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Abstract

We establish the Schwarz Reflection Principle for J-complex discs attached to
a real analytic J-totally real submanifold of an almost complex manifold with real
analytic J . As a second result a boundary uniqueness theorem for J-complex discs
with Lipschitz-continuous J is obtained. We also prove the precise regularity of
J-complex discs attached to a J-totally real submanifold 1.

1. Introduction

1.1. Reflection Principle

Denote by ∆ the unit disc in C, by S - the unit circle. Let γ ⊂ S be a non-empty open
subarc of S.

Theorem 1 (Reflection Principle). Let (X,J) be a real analytic almost complex manifold
and W a real analytic J-totally real submanifold of X. Let u : ∆→X be a J-holomorphic
map continuous up to γ and such that u(γ)⊂W . Then u extends to a neighborhood of γ
as a (real analytic) J-holomorphic map.

The case of integrable J is due to H. A. Schwarz [Sw]. Indeed, one can find local
holomorphic coordinates in a neighborhood of u(p) for a taken p ∈ γ such that W = Rn

in these coordinates and now the Schwarz Reflection Principle applies. In our case there
is no such reflection, since a general almost complex structure doesn’t admits any local
(anti)-holomorphic maps. But the extension result still holds.

One can put Theorem 1 into a more general form of Carathéodory, [Ca]. For this recall
that the cluster set cl(u,γ) of u at γ consists of all limits limk→∞u(ζk) for all sequences
{ζk} ⊂ ∆ converging to γ. In [CGS] it was proved that if the cluster set cl(u,γ) of a
J-holomorphic map u : ∆ → X is compactly contained in a totally real submanifold W
then u smoothly extends to γ. Therefore we derive the following

Corollary 1. In the conditions of the Theorem 1 the assumption of continuity of u up to
γ and u(γ) ⊂W one can replace by the assumption that u is bounded and the cluster set
cl(u,γ) is compactly contained in W .

1Key-words: almost complex structure, totally real manifold, holomorphic disc, reflection principle.
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1.2. Boundary Uniqueness

As in the case of holomorphic functions in C the Reflection Principle of Theorem 1 has as
its immediate consequence the boundary uniqueness for J-holomorphic maps. Namely, if
two such maps coincide on an non-empty arc on the boundary they coincide everywhere
in the disc. Our second observation in this paper is that this property of J-holomorphic
maps doesn’t requires the real analyticity of J .

Theorem 2 (Boundary Uniqueness). Let u,v : ∆ → X be J-holomorphic maps into an
almost complex manifold (X,J). Suppose that J is Lipschitz-continuous and that u and
v are of class L1,p for some p > 2 up to an non-empty open arc γ ⊂ S. If u(z) = v(z) for
z ∈ γ then u≡ v.

The statement of Theorem 2 is optimal in the sense that for J ∈ Cα one can construct
two distinct J-holomorphic maps which coincide on a non-empty open subset of the disc.
The boundary L1,p-regularity assumption could be, eventually, weakened, see problem
section §8.

1.3. Boundary Regularity

For the proof of our Reflection Principle we need to study not only real analytic boundary
values but also the smooth ones (with finite smoothness). For our method to work we need
an exact regularity and a certain kind of uniqueness of smooth J-complex discs attached
to a J-totally real submanifold.

Theorem 3. Let u : (∆,γ)→ (X,W ) be a J-holomorphic map of class L1,2∩C0(∆∪γ).
Then:

(i) for any integer k > 0 and real 0 < α < 1 if J ∈ Ck,α and W ∈ Ck+1,α then u is of
class Ck+1,α on ∆∪γ;

(ii) for k > 1 the condition u ∈ L1,2 ∩C0(∆∪ γ) and u(γ) ⊂ W can be replaced by the
assumption that u is bounded and the cluster set cl(u,γ) is compactly contained in
W .

Remark 1 If J is of class C0 and W of C1 then u ∈ Cα up to γ for all 0 < α < 1. This
was proved in [IS1], Lemma 3.1.

For integrable J the result of Theorem 3 is due to E. Chirka [Ch]. For non-integrable
J weaker versions of this Theorem were obtained in [CGS, GS, MS]. Namely, the Ck,α-
regularity of u up to γ was achieved there under the same assumptions.

1.4. Proofs

Though the interior analyticity of J-holomorphic discs in analytic almost complex mani-
folds follows from classical results on elliptic regularity in the real analytic category (see,
for instance, [BJS]), the real analyticity up to the boundary does not follows directly
from the known results since we do not deal with a boundary problem of the Dirichlet
type. The direct application of the reflection principle (in the form of Vekua, for example)
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also leads to technical complications because of the non-linearity of the Cauchy-Riemann
operator on an almost complex manifold. So our approach is different and is based on
the reduction of the boundary regularity to a non-linear Riemann-Hilbert type problem.

This paper is organized in the following way.

1. First, in §3, using [IS1] we prove the case k = 0 of Theorem 3, i.e., we prove the
C1,α-regulatity of u if J ∈ Cα and W ∈ C1,α. In §4 we use this techniques to prove the
Theorem 2.

2. In §5 we get from [CGS] the Hölder regularity of J-holomorphic maps with cluster sets
on J-totally real submanifolds provided J ∈ C1,α and W ∈ C2,α.

3. In §6 we prove the solvability and uniqueness of our Riemann-Hilbert type problem in
smooth, i.e., Ck,α category thus obtaining Theorem 3 for the case k > 1.

4. In §7 we adapt our method to the real analytic case. Then the uniqueness, both
in smooth and in real analytic categories gives the proof of the Reflection Principle of
Theorem 1.

5. We end up with the formulation of open questions in §8.

We would like to express our gratitude to J.-F. Barraud who turned our attention to
the question of extendability of J-holomorphic maps through totally real submanifolds in
real analytic category.

2. Preliminaries

Denote by Jst = iId the standard complex structure of Cn (as well as of C and of ∆). Let
u be a C1-map (or C0∩L1,1

loc -map) from ∆ into an almost complex manifold (X,J). Recall
that u is called J-holomorphic if for every ζ ∈∆

du(ζ)◦Jst = J(u(ζ))◦du(ζ) (2.1)

as mappings of tangent spaces Tζ∆→ Tu(ζ)X (in the L1,1-case the condition (2.1) should
be satisfied a.e.). The image u(∆) is called a J-complex disc. Every almost complex
manifold (X,J) of complex dimension n can be locally viewed as the unit ball B in Cn

equipped with an almost complex structure which is a small deformation of Jst. To see
this fix a point p ∈ X, choose a coordinate system such that p = 0, make an R-linear
change of coordinates in order to have J(0) = Jst and rescale, i. e., consider J(tz) for t > 0
small enough. Then the equation (2.1) of J-holomorphicity of a map u : ∆−→ B can be
written in local coordinates ζ on ∆ and z on Cn as the following first order quasilinear
system of partial differential equations

uζ−AJ(u)uζ = 0, (2.2)

where AJ(z) is the complex n×n matrix of the operator whose composite with complex
conjugation is equal to the endomorphism (Jst + J(z))−1(Jst− J(z)) (which is an anti-
linear operator with respect to the standard structure Jst). Since J(0) = Jst, we have
AJ(0) = 0. So in a sufficiently small neighborhood of the origin the norm ‖ AJ ‖L∞ is also
small which implies the ellipticity of the system (2.2).
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Let W be a real submanifold in an almost complex manifold (X,J). Similarly to the
integrable case, W is called J-totally real if TpW ∩J (TpW ) = {0} at every point p of W .
If n is the complex dimension of X, any totally real submanifold of X is locally contained
in a totally real submanifold of real dimension n. So in what follows we assume that W
is n-dimensional.

We recall some classical integral transformations. Let Ω be a bounded domain with
C∞ boundary in C. Denote by TCGΩ the Cauchy-Green transform in Ω:(

TCGΩ h
)

(ζ) =
1

2πi

∫ ∫
Ω

h(τ)dτ ∧dτ
τ − ζ

. (2.3)

Denote also by

KΩh(ζ) =
1

2πi

∫
∂Ω

h(τ)dτ

τ − ζ
. (2.4)

the Cauchy integral.

Proposition 2.1 For every integer k ≥ 0 and real 0< α < 1:
(i) TCGΩ : Ck,α(Ω̄)−→ Ck+1,α(Ω̄) is a bounded linear operator and (TCGΩ h)ζ = h for any

h ∈ Ck,α(Ω);
(ii) if h is a real analytic function on Ω, then TCGΩ h is real analytic on Ω. Furthermore,

if we reperesent a real analytic function h in the form h = h(ζ,ζ) viewing ζ and ζ as
independent variables, then for any ζ ∈ Ω we have

TCGΩ h(ζ) =H(ζ,ζ)−KΩH(ζ), (2.5)

where H is a primitive of h with respect to ζ. If ζ ∈ C\Ω, then

TCGΩ h(ζ) =−KΩH(ζ). (2.6)

The proof of (i) is contained, for instance, in [Ve], Theorem 1.32; for the statement (ii)
see [Ve], p.26, in fact this is nothing but the Cauchy-Green formula. (2.6) follows from
Plemelj - Sokhotskiy formula. We shall also need the Schwarz integral transform on ∆:(

T SWh
)

(ζ) =
1

2πi

∫
∂∆

τ + ζ

τ − ζ
· h(τ)

τ
dτ. (2.7)

Given a smoothly bounded domain Ω ⊂ C denote by O1,α(Ω) the Banach space of
holomorphic (with respect to the standard structure) maps g : Ω−→ Cn of class C1,α(Ω̄).
This space is equipped with the norm ‖ g ‖C1,α(Ω̄).

Proposition 2.2 T SW : Ck,α(S)−→Ok,α(∆) and KΩ : Ck,α(∂Ω)−→Ok,α(Ω) are bounded
linear operators. For any real-valued function ψ ∈ Ck,α(S) one has

<(T SWψ)|S = ψ (2.8)

and
=(T SWψ)(0) = 0.

For the proof see, for instance, [Ve], Theorem 1.10.
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3. Reflection Principle-I: Boundary C1,α-Regularity

In this subsection we shall use a version of a Reflection Principle proposed in [IS1] to
prove the case k = 0 of the Theorem 3. It will also serve us as a preparatory material
for the proof of the boundary uniqueness statement of Theorem 2 in the next section.
Therefore the structure J is supposed to be of class Cα only. A J-totally real submanifold
W of X will be supposed to have C1,α-regularity.

First we make a suitable change of coordinates.

Lemma 3.1 One can find coordinates in a neighborhood V of p ∈W such that in these
coordinates V = R2n, W = Rn, J |Rn = Jst and J(x,y)−Jst =O(||y||α).

Proof. After a change of coordinates of class C1,α we can suppose that in some neigh-
borhood of p = 0 our manifold W coincides with Rn. Next we are looking for a C1,α-
diffeomorphism ϕ= (ϕ1, ...ϕ2n) in a neighborhood of the origin such that

1) ϕj(x,0) = xj for j = 1, ...,n;
2) ϕj(x,0) = 0 for j = n+ 1, ...,2n;

3) ∂ϕ
∂yj

(x,0) = J(x,0)
(

∂
∂xj

)
for j = 1, ...,n.

Such C1,α-diffeomorphism exists due to the Trace theorem, see [Tr]. In new coordinates
given by ϕ we shall clearly have W = Rn, J |Rn = Jst and J(x,y)−Jst = O(||y||α) due to
Cα-regularity of J .

�
In what follows the disc ∆ with an arc γ on its boundary S will be suitable for us

to change by the upper half-disc ∆+ = {ζ : <ζ > 0} and the segment (−1,1). Let
u : (∆+,γ)→ (X,W ) be a J-holomorphic map of class W 1,p up to γ = (−1,1) for some
p > 2.

The following lemma will prove the case k = 0 of the Theorem 3.

Lemma 3.2 Let J be of class Cα and W of class C1,α. Let u : (∆+,γ) → (X,W ) be
J-holomorphic of class C0∩L1,2 up to γ. Then u is of class C1,α up to γ.

Proof. We can assume that W = Rn and J(x,y)−Jst =O(||y||α). On the trivial bundle
∆+×R2n→∆+ we consider the following linear complex structure: Ju(z)[ξ] = J(u(z))[ξ]
for ξ ∈ R2n and z ∈ ∆+. At this point we stress that Ju is defined only on ∆+×R2n.
Denote by τ the standard conjugation in ∆ ⊂ C as well as the standard conjugation in
R2n = Cn. Now we extend Ju to ∆×R2n by setting

J̃u(z)[ξ] =−τJu(τz)[τξ] forz ∈∆ and ξ ∈ R2n. (3.1)

We consider now u as a section (over ∆+) of the trivial bundle E = R2n ×∆ → ∆
and endow E with the complex structure J̃u. Complex structure J̃u defines a ∂-operator
∂J̃uw = ∂xw+ J̃u∂yw on L1,p-sections of E for all 1 6 p <∞ (for this only continuity of

J̃u is needed). Remark that u is J̃u-holomorphic on ∆+. By F we denote the totally real
subbundle ∆×Rn→∆ of E.
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Definition 1 Define the “extension by reflection” operator ext : L1(∆+,E) → L1(∆,E)
by setting

ext(w)(z) = τw(τz) (3.2)

for z ∈∆− and w ∈ L1(∆+,E). We shall also write w̃ for ext(w).

Note that if w is continuous up to γ and takes on γ values in the subbundle F then ext(w)
stays continuous. By the reflection principle of Theorem 1.1 from [IS1] we know that
ext : L1,p(∆+,E,F ) → L1,p(∆,E) is a continuous operator for all 1 6 p < ∞ and that
∂J̃uw̃ = 0 if ∂Juw = 0. Let ũ be the extension of u, in particular, ũ is J̃u-holomorphic on

∆ of class L1,2(∆). Lemma 3.1 insures that ũ ∈ L1,p
loc for all p <∞. In tarticular ũ ∈ Cβ

for every β < 1. Therefore J̃u is of class Cδ, where δ = αβ.
Set v = ρũ, where ρ is a cut-off function equal to 1 in ∆ 1

2
. Then from (2.2) we get

vζ̄−AJ(ũ)vζ = g, (3.3)

where the function g =
[
ρζ̄−ρζAJ(ũ)

]
ũ is of class Cδ(∆). Observe that vζ̄ −AJ(ũ)vζ =(

v−TCG∆ AJ(ũ)vζ
)
ζ
. Here TCG∆ denotes the Cauchy-Green integral on ∆. Elliptic reg-

ularity implies that v − TCG∆ AJ(ũ)vζ is of class C1,δ and invertibility of the operator

Id−TCG∆ AJ(ũ) ∂
∂z

in C1,δ gives that v is in C1,δ.
One can repeat this step once more to get C1,α-regularity of v on ∆ and therefore of

u up to γ. �

4. Boundary Uniqueness

We interrupt the proof of Theorems 1 and 3 in order to show how the method of Reflection
Principle-I can be applied for proving the boundary uniqueness of Theorem 2.

Let’s start with some reductions. The problem is local, therefore we shall suppose that
u and v are both defined and of class L1,p in the upper half-disc ∆+ = {z ∈ D : =z > 0}
up to γ = (−1,1) for some p > 2. Following §3 on the trivial bundle ∆+×R2n→ ∆+ we
consider two complex structures Ju(z)[ξ] = J(u(z))[ξ] for ξ ∈ R2n, z ∈ ∆+ and Jv(z)[ξ] =
J(v(z))[ξ]. Again we stress that Ju (and Jv) are defined only on ∆+×R2n. We extend
Ju and Jv to (∆\ (−1,1))×R2n and get J̃u and J̃v. Using the extension operator (3.2)
we get ũ and ṽ - extensions onto ∆ \ (−1.1) of u and v respectively. In particular ũ is
J̃u-holomorphic and ṽ is J̃v-holomorphic.

Remark 2 Let’s stress at this point the difference between our setting and that of §3.
Since we have no totally real boundary conditions here our objects extend only to ∆ \
(−1,1) and not to the whole of ∆.

Remark also that we can suppose that u(0) = v(0) = 0, J(0) = Jst and, rescaling as in

§2, we can suppose that ‖J−Jst‖L∞ is small. Therefore
∥∥∥J̃u−Jst

∥∥∥
L∞

and
∥∥∥J̃v−Jst

∥∥∥
L∞

are as small as we wish.
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4.1. ∂-Lemmas

Lemma 4.1 For J̃u, ṽ, ũ defined above there exists an h ∈ Lploc(∆) such that for almost
all z ∈∆\ (−1,1) one has

|∂J̃u(z)
(ṽ− ũ)(z)|6 h(z)|(ṽ− ũ)(z)|. (4.1)

In particular, the weak derivative ∂J̃u(ṽ− ũ), taken on ∆\ (−1,1), belongs to Lploc(∆).

Proof. First we check this inequality for =z > 0. In that case we have

∂Ju(v−u) = ∂Juv = ∂xv+J(u(z))∂yv = ∂xv+ [J(u(z))−J(v(z))]∂yv+

+J(v(z))∂yv = ∂Jvv+ [J(u(z))−J(v(z))]∂yv = [J(u(z))−J(v(z))]∂yv. (4.2)

Since J is Lipschitz and v is of class L1,p, we get from (4.2) for =z > 0

|∂Ju(v−u)(z)|6 h(z)|(v−u)(z)| a.e.

with h(z) = ||J ||Lip · |∇v(z)| ∈ Lp. Let now =z < 0. Then

∂J̃u(z)
(ṽ− ũ)(z) = ∂J̃u(z)

ṽ = ∂xṽ+ J̃u(z)∂yṽ =
[
J̃(u(z))− J̃(v(z))

]
∂yṽ =

=−τ [J(u(z̄))−J(v(z̄))]∂yṽ.

Therefore
|∂J̃u(z)

(ṽ− ũ)(z)|6 h(z̄)|(v−u)(z̄)|= h(z)|(ṽ− ũ)(z)|,

where we put h(z) = h(z̄) for z ∈ ∆−. The right nahd side of (4.1) is a function from
Lploc(∆) and we can conclude that ∂J̃u(ṽ− ũ) ∈ Lploc(∆).

�

Set J = J̃u. It is a bounded complex linear structure on our trivial bundle E = ∆×R2n.
That means that J ∈ L∞(∆,End(R2n)) and, in particular, it is defined almost everywhere
(for example, it is not defined on (−1,1)!). Structure J defines on E the following ”∂-type”
operator ∂J : L1,p(E)→ Lp(E):

∂Jw =
1

2

(
∂w

∂x
+J(z)

∂w

∂y

)
. (4.3)

This operator is well defined, continuos and satisfies the identity

∂J(fw) = ∂f ·w+f∂Jw (4.4)

for a function f and a section w. Here and later on ∂ = ∂Jst stands for the standard
Cauchy-Riemann operator in the space of functions (sections) which are clear from the
context.Note that multiplication by “i” of sections of E should be understood as iw := Jw
in order for (4.4) to be true.

Lemma 4.2 Let w : ∆ → Cn be a continuous map such that w|(−1.1) ≡ 0. Assume that

for some g ∈ L1
loc(∆,Cn) the equation ∂Jw = g holds (in the weak sense) in ∆\ (−1,1) .

Then ∂Jw = g holds (in the weak sense) in the whole disc ∆.
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Proof. Recall that the equality ∂w = g in ∆\ (−1,1) in the weak sense means that for
every smooth test (vector) function ψ(z) with compact support in ∆\ (−1,1) one has∫

∆

(w∂ψ+gψ)dx∧dy = 0,

and similarly for the weak equality in ∆. Multiplying w by a cut-off function we can
suppose that the equation ∂Jw = g holds in the weak sense in ∆ \ [−1

2
, 1

2
] (with some

other g ∈ L1
loc(∆,Cn)).

Now let ψ has compact support in the whole disc ∆. Fix a sequence of smooth
functions φn in ∆ with the following properties:

• 0≤ φn ≤ 1, ‖dφn‖L∞(∆) ≤ 2n;

• φn(z)≡ 0 for |y| ≤ 1
n
, |x| ≤ 5

8
, φn(z)≡ 1 for |y| ≥ 2

n
or |x| ≥ 7

8
.

Then ∫
∆

(w∂J(ϕnψ) +gϕnψ)dx∧dy = 0

and limn→∞ϕnψ = ψ in the weak L∞-sense. This means, in particular, that one has

lim
n→∞

∫
∆

gϕnψdx∧dy =

∫
∆

gψdx∧dy

for any g ∈ L1
loc(∆,Cn). Further,∫

∆

w∂(ϕnψ)dx∧dy =

∫
∆

(ψw∂ϕn+wφn∂Jψ)dx∧dy

and

lim
n→∞

∫
∆

wφn∂Jψdx∧dy =

∫
∆

w∂Jψdx∧dy.

The crucial point of the proof is the estimation of

lim
n→∞

∫
∆

ψw∂ϕndx∧dy.

Here we obtain ∫
∆

|ψw∂ϕn|dx∧dy ≤ ‖ψ‖L∞(∆) · ‖w‖L2(An) ·
∥∥∂ϕn∥∥L2(An)

, (4.5)

where An = {|x| 6 7
8
, |y| 6 2

n
}. Now observe that

∥∥∂ϕn∥∥L2(An)
is bounded by C

√
n and

that ‖w‖L2(An) = o( 1√
n
). Therefore the right hand side of (4.1) tends to zero as n→∞.

We obtain the equality
∫

∆
(w∂Jψ + gψ)dx ∧ dy = 0 for the given ψ. Since ψ was

arbitrary, we conclude the assertion of the Lemma.
�

Remark 3 From Lemmas 4.1 and 4.2 we conclude that w := ũ− ṽ possesses the following
properties:
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• w ∈ Lploc(∆) (in fact w ∈ Cα(∆) with α = 1− 2
p
);

• ∂Jw ∈ L1
loc(∆);

• Since (−1,1) is of measure zero we see that (4.1) writes as

|∂Jw|6 h|w| a.e. in ∆ with some h ∈ Lploc; (4.6)

and, since w is bounded, this implies that

• ∂Jw ∈ Lploc(∆).

4.2. Generalized Giraud-Calderon-Zygmund Inequality

We would like to conclude from these items that w = ṽ− ũ ∈ L1,p
loc(∆). Would J = J̃ũ be

the standard complex structure this statement is called the Giraud-Calderon-Zygmund
Inequality (or estimate): for all 1 < p < ∞ there is a constant Gp such that for all
w ∈ Lp(∆,Cn) ∥∥(∂ ◦TCGC )(w)

∥∥
Lp(∆)

≤Gp · ‖w‖Lp(∆) . (4.7)

Therefore our next step will be to prove the generalization of (4.7) to ∂-type operators
with bounded coefficients.

Extend our complex linear structure J from ∆×R2n to linear complex structure on
C×R2n by setting J |C\∆ = Jst. Remember that by Remark 3 ‖J−Jst‖L∞ is as small as
we wish. Then for w ∈ Lp(C,R2n) it holds that∥∥(∂J ◦TCGC −∂Jst ◦T

CG
C )w

∥∥
Lp(∆)

≤ ‖J−Jst‖L∞(∆) ·
∥∥d(TCGC w)

∥∥
Lp(∆)

≤

≤ ‖J−Jst‖L∞(∆) (1 +Gp)‖w‖Lp(∆) , (4.8)

where Gp is the constant from (4.7). For the standard structure in Cn the operator
∂Jst ◦TCGC : Lp(C,Cn) → Lp(C,Cn) is identity. So from (4.8) we see that there exists
εp = 1

1+Gp
such that if ‖J−Jst‖L∞(∆) < εp, then ∂J ◦TCGC : Lp(C,Cn) → Lp(C,Cn) is an

isomorphism. Moreover, since ∂J ◦TCGC = ∂Jst ◦TCGC + (∂J −∂Jst)◦TCGC , we have

(∂J ◦TCGC )−1 =
[
Id+ (∂J −∂Jst)◦T

CG
C
]−1

=
∞∑
n=0

(−1)n[(∂J −∂Jst)◦T
CG
C ]n. (4.9)

This shows, in particular, that (∂J ◦TCGC )−1 does not depend on p > 1 provided that
‖J−Jst‖L∞(∆) < εp. Now we shall prove the following statement, which can be viewed as
a generalization of the Giraud-Calderon-Zygmund estimate.

Lemma 4.3 For any p > 2, any w ∈ Lp(∆,R2n) with compact support in ∆, any bounded
J with ‖J−Jst‖L∞(∆) < εp conditions

i) ∂Jw ∈ Lp(∆,R2n);
ii) |∂Jw| 6 h|w| a.e. in ∆ for some h ∈ Lploc; imply dw ∈ Lp(∆,R2n) and therefore

w ∈ L1,p(∆,R2n).
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Proof. First take smoothing wε of u by convolution. Put hε = wε−TCG ◦∂Jstwε. Then
∂Jsthε = 0. So hε is holomorphic and descends at infinity. Thus hε ≡ 0, which implies
wε = (TCG ◦∂Jst)wε. Write

‖dwε‖Lp(∆) 6 C
∥∥∂Jstwε

∥∥
Lp(∆)

=
∥∥(∂J ◦TCGC )−1(∂J ◦TCGC )∂Jstwε

∥∥
Lp(∆)

=

=
∥∥(∂J ◦TCGC )−1(∂Jwε

∥∥
Lp(∆))

≤ C
∞∑
n=0

∥∥(∂J −∂Jst)◦T
CG
C
∥∥n
p
·
∥∥∂Jwε∥∥Lp(∆)

≤

≤ C ·
∥∥∂Jwε∥∥Lp(∆)

, (4.10)

provided that ‖J−Jst‖L∞ < εp. But (4.6) implies |∂Jwε|6 |(hw)ε| pointwise and therefore
the right hand side of (4.10) is bounded in Lp(∆).

Now wε converges in Lp to w, therefore dwε converges to dw in the sense of distribu-
tions. Take a subsequence of dwε weakly converging in Lp to conclude that dw ∈ Lp and
therefore w ∈ L1,p.

�

4.3. Uniqueness

We see that our w is a L1,p-section of a L1,p-bundle E which is equipped with a ∂-type
operator ∂J . By Lemma 1.2.3 from [IS2] there is an L1,p-frame of E making from E a
holomorphic bundle and from ∂J the usual ∂-operator, i.e., there exists a local L1,p-frame
e1, ..., en which is holomorphic with respect to ∂J : ∂Jek = 0.

But in this new frame (4.6) again writes as

|∂w(z)|6 h(z)|w(z)| a.e. , (4.11)

but now with the standard ∂. We are precisely in the assumptions of Lemma 1.4.1 from
[IS2] which says that nonzero solutions of differential inequalities of the type (4.11) have
only isolated zeroes. In our case w = 0 on the real axis. Therefore w = ṽ− ũ ≡ 0 and
Theorem 2 is proved.

�

5. Cluster Sets on Totally Real Submanifolds

The case k = 0 of the Theorem 3 is proved in §3 and we restrict ourselves in the future
with k > 1. Fix an almost complex manifold (X,J) with J of class C1,α and a J-totally
real submanifold W of class C2,α. Let u : ∆ → X be a bounded J-holomorphic map of
the unit disc into X. Suppose that cl(u,γ)bW , where γ is some non-empty open subarc
of the boundary.

We use the Proposition 4.1 from [CGS] and observe that u is in Sobolev class L1,p up
to γ for all p < 4. In particular u is Cβ-regular up to γ with β = 1− 2

p
(this means for all

β < 1
2
). Lemma 3.2 implies now the following

Corollary 5.1 Let J ∈ C1,α and W ∈ C2,α. If u : (∆+,γ) → (X,W ) is a bounded
J-holomorphic map with cl(u,γ)bW then u ∈ C1,α(∆+∪γ).
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Let’s stress here that C1,α is not the optimal regularity of u, it should be C2,α. This
will be achieved in the next section §6.

6. Riemann-Hilbert Problem

As it was already told we need to prove the regularity (and uniqueness) of smooth discs
first. This will also imply the exact, i.e., Ck+1,α-regularity up to the boundary of J-
complex discs (if J ∈ Ck,α and W ∈ Ck+1,α). Therefore we proceed in this section with the
proof of Theorem 3 from the Introduction for the case k > 1. The proof will be given in
two steps. Denote by S+ = {eiθ : θ ∈]0,π[} the upper semi-circle, which will serve us for
time being as γ.

6.1. Small deformations of the standard structure

First we consider the following special case. Let W = iRn = {z = x+ iy : x = 0} and let
J ∈ Ck,α, k > 1, be a small deformation of Jst. Fix also a Jst-holomorphic map u0 : ∆−→
Cn of class Ck+1,α(∆) such that u0(S+) ⊂ iRn (so that u0 extends holomorphically to a
neighborhood of S+ by the classical Schwarz Reflection Principle). For J close enough
to Jst we will establish the boundary Ck+1,α-regularity of a J-holomorphic disc u close
enough to u0 satisfying the boundary condition u(S+)⊂ iRn.

Therefore for J close enough to Jst we study the solutions of (2.2) satisfying the
boundary condition

<u|S+ = 0. (6.1)

For every positive integer k denote by Ck,α0 (S) the Banach space of (Rn -valued) functions
ϕ ∈ Ck,α(S) vanishing on S+. This space is equipped with the standard norm ‖ ϕ ‖Ck,α(S).

Set now ϕ0 := <u0|S. ϕ0 ∈ Ck+1,α
0 (S) because <u0|S+ = 0. We replace the condition (6.1)

for the solutions of the partial differential equation (2.2) by the condition

<u|S = ϕ, (6.2)

where ϕ ∈ Ck+1,α
0 (S). Therefore we consider the following boundary value problem

uζ−AJ(u)uζ = 0,

<u|S = ϕ,

=u(0) = a,

(6.3)

for the given initial data ϕ ∈ Ck+1,α
0 (S), a ∈ Rn.

Lemma 6.1 Suppose k > 1. If J is close enough to Jst in Ck,α-norm then for every
16 l 6 k:

(i) there exists a neighborhood U of ϕ0 in Cl+1,α
0 (S), a neighborhood U ′ of a0 := =ϕ0(0)

in Rn and a neighborhood V of u0 in Cl+1,α(∆̄) such that for each ϕ ∈ U and a ∈ U ′
the boundary problem (6.3) admits a unique solution u ∈ V ;
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(ii) the unit disc ∆ can be replaced in part (i) of the present Lemma by any bounded
simply connected domain Ω with C∞ boundary and S+ can be replaced by any open
arc.

Proof. The part (ii) follows from (i) by the Riemann mapping theorem and the classical
theorems on the boundary regularity of conformal maps. So it suffices just to prove the
part (i). Consider the operator

LJ : Cl+1,α(∆̄)−→ Cl,α(∆̄)×Cl+1,α(S)×Rn

defined by

LJ : u 7→

 uζ−AJ(u)uζ
<u|S
=u(0)

 .
LJ smoothly depends on the parameter J . Denote by L̇J(u) the Fréchet derivative of
LJ at u. L̇J is continuous on the couple (J,u) and at Jst-holomorphic u0 the derivative
L̇Jst(u

0) is particulary simple:

L̇Jst(u
0) : Cl+1,α(∆)−→ Cl,α(∆)×Cl+1,α(S)×Rn

L̇Jst(u
0) : u̇ 7→

 u̇ζ
<u̇|S
=u̇(0)

 .
Let’s see that L̇Jst(u

0) is an isomorphism. Indeed, given h ∈ Cl,α(∆), ψ ∈ Cl+1,α(S) and
a ∈ Rn then the function

u̇= TCG∆ h− i=
(
TCG∆ h(0)

)
+ ia+T SW (ψ−<(TCG∆ h)|S)

is of class Cl+1,α(∆) and satisfies the equation

L̇Jst(u
0)(u̇) =

 h
ψ
a

 .
Uniqueness of u̇ is obvious. Therefore by the Implicit Function Theorem every LJ is
a C1-diffeomorphism of neighborhoods of u0 in Cl+1,α(∆̄) and of (0,ϕ0,a0) in Cl,α(∆)×
Cl+1,α(S)×Rn. Since Cl+1,α

0 (S) is a closed subspace of Cl+1,α(S) the Lemma 5.1. follows.
�

6.2. General case

We consider a J-holomorphic map u : ∆→X such that u(S+)⊂W , where W is of class
Ck+1,α and J ∈ Ck,α, k > 1. First of all we point out that in view of the classical results on
the interior regularity of J-holomorphic maps we can assume that the map u is of class
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Ck+1,α in ∆, see [BJS, MS, Sk]. By Corollary 5.1 (or Lemma 3.2) we can suppose that u
is C1,α also on S+.

The statement of Lemma is local, so fixing eiθ0 ∈ S+ and shrinking a neighborhood of
the point p= u(eiθ0), we reduce the general case to the case of a small deformation of Jst.
More precisely, we proceed as follows.

A neighborhood of eiθ0 in ∆̄ we see now as semi-disc ∆+ = {ζ ∈ ∆ : =ζ > 0} ∪ γ,
where γ = (−1,1). Shrinking a bit we build a domain Ω in the upper half-plane with C∞
boundary ∂Ω such that (after delating Ω) the real interval (−1,1) is contained in ∂Ω. Now
we consider the real interval γ = (−1,1) instead of the upper semi-circle (eiθ0 becomes
zero in these new coordinates). Furthermore we assume that X is the unit ball of Cn

equipped with an almost complex structure J ∈ Ck,α with J(0) = Jst and T0(W ) = iRn

and p = u(0) = 0. Since W is locally Ck+1,α diffeomorphic to its tangent space at the
origin, pushing J forward by this diffeomorphism we can suppose that W = iRn and we
preserve the previous assumptions. In particular, J remains in class ∈ Ck,α. We stress
that <u is of class Ck+1,α on ∂Ω because u is Ck+1,α on ∂Ω\γ and <u|γ ≡ 0.

The map u being of class C1,α(∆+ ∪ γ) admits the expansion u(ζ) = bζ + o(|ζ|) near
the origin. Note that the linear term of the expansion is C-linear because J(0) = Jst. For
t > 0 consider the structures Jt(z) = J(tz). They tend to Jst in the Ck,α norm on any
compact subset of Cn as t tends to 0. The maps ut(ζ) = (t−1 ◦u)(tζ) are Jt-holomorphic
and tend to the map u0 : ζ −→ bζ on any compact subset of the closed upper semi-plane
{=ζ ≥ 0} as t−→ 0. We view the map u0 as a Jst-holomorphic map.

Since all maps ϕt := <ut|∂Ω vanish on γ = (−1,1) they are of class Ck+1,α
0 (∂Ω) :=

{ϕ ∈ Ck+1,α(∂Ω,Rn) : ϕ|γ ≡ 0}. Applying Lemma 6.1 to u0 and ϕt for t small enough, we
obtain by the uniqueness statement of this Lemma that maps ut are of class Ck+1,α(Ω) for
t small enough. This proves the case k > 1 of Theorem 3.

�

Remark 4 Note that we used the uniqueness statement of Lemma 5.1 both for l = 1 and
l = k.

7. Reflection Principle-II: Real Analytic Case

We turn now to the proof of the Reflection Principle of Theorem 1. As in the smooth
category we proceed in two steps.

7.1. Small deformations of the standard structure

Here we consider the case when J is a small real analytic deformation of Jst and W = iRn.
First we introduce suitable Banach spaces of real analytic functions using the complexi-
fication.

Denote by ∆2 = ∆×∆ the standard bidisc in C2. We define the space C1,α
ω (∆) con-

sisting of functions u (or Cn-valued maps) of class C1,α(∆̄) with the following properties:

(i) u is a sum of a power series u(ζ) =
∑

kluklζ
kζ

l
for ζ ∈∆.
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(ii) The ”polarization” û of u defined by û(ζ,ξ) =
∑

kluklζ
kξl is a function holomorphic

on ∆2 and of class C1,α(∆
2
).

(iii) The mixed derivative ∂2û
∂ζ∂ξ

is of class Cα(∆
2
).

We define the norm of u as following:

‖u‖C1,α
ω (∆) = ‖û‖C1,α(∆

2
)
+

∥∥∥∥ ∂2û

∂ζ∂ξ

∥∥∥∥
Cα(∆

2
)

.

Since u is the restriction of û onto the totally real diagonal {ξ = ζ̄} the polarization û
is uniquely determined by u and therefore C1,α

ω (∆) equipped with this norm is a Banach
space.

Remark 5 One has the following continuous inclusion O1,α(∆) ⊂ C1,α
ω (∆): for u ∈

O1,α(∆) the corresponding û is simply û(ζ,ξ) = u(ζ). Really, for such û one has ∂2û
∂ζ∂ξ

= 0.

We denote by C1,α
ω (∂∆+) the space of real functions ϕ on ∂∆+ such that there exists

a function v ∈ O1,α(∆) satisfying the condition <v|∂∆+ = ϕ. In particular such function
ϕ is real analytic on the interval (−1,1). The holomorphic function v is unique up to an
imaginary constant so we always assume that =v(0) = 0. We define the norm of ϕ as
a C1,α norm of the corresponding function v on ∆̄. Then C1,α

ω (∂∆+) equipped with this
norm, is a Banach space.

Furthermore, denote by C1,α(∂∆+) the space of real continuous functions on ∂∆+ which
are of class C1,α on the closed upper semi-circle and on the interval [−1,1]. Finally we
denote by we denote by C1,α

0 (∂∆+) the space of real functions of class C1,α(∂∆+) vanishing
on the interval [−1,1]. The following statement is a consequence of the reflection principle.

Lemma 7.1 The space C1,α
0 (∂∆+) is a subspace of C1,α

ω (∂∆+).

Proof. Let ϕ be a function of class C1,α
0 (∂∆+). Solving the Dirichlet problem for ϕ in

the upper semi-disc, we obtain a harmonic function h in ∆+ continuous on ∆
+

such that
h|∂∆+ = ϕ. Since h vanishes on [−1,1] it extends harmonically on ∆ by the classical
reflection principle for harmonic functions. Namely, its extension h∗ is defined by h∗(ζ) =
−h(ζ) for ζ in the lower semi-disc ∆−. Thus we obtain a function h̃ harmonic on ∆ and
continuous on ∆. Since the restriction ϕ of h on the closed upper semi-circle is a function
of class C1,α, it follows easily by the definition of the reflection h∗ that the restriction
ϕ̃ := h̃|∂∆ of h̃ on ∂∆ is a function of class C1,α(∂∆). Then the Schwarz integral T SW ϕ̃
gives by Proposition (2.2) a function of class O1,α(∆) whose real part coincides with h̃.

�

Lemma 7.2 If u ∈ C1,α
ω (∆) then <u|∂∆+ ∈ C1,α

ω (∂∆+).

Proof. Let û(ζ,ξ) =
∑
uklζ

kξl be the polarization of u holomorphic in the bidisc ∆2

(that is u(ζ) = û(ζ,ζ) ). Then the function h(ζ) = û(ζ,ζ) is of class O1,α(∆) and
h|[−1,1] = u|[−1,1]. Denote by ϕ the restriction of <(u−h) to ∂∆+. Then ϕ ∈ C1,α

0 (∂∆+)
and by Lemma 7.1 there exists a function v ∈ O1,α(∆) such that <v|∂∆+ = ϕ. Since the
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function h+v is of class O1,α(∆), its real part gives the desired extension of the function
<u|∂∆+.

�
We suppose everywhere below that our almost complex structure J (and therefore AJ

in the equation for J holomorphic curves) is a real analytic function given by a convergent
power series

∑
aklz

kzl with the radius of convergence big enough. The equation (2.2) on
∆ can be rewritten in the form

(u−TCG∆ AJ(u)uζ)ζ = 0, (7.1)

where TCG∆ denotes the Cauchy - Green transform on ∆. Define the map

ΦJ : C1,α(∆̄)→C1,α(∆̄),

as
ΦJ : u 7→ u−TCG∆ AJ(u)uζ . (7.2)

Equation (7.1) means that u is J-holomorphic if and only if ΦJu is holomorphic with
respect to Jst.

Lemma 7.3 For J close to Jst the operator ΦJ establishes a diffeomorphism of neighbor-
hoods of zero in the space C1,α

ω (∆).

Proof. First we prove that ΦJ maps the space C1,α
ω (∆) to itself. Given function u ∈

C1,α
ω (∆) denote the function AJ(u)uζ by h. We need to prove that TCG∆ h belongs to

C1,α
ω (∆). Consider the polarization ĥ(ζ,ξ) = ĥ(ζ,ξ) of h. By Proposition 2.1 we have the

representation

TCG∆ h(ζ) = Ĥ(ζ,ζ)− 1

2πi

∫
∂∆

Ĥ(τ,τ)dτ

τ − ζ
. (7.3)

where

Ĥ(ζ,ξ) =

∫
[0,ξ]

ĥ(ζ,ω)dω (7.4)

is a primitive of ĥ with respect to ξ. Let’s study the primitive (7.4) of ĥ first. We point out

that the function ĥ is of class C0,α(∆
2
). Furthermore, the condition (iii) of the definition

of the space C1,α
ω (∆) implies that ∂ĥ/∂ζ is of class C0,α(∆

2
). Now the derivation of the

integral (7.4) with respect to ζ and ξ gives that Ĥ satisfies conditions (i), (ii), (iii) of the
definition of the space C1,α

ω (∆).
By Proposition 2.2 the Cauchy integral in the right hand side of (6.3) represents a

function of class O1,α(∆) and so also belongs to the space C1,α
ω (∆).

Thus we obtain that ΦJ(u) belongs to C1,α
ω (∆). Since the Fréchet derivative of ΦJ

with respect to u at u = 0 and J = Jst is the identity map, the lemma follows from the
inverse mapping theorem.

�

Hence ΦJ is a diffeomorphism between neighborhoods of zero in the manifolds of J-
holomorphic and Jst-holomorphic maps of class C1,α

ω (∆̄). In particular, J-holomorphic
discs form a Banach submanifold in C1,α

ω (∆) in a neighborhood of zero. We denote this
manifold as O1,α

ω,J(∆).
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Remark 6 Note that O1,α
ω,Jst

(∆) =O1,α(∆).

We use the notation O1,α
ω,J,0(∆) for the submanifold of such u ∈ O1,α

ω,J(∆) that <u|[−1.1] ≡ 0.

By R∂∆+ denote “taking real part and restriction to ∂∆+” operator. ΦJ

(
O1,α
ω,J,0(∆)

)
is

the diffeomorphic image of O1,α
ω,J,0(∆) under ΦJ .

One has the following commutative diagram:

C1,α
ω (∆) ⊃ O1,α(∆)

Φ−1
J−→ O1,α

ω,J(∆)
↑ i ↑ i

C1,α
ω (∆) ⊃ ΦJ

(
O1,α
ω,J,0(∆)

) Φ−1
J−→ O1,α

ω,J,0(∆)
R∂∆+−→ C1,α

0 (∂∆+) ,

(7.5)

where both i-s are natural imbeddings.

For an unknown map u from ΦJ(O1,α
ω,J,0(∆)) and given ϕ ∈ C1,α

0 (∂∆+) consider the
system

{
R∂∆+Φ−1

J u= ϕ,

=Φ−1
J u(0) = a.

(7.6)

Fix a Jst-holomorphic map u0 ∈ O1,α(∆) such that <u0|[−1,1] ≡ 0 and set ϕ0 = <u0|∂∆+ .

Lemma 7.4 For real analytic J close enough to Jst in C1,α-norm there exists a neighbor-
hood U of ϕ0 in C1,α

0 (∂∆+), a neighborhood U ′ of a0 := =u0(0) in Rn and a neighborhood
V of u0 in O1,α(∆) such that for ϕ ∈ U and a ∈ U ′ the system (7.6) admits a unique
solution u ∈ V ∩ΦJ(O1,α

ω,J,0(∆)).

Proof. The surjectivity condition for the operator obtained by the linearization of (7.6)
at u= u0 and J = Jst is reduced to the resolution of the system

R∂∆+u̇= ψ, (7.7)

=u̇(0) = a,

for an arbitrary given function ψ ∈ C1,α
0 (∂∆+), arbitrary a ∈ Rn and an unknown map

u̇ ∈ O1,α(∆). By Lemma 7.1 we obtain a solution for any given right hand side of (7.7).
The uniqueness of u̇ is obvious. Now the Implicit Function Theorem implies the desired
statement.

�

7.2. General case

Theorem 1 now follows similarly to the smooth case (but using this smooth case!). We
replace the unit disc by the upper semi-disc ∆+ and S+ by the interval (−1,1). By the
classical results on the interior regularity of pseudo-holomorphic maps we can assume that
the map u is real analytic in a neighborhood of ∆̄+\(−1,1). We can assume that X is the
unit ball of Cn equipped with a real analytic almost complex structure J with J(0) = Jst
and that W = iRn and u(0) = 0.
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Our map u is of class C1,α(∆
+

) and admits the expansion u(ζ) = bζ+ o(|ζ|) near the
origin. For t > 0 consider the real analytic structures Jt(z) = J(tz). They tend to Jst as t
tends to 0. Maps ut(ζ) = t−1u(tζ) are Jt-holomorphic and tend to the map u0 : ζ −→ bζ
as t−→ 0 which is viewed as a real analytic Jst-holomorphic map.

Applying Lemma 7.4 to u0 and ϕt := <ut|∂Ω for t small enough, we obtain by the
uniqueness statements of Lemma 7.4 and Lemma 6.1 that the maps ut are real analytic
for t small enough. This implies finally that u extends as a real analytic map past (−1,1).
Since it satisfies the real analytic condition (2.1) on an open set, the extension is a J-
holomorphic map. This proves the Theorem 1.

�

Remark 7 In order to apply Lemma 6.1 correctly one should take a domain Ω in ∆+

with C∞ boundary ∂Ω such that the real interval (−1,1) is contained in ∂Ω.

8 Open Questions

At the end we would like to turn the attention of a reader to some open questions.

8.1. Real Analyticity up to the Boundary

Real analytic extension of solutions of elliptic PDE-s with real analytic data across a part
of the boundary were studied in numerous papers and books, let’s cite the following ones:
[K, M, Mu, SS, Yu]. However, the linearization of (2.2) is the standard Cauchy-Riemann
operator and it is not properly elliptic. Therefore the results in §6.7 and 6.8 in [M] are
not applicable in our case, see Definition 6.1.2 in [M] and discussion there. .

1. Our Theorem 1 suggests that these results could be generalized to more general elliptic
systems, which includes (2.2) as a partial case.

One can try to save the situation in the following way. Applying (2.1) to to tangent
vectors ∂

∂x
and ∂

∂y
one gets

∂u

∂x
+J(u)

∂u

∂y
= 0

and
∂u

∂y
−J(u)

∂u

∂x
= 0.

Differentiating the first equation with respect to x, the second with respect to y and
adding the results one gets

∆u+

〈
∇J, ∂u

∂x

〉
∂u

∂y
−
〈
∇J, ∂u

∂y

〉
∂u

∂x
= 0. (8.8)

That operator satisfies conditions of the Theorem 6.7.6
′

but fails to satisfy the boundary
conditions, see definitions and discussion on pp. 209-212, especially Definition 6.1.3.

2. This may mean that also for second order real analytic elliptc systems there should
be more general analyticity theorems, which include the system (8.8) with boundary
conditions like “to belong to some distinguished submanifold of R2n” along some part of
the boundary.
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8.2. Reflection Principle

The following couple of questions are more complex analytic by their nature.

3. Let (X,J) be a real analytic almost complex manifold and W a real analytic J-
totally real submanifold of X. Let C+ be J-complex curve in X \W . Does there exists a
neighborhood V of W and a J-complex curve C− in V \W (reflection of C+) such that
(C+∪C−)∩V is a J-complex curve in V ?

For integrable J the answer is yes and is due to H. Alexander, see [A].

4. The following question is a particular case of the previous one. Let C be a J-complex
curve in the complement of a point. Will its closure C̄ be a J-complex curve?

5. This question was communicated to us by J.-C. Sikorav. Define a J-holomorphic map
as a differentiable map u : ∆→ X such that (2.1) is satisfied at every point. Prove that
u ∈W 1,2

loc (and therefore u is a J-holomorphic map in the usual sense).

8.3. Boundary Uniqueness

There are several natural questions concerning the boundary uniqueness problem for pseu-
doholomorphic maps.

1. Does Theorem 2 hold under weaker assumptions on the boundary regularity of u and
v? Namely, if they are only continuous up to the boundary and coinside there on the set
of positive linear measure?

2. We wish that Lemma 4.3 could be enhanced to the estimate of the form

‖dw‖Lp(∆) ≤ C ·
∥∥∂Jw∥∥Lp(∆)

(8.9)

where C = C(p,‖J−Jst‖L∞) =
∑∞

n=1 ‖J−Jst|L∞(1 +Gp)‖n, provided that ‖J−Jst‖L∞ <
εp.
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[Ca] Carathéodory C.: Zum Schwarzschen Spiegelungsprinzip. Comm. Math.
Helv. 19, n 1 (1946), 263-278.

[Ch] Chirka E.: Regularity of boundaries of analytic sets. Math. USSR Sbornik
43 (1983), 291-335.

[CGS] Coupet B., Gaussier H., Sukhov A.: Fefferman’s mapping theorem on
almost complex manifold in complex dimension two. Math. Z. 250 (2005),
59-90.



Reflection Principle-II: Real Analytic Case 19

[GS] Gaussier H., Sukhov A.: On the geometry of model almost complex
manifolds with boundary. Math. Z. 254 (2006), 567-589.

[IR] Ivashkovich S., Rosay J.-P.: Schwarz-type lemmas for solutions of ∂-
inequalities and complete hyperbolicity of almost complex manifolds. An-
nales Inst. Fourier 54, (2004) 2387-2435.

[IS1] Ivashkovich S., Shevchishin V: Reflection Principle and J-Complex
Curves with Boundary on Totally Real Immersions. Communications in Con-
temporary Mathematics 4, 65-106 (2002).

[IS2] Ivashkovich S., Shevchishin V: Structure of the moduli space in a
neighorhood of a cusp-curve and meromorphic hulls. Invent. math. 136,
571-602 (1999).

[K] Kraft R.: Analiticity and reflectivity for first order systems of elliptic type
in two independant variables. J. Math. Anal. Appl. 29, 1-17 (1970).

[MS] McDuff D., Salamon D.: J-holomorphic curves and symplectic topology.
AMS Colloquium Publ., 52, AMS, Providence, RI, (2004).

[M] Morrey, C.: Multiple integrals in the calculus of variations. Springer
Verlag, (1966).

[Mu] Müller F.: On the continuation of solutions for elliptic equations in two
variables. Ann. Inst. H. Poincaré, 19, 745-776 (2002).
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