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Abstract We study the generalized transfer operator % ﬂ{(z) = z [z_}_ n] f [z _}_ n] of

n=1
the Gauss maps Tx = %mod 1 on the unit interval. This operator, which for 8 =1 is the

familiar Perron—Frobenius operator of T , can be defined for Re 8 > % as a nuclear opera-
tor either on the Banach space Am(D) of holomorphic functions over a certain disc D or

on the Hilbert space Ja’}&g) ﬁ(H— }) of functions belonging to some Hardy class of functions
over the half plane H_ 3 The spectra of .Zﬁ on the two spaces are identical. On the
space % I&g) 5(H- }) 4 8 is isomorphic to an integral operator % 3 with kernel the

Bessel function ¥, 3_1(21/H) and hence to some generalized Hankel transform. This
shows that "‘"’ﬁ has real spectrum for real g > % . On the space Am(D) the operatpr .z'ﬁ
can be analytically continued to the entire B—plane with simple poles at 8= ﬂk = 15}5,

k = 0,1,2,... and residue the rank 1 operator /(k)f = %113 f(k)(o) . From this similar
analyticity properties for the Fredholm determinant det(l—.z’ﬁ) of .Zﬁ and hence also

for Ruelle’s zeta function follow. Another application is to the function

o 2, \1/2
(u(B) = 2 [n]ﬁ where [n] denotes the irrational [n] =Pi(“_‘|2:i)i_ {p(B)

n=1
extends to a meromorphjé‘function in the B—plane with the only poles at f =21 both

with residue 1.
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1. Generalized transfer rators for the Gauss ma

If I=[0,1] denotes the unit interval in R the Gauss (or continued fraction—) map
T : [0,1] — [0,1] is defined as
1/xmodl x#0
Tx = (1)
0 x=0

From ergodic theory for general hyperbolic systems T : M —— M it is known [Bo],

[Rul] that systems like the Gauss map allow for a description in terms of symbolic dyna-

/4
mics 7:F ¥ — M with an alphabet F and a transition matrix A = (Aa J/),

0,0’ €F , defined through a Markov partition £ = (7 ) scF - This way T gets semi-

z /4
conjugated to the shift map r: F p— +, (7€), =& for £=(¢&). , on the
i~ %4l i 1EE+

one gsided subshift of finite type with the above data. For the Gauss map F turns out to be
N and hence the symbolic dynamics takes place on a one sided subshift of infinite type.
The physical system corresponding to such a subshift is a spin system on the lattice Z +
whose spins take values in N . Of special interest in the ergodic theory of hyperbolic
systems are the equilibrium states [Bo] which are T—invariant probability measures de-
fined through the Gibbs—ensembles of the above mentioned lattice spin systems. These
Gibbs—ensembles are deternﬁned by some interaction energy characterizing the spin system

[Ru]. A rather special role from the physical point of view in this approach plays the in-
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teraction determined by the function ¢, (x) = —og|det D T(x)| , where D, T denotes
the derivative of T along the unstable directions of the hyperbolic system T [Rul],

[Bo] . For 1-dimensional systems this is the function ¢, (x) = —log| T’/(x)| , which for

I
the Gauss map reads tpl(x) = log 2. Through the symbolic dynamics = : F R

/4
this defines a function A({) =, o x(§{) on F + . As shown in [Ma3], the map

/]
7:N T ——1 for the Markov partition 4 = (In)nEN y I = [n_-}'-'l" %] , of the Gauss

map T:I—1 is given by
I’(f) = [£O’£1’ °°°° ]) if £= (£1)16H+ (2)

where [nl,nz,...,] denotes the number x € I whose continued fraction expansion has

entries §, €N, i€ l’+ . Strictly speaking, the map = is not surjective since x(§) is

/4
irrational for £ €N t  This means that we are treating this way the Gauss map T re-

stricted to the invariant subset I _ = {x € I: xirrational} . As long however as we are
interested only in measures which are absolutely continuous with respect to Lebesgue mea-

sure the properties of T : Iinv — L

y and T:T——T are the same since I\L,__ is

inv
countable and hence has Lebesque measure zero.

A powerful method within the so called thermodynamic formalism as developped in [Rul]

is the transfer operator method. It is a straightforward generalization of the transfer matrix

/i
technique for lattice spin systems with finite range interactions [Ma2]:if C(F +) de-

i/
notes the space of continuous observables of the spin system on Z n and if A € C(F +)

[/ /
is any such observable, the transfer operator .#: C(F +) — C(F +) is the following
linear bounded operator



S

—4—

AE) = ) Ay g e A T0,0) (3)
o€F

where (0,£) denotes the configuration ¢’ = (¢ ;) with .f(’) =¢ and ¢§ ;' = §_, . I this
£’ is allowed then A =1 otherwise A = 0 . In the special case of a locally ex-
0"50 asfo

panding Markov map T: M —— M and the function A = ¢y © 7 with
¢, = —log | T/(x)| the operator .¢ obviously induces an operator 2 on the space of
observables 1 of the system T: M —— M which has the form

2 ¥(x) = 2 |4, (x)] To ¥, (x) xyo ()
o€F T

and hence coincides with the so called Perron Frobenius operator [LaM] of T . For the

Gauss map the operator has the form [Mal],

2%9- 3 () e o

n=1

and its spectral properties in the Banach space Am(D) of functions holomorphic and con-
tinuous over the disc D = {z: |z~1| < %} have been studied in [Mal], [MaR1],
[MaR2]. The main application of operators of the form (3) originally was to construct
invariant measures for the system T : M —— M , a special case being the Sinai—Bowen—
Ruelle [BoR] measure corresponding to the choice A(£) = ¢, o x({) with ¢, as before
[Rn2]. For general A one gets by this construction Keane’s g—measures [K]. From equi-
librium statistical mechanics of lattice spin systems one knows that the Gibbs states corre-
sponding to the interaction S A(§), considered now as a function of the parameter 3,

which corresponds infact up to Boltzmann’s constant to inverse temperature, describe the
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physical properties of such a system when coupled to an exterior heat bath of fixed tempe-
rature. From this one could expect that also for the dynamical system T: M —— M the
function qoﬁ(x) = —flog| det(DuT(x) | respectively the corresponding observable for the
spin system A ﬁ( £) = vgo x(£) plays a crucial role in the description of the properties of
the system T : M —— M . The transfer operator then has the form

Z(€) = EFA,,foexp Age,€) {(o,6) (5)

Specialising to the Gauss map and going immediately over to the induced operator on C(I)

we get

®

250= ) fata). ®

n=1

where for reasons of simplicity we have omitted the tildes in (4). To our knowledge the first
time where in ergodic theory an operator analogous to .Zﬁ has been used to characterize
invariants of a dynamical system was in [PaT] for Markov chains. It was shown that the
highest eigenvalue Al(ﬂ) of a certain generalized transition matrix has a convergent power
series around S =1 whose coefficients define invariants of the Markov chain. Instead of
the eigenvalue A,(f) it is more convenient to study the quantity P(f) =1log A(f) . For
real g the eigenvalue Al(ﬁ) is positive and P(f) hence well defined. It can be analyti-
cally extended around the real axis, at least for systems where F can be chosen finite: one
applies simply the Ruelle—Perron—Frobenius (RPF) Theorem [W1] to .z’ﬁ which shows
that for real 8 the leading eigenvalue A,(f) is positive and simple. For these S—values
P(f) is nothing else than the pressure of the observable SA for the system T: M — M
and hence a convex function in 8 [Rul]. P(f) can be defined independently of the
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operator .Zﬂ in analogy to equilibrium statistical mechanics through the systems
partition functions Z (BA) [Ru2]:

P(f)= lim logZ (PA) (7
n——HD

n—1
where Z (A)= Y expf Y A(TRx) (8)
x€Fix T k=0

and Fix T" = {x € M : T®x = x} , respectively the variational principle [W2]

() = sup {n,(T) + ﬁJ‘ A(x)du(x)} (9)

where the supremum is taken over all T invariant probability measures z and h ,u(T)
denotes the Kolmogorov—Sinai entropy of T with respect to g . The measures
maximizing the right hand side in (9) are just the equilibrium measures x for the
observable SA . For A = A1 =p, 07 we recover thereby the Sinai—-Bowen—Ruelle
measure for the dynamical system T: M — M [BoR] [Ru2].

The results of Parry and Tuncel in [PaT] have been generalized recently by Rand et al.
[Ra], [RuB] who showed how practically all quantities introduced over the last years to
characterize chaotic behaviour of hyperbolic systems like entropies, dimensions, singularity
spectra etc. can be derived from the function P(f) . In complete analogy to equilibrium
statistical mechanics where the quantity P(8) is up to sign and a factor of 8 just the free
energy of the spin system attached to the map T through its symbolic dynamics, the
analytic behaviour of P(f) as a function of  is used to define phase transitions for the

dynamical system T : M —— M. It is clear from the RPF—Theorem that for hyperbolic
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gystems with finite F no such phase transition can occur for real 3. The situation chan-
ges completely if F is cm?table infinite a8 we will show in the special case of the Gauss
map. Similar results are expected to hold for all hyperbolic systems with a countable infi-
nite Markov partition. Candidates are the higher dimensional versions of the continued
fraction transformation as for instance the Jacobi—Perron algorithm. Their tran?fer

operators for §=1 have been discussed in [Ma5].

In this paper we restrict the discussion to the ordinary Gauss map in dimension 1. It would
be interesting to see how far our results for this case can be extended to higher dimensions.
By applying the same arguments as in [Mal] respectively [MaR1], [MaR2] one shows
for general € € with Re 8> % that for a discussion of the pressure P(f) of the Gauss
map one can restrict the generalized transfer operator 'Zﬂ in (6) to the Banach space
A_(D) of holomorphic functions over the domain D defined as for the operator

# =2 in(4). Asfor S=1 onehas

Proposition 1 The operator .S,’ﬂ: Am(D) — A (D) with

240= 1 () e

n=1

is nuclear of order zero for S € € with Re 8> % . Forreal 8> % .Zﬂ has a leading posi-
tive eigenvalue A (f) which is simple such that P(f) = log A,(f) is the pressure of the
observable Y for the Gauss map. For any m € N the following trace formula holds

m—1 K 243
I—r(T x)
trace .2‘"5= E =0

m—1

EFix T™ 14(=1)2 T 7T (T* )2 | oo
x€EFix Eg X



As a consequence we hence get for the partition functions

n—1
2= Y e ) edTN:
x€Fix T® k=0

Corollary 1 Z (f) = trace .lg])n — trace !él)n where the generalized transfer operators
.t"gs), 8§ = 0,1, are defined as
- 2(B+s)
1 1
A= Y (7] i) (11)

n=1

Obiously .L’g)) = "”ﬂ and .L’gl) =— g with .i!ﬁ a8 in Prop. 1. Since the map
Bf— !Es) is holomorphic in g for Re(f+8) > % we find that the function

2 2,(0)
2

(H=exp § (12)

n=1

which by a standard argument can be written as

det(1- 1))
_dgt(l— ) (13)

is a meromorphic function in the domain Re 8 > % . Thereby one makes use of the fact
that the Fredhom determinant det(l-.zgs)) is a holomorphic function of 8 in the do-
main where .zg‘) depends holomorphically on S[G] . Obviously, the function ((5) has
poles in the domain Re 8> % among those 8 values where .t’g)) has A =1 among its

eigenvalues. This is certainly the case for =1 where A =1 is the leading eigenvalue of
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40) and hence is simple. Since in this case ng) is just the operator —.Zgo) , whose
leading eigenvalue is strictly smaller than 1 in absolute value, the Fredholm determinant

det(l—.fgl)) #0 and hence S=1 is a simple pole of {(B).
Problem: What is the residue of ¢(f) at =17

It is one of the aims of this paper to show that the function ¢(f) in (13) can be extended
to the entire f—plane and defines there a meromorphic function. Before doing this we want
to relate the generalized transfer operators _{gs) in (11) to some integral operator with a
simple kernel acting in some Hilbert space of square summable functions. The resulting
integral transform turns out to be a generalized Hankel transformation. This extends an
analogous result for the case #=1 discussed in [MaR1], [MaR2] . Since the arguments
for general 8, Re 8 > % are slightly more complicated than for # =1 we present them in

more detail in the next section.

2. The operators .xgs) in generalized H

Since ng) = -0 % it is enough to discuss the operator .t’go) which for simpli-
city we denote again by .2}3 I fE Am(D) is an eigenfunction of .#{f) then one dedu-

ces recursively from the eigenequation

1]

Mz)= Y [z-}-_n] 26{[2%] = 24(z) (14)

n=1

that f can be extended to a function holomorphic in the entire complex z plane cut along

1

the line (—m,—1] . This follows from the contraction properties of the maps ¥,(2z) = e
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If we therefore denote by H 5 the half plane
He={z€C:Rez> 6} (15)

then any eigenfunction f of .z’ﬂ in Am(D) is holomorphic in every half plane H_, te
for any € > 0. It is also evident from equation (14) that any such eigenfunction vanishes
for |z| — o in these half planes and hence is also bounded there. From this one can
expect that .Zﬁ can be defined on some Hardy space of functions holomorphic in a half
plane. We denote by %(2)(H 6) the ordinary Hardy space of functions holomorphic over
the half plane H E[D] :

#2(H ) = {1 : 1 holomorphicin Hy, f bounded in
+m
Hg,  forall €>0 and J |£(6+iy) | 2dy < o} (16)

-0

This space is known to be a Hilbert space with scalar product

+o
(4 = o= J £ (6+iy)Ey( 6+iy)dy . (17)

—o

Furthermore the Paley—Wiener Theorem holds, giving a simple characterization of the ele-

ments of this space [D]:

Theorem 1 A function f belongs to the space a’((Z)(H 6) if and only if there exists a
function ¢ € Zy(ds,R 4) such that



-11 -

o 1]
1(z) = I ds e—szeastp(s) .
0
The function ¢ is unique (in the ¢, sense) and

1 1]
(8+ix) 1 %ay = [ aslote)1® = llell %y -
0

§T8

2 _1
I oy =

From what we have found earlier for the eigenfunctions of .5!6 one could expect that the
Hardy space % (2)(]1 6) for appropriately cilosen 6 > —1 would be a good space for ¢ 3
to be defined on. The discussion of the case §=1 in [MaR1] shows however that a
slightly modified class of functions is better for simplifying the operator .z’ﬂ . Generalizing
the procedure in [MaR1] we define for arbitrary real a 2 1 the space & ¢(12)( Hy) as

follows

a"e"(lz)(Ha) = {f: { holom. in Hg 1€ 3(2)(H6+6) for any € > 0 and

® +mo
Jx2a_2dx J dy( | f0c+ 6+iy) | 2 [ {(x+ 8+14i7) | D) < o (18)
0 —

We want to show that & 512)(]':1 §) i8 a Hilbert space. Since any { € ¥ ‘(12)(H 6) has the
+o ‘
property that J dy | {( 6+=x+iy) |2 <o for x >0 we find that forany ¢ > 0

—0

® +o
J x20 24y J dy(|£(x+ 6+iy) | 2| {0+ 6+-+iy) | 2) =
€ —®

@ +o @ +m
= J 2024y J' dy | f(x+ 6+iy) |2 = j 2024y J' dy | f(x+ S+itiy) |2
€ €

—0 —



Changing in the first term of the RHS the variable x to x = x’ +% gives

20‘_2 +o [11] +o
LHS = J' (x’+1) 'J' dy|f(x'+§+5+iy)|2-J x2““2de' dy | f(x+ 6+1+iy) |2
— € —

-2—"'6

Introducing next the density function wgc)(x) with

'0 x<— é—ke
) =1 x4 — Tresxge (19)
(x+%)2a—2_x2a——2 € S x

we have shown for any € > 0

o +o
J 2024y J dy( | f(x+8+iy) | 2 - [f(x+ 6+1+iy)| D) =
€

+o +co

J J Y, 6)(x dxdy|fx+2+5+1y 2
—0 —o

For € J{Ef)(H 5) the limit € — 0 on the left hand side exists and hence also the
limit on the right hand side exists and the two coincide. Since qol(zf) converges for

€ — 0 to the positive density ¢ a(x) where

1
0 < - '2'
1
po(x) = | (x+p)** -5 £$x<0 (20)
1 2a—2_x2ah2 0< x

(x+7)
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we have shown that for f € & ¢(12)(H 5

@ +o
[ ¥ ax [ av(1t(xt 6+in)1 2 - | f(xt S4+in) | = (21)
’ :;]) +o

=I qpa(x)dxj dy|f(x+5+é—+iy)|2

This shows that ¥ ‘(12)(15[ 5) 18 indeed a Hilbert space.
The Paley—Wiener Theorem for this space takes the following form

Theorem 2 A function f belongs to the space & 5'2)(15[ 6) if and only if there exists a
function ¢ € Zp(ds,R +) such that

© 1 1
f(z) = J ds 205" 2(1-e%) Zgfs) . (22)
0

The function ¢ is unique in the !2—sense and

+m
8 2dx [ dy(|f(x+ 6+iy) 1P xS+ in) | )

_TI(2a-1 T 2
-—é,%,lldsmsn

oO—\8

[l =5
# ) 7

Proof: The "if"—part of Theorem 2 is easy: assume f{ can be written as in (22). Since the
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function g_(8) = e_'ssﬁﬂ'_}(l—eﬁs)_'i is bounded on the real line 0 {8 < o for any
€ > 0 the function ge(s)(p(s) belongs to .i’z(ds,IR +) . The Paley—Wiener Theorem then

implies that the function
m
f(z) = J’ ds e ¥%H 8T E)g (5)s)
0 |

belongs to o'o’(z)(H 5+ ¢) forany € > 0. Furthermore any such { obviously is holomor-
phicin H 5 Applying next for x > & Plancherel's Theorem to the function
f(y) = f(x+iy) we find

1
2r

§

| tx+iz) | 2y = [ ds 20O 01670y ) 2
0

respectively for x > 0

4o ©
. J |[f(x+&+iy) | 2dy = J ds 628562011 _8)71| )| 2
— 0

From this we conclude that for x > 0

+m
L J (1f(x+8+iy) | 2= | fxt 6+3+iy) | 2y =

k.

=sts2a—le—2sxl‘p(s)|2
0
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and hence

1] +m
%J 2024, J' (| f(x+8+iy) | 2| f(x+ 8+-2+iy)  Bydy =
0 —®

® ®
2a-1 2 2a-2 -2 I'(2a-1 2
= [ ®* ) ? [ 220 = KO [
0 0 0

To prove the "only if" part of Theorem 2 we proceed as follows: for n > 0 we define for
any 1€ #(D(H) the function

f,(2) = i(n+3) . (23)
Then we have

Lemma 1l For any f€ d'%’gz)(H‘s) and # > 0 the function f’? is in

H (2)(H )N 0'5'(2)(H ) and lim f_=1f, where convergence is in the space
(2)
H, (Hé) .

Proof of Lemma 1. By definition any { € ¥ ‘(,2)(}1 5) belongs to the space %(2)(H 5+ 17)

(1))
for any 1 > 0. By Paley—Wiener this means {(z) = Je_sze( &+ ”)8<pn(s)ds with
0

o
Yy € .z’z(ds,IR_*_) . Hence fﬂ(z) = J e_szeascpn(s)ds belongs to %(2)(H5) and trivially
0

also to 3(2)(H6+€) for any € > 0. To prove that fﬂ € a"’b‘gz)(Ha) we have to show

2
that |{f < m . But
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o +o
[ 2 2ax [ ay (110t 64mi) 1P (x84 mgrin) | D) =
0 —
o +m
= [rn?e2ax [ ay(1tx’ +6+in) | 211"+ 454in) )
7 —

+o +o

Since @ > 1 and J dy|f(x’+6+iy)|22J |£(x’ +&+5+iy) |2 for x’ >0 [D] we find
—0 -—D

forany n20:

£ <l : (24)
| ”llo?,gz)(Ha) #w

To show finally that { p COBVerges to f in the space & gz)(H 5) we argue as follows:
since f_fq € a'%'&z)(H 6) we know from relation (21) that

+ao 4+
J’ pa(x)dxj dy [ H(x+ 6+5+iy)—f(x+ 6+ n+itiy) |2 < o
—o —m

Hence there exists for any € > 0 a compact set Ke such that both f and f17 are holo-

morphic in K ¢ and

j ¢ () dxdy | f(x+ S+itiy)—f(x+ 6+ n+atiy) |2 < £ (25)
RA\K

On the other hand there exists 7 = n(e) such that
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up | a4+ 6-+3)—H(z+n+6+3) | < & '[ p o(X)dxdy) ! (26)
Z
€

€

and hence lim

|l || 2 (2) | =0 follows. This concludes the proof of Lemma 1.
n—0 7 d'b’a (Hﬁ)

To proceed then with the proof of Theorem 2 we apply again the Paley—Wiener Theorem,
now to the function f " which by Lemma 1 belongs to 1((2)(11 6) for n > 0. Hence there
exists a function g‘:n € Z5(ds,R +) such that

f() = l ds %%y, (s) . @7)

Plancherel’s Theorem then gives for all x 2 §

+o o
55 | 15,0t Py = [ as 7252y )| (28)
— 0

Since f 7 €N £2)(H 6) we have

o +m
sza_zdx J (18, (x+6+13) | = | f(x+ S+5+iy) | D)y < o .
0

—0

Together with relation (28) this shows that

o 14]
sz"‘?dxj ds 2 %(17")| 9, (5)| s < @
0 0
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and hence by Fubini
[11] [11] ,
J ds(1-¢7%) | ¥,(6)12 J' dx 20 28X o o (29)
0 0

The x—integration can be performed to give H%%})- 8—(2a—1) . From (28) therefore we
2

deduce that there must exist a function ¢ 7 € .?2(ds,lR _|_) such that

¥,(5) = ¢, ()" e (30)

From this we conclude that the function f n= f(z+n) for n > 0 has the unique represen-

tation
f,(2) = i ds 5% 0850 415y %, ) (31)
such that
i;lzzpa(x)dxdylf,,(zw%)ﬁ =£§%;%Pldslv,,(s)lz . (32)

Since by Lemma 1 the sequence {f 7]} is a Cauchy—sequence it follows from (32) that also

{¢f7} is a Cauchy sequence in #,(ds,R +) . Hence there exists a unique ¢ € Z,(ds,R +)
with lim ¢ _ = ¢ in the .7, sense. Define finally the function
n—0 n 2 )
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() = J' ds %8018 F(s) (33)
0

which by the first part of Theorem 1 belongs to ¥ £2)(H 6) . From relation (32) applied to
the function T—f n Ve get

limf_ =71 .
1;-—-»0"T

But by Lemma 1 we also have lim f_=f{ and hence
7—0 7

f(z) = (z) = J ds e_ﬂzeassa_&(l—e_s)_}qa(s)
0

with an unique ¢ € ..5,’2(ds,[R +) . This concludes the proof of Theorem 2.

Equivalent to Theorem 2 is the following

Corollary 2 A function { belongs to the space o¥ {2)(H ) if and only if there exists
¢ € Z,(dm,R +) such that
(34)

(z) = J dm(s)e“sze( 6+1)sga—4 g;(a) where dm(s) = ds
ef-1

The function cp is unique and
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5 2 Jdm(s)na(s)l

Jo’(2 (H ) 9o
Proof: Set ¢(s) = (e:~1)1/2(s) .

In (18) we defined generalized Hardy spaces ng)(H 6) for real a > 1. This definition can
be extended to a’s with a > % as follows: if a 2 1 then any function f in JB’(2)(H6)
obviously has the property that its derivative {’ with {'(z) = 3z {(z) belongs to the
space & g +%(H 6) . Hence we can define for arbitrary a with 2 <ax<l

5(2)( Hg) = {f:fholom.in Hy, lim f(x+iy) =0

X-—-o

and 1 € ¥ 2)(H )} . (35)

Then it is clear that Theorem 2 respectively Corollary 2 hold for general real a with
1

a> 5.
If one wanted to define the spaces % t(!z)(H 6) also for a ¢ % the situation gets more

complicated as one can see already from representation (22). For such a—values the func-

tion ¢ 8(x~4) H(l—e_s)_& is for x > &, because of the singularity in s = 0, not any

- more bounded, even not .2’2 on [0,m). Hence such a representation can be interpreted in
the whole half plane H 5 only in the sense of distributions. Since for our present discussion
we do not need values a < % we do not enter this problem here. The following result
shows how the above spaces ¥ £2)(H 6) are related to the generalized transfer operators
.z'ﬂ of the Gauss map:

Theorem 3 If .z’ﬁ: J‘I&ﬁ,)ﬁ(ﬂ— 9 — Jo’}ggl);(H_}) denotes the operator
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2B
.Zﬁ{(z)= 21 [z-}-_n] f[z-}-_n] and J&’ﬁ: .Zz(dm,m+)——' Zo(dmR ) denotes the
n=

@
integral operator ¥ ﬁ«p(s) = J dm(t) 3'2'3_1(21/3')90(1;) with dm(t) = _ctlt_l then the two
0 -

operators are isomorphic for all 8 € € with Ref > % . They are both of trace class.

Hence we have also

Corollary 3 The operators Jﬂ and ¥ 8 have the same spectrum, that means all eigen-
values are identical and have the same multiplicity. For real 3 they are real.

Proof of Theorem 3 For fixed 8= ﬁ1+iﬂ2 by Corollary 2 any element f of the space

c’?g)(ﬁ-%) has an essentially unique representation as
1

f(z) = J dm(s)e %52 o(s) (36)
0

ip.

with f;J € Zo(dmR +) and dm(s) = 2—3 . There we have taken out a factor s 2 from
1

the function l;J of that Corollary. Applying the operator 'Zﬁ tosuch a f we find

240 = ] [3a) 2ﬁIdm(s)sB“i e T (37)

z+n
n=1

Absolute convergence of both the sum and the integral allows us to interchange summation

and integration in (37) to get
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@ @ 28 — S
) 1
#(a) = J am(s)s®F (s) § [m] e L0
0 n=1
The sum under the integral can be rewritten by using the Hurwitz zeta function

m

o)=Y [ska)

n=0

as follows:

y [z‘-lrn]z z+'1 (-E,)—((k+2ﬁz+1)

n=1

(38)

(40)

For Res > 1 on the other hand the function ((s,z) has the integral representation

[GR]

©
s—1_—(z—1)t
et gt

]
et

[+ -]
oN—

80 that the right hand side in (40) can be written as

(RHS) = 2 (213;)— th”ﬂ' Lt dm(t)

or after performing the k summation [GR]:

(41)
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) rff'i%]z‘w—L Lkl (42)
k=0 (t-s)H

where 8 denotes the Bessel function of order 8, we find
87 B4
RES = s Jt S g 1(2VF) . (43)
0
Inserting this into relation (38) we therefore get
@ . (41} H
#4i(z) = j dm(s)@(s) J dm(ty € F,,  (205)
' 0 0
Interchanging once more the order of integration we finally arrive at
14]
A4 -
L) = [am(r ¢ H o)1) (44)
0
where K g Zo(dm,R +) — Lo(dm,R +) i the integral operator
-~ m -
(Fgo)(t) = [ dm(s) Fyp 4 (2/0As) - (45)
0

If we therefore define for 3= ﬂ1+iﬂ2, ﬂl > % a linear map
. 2
ig: LyldmR,) — JKISG%(H_ ) by
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- ﬁl 1 @ HA
. _ 2 —zt
B = ot ldm(t)e =08 (46)

then by Corollary 2 jﬂ is an isomorphism of the spaces .Zz(dm,IR +) and %&2)(H_ '}) .
1

Relation (44) furthermore shows that

and hence .i’ﬂ and % g are isomorphic. The proof of Corollary 3 is clear.

Obviously, the integral operator ¥ 8 in .Zz(dm;IR i trace class for Ref > % and its

D
trace is given by the well known formula

trace ¥ 5 = l dm(s) K fs8) = l dm(s) Fpg 4(29) (48)

By Theorem 2 respectively Corollary 2 the operator .i’ﬁ in the Hilbert space
Jb’gz)(ﬂ_ }) is trace class too with trace ""’ﬂ = trace & 8 In an appendix we will use
1

the integral operator % B to give a new derivation for the K-S entropy of the Gauss

map from standard perturbation theory of a symmetric operator.

3. Trace formulas, Fr lm rminants and zet ion

To calculate the trace of the operator % g Tesp. .Zﬁ from expression (48) we apply the
formula [GR]
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J 55,5 1(26)ds = 2_(2‘6_1)(n2+4)_* : (49)
0

 [(@2+4) 2] %1

Since the solution X, of the quadratic equation x° + nx-1 =0 with x, >0 is given by

1/2 2, \1/2
X, = —2- + 12 244 and hence its inverse x;'l by x;1 = g— + u‘é)— , which im-
plies
x,+x = +4)1/ 2
the right hand side of (49) can be written as
x2P
RHS of (49) = —— . (50)
14x
n
Summing over n then gives
o 2 ﬂ
trace .%f _'2' . (51)
2 l+x

=1

If we compare this result with the trace of the operator .Zﬁ :A (D) — A _(D) in (10)

we find

trace & g= trace .Zﬂ % (2)= trace .Z’ﬁ : (52)

Py ?

This is a special case of the following general result



Theorem 4 The nuclear operators .Zﬁ: A (D) — A_(D) and
. ¢ (2) 2) ' . e
.i’ﬁ : ;"'Igleﬂ(H- 11,) — Ja’ﬁe ﬂ(H- §) have the same eigenvalues, multiplicities included.

Since the proof proceeds more or less along the same chain of arguments as for the case
B =1 in [MaR2] we can be rather brief. The main problem for general 8= ﬁl+iﬁ2,
B, > % is to show that every eigenfunction f € Am(D) of .i’ﬁ belongs to the space

%&2)(H To see this consider first th B, >1.1f A(z) = E 1 2ﬁf 1
X _‘}). o see consider first the case f§; 2 1. z) = e 77 n
n=1

we know that f is holomorphic in every half plane H_, 15 for 6>0.For z€H _ 146
and |z| large enough we certainly have |f [ ] | <M uniformlyin n and |z| >R,

say. From the eigenvalue equation one then deduces

1)) ~—$5— (53)
2]

for z— o and z€H ;5 6 >0, where C= |£&91| . Therefore

+o

J dy |f(x+iy)|? < w
—m

forall x>-1+6, §>0 andall §; >3 and hence 1€ H(H_, ) forall 6>0.
We have still to show that

m f
i, = é;] o [ ay( Mty P11 (erin) 1) <
0

—o
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From the asymptotic behaviour (53) it follows that in the half plane H, one has

| 111211 (%] I—lqg}@:f (54)

Z—D

Using polar coordinates z = fei‘P, g-s ¢< 2’- in Hy the norm of an eigenfunction f

in A (D) can be written as

T
D 28.-1 2 28,2 i .
2, =] ar [ deeos o) T [1He- 1 P 11(re) | )

Convergence properties of the integral on the RHS of this expression are because of (54) the

same as those of the integral

® _(48,~-1) 28,—1 Q@ 2
ll'—( '61 )rﬁl dr=ll' 'Bldl'

which certainly exists for 8, > 1.

This shows that any eigenfunction f € Am(D) of the operator .Zﬁ belongs to the space

;;gz)(ﬂ_ ) forall BEC with A = Ref> 1. To extend this result to Fs with f; >
1

we have to show that for such 3 values any eigenfunction f € Am(D) has the property
that f/ belongs to o 2ll(f{_}) , since obviously lim f(x+iy) = 0 and
1

X—@

fe 67((2)(11_1 + 6) forall § > 0. From the equation

a0 § (el i) - ) e

n=1 n=1
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one deduces

C
1£'(2)] ~ , 2 €H_
lzliﬂl 1+6

2
and hence 1 € HENH_ ) forall 6>0.

On the other hand we find for the ¥ 2) (H }) norm of f’ :
1

® 9 +1)-2 +o
lf/”2 _1 Jx(ﬁl )=

-0

An argument analogous to the case §) > 1 then shows that ||¢’ || 2 5
#}
1

f o 2ﬁ1+1 ) [H)
ifand onlyif | r dr exists. But
(e

I
concludes our remarks to the proof of Theorem 4.

An immediate consequence of Theorem 4 is

Corollary 4 For any n € N the following formula holds

o

obV—8

n 2ﬂ
1:=1I - g1

i 1)||
1 lk“kl

ax [ (11 -1 @1 .

Ly 9

—m- obviously exists for ﬁl

(56)

(85)

is finite

. This

dm(s,)..[ dm(s;) Fpg 4 (VEFR- Tog |2V 50) Fop 4 (25, =
0
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where x, . denotes the irrational number whose continued fraction expansion is
1""'n

periodic of period n and whose entries are the integers il,...,in .

Since .Zgl) = —.Zg_?% the above results for !ﬂ = .t’éo) can be applied also to the ope-
rator .Zél) : this operator is isomorphic to the integral operator — % B+1 and a formula

analogous to (56) holds. A consequence of this is

Corollary 5
® n 2 [14] [11]
2 kl—ll xif...i iy 1= Jdm(sn)...Jdm(sl)52B_1(2¢ 8189)--
iyl n 0 0

9’26_1(2\/ snsl)—(—l)n

264-1(2\/ 8185)-- 3”2ﬁ+1(2\/ 8 sl) = trace Ky —tra.ce( ﬁ+1)n =

= trace !go)n trace ng)n (57)

By Corollary 5 the calculation of the infinite sum on the LHS has been transformed to an
n—dimensional integral. Resulting advantages for the numerical determination of these
quantities have been discussed for S=1 in [MaR1]. They apply for general 8 with

Ref > % .

In the first chapter we had introduced a zeta function ¢(#) which by (13) could be ex-
pressed as the quotient of the Fredholm determinants det(1— .L’gs)), s =0,1.From
Grothendieck’s theory of such determinants we concluded that ¢(8) is meromorphic in the
half plane Ref > % with a simple pole at 8= 1. We want to extend this result now. For
this we consider the operators !ga) again as acting in the Banach space A (D) . Ttis

enough to treat the case JEO) = .z’ﬁ . For this operator we can prove
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Theorem 5 The map f— .z'ﬁ extends to a meromorphic function with values nuclear

operators of order zero in the entire complex S plane. Its poles, located at = lgk,

(k)
k =0,1,..., are all simple with residue the rank 1 operator .A’kf(z) = %k"@ .

Proof: Any € Am(D) has a power series expansion around the point z = 0 which is

uniformly convergent for |z] g%. Hence for |z| S;li the function

{k)
t(2) = (2 2 T,@ k , which obviously is in A_(D), fulflls the bound

1. N+
|fg(z)] <Clz|" T (58)
Furthermore the map 2y : Am(D) — Am(D) , defined as
is bounded. For 8 with Re83 > % we can write .2’& also as

L= L) + Ly (60)

The first term on the RHS of (60) can be calculated explicitely for Ref > % :

A3 - 3 G0 § ()

But the right hand side is simply
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N f(k)
Y 2O (ks28241)
k=0

where ((s,z) denotes the zeta function of Hurwitz as defined for Re s > 1 in (39).
Denote by /gk) : Am(D) — A _(D) the linear bounded rank 1 operator

/},k)f(z) = %9) ((k+28,2+1) . (61)

Then we can write the operator .Zﬁ for Ref > % as

N
Zg =kzo //gk) + Zgo 2y (62)

where the projector £y of Am(D) onto the subspace AtE]N)(D) of functions in Am(D)
vanishing in z = 0 at least to order N+1 has been defined in (59).
Let us consider first the map f— /gk) with /S‘) the rank 1 operator in (61). By

Hermite’s representation of the Hurwitz zeta function [E]

1 Ll Tsin[a ta.n_l(%)] dt

( 8§,z) = — + + 2 ’
( ) 228 E-:l_ (z2+t2)3/2 eZTt_l

(63)

valid for Rez > 0, the function ((k+20,241) is meromorphic in the entire f~plane with
only one simple pole with residue % at- g= lE—k and is for fixed 8 # 153 a holomorphic
function in z for Rez > —1 . Hence the map §— Jgk) is a rank 1 operator—valued

meromorphic function in the entire complex A plane with a simple pole at 8= %E and
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residue the rank 1 operator AE) . A (D) — A (D) with

AW = L20) (64
This follows from [E]
lim  ({(k+2B8z+1) — Féﬂ:f) = —¢(z+1) (65)

ﬁ——'T

where #(z) = g;log I'(z) and T Eulers function. Obviously, the operators AE) are
N
nilpotent for k 2 1. This shows that also the map §— 2 /ék) can be meromor-

k=0
phically extended to the entire complex S—plane with simple poles at the points 8= 153,

0 <k < N and corresponding residues A'(k) .
Let us next discuss the operator .z'ﬂ o Py - Since by (58) for any f€ A (D) the
function ( Pyf)(z) = fiy(2) fulfills | Pyf(z)| <C-|z| " F! forall |z| <F wesee

that in the representation

%o o= ] ERRNER ()

the sum converges uniformly and absolutely in D forall § € € with
2Ref+ N +1>1,that means Re 3> —g- . This shows, that the operator
.z’ﬁ : AéN)(D) — Am(D) is nuclear of order zero for all 8 with Re 8> —g— . Since

K Am(D) — ACEJN)(D) is bounded the operator 'Zﬁ o Py is also nuclear of order
N
zero for Re 8> __I;_ . Obviously, also the finite—rank operator E /g‘) is nuclear of
k=0
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order zero away from the points g = 153, k =0,...,N . All this being true for general N

the proof of Theorem 5 is finished.

Interesting by itself as we see later is the following

Corollary 6 The function g(f) = trace .z'ﬂ extends to a meromorphic function in the
entire # plane with only one simple pole at the point = % with residue % .

Proof: By (62) we have for Re 8> — -I;-, gt 153

N .
= k)
trace .z'ﬂ_ kzotrace //g + t;a.ce .Zﬂo ‘?N .

But the trace of the rank 1 operator .l’ék) is given by

k
trace J’gk) = %T:? ((26+k,2+1) | =0 - (67)

Using next the formulas

G ((5.2) = =8 ((s+1,9) (68)
respectively
)= =Y = (69)
n=1"

we find for k2 1
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trace 0 = (GIL° (2B)..(36+24-1) G (24 20) (10
respectively
trace /g’) = (p(28). (71)

Since Riemann’s zeta function (p(s) in (69) can be extended to the entire s—plane with a
single simple pole with residue 1 at 8 = 1 we conclude that trace /ék) for k21 is
holomorphic in the entire S—plane and trace J’go) i8 meromorphic in § with a simple
poleat A= % with residue % Since on the other hand .Zﬁ o ‘?N is nuclear of order zero
and holomorphic in § for Reg > __I;_ we find that the function g(5) is meromorphic in
this region with a simple pole at 8= % and residue % Since N was completely arbitrary

the proof of Corollary 6 is finished. Another consequence of Theorem 5 is

Corollary 7 The Fredholm determinant det(1— .L/ﬁ) extends to a meromorphic function in
the S—plane whose only poles are at the points ﬁk = l;‘-, k =0,1,2,... which furthermore

are simple.

This follows from the formula [G]

det(1~Zg) = Y (~1)trace A 2 | (72)
r=0 I

where A .z’ﬁ denotes the r—fold exterior product of the linear operator ..s!ﬁ in the space
r
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N
A(D) together with the representation = Z J’gk) + Zgo Py in (62), where
k=0
k) is an operator of rank 1 which as a function of 3 behaves for g — ﬁk —25 as

-ﬁ“’% with A defined in (64).

Remark In the "basis" of A (D) spanned by the functions f, with
fk(z) = ((2f+k,z+1), k =0,1,2,... the operator .Zﬁ can be represented for Ref > % by
a matrix M= l\&,g(ﬂ), ke =0,12,.. with

K
M o (0) = (%?_%%qu (R(26+L+k)

From this one concludes that all matrix elements M_,(6) with k 2 1 can be analytically
continued to the entire S—plane whereas the elements l% f‘(,(3) =( R(2,3+E,) are meromor-
phic in the S—plane with simple poles at the points = ‘Bf, = %—p—‘- . This gives a formal

proof of our results for the operator .i’ﬂ .
Corollary 7 now implies

n—1
| | (T x)
n=1 xEle T
extends for the Gauss map as a meromorphic function to the entire S plane. { has trivial

has

Theorem 6 The function {(f) = exp

zero'sat f=0 and = % . Its nontrivial zero’s are at 3= ﬂﬂ, such that _Jﬂf. +1

eigenvalue A = 1, its nontrivial poles are at = ﬁk such that .z’ﬂk has A =1 asan

eigenvalue. There are no poles besides =1 on the real axis §2 1 and no zero’s for

B20.



Proof: Apply Corollary 7 to formula (13).
Remark: We expect besides §=1 no pole on the entire real axis.

Another trivial application of the above results concerns analyticity properties of the follo-

wing function (y(:

u®= YL, (74)

n=1

where X, denotes the irrational number which has periodic continued fraction expansion
of period 1 with entry n as defined after relation (49). It is clear that asymptotically for
large n x  behaves like 2} and hence (p(B) should be somehow related to Riemann’s

zeta function (R () = 2 n P Corollary 6 implies
n=1

Propogition 2 The function (;,(f) extends as a meromorphic function to the entire
B—plane with the only poles at the points §= %1 with residue 1.

Proof: Since by Corollary 1

(\(20) = Z,(B) = trace .Zgo) — trace .tgl) = trace Y+ trace Zp,  we get from
Corollary 6 that (M(2ﬂ) extends to a meromorphic function in the entire complex
B—plane with simple poles at the points =+ % and residue % . From this Proposition 2

follows.

We have seen that formally the operator .z’ﬁ can be represented by the matrix M with
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k
b o) = GE- TR crlasren)

By using this matrix the trace of ..Zﬁ can be expressed as

o
k
trace = kzo i}})—{g%%}l (p(26+2K) . (75)

This series is not absolutely convergent so that one has to be rather careful to calculate its
values.
Since the function (y((f) in (74) can be expressed as

(p(20) = trace .Zﬁ + trace 'gﬁ+1

we find after a simple calculation using representation (75)

ot k
(=8 Y STy a6+ - (76)
k=0

This representation can be used indeed to rederive the analyticity properties of the function

CM . We are going to show namely that

CM(.B) = (R(ﬁ)—ﬁ(R(ﬁ‘*'z) + lIl(ﬁ) (77)

where ¥(f) is holomorphic in the entire S—plane. Corollary 5 shows that for n =1 and
Re> 1



(M(ﬁ) =

oOV—8

Using the functional equation for Bessel functions [GR]

Fo@+ F,_ @)= ()

this simplifies to

@ F (2s)
CM(ﬁ) = ﬂi eg'_il —g(ﬂ—

If we introduce the finite power series 5&N)(2s)

N) e A -1)%g2k
#0) = kzoﬁr%mm)

we get for Reff > 1 the following representation for (M :

;‘gf_l [ 554(2)+ 55,1 -

o Ny o 5 2s)- FN)(24)
CM(ﬁ)=ﬁJ;eg: b — 8] #r 7}
0

The first integral in (81) can be performed explicitly to give

ﬁTe‘g“ y}j (28) 2 ‘:B—r{%r};zk (p(B+2k)

(78)

(79)

(80)

(81)

(82)
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= (z(0) - B (p(B+2) + ¥ N(g)
The function w(N)(ﬁ) is obviously holomorphic in the entire S—plane forall N2 2.
The second integral in (81) defines a function Q(N)(ﬁ) which is holomorphic in g for all

B with Ref > —(2N+1) since

& %) - 5},1‘)(25) v PN+ (83)
. 80
This shows that the function () can indeed be represented as

(B = Cr(B) - B C(B+2) + ¥(B) (84)
where

¥(5) = ¥N(g) + 3N (85)
is independent of N for N > 2 and hence holomorphic in the entire f—plane.

Since the function (,, is defined by the numbers [n] which have nice arithmetic pro-
perties like periodic continued fractions one could wonder if (pp does not fulfill some sort

of functional equation. Unfortunately we cannot say much to this problem at present.

Let us add some remarks concerning the transfer operator .z’ﬁ and its Fredholm deter-
minant det(l—.fﬂ) . Quite recently M. Pollicott gave a new approach to Selberg’s theory

of compact surfaces of constant negative curvature through the transfer operator method
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[P]. He applied this method to the Bowen—Series maps, analytic expanding Markov maps
of the boundary of the unit disc which have been used by these authors to construct sym-
bolic dynamics for the geodesic flow on these surfaces [BoS]. It turns out that there exists
a close connection between the Fredholm determinant of the transfer operator for these
boundary maps and the Selberg zeta function for the flow on the surface. Its poles are
known to determine the spectrum of the Laplacian on that surface and this means that also
the transfer operator for the corresponding Bowen—Series map determines this spectrum.
The operator however is completely determined by the classical geodesic flow on the sur-
face.

From this one should expect that very similar things are true for the modular surface: the
Bowen—Series map in this case is just the Gauss map T in (1) whose transfer operator we
have studied in this paper. One could therefore hope that there is also a close relation of
the function ((f) in Theorem 6 and the Selberg zeta function for the geodesic flow on the
modular surface. Indeed, the pole #=1 of ((f) corresponds, when translating Pollicott’s
formulas to the present case, just to the lowest lying eigenvalue A =0 of —A for the

modular surface with f = const. as eigenfunction.

Let us finally come back to our discussion of phase transitions in hyperbolic dynamical
systems in Section 1. There we argued that hyperbolic dynamical systems with a finite
Markov partition cannot have such a phase transition, that is a singularity in the function
P(f) for real §. For the Gauss map, whose minimal Markov partition is infinite, this is
not true. From what we have found for the transfer operator .2’6 it follows that P(J) has
a logarithmic singularity at g = % and henceforth T has a phase transition for "finite"
temperature. This follows from the behaviour of .sfﬁ for g— ﬁo = % determined by
relations (64) and (65):
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lim (B-fy) £g= A0 (77)
B—'ﬁo
This shows that for real 3 the leading eigenvalue A,(f) behaves for §— f; like
1 1
1. . A0) .
where i is the eigenvalue of the operator - All the other eigenvalues A,(5) havea
finite value for g = ﬁo = % . This is just what one expected from Corollary 6.

Appendix: The K-S entropy of T through the thermodynamic formalism

From the variational principle (9) together with Pesin’s identity

1
hy_§(T) = [ dugx)log| T’ (x| (A1)
0 .

where dpG = 1%2 &I dx denotes normalized Gauss measure for T one derives the
formula [Ra], [RaB]:

by o(T) == 3P0 . (A2)

Since P(f) =log A;(f) with A,(f) the leading eigenvalue of the transfer operator .Zﬁ
in Prop. 1 we find
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hyg_g(T) =—A{(6) et (A3)

because A,(1) =1. Since for real 8 >% the eigenvalue A,(0) is simple it is analytic in
B in a neighbourhood of f =1 and hence

3B =1+ (3—1)Ai(1) + (A3)

is a convergent power series for |#-1| small enough. Since o( .Zﬁ) =o( K& ﬂ) with & B
the integral operator in Thm. 3, standard perturbation theory applied to the selfadjoint
operator J& 8 B real, gives

Ai(l) = (ﬁolv %1‘191) (A4)
where % i is defined through the power series expansion of the operator & 3 as
}a’ﬁ= .7{1+([3—1) Jo’i+ , (A5)

¢, is the normalized eigenfunction of ¥, with eigenvalue A,(1) and (,) denotes the
usual scalar product in the Hilbert space .Z,(dm,R +) . The eigenfunction ¢, is known
explicitly [MaR1]:

__1 .—1/2 —5
¥,(s) e (1-e %) (A6)

The operator & i on the other hand is defined through the kernel

K1) =2 % 5 (2v) L (A7)
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This kernel can be written as [AS]

S _om < 2mil @+
K{(s4) = 2[ (2 logyT — Y (-)2yse 0¥ S
m=0
Using this representation one finds
1 v (-1)¥ k)
X! o (8) = y {;—}Fs Hilog s + pk+1)-29(k+2)) .
1 !
1 MTog 2 2o +
(A8)
Inserting this into formula (A4) leads to
) 9w (—p)ktl
A1(1)=mk2 EL T (pet2)-g(kt1)) (A9)
=0
Since #(k+2) = ¢(k+1) + 1&{ we get
e k 2
’ _ 2 (—1) ___ T
HORS =) 2 T slog? (A10)
k=1

and therefore finally

hy_o(T) = 6-1’3@ (A11)
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Obviously, this result can be derived directly from Pesin’s identity (A1). The approach

presented above however is more general in that it allows to determine also the higher

derivatives of P(f) at 8 =1 which themselves are again interesting invariants of the

gystem T :1—1.
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