comes from [20], theorem (2.1).

For proving (ii) note that ht(P) 2 since P is not principlal. If

dim(A/P) E {1,2} , then Alp is Cohen-Macaulay by (2.9) and proposition

10 in [18]; if dim(A/P) = 3 , then ht(P) = 2 and AlP is Cohen-

Macaulay by (i) .

Without any restrictions- on the regular ring A and the a.C.1. prime

ideal P the statement 11 AlP is Cohen-Macaulay" is not true in

general. There is an explicit counterexample of Huneke based on the follo­

wing idea : Take a non Cohen~Macaulay UFD ring All and link the defi­

ning ideal generically with an a.c.i. prime ideal. This gives an example

of an a.c.i. prime ideal which is not perfect.

The following theorem (5.2) which is essentially due to N.V. Trung des­

cribes situations where All is Buchsbaum for any ideal I in a regular

local ring A with ht (I) > 0 . As a consequence we get in Corollary (5.3)

a necessary eondition for All being Buchsbaum but not Cohen-Macaulay,

where i is now an a.e.i. and depth(A/I) ~2 •

This gives in Corollary (5.4) a suffieient condition for the Cohen­

Maeaulayness of those ideals in the ease that ht(I) is 2 or 3.

For a regular loeal ring (A,m) with infinite residue field and an

ideal I of A with (0) 1: Icrn
2

we put:

t = depth(A/I)d = dim(A/I)h = htA(I)

mB = maximal ideal of B;

e = e(B) = Samuel ..multiplieity of mB

n = ord (I)m
B = All
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Moreover we ehoose elements xl' .•. ,xd E m so that

form a minimal reduetion a of ffi
B

. We also set

where Hi denotes the loeal cohomology.

a. = x. mod I1. 1..
h. CI lB(H1. (B»

1. MB

Theorem (5.2): Let

in A. Assume that

(A,m) be a regular local ring and I an ideal

Air is Buchsbaum with d '= 2 and ht(I);;;: 2 • Then:

(i) d-l (d 1)+ L .- h." - d(J.l-h-1)
. 1 1.-1 1.1.=

(ii)

if JJ CI J.l (I) ;;: h + 1

e(A/I) l: (n~h) - h
Cohen-Macaulay.

if J.l CI hand hence All is

Proof: I) Since Air is Buchsbaum, we have

where K 1:1

B

Put K :::I

A

d
~ (I,X 1,···,Q·,···,x

d
)

i= 1 1.
X •• Clearly

1.

hence

d-l
e(B) = l(A/KA) + L

i=l
(
d-l )"
i-l h i

Note that x 1, ... ,x
d

are of order 1 w.r.t. m, forming a regular

sequence in A and a s.o.p. for B.

11) For the next step 1.n the proof we recall the following lemma.

Lemma: Under the assumptions made above we get:
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JJ«I,x)/(x) :::0 JJ(I) - 1(1 : x/mI: x)

for any element xE A •

Proof of the lemma: The equality follows from the exact sequence:

o -> I : x/mI: x ~> I/mI -> ( I,x) /mI+(x)-> 0

111) To continue in the proof of (5.2) we remark that

We consider two cases:

Case 1:

Then J := (l,~)/(~) is an ideal of the principal class in the regular

ring A/(~) ,hence A/(I,~) is Gorenstein, i.e.

(2)

Moreover

d

KA = .L (l , xl' • · · ,~. , • • • ,xd ) m
~=1 ~

since A/l ~s Buchsbaum.

Th i s imp1i e s KAS;;;; (I ,.!) : m , ~ • e •

by (2)

= l(A/(mI,~) - l«I,~)/(mI,~)) - 1

~ 1(A/(m
n

+
1,~)) - h - 1

= (n~h) _(h+1)
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ht(I) + 1 :ijJ«I,!.) / (x»

since

we get be the above lemma for each i

Öi . - 1 ( (I , xl' • • • ,Qi ' • • • ,xcl) : xi / (mI, x 1' • • • ,Q i ' · . · ,xcl) : xi)

:i ö~ IJ(I) - ht(I) - 1.

Hence, for each i

IJ(I) - ht(I) -

there is an ideal J. generated by at most
~

elements, such that

Note that

S1.nce ord(x.) =
J

Since

and ord(I) n •

d . cl

~=Llf<mI,xl, ••• ,Qi' ... 'xcl): x. +J.)~ L ((mn,x) +J.
... \: ~ 1. i= 1 - ~

we get

(
n-l+h)'= h - cl • (IJ (I) - ht (I) - 1)
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Comparing the bounds in the cases land 2 we obtain the claims of the

theorem. Note that (ii) follows from the proof of case 1 using the fact

that now KA = (l,~) .

Moreover, the situation .~(I) ~ ht(l) + 1 is covered as weIl by ease 1

as by case 2. It is easy to check that under our assumptions

(ord (1) ~ 2 and ht (I) ~ 2) both cases imply

Example 1: A =

I

k[x
l
,x

2
,x

3
]

2 2 .
(xl' x 2 ,x,x2x 3)

2 2 2 2
(Xl ,x2 ,xlx

Z
) n (x, ,xz,x

3
)

Then: All is Buchsbaum, .non-Cohen-Macaulay, depth(A/1) = 0 ,

n l:2 Z, h CI ht (I) "" Z, JJ (1) = 3 = h + 1

2 2
e(A/1) = l(k[x

l
,x

2
] I (x

l
,x

2
,x 1x2)) = 3 •

Note that the bound in this example is

Example 2:
2 3

All =k[[s ,s ,st,tJ) ~k[[x,y,z,w] 11 is Buchsbaum, non-

Cohen-Macaulay.

Then

ht(I) ~ 2 , cl = 2 , t = , ,

3 2 2 2 3 3
1 = (x -y ;xw -z ;yw -z ;xz-yw) ,hence

J.l (I) l:Z h + 2 , e (All) l:Z Z ; n D 2

Then the bound is: h + 1 + 1 - 2 = Z
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Corollary (5.3): Let (A,m) be regular and assume

(1) All is Buchsbaum,. non-Cohen-Macaulay

(2) I is a.c.i.

Then

If in particular n" 2 , t ~ 2 then e (All) ~ h + 4. If t;;;: 3 , then

e(A!I) '= (n-~+h) +5 .

Example 3:
6423324 6

All a k [[ t ; t s ; t s ; t s ; s TI is Cohen-Macaulay;

ht (I) a 3, dim A = 5

e a 6<h+4=7

ifNote that
2 . Z Z

I a (x4 -xZxS;xZx4 -xixS;x3,-xlxS;xZ-xlx4)

A = k[[x, ,x2,x3,x4,xSTI , i.e. I is an a.,c.i. prime ideal.

Example 4: 3 2 Z 3 3 3
All =k[[t ;t s;ts ;s ;ut ;us TI. is Cohen-Macaulay;

ht(l) a 3, dirn A=6 , da t a 3, n = 2 ;

I is an a.c.~. prime ideal (twisted cubic).

Corollary (5.4): Let (A,m) be regular and assume

(1) All ~s Buchsbaum

(2) I is a.c.i.

(3) t,=Z.

(4) e< (n-~+h) +2t -1
Then All is Cohen-Macaulay.



Remark:

- 30 -

N.V. Trung mentioned to us that the bound of theorem (5.2) is

not sharp in general:

Example 5 (Trung):

6 5 4 2 2 4 5 6A/ I = k [[ t ; t s; t s ; t s ; t s ; s TI

is a Buchsbaum ring. We have:

ht(I) D 4 ;

l(A/l) D 1

n c 2; ~(l) = 8

and e(A/l) = 6

where l(A/l) is the I-invariant of the Buchsbaum ring. Using Theorem

(5.2) we get

6 ~ 5 - 2 (8 -.4- 1) + 1 BI 0

Trung could generalize statement (i) of Theorem (5.2) for Buchsbaum rings

as foliows:

Proposition (5.5) (N.V. Trung): Let I be as above. Suppose that

A/l is a Buchsbaum ring. Then

This bound is sharp for the special example 5:

e ~ 15 - 8 - 1 =6

We shall come back to these phenomenons in a joint preprint with N.V.

Trung, where new bounds for e(A/l) will be given.

6. On the Gorensteinness of Rees and .form rings of powers of ideals.

Given an ideal I in a local ring (A,m) it is well-known that the

Cohen-Macaulayness of the Rees algebra R(l) = A[It] (where t is an

indeterminate) implies the Cohen-Macaulayness of all Rees algebras

R(I
n

) , nE ~ . The same conclusion holds for the form rings grA(I)

and grA(ln) .
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In this section we ask for the corresponding Gorenstein property. If

grA(I) is Gorenstein and if R(I) is Cohen-Macaulay, it comes out

that the integers n for which R(In) or grA(Io) are Gorenstein are

closely related·to the a-invariant of the form ring .grA(I) . Under this

aspect we formulatesome results concerning the powers of strongly Cohen­

Macaulay ideals which are of linear type (in particular. a. c. i. ideals)

and the powers of the maximal {or of an m-primary) ideal in a Gorenstein

local ring.

For completeness we define the reduction exponent 0(1) of an ideal I

by

8 (I) : = min jn ]3 minimal reduction q of I l
. 0+1 ns.t. I :::s q I

First we place together some auxiliary results needed in the sequel,

which are virtually known.

Proposition (6.1): Let I be a proper ideal in a loeal ring (A,m)

of dimension d . Then the following hold:

a) If the Rees algebra R(I) is Cohen-Maeaulay of dimension d+l ,

then a (R( I» = - 1 aud a (grA(I» ~ - 1 .

b) If R(I) is Cohen-Maeaulay and grade(I) ~ 2 , then R(I) is Goren­

stein iff a(grA(I») = -2 and the rings A and grA(I) are quasi­

Gorenstein (i.e. the eanonieal modules of the speeifie rings are isomor­

phie to the suitably shifted rings).

e) If A is Cohen-Maeaulay and I a strongly Cohen-Maeaulay ideal

satisfying JJ (lA ) ~ ht (P) for all prime ideals P~ I , then
p

a(grA(I») = - ht (I) and R(I) is Cohen-Maeaulay. Moreover, if A is

even Gorenstein, then grA(I) is so.

d) If

stein iff

R(I) aud Aare Cohen-Maeaulay rings, then grA(I) is Goren­

(1,t)-a-2(_1) is a eanonieal module of R(I) , where
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m
a :0 a(grA(I)) and (l,t) denotes the R(1)-submodule of the poly-

mnomial ring A[ t] which is genera ted by 1, t, ••. , t in case m~ 0

or (l,t)-l::J IR(I) in case m = - 1 .

R(I)

R(I)

e) Assume that A is Gorenstein and

(l,t)m(-l) is a canonical module of

then R(IID+1) is Gorenstein.

is Cohen-Macaulay. 1f

for some integer m~ - 1

f) If the reduction exponent of the maximal ideal m of A is 0,1

or 2, then grA(m) is Cohen-Macaulay (or Gorenstein) iff A is so.

g) If I is m-primary and grA(1) is Cohen-Macaulay, then

a(grA(1)) = 6(1) - dim(A) •

Proof: a) can be deduced from the proof of proposition (2.1) in [15].

b) is theorem (3.1) in [15]. c) is in the first part our proposition

(4.6). The second part of c) follows from [10]; see also proof of pro­

position (4.7). d) comes from corollary (2.5) in [12], if one takes

care of the correct gradings in the proof given there. f) is a well­

known result of J. Sally. g) follows from (4.5) using that the initial

forms of the generators of a minimal reduction of I are a regular se­

quence on grA(I) . To prove e) we note that for m =- 1 there is

nothing to prove. Hence we may assume m~ 0 . Then, denoting

by K, we get:

0 if j ;;; 0
mK. = (l,t) (-1). A if l~j:;im+l

J J j-(m+1)
I if j~m+2

m(l,t) (-1)

Now recall that the Verone8ean K(m+1) 18 a canonical module of the

Veronesean R(I)(m+1) = R(Im+1)

We get
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(K(m+l». g K g

J j(m+l)

o
A
I j (m+l )-(m+l)

if

if

if

j S 0

j = 1

j a 2

Henee
m+l (m+l).R(I )(-1) = K , wh~eh proves e).

For Rees algebras of powers of ideals we prove the following auxiliary

result.

Proposition (6.2): Let I be an ideal of height a 2, in a Noetherian

loeal ring A. Then at most one power of I has a Gorenstein Rees

algebra.

are Gorenstein. since

R(I S)(-l) and R(I t )(-l) are

(see (5.1)," a) for the eorreet

R(I s)(-l)(t) and R(I t )(-l)(S)

aud sinee

and

andProof: Assume that R(I S
)

R(Ist ) = R(Is)(t), = R(It)(s)

eanonieal modules of R(Is )

shifting degree - 1 ) we know that both,

are eanonieal modules of R(Ist ) ; henee they must be isomorphie. Compa­

ring their homogeneous parts of degree j 2:: 1 we see that the ideals

I s (tj-l) and I t (sj-l) are isomorphie as A-modules. By the followiug

lemma (6.3) we get s = t •

Lemma (6.3): Let

If the two powers

be an ideal of height ~ 2 in a Noetherian ring A '.

aud I t are isomorphie, then s g t .

?roof: We ean assume that A is a loeal ring with maximal ideal m .
The isomorphism IS;;I t induces isomorphisms i 8j /mr sj ;; rtj/ml tj

1-1 .
for all numbers J Now, there ~s a po1ynomia1 P = i~O aix~ E Q[X]

of degree 1-1 (where 1 denotes the ana1ytie spread of I) such that

P(i) = A(Ii/mI i ) for· i~O (A denotes the length). From
1-1 1-1P(sj) "'" P(tj) for j»O we get a

l
_

1
8 = a

1
_

1
t Since

1 '= ht (I) '= 2 , we ge t s = t •
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The following result shows the relation beween the a-invariants of
n

grA(I) and grA(I) •

Proposition (6.4): Let I be an ideal in a Ioeal ring A and assume

that grA(I) is Cohen-Maeaulay. Then

n = [a (gnrA(I)) ]
a(grA(I ))

where [

Proof:

] denates the smallest integral part.

Put d = dim(A), a = a(grA(I», 1 ~ [ ~] and write

a = In + r with

exact sequenee of

rE {O, ••. ,n-1}
nR(I )-modules:

. For every iE {l, ••• ,n} there is an

Let N be the maximal homogeneous ideal of R(In) .. R(I) (n) and M the

maximal homogeneous ideal of R(I) • Then (see [7], proposition (47.5)):

Henee for every j EZ and i E {1 , •.• ,n} there is an exaet sequenee

First eonsider these sequenees for j '= 1 + 1 . Sinee
dnj + n - i ~ n(l + 1) + n - i > nl + r = a , we have a-(grA(I)). . c 0
-~ . nJ+n-l.

for eaeh i E {1 , ... , n} • Using the above sequenees i t follows induetively

that ~(In-igrA(In))j = 0 for i = O,l, •.. ,n ; in partieular

d n n
HN(grA(I ))j = 0 for any j ~ 1 + 1 , i.e. a(grA(I )) ::i 1 •
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To finish the proof, consider the cohomology sequences from above in
" ddr n

degree j = 1 . S~nce HM(grA(I))nl+r' 0 we get RN(I grA(I ))1 ' 0

and then successively ~(Ir-kgrA(In))l r 0 for k = 1, ••. ,r • Henee

d n
HN(grA(I ))1 ~ 0, q.e.d.

Theorem (6.5): Let I be an ideal of height ;;: 2 ~n the loeal ring A.

Assume that grA(I) LS Gorenstein and R(I) LS Cohen-Macaulay. Then

the following hold for n E ~ :

a)

b)

is Gorenstein iff

ngrA(I) is Gorenstein'iff -a(grA(I)) = moden)

Proof: To a) Put a = a(grA(I)) • Since grA(I) LS Gorenstein and

-a-2R(I) is Coheo-Maeaulay we know by (6.1) that K:= (l,t) (-1) is a

eanonical module of R(I) . It follows that R(I-a- 1) is Gorenstein,

by (6.1),e). This is by (6.2) the.only power of I whieh has a Goren-
n

stein Rees algebra. To b) Put b = a(grA(I )) • We can assume that

n ~ 2 . Note that R(In) and grA(In) are Cohen-Macaulay rings and that

K(0) is a canonical module of R(I) (u) ;;:; R(In) . Henee by (6.1) ,d) ,

grA(I
n

) is Gorenstein if aod only if the R(In)-module

L :-- (l,t)-b-Z(_l) ." h" K"(n) T f" "h h f1S 1somorp ~e to 0 1n1S t e proo , we

point out that this last statement holds iff -a EI 1 mod (0) . First we

note that b =[~] by l6.4), hence a = bn + r with rE {o, ... ,n-1} •

Claim: L;;:; K(n) iff r = n - 1 •

Assume that r = n - 1 Then we get for each j EZ

o
A
I n (j-1+b+Z)

if j ~ 0

if 1 :;; j :;; - b - 1

if j ~ -b
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and

= «1,t)-a-2<_l)<n»).
J

Henee

0 if jn-l;$O

= A- .if o~ jn - 1 ~ - bn - n - 1
(jn-l) +(bn+n+ 1) if jn - 1 ~ - bn - nI

0 if j ~ 0

= A if lSj~-b-l

n(j+b+l)
if

. 1
, . i.e. if j ~ - bI j ~ - b - 1 +-

n

L == K(n) •

For the eonverse assume that LEiK (0) in patieular L iiK =K
-b -bn r-a

i. e. In == I r+ 1 • Sinee ht (I) ~ 2 i s fo llows n .= r + 1 by (6.3) .

This proves the elaim and statement b) of the theorem.

As an immediate eonsequenee of (6.5) we get the following proposition.

Proposition (6.6): Let A be a Gorenstein loeal ring and I a

strongly Cohen~Maeaulay ideal satisfying JJ (TA ) ~ ht (P) for all prime
p

ideals P;;:21. Assume that h:= ht(I) ~ 2 . Then:

a) R(ln) is Gorenstein iff n = h - 1

b) grA(In) is Gorenstein iff h!3 1 mod (n)

Proof: Use (6.1), e) together with (6.5).

Remark: For m-primary ideals I one ean avoid the assumption that

R(I) is Cohen-Maeaulay in the statements of theorem (6 •.5). For a proof

we refer to the theorems 2 and 3 in the appendix by A. Ooishi, where
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he only considers m-primary ideals.

In the following we discuss the Rees algebra of powers of m-primary

ideals in situations where R(I) is Cohen-Maeaulay.

Proposition (6.7): Let (A,m) be a d-dimensional Gorenstein loeal

ring with reduetion exponent ö(m) ~2 • Then the following hold for

nE JN :

(1)

(2)

is Gorenstein iff d - ö(m) = 1 mod (n)

15 Gorenstein iff n = d - ö(m) - 1

d-l
In. partieular: If A is regular, then R(m ) is Gorenstein and if

A is a quadratie hypersurfaee, then R(md- 2) is Gorenstein.

Proof:

and g).

This follows as a direet eonsequenee of (6.5) and (6.1),f)

Next we show to whieh extent the Gorensteinness of R(mn) determines the

strueture of the loeal ring (A,m) via the reduetion exponent ö(m) .

First we need a lemma.

Lemma (6.8): Let I be an m-primary ideal in the d-dimensional loeal

ring (A,m) and q = (x
1

, •.. ,x
d

) a minimal reduetion of I . Assume
nthat grA(I) is Cohen-Maeaulay for some natural number n. Put

n
a := a(grA(I » . Then

I
na + n + ci

~q

If moreover R(In) 1S Gorens tein and ht (I) ~ 2 , then ci-n
I ~q

Corollary (6.8.1): If under the assumptions of (6.8) the Rees algebra

R(Id- 1) is Gorenstein, then I is a eomplete interseetion ideal.
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n' n
Proof of lemma (6.8): Clearly, J:= (X

1
' .•• ,Xd) is a minimal reduc-

tion of In and the ideal J* generated hy the initial forms (x~)*
n 1

in grA(I) is a eomplete intersection in the Cehen-Macaulay ring
n grA (lu)

grA(I ) Siuee G = J* is artinian and a (G) =- a + d , we get

G = 0 . It fellowsa+d+1

I n (a+d+1) = In(a+d) • J SJ

and from this

I
n(a+d+1) - d(n-1)

S q .,

I
n(a+n+d)

i.e. ~ q

If moreover R(In) is Gorenstein, then a --2 (hy (6.,1),b», hence

I d-nc
-q .

As a consequence we obtain:

Proposition (6.9): An equimultiple ideal I of height hin. a Gorenstein

loeal ring A is a complete interseetion iff R(I h
-

1) is Gorenstein.

Proof: By (6.6) the "0nl y if"-part is already clear. For the eonverse

let q be a minimal reduetion of I • Sinee IA a q A for allp p
p E Assh(A!I) (by corollary(6.8.1», .we get I = q (since

AssA(~) ~AssA(~)= ASSh(~) =ASSh(i) and hence ASSA(~) is empty).

Theorem (6.10): Given a d-dimensional local.Gorenstein ring (A,m)

and an integer iE {1,2,3} . Then

R(m
d- i ) is Gorenstein iff ö(rn) c:I i - 1 .
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11' ö(m) = i - 1 then R(mu) is Goreustein for
~ :;. .1 .... ,~(ml l=d-i by (6.7). Conversely, assurne that R(md- i ) is
G....... \"'\\ 11 tu i 11 ·jnd let q be a minimal reduction of m . By (6.8) we· know
t~..it i. i i-lm , : 'I Hence, for iE{l,Z}" and
~- , we get m = qm

m .,. qm I "J
i.e. o(m) i - 1 for these= twe cases.

~8sume that is Gorenstein. We know that 3m s; q m,

is a minimal reduction of m ..

Clilim: l i \ m3 n qZ Z-- .. , = mq

l i il (q :A m)
2

= q+m

l i i i ) m3 2
c m q

(E' .. ~, and lrt.7).

NC't,~ th';'l(
I I'am (iii) it fellows o(m) = 2 , since ö(m) t. {O,l} by

J r i . Hence

3 2To (i): Let uEm nq . Write u CI ta, M. ,
1. 1. 1.

are 'monomials in x
1

, ••• ,x
d

of degree two. Put

there is a monomial V in x
1

' ..... ,x
d

(
d-3 d-3)Mt V = Fand 1"1j .. V € J : = xl' .. ··'xdsuch that

For fixed i

M.
1.

d (d-4) - 2

f 0:- ~\ 1 t

",~ht~ ~'I(\
i.\ i r 1\ and

F . -... ,t-.~ d-4
. xl" 1 •• X

d

Vu = a.VM.
1. 1.

+' L a.M.V
.~. J J
Jr1.

= a..F + W
1.

whet'-;;'

d(d-4)-2 3 d2-4d+l
Vu € m .. m = m

and
'" €~' . This implies

pt'oof of (6 .. 8))
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2
rod -4d+3 :::I rn (d-3) (d-l) C J

it follows

hence

2
Ci..Fm c J ::I

1. (
d-3 d-3)xl , .•. ,xd

Since

we get

2m t. q

0.. € m •
1.

(otherwise would be also Gorenstein),

To (ii): Since A/q is Gorenstein, we have

(q : A m)

q

2
~ m +q

q

where k:= Alm and

Therefore (q: Am) =

2
m +q

q

2q+m

f 0 •

To (iii): Let 3·u € m ~ qm • Write
d

u C L Ci..X.
i= 1 1. 1.

, where ct. € m • For
1.

such that

fixed i there. is a monomial v in Xl , •• ,-,x
d

of degree d(d-4) - 1

and

Vx.
1.

d-4 d-4
= F = xl .••• ,x

d

We get

for all j 1- i .
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ct."Vx. + ~ a. x.V al (J,. F +W,
11. •• J J 1.

J 1.

where Vu E md (d-4)-l m3 = md2-4d+2 and

d
2
-4d+3 (d-1) (d-3) Jm = m c , we conclude

WE J • From

Cl. F mcJ
1.

that means by (ii)

and Cl.mcq
1. -

Now wri te Cl. = ß. + y. with
1. 1. 1

2
ß. € m and y. E q • Then

1. 1.

(*)

implies

d
u = 1: Ct.x. =

i=l 1. 1.

ci ci
L ß.x. + 1: y.x.

i-1 1. 1. i=l 1 1.

d 2 3 2Ly.x. E q n m = mq
i=l 1. 1.

3
d

2(by (i)) , since uEm and Lß.x.Em q .
• 1 1. 1.
1=

Finally it follows by (*) that

222
u E mq + m q .s m q

This proves (iii) of the claim and so (6.10).

Remark: A.Ooichi proves in his appendix the following resuIt: Given

a ci-dimensional Gorenstein Iocal ring (A,m) with multiplicity e, then

R(md- e ) is Gorenstein iff A is a hypersurface.

This is a generalization of our theorem (6.10), where only the cases

eE {1,2,3} Were treated.
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AppencU.x

On the Gorenstein.Property of the Associated Graded

Rings and the Rees Algebras of an Ideal

AkiAa. OOISHI

Let (A, m, k) be a noetherian loeal ring wi th dim A = d and r an

rn-primary ideal of A. For simplieity, we assume that k. is an infinite

field. Put

(1 - t)d F(G(r) ,t) = S
8 0 + alt +. • • + ast a :f 0s

co

where F(G(I),t) = I I(Iu/ln
+

1)tn is the Hilbert series of G(I) • We
n""'O

say that G(I) is symmetrie if a. "'" a . for any i, 0::;; i ::;; s • The
1 S-1

following theorem generalizes a result by J. Watanabe [4]:

Theorem 1. Assume that A is Gorenstein. Then G(I) is Gorensteiu if

and only if G(I) is Cohen-Maeaulay and symmetrie.

Proof. We may assume that G(I) is Cohen-Maeaulay. Take a minimal

reduction J ~ (x
1

' ••• ,xd) of land put B D A/J aud L = I/J . Then

B is an artinian Gorenstein leeal ring; x1' •.. 'x~· is a G(I)-regular

sequenee, G(L)~G(I)/(x1,... ,xä) and (l-t)d F(G(I) ,t) = F(G(L),t) .

Henee we may assume that cl D 0 .

Assume that G(I) is Gorenstein. Then by duality,

where is the canonical module of G(I) (ef. [1]). Henee

"'" a ..
S-1
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Converse1y, assume that G(1) is symmetrie, i.e.,

O~i~s .

Then l(1i ) + 1(1s- i + 1) = 1(1i + 1) + l(1s- i ) and we get

l(1 i ) + 1(1s- i
+

1) ~ 1(15
+

1) + l(A) = l(A) • Sinee A is Gorenstein,

l(1i ) = l(A) - 1(1s- i + 1)

= 1(A!Is - i +1) = 1«0 : 1 5
-

i + 1))

Combined with the inc1usion 1i
C (0 : 1s- i +1) , we get r i ~ (0 : r S

-
i +1)

Hence

Therefore

[SOC G(l) ]. S li n (li+l :'m) n (li+2 : l»/li+l, = 0 for i < s
1

and

[SOC G(l)] = ISn(O:m) = (O:I)n(O:m) = (o:m)~k
5

Hence Soc G(r) .. k and G(I) is Gorenstein. o

Henceforth we assume that d 2: 1 • We denote by Ö(I) the reduction

exponent of 1, name1y, 6(1) is the sma11est integer n satisfying

the equa1ity J1
n = ro

+
1 for some parameter ideal J contained in I .

Recall that if G(I) is Cohen-Macaulay, then Ci (I) ::::I S = deg F (G (I), t) + d

~ a(G(1)) + d . Define the integers

following condition:

e. (1) = e. , O;S i ;S d , by the
1 1

for n» 0 •
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1f G(I) is Gorenstein, then 0(1) = 2e,(I)/e(l) .

Proof. By [3, Proposition '.'],

+ ••• + a
s

and e, = a, + 2aZ + ••• + sas

Since a. ~ a . by the assumption, we get
1. 8-1.

= s (aO+ ••• + as) = seO ·

1t is easy to show the- following

o

Lemma. r d-'{ }e 1(I) = r e,(I) + e(I)(d-1)(r-1)/2 .

oJ Theorem 2. ( , ) 1f G(I r ) is.Gorenstein, then

2e
1

(1) a e(I)(d-1) (mod e(I)r) •

r(2) Assume that G(I) is Gorenstein. Then G(I) is Gorenstein if

and only if a(G(I» 55 -, (mod r) .

Proof. Put e(I) = e , e,(I) = e 1 and 0(1) = s."

(1) By Corollary and Lemma above,

Hence Ze, i! - e(d-') (r-') e e(d-') (mod er)
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is Gorenstein. Then

se D 2e 1 9 e (cl - 1) (moder)

Therefore ssd-1 (modr) and a(G(I» = s-d!!"-l (modr)

To show the converse, we may assume that A is complete. First we remark

that the theory 'of loeal eohomo1ogy and eanonica1 modules for graded

rings defined over loeal rings developed by Ikeda (see [1], pp. 139-141)

also ho1ds foroa noetheria~ graded ring R m n~Rn with Ra = A aud

withounique maximal homogeneous ideal. In particular, R is Gorenstein

if aud only if R is Cohen-Maeaulay and ~;;:; R(a) for some 0 a E Z , where

~ is the eanonica1 module of. R . The integer a is unique1y deter­

mined by Rand we denote it by a(R) . We app1y this to R = A[It,t-1 ] •
-1

Put u = t . Since R/ (u) I:i G(I) is Gorenstein, R is Gorenstein, and

it is easy to see that a(R) = a(G(I»+ 1 . By the assumption,

a(R) =a (mof r)

Cohen-Macau1ay and

hence a: = a(R) = rb for some bE Z . Then R(r) is

Henee R(r) -= A[Ir t . t- 1] . G . b h b .. Th f, lS orenstelll y t e a ove erlterlon. ere ore

G(1 r ) ~ R(r) /(u) is also Gorenstein. 0

Coro11ary: G(I
r

) is Gorenstein for any r if and only if G(I) is

Gorenstein and 0(1) = cl -1 .

Theorem 3: Assume that A is Cohen-Macaulay and cl ~ 2

(1) If R(Ir ) is Gorenstein, then 0

r =-2e 1(I)/e(I) + d-1 .

In particular, r:;; d - 1 .
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(2) Assume that G(I) is Gorenstein. Then R(Ir ) is Gorenstein if

and only if r = - a (G (I» - t (in particular Ö(I) :s; d - 2).

Proof. Put e(I) = e and et(I) g e
1

•

By- [1, CorollaryO.7)] , r
Ö(I ) g d - 2 • Henee

(d~2)erd = (d-2)e(Ir )

~ 2e 1(Ir) = r
d

-
1
{2e 1 + e(d-l) (r-l) }

Therefore we get

e
1
~ 0 , we get

(cl-l-r)e = 2e
1

'

r::;d-1 •

i.e. r=-2e le +'d-l • Sinee
1

(2) Sinee G(I) is Gorenstein, ·a(G(I)) = 0(1) -d = 2e
1
/e-cl • Assurne

that R(I r ) is Gorenstein. Then by (1),

r = - Ze 11e + cl - 1 g - a (G (I» - 1 •

Conversely, assume .that

Theorem 2 and

rr =- a(G(I») - 1 • Then G(l)

[ a(G(I))/r] ~ [ (-r-l)/r ] ~ - 2

is Gorenstein by

Therefore R(lr) is Gorenstein by [1, Corollary(3.7.>1.
o

By loealization, we get the following

Corollary: Let J be an ideal of a Cohen-Maeaulay loeal ring with .

ht J ~ 2 . Then

(1) R(Jn) is not Gorenstein for any n ~ ht J .

(2) lf R(Jn) is Gorenstein, then R(Jn) is not Gorenstein for

any m';' n .

Corollary: Assume that A is Cohen-Macaulay and d ~ 2 •

(1) R(ld-l) if Gorenstein if and only· if A is Gorenstein aud I is

o
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a parameter ideal. In partieular, R(m
d- 1) is Gorenstein if and only if

A is a· regular loeal ring.

(2) Assume that d ~ 3 • Then R(m
d- 2 ) is Gorenstein if and only if

e(R) a 2 .

(3) Assume that

is Gorenstein and

d ~ 4 . Then R(m
d- 3) is Gorenstein if and ooly if

emb (A) a e (A) + d - 2 .

A

(4) Put e (R) a e and ·assume that d > e • Then R(md- e ) is Gorenstein

if and only if emb (A) = d + 1 , i. e., A is a hypersurfaee.

Proof: The "if" parts follow from Theorem 3, (2). To show the "only if"

parts, we reeall that

(1) e
1
(I) = 0 if and only if I is a parameter ideal (cf. [2, Theorem

4.1,(2)] ).

(2) Sinee e 1(m) '= e (m) - 1

(cf. [2, Lermna 4. 2] ) •

2e
1

(m) = e(m) if and only if e(m) = 2

(3) Tf A is Gorenstein, then e
1

(m) = e(m) if and ooly if

emb(A) =e(A)+d-2 (cf. [3,Theorem3.6, (2)]).

(4) A is a hypersurface if and only if e
1

(m) m e(e-l.)/2 (cf. [3,

Theorem 3.4, (6)]). 0
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