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ON REES AND FORM RINGS OF ALMOST

COMPLETE INTERSECTIONS

1. Introduction. The problem of describing the behaviour of a given

variety X under blowing up a subvariety Y<X can be phrased as follows:
How does the blowing up morphism X' —> X depend on the properties of

X and Y ? From the homological point of view if makes sense to study
also arithmetical properties of X' and its exceptional divisor, since
the cohomology of X' = ProjR 1is closely related to the local cohomology
of the graded ring R with respect to the maximal homogeneous ideal of

R . Following this aspect we consider mainly for complete intersection =
and almost complete intersection - ideals in a local Noetherian ring A
some relationships that hold between the Gorenstein and Cohen~Macaulay
(CM) property of the Rees ring R(I) =ngol'ntn , the associated graded
ring grA(I) ;ngn/In+1 and the corresponding properties of A and in

particular of A/I itself.

One starting point are investigations of Brodmann [ 1], Valla [18] and
Goto-Shimoda [ 2 ], where in particular the Cohen-Macaulay - and the Goren-
stein-property of the form ring grA(I) of an almost complete intersec-
tion ideal I 1in a Cohen-Macaulay ring were studied. Our notion of an
almost complete intersection is slightly more general as in [ 1] and

[18], s. definition (2.1), since I 1is not necessarily unmixed. [i.e. -
by abuse of usual language - all minimal primes have the same height].
Brodmann [ 1] , proposition (5.2) proved that for an almost complete inter-
section I in a Gorenstein ring A the Cohen-Macaulay-property of A/I
is equivalent to the Cohen-Macaulay-property of grA(I) if moreover
Ass(A/1I) = Assh(A/I) . :

Valla [18], theorem 8 has shown that under the same.assumptions as in
Brodmann's result the Cohen-Macaulay property of A/I does imply even the

Gorenstein property of grA(I) .

Goto and Shimoda [ 2] investigated almost complete intersections ideals P
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which are prime. The main theorems in [2 ] can also be shown, if the
prime ideal property is replaced by Ass(A/I) = Assh(A/I) . Moreover it
follows from [2 ] that - under the same assumptions as in Brodmann's
result - the Cohen—Macaulayvproperty.of A/1 1is equivalent to the Goren-

stein property of grA(I) .

We will show intheorem (4.1), that the same statement is also. true without

the unmixed-condition on the a.c.i. 1deal I .

More explicitely, we treat in the first part of this report the following
problem: Let I be an a.c.i. ideal (def.(2.1)) in a local Noetherian

ring. When is A/I Cohen-Macaulay? We consider essentially 3 situations:

1) The associated graded ring grA(I) is Gorenstein.

2) The Rees ring R({I) 1is Gorenstein, where I 1is any ideal with
p(I) £3 . This problem is reduced to a corresponding problem for an
a.c.i. ideal in R(I)M , where M is the maximal homogeneous ideal

R(D)

3) A 1is a regular local ring.

If I 1is in particular a prime ideal of height 2 in the third situation,
then A/I 1is always Cohen-Macaulay, provided that A contains a field.
That follows from the syzygy-theorem of Evans-Griffith. Moreover if

dimA S5 and Ass(A/I)= Assh(A/I) in this situation, then A/I 1is
Cohen—-Macaulay. As far as we know there exists an explicit counter example
for situation 3 by Huneke, where I 1is prime and A/I 1is not Cohen-
Macaulay. This is based on the following idea: Take a non-Cohen-Macaulay
UFD ring A/I and link the defining ideal generically with an a.c.i. prime
ideal [13]. We will describe necessary conditions on the multiplicity
e(A/1I) for 1 being a Buchsbaum, non-Cohen-Macaulay ideal. A series of

examples is given.

In the next part of this report we ask for the Gorenstein property of
Rees and form rings of powers of ideals. First we mention the fact (s.

proposition (6.2)) that for any ideal I of ht(I)22 in a Noetherian



. . n .
ring A there exists at most one power I such that the Rees ring

R(Ip) is Gorenstein.

Moreover if A 1is Gorenstein and I an almost complete intersection

ideal of ht(I) 22 such that A/I 1is Cohen-Macaulay, then

R(Im) is Gorenstein iff m = ht(I) - 1 ,

gr(I™) is Gorenstein iff ht(I) = 1(m) .

Finally for equimultiple ideals I in a Cohen-Macaulay ring A we get

the following equivalent conditions:

(1) A 1is Gorenstein and I 1is a complete intersection

Iht(I)-1

(ii) R( ) 1is Gorenstein.

As a consequence one has for a d-dimensional local Cohen-Macaulay ring

(a,m)

1

A 1is regular iff R(md- ) 1s Gorenstein.

This result is due to Goto-Shimoda for d = 2 . Independently it was
also shown by A. QOoishi, using quite other methods (s. Appendix).

Furthermore, if A 1is regular, then gr(mn) is Gorenstein for all n

such that d-1€ (n)

2. Preliminaries.

Part I: In this section we recall some results on almost complete

intersections needed in the sequel.

(A,m,k) 1is a local Noetherian ring, I an ideal in A ; u(I) denotes the

minimal number of generators of I .



Definition (2.1):

(1) I is a complete intersection (ec.i.) if ht(I) = u(I)

(ii) I 1is locally a complete intersection (l.c.i.) if

VYPEMin(A/I) : IAP is c.i. in Ap

(111) I is an almost complete intersection (a.c.i.) if I is

l.c.i. and p(I) = ht(I) +1

Remark (2.2): In [1] and [18] there is a somewhat stronger notion:" I 1is an

almost complete intersection and a generic complete intersection" if
p(I) = ht(I) +1 and u(Ip} = ht(I) for all PEMin(A/I) .

Note that the ideal I = (X,Y)N (Z2)<k [X,Y,Zl 1is an a.c.i. ideal by
definition (2.1) but not in the strong sense of [1] and [18). We come

back to this example in section 4, where theorem (4.1) shows immediately.

that grA(I) cannot be Gorenstein.

As a consequence of the '"Primbasissatz" , we have the following result

[s5]:

Proposition (2.3):

(i) Let |[k] =o ., Then if I 1is a.c.i. we find an ideal JGgI

and an element a €I , not contained in J , such that

I =J+aA and J is c.i. .

Moreover if J 1is height-unmixed then (J:a) = (J :a2)
(ii) Conversely, if I = J+aA such that J 1is a complete inter-
section and (J:a) = (J :az) , then 1 1is either c.i. or

a.c.i.

An important point is that in Cohen—-Macaulay rings a.c.i. ideals are of

linear type. (s. also [ 21,[51,[19]):



Proposition (2.4): Let A be a Cohen—Macaulay ring, such that all

localizations Ap ,» PE€Spec(A) , have infinite residue field. Let I be
an ideal of A such that p(I) = ht(I) + 1 . Then the following are equi-

valent:

(1) I 1is an almost complete intersection.

(ii) I is of lipear type, i.e. R(I) = Sym(I) .

Remark (2.5): In Cohen-Macaulay rings almost complete intersections can-

not be equimultiple, s. [ 5], proposition (1.2).

But in non-Cohen-Macaulay rings we can have both properties for. I as the

following examples show:

Example (2.6),s.[6 ) Consider ‘the following situation:

R := k[[ts,tG,t7,t8,t9]] {x,v,z2] ,

where k 1is a field, and t,X,Y,Z are indeterminates. Let:

a := t5 ; b = t8 ; € = tg H

o
n

R/(f:Raz) , wWhere f = aX + bY + cZ ;
M := maximal homogeneous ideal of G ;

A= Gm and P := (X,Y,Z)Gmc:A .

By 1(I) we denote the .analytic spread of I .

Then one has: (1) A 1is non-Cohen-Macaulay of dimA= 3
(2) ht(P) = 1(P) = 2<u(P) = 3
(3) A/P 1is Cohen-Macaulay
(4) AP is regular.

This shows that P 1is an equimultiple,.almost complete intersection ideal.

We remark that R(P) is Cohen-Macaulay, but not



Gorenstein. Note that.almost all results of the .next sections need at
least the Cohen-Macaulay-property of A , i.e. example (2.6) had to be
treated by quite other methods; see [ 61].

Example (2.7): A=k [[sz, 33‘, st, tll 1is a non-Cohen-Macaulay, Buchs—

baum ring of dimension 2. Consider the prime ideal P := (st,t) .
Then we have: 1) he(P) = 1(P) = 1 <u(P) = 2

(2) A, is regular.

Hence P 1is a.c.i. (and equimultiple), but not of linear type, since

Sym{P) = A[X,Y]/a \;here

a = (tX-sty, szx-s3Y, sBX-qu, stX-sth)

"and

R(P) = A[X,Y]/(a,x2 - szYz) .

Remark (2.8): In the last example A/P 1is Cohen-Macaulay but R(P)

is not, since otherwise depthA 2dim(A/P) + 1 = 2, which is -not the case.

Proposition. (2.9) (Depth-Formula): Let I be an almost complete inter-

section ideal (in the sense of (2.1)) in a Cohen-Macaulay ring A . Then

the following hold for G = grA(I) and R = R(I) :

(i) depth(G) = min {dim A ; depth(A/I) + ht(I) + 1}

(ii)  depth(R)

nmin {dim A ; depth(A/I) + 2} if ht(I) =0

min {dim A+ 1 ; depth(A/I) +ht(I)+2} if ht(I) > 1

These formulas were shown by Brodmann [ 1] for a.c.i. ideals in the strong
sense. But one can check that the same proof works for a.c.i. ideals in the

sense of (2.1), since the only thing needed in Brodmann's proof is the fact



that Inr1a1A = £11-In_l , where 1 1is generated by a d-sequence

a1,...,ah,ah+1 (and @pseeesdy form a regular sequence).

Part II. Brief survey of the theory of Approximation Complexes.

To study the relationships between the various graded rings associated to
an ideal I 1in a (commutative) Noetherian ring A , one can also use the
socalled Approximation Complexes of I ; see [ 8], [ 9], [10]. The situa-
tion is in particular good when these complexes are exact, a condition that
is fulfilled for some important families of ideals. In .this case it is
possible to investigate the arithmetical properties of those graded rings
as if they were Cohen-Macaulay or Gorenstein. One important point in this
theory is .that under the "good" situation I 1is of iinear type. Assuming
for simplicity that A is local with maximal ideal m and dimA =4d ,

we consider the Koszul complex of R w.r.t. a . := {a1,...,an} , where _
agseeesal generate I . By S we denote the polynomial ring A[XI"'°’Xn]'

We then get two complexes:

£(a) : 0 —> Zn —_— .., —> 21 —> 20 —> 0

and

M(a) : 0 —> Mn-——> ces > A“ —_ MO —> 0 |,

where Zi = Z]._K(_:_i_) @AS and Mi = HiK(_.::I._) GAS . Here the Z]'_K(E) denotes
the cycles of the Koszul complex K(Ey and the HiK(g} the Koszul homology.

Both complexes can be taken as complexes of graded modules over § with

mappings of degree -1 . We list the main properties of these complexes:
(1 The homology of Z(a) and M(g) is independent of the system

|

of generators a .

(2) HO(Z(E)) = SymA(I)
(3 Hy(M(a)) = Sym, (1/T%)
(4) The following are equivalent:



(i) M(a) is acyclic.

(i1) Z(a) 1is acyclic and I 1is of linear type.

Now .we assume that A 1s Cohen-Macaulay.

—

(5) Suppose (i) For any prime ideal P21 , u(IP) < ht(P)

(i1) For any r20 and for any prime ideal P21

depth (Hr(K(E))P) 2 inf (ht(P/1),r).

A

Then M(a) is acyclic.

It turns out that condition (ii) above is independent of the system of

generators of I , and that it is fulfilled if I is strongly Cohen-Macau-

lay (sCM), that is, if for any rz20 , HI_(K(E)) is zero or a maximal

Cohen-Macaulay A/I-module.

(6) Assume: (i) For any prime ideal P21 , u(IP) Sht(P) +1

(i1) For any r20 and for any prime ideal P21 ,

‘depth (Hr(K(E))P) 2 inf(ht(P/I),xr) - 1 .

Ap

Then £(a) is acyclic.

There is an important connection between the theory of Approximation Com-

plexes and the theory of d-sequences. 1In fact:

(7) If I 1is generated by a d-sequence, then M(a) 1is acyclic.

(8) Assume that JA/m] == . If M(g_) is acyclic, then I can be generated

by a d-sequence (but the given a 1is not necessarily a d-sequencel!l).

(10) Finally we give a list of some important families of sCM-ideals. For

this we mainly follow [8]. A 1is.always Cohen-Macaulay.

The following ideals are strongly Cohen-Macaulay:



a) Complete intersection ideals

b) Ideals I<SA such that A/I 1is Cohen-Macaulay and
p(I) = ht(I) + 1 .

c) If A 1is Gorenstein, A/I 1is Cohen-Macaulay and
p(I) = ht(I)+2 , then I 1is sCM.

3. R(I) .is Gorenstein and p(I) = 2 (domain-case).

To motivate the special case w(I) = 2 we mention the following result,

see [ 3], proposition 1.1 and also proposition .2.4:

Proposition (3.1): Let I be a parameter-ideal.in A . If dim(A) =22

and depth(A) 22 , then the following conditions are equivalent:

(i) R(I) 1is Gorenstein.

(i1) A. is Gorenstein and dim(a) = 2 .

The proof of (i)=(ii) is in [ 3]. The converse follows also from [ 3]:
From A 1s Gorenstein (Cohen-Macaulay is eﬁéugh) we conclude that R(I)
is Cohen-Macaulay. Moreover 1 1is generated by a regular sequence, hence
A/I and grA(I) are Gorenstein. Therefore by [15], theorem (3.7)

R(I) 1is Gorenstein [see also §4 , where we show that in this case the

a-invariant of . grA(I) is =ht(I) =~2 ].

Corollary (3.2): Let I<A be a complete intersection ideal (i.e.

p(I) = he(I) , hence I 1is generated by a subsystem of parameters).

Assume that grade(I)22 . If R(I) 1is Gorenstein then ht(I) = 2 .

These facts may convince us to start with an ideal generated by 2 elements
with ht(I)21 . In the following proposition due to J. Ribbe we do not

assume that I 1s anm a.c.1i..
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Proposition (3.3): Let IcA and assume that (A,m) 1is a domain.
Assume
(1) R(I)} is Gorenstein

(i1)  p(I) = 2 and he(I) =21 .

Then A 1is a Cohen-Macaulay ring.

Remark (3.4): Proposition (3.3) is also true if (A,m) .is any local

Noetherian ring. This general fact will be proven in section 4, theorem

4.1,

Corollary (3.3.1): Assume (1) and (ii) of proposition (3.3). If

ht(I) = 2 , then grA(I) is Gorenstein.

Proof of (3.3.1): Since A 1s Cohen-Macaulay by (3.3) and

u(I) = hte(I) = 2, I 1is generated by a regular sequence of two elements.

Moreover AZK, ‘(where K, 1is the cancnical module of A ) by [15],

A
theorem 3.1, hence A and A/I are Gorenstein.rings. This.implies that

grA(I) = A/I[X1 ’XZ] is Gorenstein.

Corollary (3.3.2): Assume (i) and.(ii) of proposition. (3.3). If I 1is

an unmixed .(Ass(A/I) = Assh(A/I))) - almost complete intersection ideal of

ht(I) = 1 , then A 1is a.non-Gorenstein, but Cohen-Macaulay ring.

Proof. of (3.3.2): This follows from (3.3) and [ 2.], corollary (4.6).

Example for (3.3.2): Let A =kl[52, 53, t, st,szu,tu]] , where k

ig a field and s,t,u are indeterminates.Let P = (92u , tu) , which is
an almost complete intersection ideal of ht(P) =1 . A 1is Cohen-Macaulay,

but not Gorenstein and R(P) 1is Gorenstein by [ 2].

Proof of proposition (3.3): We put R = R(I) and
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R+ = OGIt@IZtZG...
M:i=m+ R+ » the maximal homogeneous ideal of R

B :=.RM O P := R+B .

Then we have:

1) B/P 2 A and ht(P) =1 . P is prime since A 1s a domain.
2) uB(P) = 2 = ht(P) + 1

3) grB(P) =R , since R = A[R1] .

4) B, is regular.

That means, P 1is an almost complete intersection prime ideal such that
grB(P) =R 1is Gorenstein by assumption. This implies that B/P=A is
Cohen-Macaulay by [ 2], theorem (1.1).

Remark (3.5): To extend proposition (3.3) ito any local ring (A,m) we

first need to prove theorem (1.1) of [2] for any almost complete inter-
section ideal (which is by our definition in general not unmixed). This

we do in section 4.

Remark (3.6): The method wused in the proof of proposition (3.3) does

not work in the same way for an ideal I with p(I)23 , since
ht(R+B) = 1 and u(R+B) 23 .

4, R(I) 1is Gorenstein and u(I) = 2 or 3 .

The main tool for this section is the following theorem generalizing

theorem (1.1) in (2] . For simplicity we assume that [A/mM[ = .

Theorem {(4.1): Let I be an almost complete intersection in a local

ring A . If grA(I) is Gorenstein, then A/I 1s Cohen-Macaulay.
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Remark (4.2): The ideal I = (X,Y)n(2)cA =k[X,Y,2]] is an a.c.i.

ideal. by definition (2.1). Since I 1is not unmixed, .grA(I) cannot be
Gorenstein by this theorem. This can of course also be seen by the following

well known argument:

grA(I) = A[T1,T2]/J , where J 1is generated by the homogeneous

deg(F)+1

polynomials F(T1,T2) satisfying F(XZ,YZ) €I . Hence

grA(I) =k([X,Y,2]] [T1,T2]/(XZ,YZ,YT - XT,)

1

So we have p(J) =3 =ht(J) + 1, and J 1is.an a.c.i. in the strict sense

of [11], [18], hence grA(I) ‘cannot be Gorenstein by an old result of Kunz.

Proof of (4.1): By (2.3) and the Primbasissatz [ 5], theorem 4.2 we may

assume that
. 2
I=a+, ht(I) = 0 and (0:a) = (0:a")

Then we have IN(0:1I) = (0) and by the depth-formula (2.9) we have
depth(A/I)2d-1 , where d = dim(A/I) . So it is enough to show

(*) Ext:-I(k,A/I) =0

Put J =0:1I . Note that in our situation (ht(I) = 0) we have
d = dim(A/I) = dimA

Claim 1: A/J. 1is Cohen-Macaulay of dimension d

Proof: Consider the exact sequence

0 —> A/J'3§—> A—> A/T —> 0

and note that depth(A/I)2d-1 and depth(a) =4d .
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Claim 2: J 1is a CM-A-module of dimension d .
Proof: This follows from the exact sequence
(1) 0 —>J—> A—> A/J— 0

since A and A/J are d-dimensional Cohen-Macaulay rings.

To use the assumption that grA(I‘) is Gorenstein, we recall (see [1],
[2], [18]) that

AfX]
X-JA[X] + IA[X]

(1) grA(I) =

where X 1is an indeterminate. We denote the right side of (1) by G , and

the irrelevant maximal ideal of G by MM .

If t.1is a non~zero element of A then

(2) Gm/(x— t)G111 = A/ (tJ + 1) .

Now the next step is to choose some special . t , such that A/{(tJ+1I)A

" becomes Gorenstein as a ring:

Claim 3: There exists an element t€J , such that t € U P

i.e. t 1is a parameter-on A/I . P € Assh(A/I)

Proof: By assumption (I 1is a.c.i.) we have u(]'_A?) = ht(P) for all

PEMiIn(A/I) . Hence (%)AP = IAP=O for PE€Assh(A/I) . Therefore

there exists an element t ¢ O/ » such that a-t =0,
P € Assh(A/I)

hence t€J , which proves the claim.

. . . . . 2 .,
This element t we use in the isomorphism (2) above. Since also t 1s

a parameter on A/I we have:

din(Gy/ (X=6)Gp) = dim(A/(£J+ 1)) & dim(A/(t2A+T)) Sd-1 .
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hence (X-t) 1is a parameter on G. , so A/(tJ+1I) is a Gorenstein

ring of dimension d-1
Now consider the canonical exact sequence
(3 0 —> A—>A/T & A/t —> A/I+t] — 0 .

The corresponding Ext-sequence induces

(4) 0 —> Ext§_1 (k,A/I) ® Exti-l (k,A/It) —> Exti-1(k,A/I+Jt)

Putting I+tJ =: & , we have

Ext§-1(k,A/a) = Hom, (x,A/ (3;x ))

1% g

& Hom

A/a(k,A/(a.x

77 %gq))

d-1
ExtA/a(k,A/a) ,

n

where L EREETE P form a regular sequence on A/a . Therefore

Ext§-1(k,A/a) =k in (4), because A/3 1is a Gorenstein ring.

Thus it is enough:to show that

(**) Exti-1(k,A/Jt:) #0 .
For that we consider the exact sequence
(5) 0 —> J/tJ —> A/t —> A/ —> 0
Note that J/tJ = J/(a+t)J .
Claim 4: a+t 1is regular on A .

Proof: Suppose a+t€P for some P€Ass(A) . Since INJ = (0)cpP ,

we have to consider two cases:

Case 1: ISP . This implies t€P . Since A 1is Cohen-Macaulay (even

Gorenstein), dim(A/P) = dimA = dim(A/I) , i.e. P€ Assh(A/I) . That is a
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contradiction to the choice of t .

Case 2: Jc<P ; them t€P , which gives again a contradiction.

From claim 2 and claim 4 we conclude that J/tJ 1is a Cohen-Macaulay-A-

module of dimension d-1 .

Now consider the exact sequence induced by (5)
(6) 0 —> ExtS G, 3/e3) 2> Exe? (e a0t —> 0,

i.e. @ 1is an isomorphism and Exti-l(k,J/tJ) # 0, since J/tJ 1is
Cohen—Macaulay of dimension d-1 . This implies the desired relation

(**), q.e.d. (Theorem (4.1)).-

Now we can prove the following theorem, which generalizes proposition (3.3).

Theorem (4.3): Let I be an ideal of a local ring A satisfying the

following condition:

(1) R = R(I) is Gorenstein

(ii) p(I) = 2 and hte(I)21 .

Then A 1is Cohen-Macaulay and depth(A/I) 2 dim(A/I) -1

Proof: We use the same ideas as in the proof of proposition (3.3).

Put R=R(I),M=m+R+,B=RMDJ=R+B

As in section 3 it can be seen that

1) B/J5A and ht(J) =1
2) p(J) = p(I) = 2

3) grB(J) =R 1is Gorenstein by (i).
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Note that MinB(B/J) = {J+qB/q€Min(A)} , since B/JSR/R+3A' .

Claim: a) p{(JB )S1 for all q€Min(A)

J+qB
b) ht(J+qB)21 for all q€Min(A)

c) u(JBQ) = ht(Q) for all Q€MinB(B/J)

Proof: a) Let aj,.'. @) be any system of generators of I , and take
any q€Min(A) . Since ht(I)21 , say a € q . Then we get in the ring

BJ+qB - RR_‘_+qR

(Note that a, €R++qR in our situation).

This proves a), because J = (aIt/1,...,ant/1) .

b) It is enough to show that ht(R++qR) 21 . But this follows from

I¢q .
c) From a) and b) we obtain

1Sht(J +qB) = ht(JBJ+qB)Su(JB YS1

J+qB
this gives the claim.

Therefore J 1is an a.c.i. ideal in B and grB(J) is Gorenstein by

assumption, hence B/JSA 1is Cohen-Macaulay by (4.1).

Since R(I) 1is Cohen-Macaulay,- depth(A/I)2dimA -1(I) by [16].
Moreover 1sSht(I)sS1(I)<£2 , hence depth(A/I)2dimA- (ht(I) + 1) . This
proves the last claim of (4.3).

We can prove a somewhat similar statement for p(I) = 3 provided that we

assume from the beginning that A = is Cohen-Macaulay.
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Theorem (4.4): Let (A,m) be a Cohen-Macaulay ring and I an ideal

in A . Assume that

(1) R(I) 1is Gorenstein
(ii) p(l) =3 and 15ht(I)s?2

(iii) I is an ideal of linear type.

Then depth(A/I) 2dim(A/I) - 1

Proof: We use the same notations as in the proof of (4.3).

Since B .is Gorenstein, u(J) = ht(J)+2 and B/J = A is Cohen—Macaulay,
we know by (8], prop. (5.5), that J 1is strongly Cohen-Macaulay. More-
over J 1is of linear type. Then we know by [14] , theorem (2.4), that
for all ka1 :

depth (377" ") 2 depth(B/J) - k .
For k = 1 we get depth(J/Jz) = depth{(I) 2 depth(A) - 1 , hence (since
A 1s CM):

depth(I} 2 dimA -1

From the exact sequence 0 ~—> I —> A > A/I —> (0 we get by the

~ depth-lemma the inequality
depth(A/I) 2 dimA -2 2 dim(A/I) - 1

Remarks: a) Using the same argument as in the proof of theorem (4.3),
part d), which was based on the inequality depth(A/I)2dimA -1(I} 1in
[16] , we would only get that depth(A/I)2dim(A/I)-2 .

b) The condition (1ii) in theorem (4.4) can be replaced by a weaker con-
dition(iii)": u(IAp) S 2 for all associated height one prime ideals P
of I .

c) If we assume ht(I) = 2 in (ii) of (4.4), then the statement of

the theorem follows immediately from the depth-formula (2.9). The
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interesting case in.(4.4) is the height one case. _

The following example (mentiomed to us by P, Schenzel) shows that in
case ht(I) = 1 1in theorem (4.4) with (iii) instead of (iii) we cannot
expect A/I to be Cohen~Macaulay:

. . o~ +
Consider the ring B =]cﬂsa+b ,sb-ta ,saotb , e bH , where a = 2n-1,
b = 2n+ 1 ; that describes a non-singular curve. The defining equations

of B in ¢ =kllX,Y,2,W]] are

Q =YZ- XV

F = Y2n+1 _ x222n-1
0

F, = ¥>% - xz"

F, = Y2n_1W2 _ Z2n+1

Take P := (Q,FO,F1,F2) ; then ht(P) = 2 and

R(P) =kllx,Y,Z2,W,U,T.,T ,sz]/h ,

0" 1

where b 1is generated by

2n—-1
WI, - YT, - XZ U
2n
ZT, ~ XTI, = YU
WT. - YT, - 2°™y
0 1
2T, - X1, - v Ty

2, 2n=1,2n~1,2
TOT1 TI-FY Z U
Then by writing these elements as the Pfaffians of a suitable skew
symmetric matrix, one can see that R(P) 1is a Gorenstein ring (of dimen-

sion 5), hence ng(P) is Gorenstein of dimension 4.

Now take A :=k[[X,Y,Z2,W1)/(Q) and P:= PA/Q . Since the initial form Q*
is a non-zero-divisor in ng(P) , the ring ng(P)/(Q*) EgrA(P) is

Gorenstein.
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Moreover: p(P) = 3
ht(P) = 1

Ap is regular

A and R(P) are Gorenstein ,
but B = A/P is not Cohen-Macaulay.

At thé end of this section we describe two situations where
p(I) Sht(I)+2 and R(I) 1is Gorenstein. The proof-strategy is somewhat
different from corresponding strategies in [ 2], [11], since we use the

computation of the a-invariant a(grA(I)) .

Recall that for a positively graded Noetherian ring R = igoRi defined
over a local ring R0 and a Noetherian graded R-module G the a-invari-

ant of G 1is defined as
— et - r
a(G) = max{j€X : I-I.M(G)j #0 }‘ .

where r = dim(G) and H;(G) is the r-th local .cohomology w.r.t. the
maximal homogeneous ideal M of R . Then R 1is Gorenstein if and only
if R 1is Cohen-Macaulay and the canonical module of R 1is KRfER(a(R)).

We start with the following lemma. For completeness we sketch a proof.

Lemma (4.5): Let R = ngoRn be a Noetherian graded algebra defined
over a local ring R0 and G Tn§bGn a Noetherian graded R-module.

Let x€R1 be a regular element on G . Then we get for the a-invariants

of G and G/xG
a(G) S a(G/xG) - 1 .
Moreover, if G 1is Cohen—-Macaulay, the equality holds.

Proof: Consider the exact sequence of graded modules

(1) 0 —> G(-1) -2 ¢ —> G/xG —> 0 .
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Putting r = dimR(G) and M = maximal homogeneous ideal of R , we

get from (1) the long exact cohomology-sequence

(2) oo HT(Q), —> e (G/x0), —> HE(G), | —> HL(Q), —> 0
For i = a{G)+1 we have

T r
(3) HM(G)i_1 #0 and HM(G)i =0

then (2) implies l-i.:;1(G/}cG)i #0, i.e. a(G/xG)21i = a(G) +1 . This
proves the first part of the claim. The second part follows immediately
from (2) since now H;-1(G) =0 .

Proposition (4.6): Let (A,m) be a Cohen-Macaulay ring of dimension

d . Let I be a strongly Cohen—Macaulay ideal in A . Assume
}J(Ip) Sht(P) for all prime ideals P21 . Then

a(grA(I)) = -hte(I) .’

Proof-idea: Put s = ht(I) = grade(I) and up(I) = s+t . Note
that the homology Hi(K') of the Koszul complex K. of A with resgpect

to some minimal system of generators of I 1is zero for all i>t .

Moreover grA(IJ is CM and the M-complex is exact by [8 ], which
implies in particular that I 1is of linear type. The M-complex gives
a resolution of grA(I)

] Q.
LI e —D> M1 k

(4) 0 —> Mt > MO'——> grA(I) — 0 |,

M, = H. I, i L) = .
where Jli Hl(K)@A[Xl, "{s+t] , d:Lm(Ml) d+t and Ml is CM

over A[xl"'°’xs+t] . The idea is now to compute a:= a(grA(I)) via

the a-invariants a(Mi) :
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Applying lemma (4.5) exactly (s+t) times we see that
(5) a(M) = a(@) - w(D = -p() ,

since (4) 1is considered as a sequence of A [X1,...,Xs+t]-modu1es. Note

that by construction the morphisms wi are of degree 1. Therefore we

get the following exact sequences for the cokernels Di of wi+1

0 —> Di+1(-1) —> M, — D, —> 0
with morphisms of degree zero.

Since G and Mi are.CM, we get for the local cohomology w.r.t. the

maximal homogeneous ideal M .of A/I[X1,...,Xs+t]

d ~ pd+l - 5
(6) HM(G)J = HM (D1)J-1 S ... = I{M

Moreover we have the exact sequence

d+t-1 d+t
M 0— Hy (Dt-l)j—t+1 > By (Dt)j-t > Hy (Mt—1)j-t+1

Note that

d+t . yd+t .
(8) Hy (Dt)j_t = Hy (Mt)j-t , since

0 —> Dt+1(_1) —_ Mt —>D—> 0

Case 1: j>-h , where h = ht(I) , i.e. j—-t> -u(I) :=~-n . There~
d+1 .

fore HM (Mt)j-t 0 , since a(Mt) n . But by (6), (7) and (8) we

know that
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d . dtt-1 d+1 -
HM(G)j - HM (Dt-I)j-t+1 < By (Mt)j-t 0 ?

hence a{G) s -h .

Case 2: j = —h . Then (6) implies:

d . d+t=1 . d+t
Hy(G)_y = Hy @) popar ¥ By MI_, 70

hence a(G) = ht(I)

Proposition (4.7): Let (A,m) be a Gorenstein ring and let I be an

ideal in A of height 2, satisfying the following properties

(i) A/I 1is Cohen-Macaulay
(ii) (L) & he(I) + 2
(1i1) H(Ip) S ht(P) for P21 .

Then R(I) 1s Gorenstein.

The assumptions imply that I is sCM. Therefore Sym(I/Iz) ggrA(I)

is Gorenstein by [10], theorem (6.1), and a(grA(I)) = ~2 by proposition
(4.6). Since R(I)=Sym(I) is CM by {10], theorem (6.1), this implies
that R(I) is Gorenstein by [15), theorem (3.1).

For almost complete intersections we can formulate a natural generali-

zation of theorem (1.2) in [2].

Proposition (4.8): Let A be a local Cohen-Macaulay ring and let I

be an almost complete intersection ideal of ht(I)22 . Then the following
hold:

(1) R(I) 1is not Gorenstein if ht(I)>2

(ii) Assume ht(I) = 2 . Then R(I) is Gorenstein if and only

if grA(I) is Gorenstein.
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Corollary (4.9): Let I be an almost complete intersection ideal in

A of ht(I)22 . Assume that grA(I) is Gorenstein. Then

(1) a(grA(I)) = =2 if ht(1) = 2

(ii) a(grA(I)) F -2 if ht(1) > 2

Proof of (4.8): To (i): Since R(I) =#Sym(I) , this follows from a

result of Rossi, s. [17] , theorem (6.7).

To (ii): Assume that R(I) is Gorenstein. Then grA(I) is CM by the
depth-formula (2.9). Therefore grA(I) is even Gorenstein by [15],
theorem (3.1).

Conversely, assume that grA(I) is Gorenstein. Then R(I) is CM , A

is Gorenstein and A/I 1is Cohen-Macaulay by theorem (4.1), hence I .

is sCM of linear type. [Note that HO(K.) = A/I and H1(K.) = KA/I which
is CM. Moreover Hi(K') =0 for i>1 . So I 1is indeed sCM]. This

proves the claim because of (4.7).

Remark (4.10): The second part of the proof of (ii) is using the fact

that grA(I) Gorenstein implies A/I 1is CM by theorem (4.1). Another
proof-idea is to show that the a-invariant of an a.c.i. ideal I with
a Cohen-Macaulay graded ring grA(I) is -ht(I) .[Note that here we do
not assume that A/I is CM]. Then by [15], theorem (3.1) we get the

claim.

5. A 1is regular.

The most interesting problem of this section is the following question
of Valla [18]:

If (A,m) 1is regular and P an a.c.i. prime ideal in A . When is A/P

a Cohen-Macaulay ring?
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Proposition (5.1). Let (A,m) be a regular local ring containing a

field and P an a.c.i. prime ideal in A . Then the following hold:

(1) If ht(P) = 2 , then A/P 1is Cohen-Macaulay

(ii) If dim(A) S5, then A/P 1is Cohen-Macaulay.

Proof: (i) comes from [20], theorem (2.1).

For proving (ii) note that ht(P) -2 since P 1is not principlal. If
dim(A/P) € {1,2} , then A/P 1is Cohen-Macaulay by (2.9) and proposition
10 in [18]; if dim(A/P) =3 , then ht(P) = 2 and A/P is Cohen-
Macaulay by (1).

Without any restrictions. on the regular ring A and the a.c.i. prime
ideal P the statement " A/P is Cohen-Macaulay" is not true in

general. There is an explicit counterexample of Huneke based on the follo-
wing idea : Take a non Cohen-Macaulay UFD ring A/I and link the defi-
ning ideal generically with an a.c.i. prime ideal. This gives an example

of an a.c.i. prime ideal which is not perfect.

The following theorem (5.2) which is essentially due to N.V. Trung des-
" cribes situations where A/I is Buchsbaum for any ideal I in a regular
local ring A with ht(I)>0 . As a consequence we get in Corollary (5.3)
a necessary condition for A/I being Buchsbaum but not Cohen-Macaulay,

where I 1is now an a.c.i. and depth(A/I)22 .

This gives in Corollary (5.4) a sufficient condition for the Cohen-

Macaulayness of those ideals in the case that ht(I) 1is 2 or 3.

For a regular local ring (A,m) with infinite residue field and an

ideal I of A with (Q) # Ic:m2 we put:

n = ordm(I) ; h = htA(I) ; d = dim(A/I) ; t = depth(A/I) ;
B =A/L 3 W = maximal ideal of B ;
e = e(B) = Samuel .multiplicity of my
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Moreover we choose elements x1,...,xd€m so that a; = x, mod I

form a minimal reduction a of mB . We also set hi = lB(H; () ,
where H' denotes the local cohomology. B
Theorem (5.2): Let (A,m) be a regular local ring and I an ideal

in A . Assume that A/I is Buchsbaum with d22 and ht(I) z2

d=1
+ i§1(i_1)hi-- d(u=h-1)

if p = p(I)2h+1

1) e(a/D) a(““*h)

h

(i1) e(A/I)Z(n;h) -h if p=h and hence A/I is

Cohen—Macaulay.

Proof: 1) Since A/I 1is Buchsbaum, we have

: d-1 d-1
e(B) = 1+ 7§ (. ) hy o+ 1(mg/Rp)

=1 AT
d A
where KB = .z (a1, -58., ,ad) a,
1=1
d A
Put K, = i21(I,x1,...,xi,...,xd) Pxg Clearly

1(A/KA) = l(m/KA) + 1 = l(mB/KB) + 1,

hence
d-1 a-1V
e(®) = 1A/K) + 1} (i-l) h,
i=1
Note that x1,...,xd are of order 1 w.r.t. m , forming a regular

sequence in A and a s.o.p. for B .

II) For the next step in the proof we recall the following lemma.

Lemma : Under the assumptions made above we get:

. Then:
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p((I,x)/(x) =p(I) - 1(I: x/mI: x)

for any element xX€A .

Proof of the lemma: The equality follows from the exact sequence:

0 —> T:x/ml:x - 1/mI —> (I,x)/NI+(x)—> 0
I1I) To continue in the proof of (5.2) we remark that

(1) (D 2p(I,% / ©) 2 he(I,%) / (x) = he(D ,

X,

where X = {x d

TER
We consider two cases:
Case 1: p((I,x) / (x)) = h .

Then J := (I,x)/(x) 1is an ideal of the principal class in the regular

ring A/(x) , hence A/(I,x) 1is Gorenstein, i.e.

()  1((I1,x) : 0/(I,x) = I

Moreover
d A
KA=iz1(1,x1,...,xi,...,xd) m ,

since A/I is Buchsbaum.

This implies KAQ(I’E) :m, i.e.

L(a/K,) 2 1(A/(1,x) :m) = 1(A/(1,x)) - 1((I,x) : m/(I,x))

1(A/(1,x)) =1 , by (2)

L(A/(mI,x) - 1((I,x)/(mI,x)) - 1

2 1a/@™ !, x0) - h -

_ (n;h) - (1)
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Case 2: he (1) + 1 sp((I,x) / (x))

Put ¢ := p(I) - p((I,x) / (x)) . Since

”((I’xi"'°’Qi""’xd) / (ﬁl’xi"'°’Qi"'°’xd)) Swu(l)

we get be the above lemma for each 1

Royensx

12700 d

O
[}

1((I,x1,...,§i,...,x ) P Xy [/ (mI,x ) :xi)

d

s ¢

| 7

a(I) - ht(I) - 1

Hence, for each i there is an ideal Ji generated by at most

pu(I) - ht(I) - 1 elements, such that

A
(I,xl,...,x.,...,x

i d) Pxg o= (mI,x1,...,Q.,...,x Yeix, +J;

i d i Ti°
Note that
A n
mJi c (mI,x.i,...,xi,...,xd) i 9= (m,x) ,
since ord(xj) =1 and ord(I) =n .

Since

d
Z (@",x) + J;

we get

d i i-1
La/k) 2 MA@ ,x) - ] 1(((m“,5)+ L3I0/ @z + er)))
i r=1

1=1 r=1

2(“'111”1) -~ de (D) - he(D) - 1)
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Comparing the bounds in the cases 1 and 2 we obtain the claims of the
theorem. Note that (ii) follows from the proof of case 1 using the fact

that now KA = (I,x)

Moreover, the situation .u(I) = ht(I)+1 1is covered as well by case 1
as by case 2. It is easy to check that under our assumptions

(ord(I) 22 and ht(I)22) both cases imply

d-1
n-1+h d-1
e(a/D) 2 ( h )+ i§1(i'1)hi

Example 1: A= k[x1,x2,x3]
2 2 -
I= (x1,x2,x1x2x3)
_ 2 2 2 2
= (x1,x2,x1x2)f1(x1,x2,x3)
Then: A/I is Buchsbaum, non-Cohen-Macaulay, depth(A/I) = 0 ,

n=2, h=nht(I=2, u{I) =3 =h+1 ,
2 2 _
e(A/1) = 1(k[x1:x2] / (x1 axz’x]xz)) =3.

(n-1)+h) -3

Note that the bound in this example is ( h

Example 2: A/L =1(H52,53,st,tﬂ zk[[x,y,2,w]] /T is Buchsbaum, non-

Cohen-Macaulay.
Then
hte(I) =2 , d =2,

t
I = (x3-y2;xwz—zz;yw3-z3;xz-yw) , hence

=1,

pu(I) = h+2 , e(A/I) =2 ; n=2

Then the bound is: h+1+1-2 =2
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Corollary (5.3): Let (A,m) be regular and assume

) A/I is Buchsbaum, non-Cohen-Macaulay
(2) I 1is a.c.i.
Then

e(A/I) z(n-;:h) +26-1 .

If in particular n=2 , t22 then e(A/I)2h+4 . If t23, then

e(A/T) 2 (“';*h) ‘5.

Example 3: A/T =kl[tG;tbsz;t3s3;t254;56ﬂ is Cohen-Macaulay;

ht(I) = 3, dimA=5 , d=n=t=2 ;

e = b6ch+4=7

2_ .- e e - el .
Note that I (x4 XK 3 XK, = X X 3K X X3, x1x4) if

A =k[[x1,x2,x3,x4,x5]] , i.e. I 1is an a.c.i. prime ideal.

Example 4: A/I =k{[t3;tzs;tsz;SB;utB;us3ﬂ. is Cohen-Macaulay;

ht(I) = 3 , dimA=6 , d=t=3, n=2 ;

I is an a.c.i. prime ideal (twisted cubic).

Corollary (5.4): Let (A,m) be regular and assume

m A/I 1is Buchsbaum
(2) I 1is a.c.i.
(3) t22 .

) e<(n-111+h) +2t -1

Then A/I 1is Cohen-Macaulay.
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Remark: N.V. Trung mentioned to us that the bound of theorem (5.2) 1is

not sharp in general:

Example 5 (Trung):

A/L =lcﬂte;tss;t4sz;t294;tss;56ﬂ

=k[[x1,x2,x3,x4,x5,x6]]/ I

is a Buchsbaum ring. We have:

ht(I) =4 ;3 n=2; p(I) =8
I(A/I) = 1 and e(A/I) =6 ,

where I(A/I) 1is the I-invariant of the Buchsbaum ring. Using Theorem
(5.2) we get

625-2(8-4-1)+1=0
Trung could generalize statement (i) of Theorem (5.2) for Buchsbaum rings

as follows:

Proposition (5.5) (N.V. Trung): Let I be as above. Suppose that

A/I 1is a Buchsbaum ring. Then

n+h

e(A/I) 2( h

) - (D) - 1(A/T)

This bound is sharp for the special example 5:

e215-8—1=6_

We shall come back to these phenomenons in a joint preprint with N.V.

Trung, where new bounds for e(A/I) will be given.

6. On the Gorensteinness of Rees andAform.rings of powers of idéals.

Given an ideal I 1in a local ring (A,m) it is well-known that the
Cohen-Macaulayness of the Rees algebra R(I) = A[It] (where t 1is an
indeterminate) implies the Cohen-Macaulayness of all Rees algebras
R(I") , n€ N . The same conclusion holds for the form rings grA(I)

and grA(In)
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In this section we ask for the corresponding Gorenstein property. If
grA(I) is Gorenstein and if R(I) 1is Cohen-Macaulay, it comes out

that the integers n for which R(In) or grA(In) are Gorensteln are
closely related.to the a-invariant of the form ring .grA(I) . Under this
aspect we formulate some results concerning the powers of strongly Cohen~
Macaulay ideals which are of linear type(in particular a.c.i. ideals)
and the powers of the maximal {(or of an m-primary) ideal in a Gorenstein

local ring.

For completeness we define the reduction exponent &(I) of an ideal I

by

8(I) := min {n |3 minimal reduction q of I

..n+
s.t. In L. qIn .

First we place together some auxiliary results needed in the sequel,

which are virtually known.

Proposition (6.1): Let I be a proper ideal in a local ring (A,m)

of dimension d . Then the following hold:

a) If the Rees algebra R(I) is Cohen-Macaulay of dimension d+1 ,
then a(R(I)) = -1 and a(grA(I)) S-1.

b) If R(I) 1is Cohen-Macaulay and grade(1)22 , then R(I) 1is Goren-
stein iff a(grA(I)) = -2 and the rings A and grA(I) are quasi-
Gorenstein (i.e. the canonical modules of the specific rings are isomor-

phic to the suitably shifted rings).

c) If A 1is Cohen-Macaulay and I a strongly Cohen-Macaulay ideal
satisfying u(IAp) She(P) for all prime ideals P21 , then
a(grA(I)) = -ht(I) and R(I) 1is Cohen-Macaulay. Moreover, if A is

even Gorenstein, then grA(I) is so.

d) I1If R(I) and A are Cohen-Macaulay rings, then grA(I) is Goren-

stein 1ff (I,t)-a_z(-I) is a canonical module of R{(I) , where
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a:= a(grA(I)) and (1,t)m denotes the R(I)-submodule of the poly-
nomial ring A[lt] which is generated by 1,t,...,tm in case m=z20

L IR(I) incase m= =1,

or (1,t)-
e) Assume that A 1is Gorenstein and R(I) 1is Cohen-Macaulay. If
(1,£)™(=1) is a canonical module of R(I) for some integer mz2 -1 ,

+ .
then R(Im 1) is Gorenstein.

) If the reduction exponent of the maximal ideal m of A 1is 0,1

or 2 , then grA(m) is Cohen-Macaulay (or Gorenstein) iff A 1is so.

g) If I 1is M-primary and grA(I) is Cohen-Macaulay, then
a(grA(I)) = §(1) - dim(a) .

Proof: a) can be deduced from the proof of proposition (2.1) in [151].
b) is theorem (3.1) in [15]. ¢) is in the first part our proposition
(4.6). The second part of c) follows from [10]; see also proof of pro-
position (4.7). d) comes from corollary (2.5) in [12], if one takes
care of the correct gradings in the proof given there. f) is a well-
known result of J. Sally. g) follows from (4.5) using that the initial
forms of the generators of a minimal reduction of I are a regular se-
quence on grA(I) . To prove e) we note that for‘ m=-1 there is
nothing to prove. Hence we may assume ma0 . Then, denoting (1,t)m(-1)

by K , we get:

0 if jso

Kj=(1,t)m(—1)j= A if 1SiSm+1
T e o
Now recall that the Veronesean K(m+1) is a canonical module of the
Veronesean R(I)(m+1) = R(Im+l)

We get
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0 if jso
A if =1

(m+1)y  _ -
(K )j l(j(mﬂ)

K(m+ 1)

Hence R(Im+1)(-1) = , which proves e).

For Rees algebras of powers of ideals we prove the following auxiliary

result.

Proposition (6.2): Let I be an ideal of height 22 in a Noetherian

local ring A . Then at most one power of I has a Gorenstein Rees

algebra.

Proof: Assume that R(Is) and R(It) are Gorensteih. Since

R(1°%) = R = R and since R(I%)(-1) and R(IT)(-1) are
canonical modules of R(Is) and R(It) (see (5.1),-a) for the correct
shifting degree - 1) we know that both, R(IS)(—1)(t) and R(It)(-1)(s)

are canonical modules of R(ISt) ; hence they must be isomorphic. Compa-

ring their homogeneous parts'0£ degree j2 1 we see that the ideals
IS(tJ—I) and It(SJ—1) are isomorphic as A-modules. By the following

lemma (6.3) we get s =t .

Lemma (6.3): Let I be an ideal of height 22 1in a Noetherian ring A.

s . .
If the two powers 1 and It are isomorphic, then 8 = t .

Proof: We can assume that A 1is a local ring with maximal ideal m .

The isomorphism 1°=1% induces isomorphisms 1°d/m1®d = ItJ/mItJ
1-1 :
for all numbers j . Now, there is a polynomial P = iZO aixlEZQ[X]

of degree 1-1 (where 1 denotes the analytic spread of I ) such that

P(1i) = A(Illmll) for- 1»0 ( A denotes the length). From
1-1 1-1
8 = t

1-1 al_1 Since

P(sj) = P(tj) for j>>0 we get a
laht(I)22 , we get s =t .
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The following result shows the relation beween the a-invariants of

n
grA(I) and grA(I) .

Proposition (6.4): Let I be an ideal in a local ring A and assume

that grA(I) is Cohen-Macaulay. Then

a(gr, (1)) ] '

n

a(grA(In)) = [

where [ ] denotes the smallest integral part.

Proof: Put d = dim(A), a = a(grA(I)) , 1 =l}%] and write

a=1n+ 1 with r€{0,...,n~1} . For every i€ {1,...,n} there is an

exact sequence of R(I™)-modules:

0 —> In_l+1 grA(In)-——> Al (n)

n .
8T, (1) — grA(I) (n-1i) —> 0
Let N be the maximal homogeneous ideal of R(In)iiR(I)(n) and M the

maximal homogeneous ideal of R(I) . Then (see [ 7], proposition (47.5)):
i (1,0 @) 21 (e, @)™

Hence for every j€Z and i€ {1,...,n} there is an exact sequence

d,_n-1+i n d, n=-i n d
0 —> HN(I grA(I ))j — HN(I grA(I ))j — HM(grA(I))nj+n_i——> 0

First consider these sequences for j21+1 . Since
. . . d
- > - = =
nj+n-1i2n(l+1)+n-1i>nl+r =a , we have HM(grA(_I))nJ._'_n_i 0
for each i€ {1,...,n} . Using the above sequences it follows inductively

that Hg(In-lgrA(In))j =0 for i=20,1,...,n ; in particular

Hg(grA(In))j =0 for any jel+1 , i.e. a(grA(In)) St.
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To finish the proof, consider the cohomology sequences from above in
. . d ' d, r n
degree j = 1 . Since HM(grA(I))n1+r # 0 we get HN(I grA(I ))1 #0

and then successively Hg(Ir-kgrA(In))1 #0 for k=1,...,r . Hence

Hg(grA(In))l £0, q.e.d.

Theorem (6.5): Let I be an ideal of height 22 in the local ring A .

Assume that grA(I) is Gorenstein and R(I) 1is Cohen-Macaulay. Then
the following hold for n€ N

a) R(I™ is Gorenstein iff n = —a(grA(I)) -1

b) grA(In) is Gorenstein iff —a(grA(I)) = 1 mod(n)

Proof: To a) Put a = a(grA(I)) . Since grA(I) is Gorenstein and

R(I) 1is Cohen-Macaulay we know by (6.1) that K := (1,t)_a-2(—1) is a
canonical module of R(I) . It follows that R(I-a-1) is Gorenstein,

by (6.1),e). This is by (6.2) the.only power of I which has a Goren-—
stein Rees algebra. To b) Put b = a(grA(In)) . We can assume that

nz2 . Note that R(I") and grA(In) are Cohen-Macaulay rings and that
K(n) 1s a canonical module of R(I)(n)EER(In) . Hence by (6.1),d),
grA(In) is Gorenstein if and only if the R(I™)-module

(n)

L := (1,t)-b-2(-1) is isomorphic to K . To finish the proof, we

point out that this last statement holds iff -a= 1mod (n) . First we

note that b =[}%] by (6.4), hence a = bn+r with r€ {0,...,n-1} ,

(n)

Claim: L=K iff r=n-1

Assume that r = n-1 . Then we get for each FEZ :

0 if <0

L, - (1,0) P 2¢-1), = { a if 15358 -b-1
In(J-1+b+2) if 3z b
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and
- _2 - - -
«™), = (1,072 ™) < (a7
J ] jn-1
0 if jn=-130
=4 A if O0S£jn~1S-bn-n-1
I(Jn—1)+(bn+n+1) if jn=-t1t& -bn-n
0 if 30
={ A if 1558 -b-1
i AL AL P I ~b-'1+% ,.i.e. if j2-b .
Hence LEK(n) .
For the converse assume that LEK(n) ; in paticular L_, 3K = K

i.e. InEIr+1 . Since ht(I)22 1is follows n.=r+1 by (6.3) .

This proves the claim and statement b) of the theorem.

As an immediate consequence of (6.5) we get the following proposition.

Proposition (6.6): Let A be a Gorenstein local ring and 1 a

strongly Cohen-Macaulay ideal satisfying u(IAp) Sht(P) for all prime
ideals P>I . Assume that h := ht(I)22 . Then:

a) R(In) is Gorenstein iff n=h-1

b) grA(In) is Gorenstein iff h= {mod (n) .

Proof: Use (6.1}, c) together with (6.5),

Remark: For M-primary ideals I one can avoid the assumption that
R(I) 1is Cohen-Macaulay in the statements of theorem (6.5). For a proof

we refer to the theorems 2 and 3 in the appendix by A. Ooishi, where
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he only considers M-primary ideals.

In the following we discuss the Rees algebra of powers of m-primary

ideals in situations where R(I) is Cohen-Macaulay.

Proposition (6.7): Let (A,m) be a d-dimensional Gorenstein local

ring with reduction exponent ¢(m) £2 . Then the following hold for
n€N

(1) gr (m™) is Gorenstein iff d-48(m) = 1mod (n)
A
(2) R(m“) is Gorenstein iff n=d-6(m) -1 .

1

In particular: If A is regular, then R(md_ ) is Gorenstein and if

2

A 1s a quadratic hypersurface, then R(md- ) 1s Goremstein.

Proof: This follows as a direct consequence of (6.5) and (6.1),f)

and g).

. . n .
Next we show to which extent the Gorensteinness of R{m ) determines the
structure of the local ring (A,M) via the reduction exponent &(m) .

First we need a lemma.

Lemma (6.8): Let I be an M-primary ideal in the d-dimensional local
ring l(A,m) and q = (xi,...,xd) a minimal reduction of I . Assume
that grA(In) is Cohen—-Macaulay for some natural number n . Put

a:= a(grA(In)) . Then

na+n+
a+n dc

I

d-rlE

If moreover R(In) is Gorenstein and ht(I)22 , then I q .

Corollary (6.8.1): If under the assumptions of (6.8) the Rees algebra
R(zd!

) 1is Gorenstein, then I 1is a complete intersection ideal.
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Proof of lemma (6.8): Clearly, J := (x?,.‘..,xz) is a minimal reduc-

tion of I" and the ideal J* generated by the initial forms (x;l)*
in grA(In) is a complete intersection in the Cohen-Macaulay ring
- gr, (1)

T is artinian and a(G) = a+d , we get

gr (In) .. Since G =
A
Ga+d+1 =0 . It follows

In(.g,+d+1) - In(a+d) cJeg

and from this

In(a+d+1) - cl(rl-1)E q

i (a+n+d) cq

i.e.

If moreover R(In) is Gorenstein, then a =-2 (by (6.1),b)), hence

Id-ngq .

As a consequence we obtain:

Proposition (6.9): An equimultiple ideal I of height h in. a Gorenstein
h—1
)

local ring A 1is a complete intersection iff R(I is Gorenstein,

Proof: By (6.6) the "Only if'-part is already clear. For the converse
let q be a minimal reduction of I . Since IA = qu for all

P € Assh(A/I) (by corollary(6.8.1)), we get I = q {since

I Ay A A I .
ASSA(H)EASSA(E) Assh(a-) Assh(i) and hence ASSA(E) is empty).

Theorem (6.10): Given a d-dimensional local. Gorenstein ring (A,m)

and an integer i€ {1,2,3} . Then

R(md-l) is Gorenstein iff &8(m) = i-1
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FEOar: 40 5(m) = i-1 then R(x™ is Gorenstein for
S I R R by (6.7). Conversely, assume that Rmd™Ly s
C‘\"“““'-"fiii wnd let q be a minimal reduction of m . By (6.8) we know
L . i i-1
t?'“‘ M vy . Hence, for i€ {1,2} we get m = qm and
i- i
o Foam 7 , i.e. &8(m) = i-1 for these two cases.
For | = d-3 . . h 3
! ! agsume that R(m ) is Gorenstein. We know that m cqm,
wheve . ‘xi,...,xd) is a minimal reduction of m .
. 2
RN : =q+
(@ :y,m =qa+m
Liliy m3 = mzq

Nete thag
(6.2Y

lvom (iii) it follows &(m) = 2 , since &(m) ¢ {0,1} by

and g, 7.

Prong ot
0,

3 2 . -
2L tha Claim: To (i): Let u€Em Nq . Write u = Eai Mi ,

where W: vt A and M, are monomials in x1,...,xd of degree two. Put
i
B Ntt—-‘ d-4 i i h i nomial V in x eesX
1 --...xd . For fixed 1 there 1s a mo _ EEEEFE
O leor d-3 d-3
CORTeC 1(d-4) -2 such that Mi-V = F and Mj-VEJ =Xy Thee Xy
for ant 4 # 1 . Hence
Vu=q VM, + )} oM,V =aF+W ,
1 i s#i 3] 1
Whe{";’t
d(d-4)-2 3 _ _d%-4d+i
VueEm -m =m
and  We o This implies
2
aiFEJ +md 4d+1 )

SINCe (820 \roof of (6.8))
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2
o8 4d+3 m(d-:a)(d-nEJ

it follows

hence

o mz S q = (X,,.004%X.)
i — 1’ |

=2

Since ng_‘.‘_q (otherwisge R(md } or R(md_]) would be also Gorenstein),

we get aiem .

To (ii): Since A/q 1is Gorenstein, we have
(q:, m) 2

ks —2 o 0*g ,
q q

2
where k := A/m and m;q £0

Therefore (q :Am) = q-'-ttl2 .

d
To (iii): Let u€m3i_:qm . Write u= | X, where a.€m . For
i=1
fixed i there is a monomial V 1in XysererXy of degree d{d-4) -1
such that
d-4 d-4
in =F = 1ot xd
and
Vi, €3 =(x';l“3,...,xg'3) for all j # i .

We get
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= . + R
Vu = o, Vx, jgi_aj xjvnalp+w,

d(d=4)-1 3 _ d°-4d+2
m =n

where VueEnm and WEJ . From

2
pd Th*3 L D 5 e conclude

aiFmEJ and aim_c_q ’
that means by (ii)

a. € (q:, m =m2+q

i A

. . 2 '
Now write oy Bi + Y; with Bi €m and \f e q . Then
d
* = =
*) we Lo = 1Bt Lvx

implies
% e agd 2
Yi¥; €9 Nn mq

i=1

. d
R . 2
(by (i)),since ue€ m3 and X Bixi Emgq .
i=1

Finally it follows by (*) that

2 2 2
UEMg  +mqcmgq

This proves (iii) of the claim and so (6.10).

Remark: A.Ooichi proves in his appendix the following result: Given
a d-dimensional Gorenstein local ring (A,m) with multiplicity e , then

R(md_e) is Gorenstein iff A 1is a hypersurface.

This is a generalization of our theorem (6.10), where only the cases

e€{1,2,3} were treated.
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Appendix

On the Gorenstein.Property of the Associated Graded

Rings and the Rees Algebras of an Ideal

Akina 00TSHI

Let (A,m,k) be a noetherian local ring with dimA =d and I an
m-primary ideal of A . For simplicity, we assume that k. 1s an infinite
field. Put

5

d
(1=-1t) F(G(I) ,t) = ag*a t+...vat’ ,a #0 ,

[e o]
where F(G(I),t) = 2 1(In/1n+1)tn is the Hilbert series of G(I) . We
n=0

say that G(I) is symmetric if a; =a__. for any 1, 0siss . The

following theorem generalizes a result by J. Watanabe [4]:

Theorem 1. Assume that A 1is Gorenstein. Then G(I) 1is Gorenstein if

and only if G(I) 1is Cohen-Macaulay and symmetric.

Proof. We may assume that G(I) 1is Cohen-Macaulay. Take a minimal
reduction J = (x1,...,xd) of I and put B = A/J and L = 1/J . Then
B 1is an artinian Gorenstein local ring; x?,...,xg "is a G(I)-regular
sequence, G(L) = G(1)/(x4,...,x}) and (1-0)3F(G(D) ,) = F(G(L),t)

Hence we may assume that d = 0 .
Assume that G(I) 1is Gorenstein. Then by duality,

(k)) =K

oy = EMGE

Hom, ;1 (G(D) , E, 1

where KG(I) is the canonical module of G(I) (cf. [1]). Hence

a; = 1(H°mA/I(G(I)i’ EA/I(k)))ﬂ 1G(D) ;) = a_; -
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Conversely, assume that G(I) is symmetric, i.e.,

1(11/IL+1) - 1(15—1/15—1+1)

, 0Siss
Then l(Il)+-1(Is-1+1) = 1(Il+1) + 1(IS_1) and we get
(1) + 1(13_1+1) = l(IS+1) + 1(A) = 1(A) . Since A 1is Gorenstein,
1) = 1¢a) - 157
= 1/ = 10 15T

Combined with the inclusion Ilc:(O :IS-1+1) , we get Il==(0 :Is—l+1)
Hence )

o s o™i = 5y = 1t
Therefore

[Soc G(I)] crna™ i@ oyt 2 0 for i<s

i .

and

[Soc G(I)] = 150 (0 1m) = (d :IDN0:m) = (0:m) =k
s

Hence SocG(I) sk and G{I) is Gorenstein.

Henceforth we assume that d21 . We denote by &(I) the reduction
exponent of I , namely, &(I) 1is the smallest integer n satisfying
the equality JIt = In+1 for some parameter ideal J contained in I .

Recall that if G(I) is Cohen-Macaulay, then &(I) = s = degF(G(I),t)'+d.

= a(G(I)) + 4 . Define the integers ei(I) = e, 0sisd, by the

following condition:

1A/1" Y = e (M) _e (PN 4+ v ()% for n»»0 .
0 1 d
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Corollary. If G(I) is Gorenstein, then &(I) = 2e1(I)/e(I)
Proof. By [3, Proposition 1.1],

e =a, +a + ... + a

0 0 1 s
and e, = a1+2a2 + L.+ sa_
Since a; =a._. by the assumption, we get

2&1 = (a1 + ...+ sas) + (sa0 + ... +a

= s(ao-+...-+as) = se, .

It is easy to show the following

Lemma. e, (17) = rd_1{e1(I) + e(I)(d=1)(c-1)/2} .

Theorem 2. (1) If G(Ir) is Gorenstein, then
2e1(I) s e(I)(d-1) (mod e(I)r) .

(2) Assume that G(I) 1is Gorenstein. Then G(Ir) is Gorenstein if

and only if a(G(I))= -1 (modr)

Proof. Put e(I) =e , e1(I) = e, and 6(I) = s..

(1) By Corollary and Lemma above,

erd 6(1F) = e(1D)s(1h)
= 2¢, (1) = 2r‘i"{e1 +e(d-1)(r-1)/2}

Hence 2e1a -e(d—1)(r—i) 2 e(d-1) (moder)
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(2) Assume that G(Ir) is Gorenstein. Then

se = 2e, 3 e(d-1) (moder) .

1

Therefore s=d-1 (modr) and a(G(I)) =s-d= -1 (mod f) .

To show the converse, we may assume that A 1is complete. First we remark
that the theory of local cohomology and canonical modules for graded
rings defined over local rings developed by Ikeda (see [1], pp. 139-141)
also holds for a noetherian graded ring R = nngn with Ry = A and
with unique maximal homogeneous ideal. In particular, R 1s Gorenstein
if and only if R 1is Cohen-Macaulay and KRER(a) for some : aEZ , where
KR is the canonical module of . R . The integer a 1is uniquely deter-
mined by R and we denote it by a(R) . We apply this to R = A[It,t™1] .
Put u=t:-1 . Since R/(u) 8G(I) 1is Gorenstein', R 1is Gorenstein, and

it is easy to see that a(R) = a(G(I)+1 . By the assumption,

a(R) = rb for some b&€Z . Then R(r) is

a(R) =0 (mofr) , hence a :

Cohen—Macaulay and

= r(a) (D= 7 )

~
—~
aj
~

n
o

n

Hence R(r) EA[Irt,t-1] is Gorenstein by the above criterion. Therefore

G(Ir) = R(r)/(u) is also Gorenstein. o

Corollary: G(Ir) is Gorenstein for any r 1if and only if G(I) 1is
Gorenstein and 6(I) =d-1 .

Theorem 3: Assume that A is Cohen-Macaulay and dz22 .
1) If R(Ir) is Gorenstein, then
r =-2e(I)/e(1) +d-1.

In particular, £d-1.
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2 Assume that G(I) 1is Gorenstein. Then R(Ir) 1s Gorenstein if

and only if r =-a(G(I))-1 (in particular &(I) Sd-2).

Proof. Put e(I) = e and e1(I) = e,

1) By [1, Corollary(3.7)] , S(Ir) = d-2 . Hence

(a=2)er® = (a-2)e(1F)
= 2e1(Ir) = rd_1{2eI +e(d-1)(r-1)} .

Therefore we get (d-1-t)e = 2e1 , 1.e. r=-2e1/e +d-1. Since

e120 , we get rsd-1

(2) Since G(I) 1is Gorenstein, a(G(I)) = 6(I)~d = 2e1/e-d . Assume
that R(Ir) is Gorenstein. Then by (1), '

r = -2e1/e +d-1= ~a(G(I)) -1

Conversely, assume that r =-a(G(I))-1 . Then G(I') 1is Gorenstein by

Theorem 2 and

a(6(1h)) = [ a(G(I))/r] = [ (-r-1)/r] = -2 .
Therefore R(Ir) is Gorenstein by [1, Corollary (3'7')]'5
By localization, we get the following

Corollary: Let J be an ideal of a Cohen—-Macaulay local ring with -
htJ 22 . Then

(1) R(Jn) is not Gorenstein for any ngz2htJ

(2) Iif R(Jn) is Gorenstein, then R(Jn) is not GoFenstein for

any m # n .

Corollary: Assume that A is Cohen—-Macaulay and d22 .

1) R(Id-l) if Gorenstein if and only-if A 1is Gorenstein and I 1is
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a parameter ideal. In particular, R(md_1) is Gorenstein if and only if
A is a regular local ring.

(2 Assume that dz23 . Then R(l'lld_2

e(R) = 2 .

) is Gorenstein if and only if

(3) Assume that d24 . Then R(m9 3

is Gorenstein and emb(A) = e(A)-+d-—2..

) 1is Gorenstein if and only if A

{4) Put e(R) = e and -assume that d>e . Then R(md-e) is Gorenstein

if and only if emb(A) =d+1 , i.e., A 1is a hypersurface.

Proof: The "if" parts follow from Theorem 3, (2). To show the "only if"

parts, we recall that

(1) e1(I) =0 if and only if I 1is a parameter ideal (cf. [2, Theorem
4.1,(2)1).

(2) Since 81(50 2e(m) -1, 2e1(m) = e(m) if and only if e(m) = 2
(cf. [2, Lemma 4.21).

(3) If A 1s Gorenstein, then el(m) = e(m) 1if and only if
emb(A) = e(A)+d -2 (cf. [3, Theorem 3.6, (2)1).

(4) A 1is a hypersurface if and only if e1(m) = e(e-1)/2 (cf. [3,
Theorem 3.4, (6)1). a
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