Operator Algebras on Cuspidal Wedges

Bert-Wolfgang Schulze, Boris Sternin*
and Victor Shatalov*

Max-Planck-Arbeitsgruppe

“Partielle Differentialgleichungen und
komplexe Analysis*

Universitit Potsdam

Am Neuen Palais 10

14469 Potsdam

Germany

*

Moscow State University
Department of Mathematics
Vorob'evy Gory

119899 Moscow

Russia

MPI 96-137

Max-Planck-Institut

fiir Mathematik
Gottfried-Claren-Str. 26
53225 Bonn

Germany






Operator Algebras on Cuspidal Wedges

Bert-Wolfgang Schulze,
MPAG “Analysis”
Universitit Potsdam
e-mail: schulze@mpg-ana.uni-potsdam.de

&

Boris Sterninj and Victor Shatalov’
Moscow State University
e-mail: boris@sternin.msk.su

October 14, 1996

Abstract

Equations on manifolds with wedges consisting of cusp-type points are in-
vestigated. The corresponding calculus of peudodifferential operators is con-
structed and finiteness theorems (Fredholm property) are established.

Keywords: manifolds with singularities, cusp, wedge, noncommutative analy-
sis, left ordered representation, ellipticity, regularizer, finiteness theorem, Fredholm

property.

*Supported by Max-Planck-Gesellshaft zur Férderung der Wissenschaften e.V., Arbeitsgruppe
“Partielle Differentialgleichungen und komplexe Analysis” and Deutsche Forschungsgemeinschaft.

1



Contents

1 Preliminaries 3
2 Operator algebra (first version) 7
2.1 Functionspaces . . . . . . . . . . . . i e e 7
2.2 Functions of noncommuting operators . . . . . ... ... e 9
2.3 Commutation relations and the composition law . . . . .. .. . ... 10
2.4 Elliptic elements and their regularizers . . . . . ... ... ... ... 14
25 Examples . .. ... e 20
3 Operator algebra (second version) 22
3.1 Commutaion relations and composition formula . . . ... ... ... 22
3.2 Regularizers and finiteness theorem . . . . . . ... ... . ... ... 26
33 Example . . . . .. oL 28
4 Extension of the operator algebra 28
4.1 Maindefimtions . . . . ... ... Lo 28
4.2 Continuability theorems . . . . . ... ... ... ... 31
4.3 Composition theorems . . . . . .. . ... ... ... .. ... ..., 32
4.4 Ellipticity and finiteness theorems . . . . . . .. ... ... ... ... 33
45 Example . . . . .. 39
Introduction

The present paper is a continuation of a sery of author’s works on the investigation
of differential operators on manifolds with cusp-type singularities.

In the previous papers {1], [2] we have investigated the case of isolated singu-
larities. Here we extend our results to the case when the singularity set is a closed
smooth manifold without boundary.

The problem we deal with is the construction of the corresponding algebra which
is called by us a local cusp-wedge algebra (LCW-algebra). The latter is an algebra
of operators concentrated in a neighborhood of the edge. The construction of the
corresponding algebra on the whole manifold is now quite standard task which can
be carried out, for example, by means of the technique used in the book [3].

While constructing LCW-algebra one can use two different approaches. One of
them is connected with consideration of operators with coefficients in the algebra of
¥ DQO’s on a smooth manifold (on the base of the corresponding model cusp), and the
other uses the point local cusp algebra (LC-algebra) as the algebra of coefficients.



Such an approach was used in the situation of conical-wedge singularities in [3], in
the Sobolev problems for submanifolds with multidimensional singularities [4] and
is, in present, a common one in the considered field.

It is worth noting that the first approach is undoubtedly more simple. At the
same time, the merit of the second approach together with its matrix version is that
it is applicable to more wide range of problems. We note also that, similar to our
previous paper [2], we use Maslov’s noncommutative analysis method (5], [6] for the
construction of the mentioned algebras.

After the appearence of papers (1], [2], Professor V. Maz’ya have attracted our
attension to papers {7], [8]. In these papers the Dirichlet problem for elliptic operator
with constant coeflicients in a domain with boundary having singularities of the
caspidal type was investigated, and the principal (dominant) term of asymptotic
expansion of a solution to such a problem in a neighborhood of the singular point
was obtained!. The authors are grateful to Professor V. Maz’ya for his remark.

1 Preliminaries

This paper is aimed at the consideration of differential equations on manifolds with
edges consisting of cusp-type points. More precisely, we consider a pair (M, X) of
topological spaces such that?:

e M\ X is an open C°°-manifold.
e X is a compact C'°-manifold without boundary.

e There exists a neighborhood U of the manifold X such that
U~Cx X,
where C' is an open cusp
C={[0,1) x 2} / {{0} x 2}

with a smooth C*-manifold 2 as a base.

!We recall that in papers [1], [2] the authors obtain the full asymptotic expansion of solutions
including recessive terms as well.

2For simplicity, we suppose that the singularity manifod X has only one component; this will
not be essential in the sequel.



e C*-structure on Cp x X coincides with that on M \ X. Here
Co=(0,1) x Q
is the cusp C without its vertex.

On the manifold M, we consider differential operators with cusp-type wedge
degeneracy of order k, that is the operators having the form3:

H=H (r,w,:z:, —z'r"“-aa—r, —ia—au-)-, —z'r"“a%) (1)

near X, where the function

H(r,w,z,6,80,6) (2)

is a polynomial of order m with coefficients smooth up to r = 0. Function (2) will be
referred as the symbol of the operator f given by (1). We remark that the case when
the manifold X consists of a single point of cusp-type degeneracy was considered
in [2], and for k = 0 we obtain operators with (conical) edge degeneracy (see. e. g.
[3)-

One must have in mind that the definition of differential operator (1) via its
symbol (2) is not clear until we fix the order of action of arguments in (1) which are
operators with nontrivial commutation relations. For example, if

H(rwz,bbnb)= Y, tp(rw,z) 8,

itHal+|8l<m
then
1 3 9
4 4 4 ] ] . )
H r,w,z,_lrk-i-l_r,_z_a_w’ zrk+1_é_;E
(9 @ . d 8 . P 3
= Y Guslrw) (_3_w) A EAY
J+|al+|8|<m

3More precisely, we should consider operators of the form
pm(ktl)m g (r,w, z, —irk“a/ar, —18/dw, —ir""’la/a:r) .

However, in the local considerations the factor r=(*+17 s inessential, and we omit it.



but

2 3 1
444—"‘+1i"‘i_'k+1£
H r,Ww,T,—1r or’ 13&)’ wr p
_ | AN e dV [ om0V
- Z jap (r,w,z) (—la—w) (—zr F —r B—x .

itlal+]81<m

Here the indices over operators define the action of these operators (Feynmann
indices, see [5], [6]): the operator with smaller index acts on the function earlier
than that with larger index.

Our aim is to introduce an operator algebra including operators of the type (1)
as well as regularizers for such operators. Similar to the paper [2], it is natural to
construct such an algebra in the framework of the noncommutative analysis, that
is, to construct elements of the algebra as functions of operators

0
Al = —irk+la,
Ag = —iTk+l‘a?;,
Bl = r, (3)

BQ=LE

?

with some concrete ordering.

There are two ways of constructing the operator algebra corresponding to oper-
ators of the form (1). Both of them are based on the consideration of functions of
operators with operator-valued symbols.

A. The first way is to consider functions on the local model
{{0,1) x X x Q} /{{0} x X x 02} (4)

of the manifold M near the submanifold X as functions on the direct product [0, 1) x
X with values in a function space on the manifold {2. In this case operator (1) can
be written down in the form®

N 3 3 1 2
H (B17B27A1)A2) 1 (5)

4The concrete ordering of operators in (5) is chosen for convenience of computation of the left
ordered representation of these operators.



where the function H (y,z,7,§) takes its values in the algebra of (pseudo)differential
operators on the manifold 2.

B. The second way is to consider functions on (4) as functions on the manifold
X with values in a function space on the model cusp

C={[0,1) x 2}/ {{0} x }

(this space will be a weighted Sobolev space E}_ introduced in the paper [2]). Then
the operators from our future algebra will have the form

3 2 1
i (BQ,AQ) , (6)

where (z,€) is a function with values in the LC-algebra constructed in [2]:
. . 2 1
H(m1£)=Hl (BlyAl;I)ﬁ) (7)

with some function H, (y,m; z,€) with values in the algebra of (pseudo)differential
operators on the manifold £2. In this approach, it is necessary to define explicitly

2 1
not only the order of action of operators B;, Az in (6) but also of coefficients of the
operator-valued symbol H (z,¢), since the operator

3}
Ay = —1 k1 Y 8
2 r a:c ( )
does not commute with operators from the LC-algebra. In such operator-valued
treatment, the operator of multiplication by r*¥*! in (8) must be viewed as an oper-
ator in the corresponding space of functions on the local cusp C. We remark also
that operators of the form (6) with symbols (7) can be written down as functions of

operators (3): \
3 /2 1 . (4 3 2 1
H (Bg,A:) = H, (BlaAl;BZ, Az)

but with ordering different from that in (5).
In the two subsequent sections we shall introduce these algebras and derive the
corresponding commutation formulas.



2 Operator algebra (first version)

2.1 Function spaces

Let H be a Hilbert space scale. This means that
H={H, s€Z},
the spaces H? are compactly embedded to one another:
HC M,

and each H° forms a dense set in H*~!. We suppose also that the space

H>® = m H?
is dense in H* for any s. We denote by || - ||, the norm in the space H°’.
Let
D:H-—-H

be a generating operator of the scale H, that is, an operator
D :H® > H™

such that it can be continued up to the isomorphism
D : H — HL

Then the norms in spaces H’ can be given by
lull, = D%l

In what follows we shall use the Sobolev space scale H* () as H°. Then the
operator D is given by
D=(1+4)",
where A is a positive Beltrami-Laplace operator on ) corresponding to some Rie-

mannian structure.
Consider the space scale

E* = E*([0,0) x X, H)



consisting of functions on [0,00) x X with values in H with the finite norm

drd
il = / f 434505 ) S5

1,7 k>0 #+i+k<s 0

- ¥ ffIIAA’ e} S ©)

£,3,k200+74+ k< S

As it was mentioned above, we shall use some function space scale on the manifold
1 as H, so that the elements of the spaces E® can be treated as functions of the
local model

{[0,00) x X x 2}/ {{0} x X x 2}

of the manifold M near the singularity manifold X.

The space E°([0,00) x X,H) defined by norm (9) is an L,-space with special
weight r~*+1) chosen in such a way that all the operators (3) be symmetric operators
with respect to the corresponding scalar product. However, not all these operators
are self-adjoint in the space E,. Namely, the operator A; is just symmetric, not
self-adjoint operator in this space.

Similar to the paper (2], we modify operators (3) in such a way that they become
self-adjoint without changing these operators in a neighborhood of r = 0. Let ¢ (r)
be a C*-function (defined on the whole axis R) coinciding with the function r*+
near the origin and equal to a constant for large values of r. We shall consider the
modification of operators (3) of the form

d
Ay = —ip(r) o
d
Ay = —ip(r )a
Bl = 1 (10)
Bz = I.

The reader can verify that all the operators (10) are self-adjoint in the space E° (see
similar considerations in the above cited paper [2]) if this space is also modified in
the appropriate way. Namely, we shall use the norms

lull’> = ) //'”At 4D u (r, 2) ”: drd:c

1,J.k2>0:i4j+k<s o

Z //”AIA;‘U, r, .’L‘ ||2 dT'dﬂ’:

1,7,k20;i+7+k<s 0



instead of norms (9). The proof of the self-adjointness of operators (10) in the space
E° can be performed now by the direct computation of the corresponding unitary
groups

exp (itA;), exp (itB;), j = 1,2.

Below, we shall use also the space scale E; ., defined by the norm
lull, o = MO,

where ¥ (r) is a function on Ry such that ¢’ (r) = o7 (7).

2.2 Functions of noncommuting operators

As it was explained above, we shall construct the local algebra near X as an algebra
of functions of the four non-commuting operators (10)

ﬁ:ﬁ(ﬁl,ﬁg,ﬁ,,ﬁg) (11)
with some operator-valued symbol 24 (y,z,7m,€) with values in the algebra
L(H,H)
of continuous operators in ‘H. We recall that an operator
G H® > H®

is said to be a continuous operator in the scale H if it extends up to a continuous
operator X

G . HJ N Hs—m
for every s € R,. The minimal value of m for which the latter operator is continuous
is called an order of this operator.

The definition of operators of the type (11) closely follows constructions of
. /3 3 1 2
the paper [2]. Namely, we define the operator H BI,BQ,AI,AQ) via its symbol

-

H(y,z,n,£) as

” 3 3 1 2 it By i . . -
H (Bl,Bg,Al,Ag) = /e"l 1e2Bagitada gt AL [T (1) 4, 15, 14) diydiadigdty,

where f[(tl,tg,t3,t4) is the Fourier transform of the symbol I:I(y,n:,n,.f) in all its
variables.
Let us describe the symbol classes which will be used in sequel.

9



Definition 1 By S™ (H), we denote the space of functions H (y,z,7,&) such that
the following estimate

m—l—-lgi
(149> +&+D%) 7

u

| D302 D i1 (3, 2,m,€) || < Ctes

5

takes place for any j, !, @, 8, and u € H*+™~!=1Al

Then, similar to the results of the paper [2], one can prove the following state-
ment:

Theorem 1 Let ff(y,:c,n,{) be a symbol from S™(H). Then the corresponding
operalor

N 3 3 1 2
H(B.,Bg,Al,Az) . E°([0,00) x X, H) — E™([0,00) x X, H)

is conlinuous.

2.3 Commutation relations and the composition law

In this subsection, we prove that the set Op ([0, 00) x X, H) of operators of the form
. /3 3 1 2
H (Bl,Bg, AI,AQ) (12)

with symbols H (y,z,7,£) € S™ (H), where m can depend on the symbol, form an
algebra. To do this, we must prove that for any two operators H, and H, of the
form (12) the composition .

- N - 3 3 1 2 - 3 3 1 2
HyoH, = HHl (Bx,Bz,AJ,Az)]] ° [[Hz (Bl,Bz,AlaAz)]] (13)

3 3 1 2
can be represented as a function of the ordered tuple (B,, B,, Ay, Ag) of operators.
Besides, we shall show that if

H (y,z,7,6) € S™ (), H;(y,z,7,€) € §™ (H),

then the symbol ff (y,2,7,€) of composition (13) belongs to the symbol space
Smi+m3 (‘H), and present the closed formula for this symbol via H, (y,z,9,{) and

H2 (y,fl?,'iaf)-

10



To do this, we shall use the ordered representation method [6]. Namely, in accor-
dance to this method to derive the composition formula, one have to compute only
formulas for symbols of the compositions

N 3 3 1 2
Bl IH (BlaBﬂiAlsA2)j|:| )
T . 3 3 1 2
B? H (BIJBQ,AHAQ)]] ]
T . 3 3 1 2
A | H (31,32,/41,/12)]], (14)
T N 3 3 1 2
A2 H (BI:BQa AI’A2)]]

. /3 3 1 2
of generators By, By, A;, A; with an arbitrary operator H Bl,Bz,Al,Ag). We

denote by lg,, Ig,, l4,, 4, the operators on the symbol space such that

a ~ 3 3 1 2

I, [H(y,x,{,n)] = smbl {Bj I[H (BI,BQ,A;,AQ)]]},]'=1,2,
- - 3 3 1 2

Ly, [H(y,x,f,n)] = smbl {AJ- I]:H (B],B‘),AI,AQ)H }, 7=12.

These operators are called the operators of the left ordered representation.
Let us proceed with the process of computations.
First of all, we write down the commutation relations

[AI!BI] = —7:99(31),
[A1, As] = —ip'(By) Aq, (15)
[A2, B2l = —ip(B))

[t is evident that
. /3 3 1 2 3 . /3 3 1 2
Bl I[H (BI?B%Al’AQ)]] =Bl H (BI’B‘ZaAlaA‘Z)
" 3 3 1 2 < 3 3 1 2
B, [[H (Bl,Bz,Al,Az)]] =B, H (BhB2;AhA2)a
so that the symbols of the first two operators in (14) are

ts, (1 (v,2,1.0)) = yil (4,2,1,),
I, (fl(y,z,n,f)) = 2H(y,2,7,¢).

and

11



Let us compute the symbol of the third operator in (14). We have

. /3 3 1 2 5 . /4 3 1 2
Al [[H (BlaB2aAl7A2)]] =Al H (BlaBQ)AlsA‘l) .
Due to the commutation formula (see [6, p. 62]) we obtain
. /3 3 1 2 4 , (5 3 1 2
Al [[H (B],BQ,A;,AQ)]] = Al H (BHBZ:AlaA‘Z)
§H
+ [Al,B1] m (Bl,B],BQ,Al,AQ)

Since the commutator
[An Bl] = —1p (Bl)

(see {15)) commutes with the operator By, we obtain

~ 3 3 1 2 4 . 5 3 1 2
Al HH (BI,BZ-,: AI)AQ)]] = Al H (Bl) B27 A17A2)
. aH 3 1
—ip (Bl) a— (Bl, Bz, Al, AZ) (16)
¥

Later on, since the operators A; and B, commute, we can interchange the order
of action of these operators on the right in the latter formula. Then, again by the
commutation formula, we get

4 . /5 3 1 2 3 . /5 4 1 2 1 . /3 3 1 2
Al H (311821AhA2) = Al 1'1 (BlaszAlaA'Z) =Al H (BIJB21AlaA2)
3 __S§H/5 5 1 2 4
+ [AhAzl —5—6— (Bl,Bz,Al,Az, Az) .
The commutator
[A1, Az] = —ip’ (B1) A

(see (15)) commutes with A,, and we arrive at the relation

4

- 5 3 1 2 1 . 3 3 1 2
H(BlaB'Z:AlaAZ') = AIH(BI)B27A17A2)
o3\ 2 8H (3 3 1 2
—ip (Bl) A2 56_ (Bl,Bz,Al,AQ) . (17)

12



Collecting formulas (16) and (17), we finally obtain
. /3 3 1 2 1 . /3 3 1 2
A, [[H (Bl,Bz,AhAz)]l =A1 H (BI:B2:A11A2)
3SNGH /3 3 1 2 3\ 2 9H /3 3 1 2
—l(p (B[) '—E (Bh Bg, Al, Ag) - lﬂp’ (Bl) Ag 0— (Bl, Bg, Al, Ag) y
Oy o¢
so that the symbol of the third composition in (14) equals

-

) H
IA; (H (y>$a77a£)) = "IH (y,I,fl,f) _i(lp(y)%_y(yam’ﬂ,é)
OH
_upl(y)fa_g (yax,n:{)‘

Similar (but more simple) computations show that the symbol of the last operator
in (14) is

. ; N
Lo (1 (,2,7,6)) = €01 (7,21, ) = i (1) S (3, ,7, ).

So, the operators of the left ordered representation are

131 = Y,
lg, = =,
. g . ]
la, = n—1p (y)fa—{—w(y)a, (18)

) 0
by = E—iv(y) 5

Now, using the composition theorem from the book {6, p. 98], we arrive to the
following statement:

Theorem 2 Let ﬁj (y,z,7,€&) be symbols from S™ (H), j = 1,2. Then the symbol

A

H(y,z,1,£) of the composition Hy o H, of the operators

-

- 3 3 1 2
Hl Hl (Bl>B2aAlaA2) )

- ~ 3 3 1 2
1:[2 = }:Ig (B],BQ,A],AQ)

13



belongs to the space S™*™2 (H) and is given by the formula

3 3 1 2

H(y,o,n,6) = A (TE,E,E,E) Hy (y,z,1,€),
where lg,, lp,, la,, and ls, are operators of the left ordered representation of the

33 1 2
tuple (B;, Bg,Al,Ag) given by formulas (18).

This theorem shows that the set Op([0,00) x X,H) forms an algebra. In fact,
this algebra is an algebra with involution. The following statement describes the
symbol of the adjoint operator.

Theorem 3 If H (y,z,7m,€) s a symbol from S™ (H), then the adjoint operator to
f{ = ﬁ[ (Bl, BQ,A“AQ)

s qiven by

ﬁ‘ = FI. (Bl,BQ,Al,AQ)

where H* (y,z,n,€) is the symbol adjoint to H (y,z,7,€) in the sense of the space
Ho.

The proof of this statement is clear.

2.4 Elliptic elements and their regularizers

Let us consider some element
. . /3 3 1 2
H = H (Bl,Bz,Al,A2> € Op([0,00) x X,H),

and let us try to construct an inverse to this element within the algebra

Op ([0,00) x X, H) .

L /3 3 1 2
To do this, we shall try to find an element R (B,, B‘),Al,AQ) such that®

/3 3 1 2 /3 3 1 2
[[H (Bl;BQaAl,A2>]:| ) [[R (Bl,Bz,Al,AQ)]] =1

8By [] we denote the so-called autonomous brackets, see [6].

14



(that is, to find the right inverse for this element.) Applying Theorem 2 to the
latter relation, we arrive at the following equation for the symbol R (y,z,7,£) of
this inverse element:

L f 33 1 2N\,
H IBtlezalAnlAz R(y,l',?],f)-———l.

Clearly, the latter equation cannot be, in general, solved in the explicit way. How-
ever, taking in mind that we are intended to construct a regularizer of the element
H rather than the exact inverse element, we can search for the operator R in the
form of the asymptotic series (in what follows we shall clearly use the corresponding
truncated series) in the filtration 5™ ()

[= o]

é(!j,:ﬂ,?]f Z %] J?mvnf

=0

where Rj (y,z,1,6) € S~™77 (H). Here m is an order of the operator f{, so that
H(y,z,n,€) € S (H). Taking into account relations (18), we obtain

1 2

()a—i,f—z’ ZR (y,2,7,6) =1. (19)

=0

Aly,2n-i ()66

Let us consider the operators of the left ordered representation used in the latter
relations as arguments of the function H (y,z,7n,£). One can see that the first
summand 7 of the operator

., a . 0
Iy =0 —iyp (y)fa—‘JE —1 (y)a (20)

takes symbols from S™ (H) into S™+! (H) whereas all the rest terms preserve the
index m of the symbol space. Similar, the first summand ¢ in

Ly = €~ i y) o @)

enlarges the index m by one, and the second preserves it. So, the first summands in
(20) and (21) are operators of the first order with respect to the filtration {S™ (H)}
in m, whereas all the rest terms of these operators are operators of zeroth order in
the same sense. Therefore, one can try to expand the operator on the left in (19) in
the Taylor series at the point (7, ).

15



To do this, we use the Taylor formula for functions of noncommutative operators.
We recall (see [6, p. 58]) that this formula has the form

Lo () e
2 [[(C—;)N“ﬂ (a) 5 (&:4)

for any two noncommuting operators C' and A and any smooth function f(z).
Let us apply this formula for the third argument of the operator on the right in
(19). Here

C=n—iy' (y)£8/0¢ —ip(y) /0y, A=
Since [C, A] = 0, we have

l 2

. 0 : d
H|v,20—ip (y)a —ip(y) 5o —iv () 5

2
ad OH [33 3 ) 0 . d ) ank
Z o | Dbl g [[—w W) — w(y)a—yﬂ

M., ..a ., .9 N“(ﬂ)”éH 65 3

1 4
. a . ] , K]
n—w’(y)Ea—E—z (y)a,ﬁ—w(y)a—

A

Now, applying the same formula for operators in the right-hand side of the latter
relation with respect to the fourth argument, we obtain finally

1 2

. . 0
{35 ) 65 ()a,e () 5

2

_ 1 O"H (3333 , a\’
= Z F;1 9nkoe (y,ﬂf,’?af) (—uP (¥) B_z)

J20.k20,5+k<N

16



X [[—itﬂ (¥)¢ % —ip(y) ;—y”k +Rn,

where the remainder Ry equals

4
2

_ i;(ﬁ)”*ﬁa"_ﬁ 5506 —io(y) 2 ¢
T L RN k) \9¢ seap | VoW gy
3

x (—w( )aax)N—kJrl H—itp’ (y)Ea%l—i (v) ;%”k
o [[_wma%-f wa] (&) 2 (520
El

n—1i¢ (y )Eaé-— iw(y )5%,£~i99(y)a

Let us apply the obtained expansion to equation (19). We have
- N 2 .
3 1ak+if1(§33§)( ()a)J
TI 1O bar 7$7 b _ul‘o
11 Ank
IS0kSOTEEN kgl Onkags Jz

1

T 9 a Nk >, .
[ g -] | S mn =1

=0

The latter equation can be rewritien as a recurrent system for the components
R (y,z,7m,§) of the symbol R(y,x n,€):

H(y,z,n,8) Ro(y,2,1,6) = 1,

2
H(y,msﬂ,f) Rj (yaxvﬂag) = ZHRj—l (yaxynaf)) .7 Z l) (22)

where the operators Pg have the form
2 1

1 3k+3ff 3333 . a\’ . 5 3TF
Z kljl(’)nk(‘)eJ (y,%,ﬂ,f) (—w(y)%) [[—zgor(y)g.é_g—zgo(y)a—y”

itk=l

17



It is easy to see that the operator P, has m — I-th order in the scale S™ (H).

From system (22), one can see that if the symbol H (y,z,7n,€) is invertible as an
operator in the scale H, then there exist a unique solution to (22). So, we arrive at
the affirmation:

Proposition 1 Let N be a positive integer. Then, under the above assumption,
~f3 3 1 2\ . /3 3 1 2 v (3 3 1 2
H Bl,Bg,Al,Ag R B],BQ,AI,AQ =1+Q B),BQ,A],AQ s

where

RY (y,z,m,¢ (y,z,m,¢),

Mz

1=0

and the symbol of the operator QN has the form

2

N zme)= S Z:fo (33,_%,‘3,2) (-—w( )i):’

j+k=N+1

1

[rewes -iew 2] e,

the inner sum being finite and the sum of orders of operators Qf,’ and QQ’,’ equals
m-—-N—1.

Remark 1 From the duality reasons, one can also construct the left regularizer for
the operator in question.

R . 1 2
Now we remark that the conjugation of the operator H = H (B], B,, Ay, Ag)

with the help of the power r7 leads us to the operator f{., given by®

1

- - “ 3 3
H ="l =0 | By, By, Ay + iv

2
sa(r)’/,‘2
T

Again using the Taylor formula for noncommuting operators with respect to the
third argument of the function /, one can see that the of the operators I and H,

$From now on we suppose the symbol H (y,z,1,£) to be a holomorphic function in (7, £).
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coincide at r = 0 modulo terms from S™~! (H) (we consider here the case k > 0; for
k = 0 the above conjugation leads to the shift of the variable 5 by ¢v in the complex
plane). Since the multiplication by 77 is an isomorphism of functional spaces
T E*=Ej, — Ej_,
all our considerations are valid in the spaces Ej_, as well.
To formulate the corresponding finiteness theorem, we have to globalize some

above introduced notions. First of all, we denote by Ej_ (M) the space of functions
on M such that:

o pu € E;_ for some cut-off function ¢ equal to 1 near X with support in a
sufficiently small neighborhood of X.

Consider a differential operator H of order m on the manifold M having the
form

H =~ (+m g (1‘,w,m, —irk“—a— —i—a— —irk"'li)

near the edge X. Then it is easy to see that this operator is continuous as an
operator 1n spaces

H E‘;.*Y (ﬁ’[) — prmm

ay—~(k+1)m (M) . (23)
Definition 2 The operator (23) is called to be elliptic if
o H is ellipticon M \ X;

¢ the corresponding symbol H (y,z,7,€) is invertible for small y in a neighbor-
hood of the edge X for all values of  with Im7n = o.

Now, similar to the paper [2], Proposition 1 together with Remark 1 yields the
following result:

Theorem 4 Let the operator H be elliptic in the sense of Definition 2. Then the
operator (23) possesses the Fredholm property for o = 0.

The proof of the stated theorem goes quite similar to the corresponding theorem

in [2], and we omit it. We remark only, that during the proof of this theorem, one
has to examine the improvement of the operator Q% in the variable r. To do this,
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one have take in mind that the operator A; which is substituted in a symbol instead
of the variable £ has the form

0

oz’

and, hence, the application of this operator to a function improves the decrease of
this function as » — 0 by r**!. By this reason, the operator

K—itp’ (y)fg—f —ip(y) E%) F’] (51»52,/’11,/’32)

improves the power decrease of a function by r*+! for any symbol F (y,z,7,&).

A2 = —2(,9 (1‘)

The last question which we have to consider in this section is the investigation of
the operator H in spaces E;_ (M) for o # 0. To do this, we calculate the conjugate

H, of the operator [ with the help of the exponent exp {—ov¢ (r)}, where, as above,
W () = o7 ()

A

. R 3 3 ! 2
i, = eV fre—o¥ry — 1 By, By, A  —10,A, | .

Since the multiplication by exp {—o (r)} is an isomorphism of function spaces

exp{—oy(r)} : E5, — E;

A%

we arrive at the following statement:

Theorem 5 Let H be an elliptic differential operator with cusp-edge degeneracy.
Then the operator (23) possesses the Fredholm property.

Remark 2 One can use also the weights ¢ (z) and +(z) depending on z. Then the
conjugation will be made with the help of the function 17 exp {—o (z) ¥ (r)}. The
details are left to the reader.

2.5 Examples

In conclusion of this section we shall present two examples. ‘In the first example
we consider an operator which satisfies all conditions of Theorem 5 so included in
the situation of applicability of the developed theory. The second illustrates the
principal difference between situation with isolated singularities from the wedge-
situation and the nesesity of developing another approach to wedge problems so
that such operators could be included into the theory.

20



Frample 1. Clearly, it is sufficient to consider the local form of the operator near
the edge and to show that for such kind of operator the ellipticity condition is valid.
Consider the (local) wedge of the form

W=_5"xC,

where

C=(S'x[0,1)) /(5" x {0})

is a direct circular cone. Consider the operator

, : o?
H= (T“H—l %) + 0(27)8—992 + (Tk+l)2 -1

on W. Then it is evident that the (operator-valued) symbol

2

) 9 .
H(y,z,1,€) = “(“’)a_(,ﬂ (& +7"+1)

is an invertible operator on S, so that all conditions of Theorem 5 are valid.
Fzample 2. Consider the Beltrami-Laplace equation on the model cusp-type
wedge, that is, on the direct product of circular simple cusp and the real line R,:

i AN 8 0
{T 4 [(1‘25]:) -[—(I(I)a—‘r’ﬂ' +5$_2'}U

={(aﬂ)+()%+ (;)}uﬂ (24)

with smooth positive function a (z), then we shall see that the corresponding symbol

21,0 = a(e) s — (17 + ) (29)
is not invertible for £ = n = 0. Actually, the equation
o2
(2) gau(9)=1(¥) (26)
has the function
up(z) =1

as the generator of its kernel. So, the theory developed in the previous section is
inapplicable to this equation. What is more, the introduction of exponential weights
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cannot improve the situation. Actually, the condition under which we can construct
a regularizer in the weighted spaces E; _ is the invertibility of the symbol (25) on
the line Ren = o. Putting n = { + 10, ( € R, we obtain the symbol

2

H(y,z,( +i0,¢) = a(w)%,— (¢*+€) +0° - 2iCo.

This operator is not invertible at points ((, ) such that

¢ =0,
£ = ++/0?—k%a(z) for some k € Z.

3 Operator algebra (second version)

3.1 Commutaion relations and composition formula

Let A, A;, By, B, be as above:

) 7]
Ay = - (r) 5;1
) 0
Ay = —ip(r) 32’
81 = T, (27)
82 = I.

The commutation relations and the properties of unitary groups corresponding to
operators (27) were investigated in Section 2. Denote by Op. (C) the local algebra
on the cusp

C = [0,00) x 0/ {0} x Q,

consisting of operators of the form

- 2 1
H (BlaAl) ¥

where H (y,7n) is a C*-function with values in the space of pseudodifferential oper-
ators on the manifold Q2 satisfying the estimate

HDEDfﬁ(M)ul (1477 +8)%

S Coﬁ
s
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with some m for any function u € H*+™-181(Q). Here A is a positive Beltrami-
Laplace operator on §2.
Now denote by
ﬁ'floc =X xC

a local wedge. Consider a function
F(z,8) € C=(T"X,0p. (C)) (28)

subject to the estimates

for any function u € E}_ (C). The space of such functions (with different values of
m) we denote by S™ (M),.). We want to assign the operator

A m—18]
D2DEF (z,€)u QA+ [P+ AT+A) 7 w

S CaB

s.0y

a0y

F (1_232, }12) (29)

2 1
to this function by substituting the ordered tuple (Bg,AQ) instead of variables

(z,£). This procedure is, however, ambiguous, since the operator A; = —ip (r) 3/0z
does not commute with the elements of algebra Op. (C) of coefficients. So, to avoid
this ambiguity, one must specify in the explicit way the order of action not only for
operators By and A,, but also for values of the function (29) itself. We shall use the

following ordering:
2 /2 1
F (Bz,Az). (30)

The exact definition of operator (30) is

3

~

2 1 . : :
F (BQ,AQ) = /F(TI,TQ) elﬁqulﬁAz dTldTg, (31)
where F(1;,7;) is the Fourier transform of function (28). It is easy to see that if
R L2 1
F(I,‘f) =G (BlaAhm)E) ?
then
3 /2 1 L4 3 2 1 L3 2 3 1
F (Bz,AQ) _——G(B],A]_,BQ,AQ) =G(Bl,A1,B2,A2) (32)
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since A; and B, commute with each other. We remark that this ordering differs
from that used in the previous section.

We do not present here the corresponding continuability theorems for operators
of the form (30) since formula (32) reduces the definition of such operators to the
case of functions of four operators (27).

Let us begin establishing the composition formula for operators of the form (31).
First, we now compute the operators of left ordered representation for the tuple

2z 1
(BQ,AQ) on the set of operator-valued symbols from Op. (C). Since the operator

B; commutes with elements of Op. (C), we have

3 72 1 2 3 /2
By || F (Bz,Az) =B, F (Bz,Az):

and, hence, the operator lg, equals
[Bz =2

Consider now the composition

3 792
A, [[F (BQ,AZ)]] |

The operator A, does not commute with Op. (C) since it contains the factor ¢ (r)
which has to be considered as an operator on a model cusp. However, we have

[P (B | = -io0r 2 [ ()|

33 4 72 1 1 /72 3 1
= (T) —za—.’]:F (BQ, Az) =G (BQ, Az, Az) 3 (33)
where ) )
G(I'IE’)E”) = 6' (a'dqp(r) F) (:BaE”) ’
and

(3doir) £) (2,€") = 0 (1) F (2,6 07 (7).

3 2
Commuting the operators A; and B, on the right in (33) in the usual way, we obtain
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3

372 1 1 T~ /2 1
Ay F(BQ,AQ) = A (adyy F) (BQ,AQ)

3
275 . 2 1
~ip (N5, (adoir £) (B,, A,) .

So, the operator {4, of the left ordered representation is

: d : a
IAQ = a.dg,(,} ({ - IRV(,.)$> = a.dw(,.)f - thp(r)aa
where Ry (Ly(r)) is the operator of right (left) multiplication by ¢ (r).

L2 1
Remark 3 Let us write down the action of operator ad,,) to a function F (Bl, Al)

with F(y,7) € S™ (which may depend on additional parameters (z,£).) We have

2 1 . 2 1 e 1
ady(r) ¥ (Bwh) =F (admel,adw(r)A,) =F (B,,Al + i’ (r)) :

Using the Taylor formula for noncommutative operators with respect to the second
argument, we obtain

/2 1 f 2 L
adw(f)F(BhAl) = F(Bl,Al+i‘r°'(”'))
= F (Bl,A[) +1(,9'(B]) a—q' (BI,AI) + ...

(2 1
so the symbol of the operator F (Bl, Al) is not changed modulo S™~! by application
of ad(r) at least if &> 0.

So, the operator ad,(,j £ can be represented in the form
N a A .
adyr) § =€ (1+ > P+ Pz’v) : (34)
j=1

where the operators P; diminish the index m of the symbol by j in the scale $™ (Mioc)
and contain at least j factors ¢’ (r) (the same is valid for Py).
Now we can formulate the main theorem of this subsection.
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Theorem 6 The following composition formula is valid:

3 /2 1 3 /72 1 32 1\,
smbl { HF (Bg,Ag)]] 0 H:G (Bg,Ag)]] } =F (IBQ,IA,) G (z,¢§)

3

A

7 1 .
This theorem states that the set of operators F (Bg,Ag) for all F (z,§) €

S™ (Myoc) forms an algebra. This algebra will be referred below as a local wedge cusp-
type algebra (LWC-algebra) and denoted by Op(M.c). The following affirmation
shows that this is an algebra with involution.

Theorem 7 If H (z,€) is a symbol from S™ (M), then the adjoint operator to
3 /2 1
H (Bz,Az)
o or2 3
H® (Bg, Ag) ,

where the star denotes the conjugation in the algebra of coefficients.

15 given by

3.2 Regularizers and finiteness theorem

In this subsection, we shall construct a regularizer for the equation
2 /2 1
H{ByAr)u=f

As usual, we search for a regularizer in the form

. S s2 1
R=R(BQ,A2),

[[,% (ég,}b)ﬂ . ﬂ% (fgz,,az)]] _1 (35)

Using the result of Theorem 6, for the symbol of the regularizer we obtain the
equation

that is,

32 1\,
H lBQ”AQ R(.’Z?,f) = 11
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or
1

3
~ | 2 . 0 "
H | z,ady¢ — sz(,)a—I R(z,£) =1.

Using again the Taylor formula for noncommuting operators together with (34)
and expanding R (z,£) in the asymptotic series with respect to the scale S™ (M,c)

R(xaf) = 21%] (:L',E),

j=0

where R; (z,£) € S™7 (M), we obtain the following recurrent system of equation
for the functions R; (z,§):

H(z, &) Ro(z,6) = 1

k
(e &) Ri(2,6) = ) Filtus(2,0),

where F; are operators of order j in the scale S™ (M),.) containing j factors ¢ (r)
or ¢’ (r). .

In the case when the operator H (z, £) is invertible, all the latter equations are

:j 2 1

solvable and we obtain a local regularizer for the operator H | Bs, Az ).

Similar to the previous section, the left regularizer can be constructed from the
duality reasons.
_ To globalize the above considerations, we again consider a differential operator
H on the manifold M with the degeneration of the cusp type of order k£ on the edge
X. This operator acts in spaces (23) as a continuous operator.

Definition 3 The operator (23) is called to be elliptic if:
e H is elliptic on M \ X;

o the corresponding symbol f (z, £) is invertible in a neighborhood of the edge X
for all real values of ¢ as an operator in the corresponding weighted cusp-type
Sobolev spaces E .

Then the following statement is valid.

Theorem 8 Suppose that operator (23) is elliptic. Then this operator possesses the
Fredholm property.
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3.3 Example

Let us show that the operator considered in the end of the previous section is elliptic
in this version as well, that is, satisfies the conditions of Theorem 8. We recall that
this operator has the form

-~ 2 2
H= (rkﬂg;) +a(z)aa—¢2+ (FF)? -1

on the wedge

W =58"x(S'x[0,1]) /(5" x {0}).

The operator-valued symbol of the operator under consideration is

- a\? d?
(2.6 = (M 50) +alalgm - (€ +1).

This operator is clearly invertible since it is strictly negative in the corresponding
Hilbert space. So, the conditions of Theorem 8 are fulfilled.

4 Extension of the operator algebra

4.1 Main definitions

Let us now consider the case when the symbol H (z, §) of operator (23) is not invert-
ible everywhere on T*R™. In fact, we suppose that H (z,£) is a Fredholm operator
everywhere on 7 (R"), but this operator can even have a nonvanishing index. In this
case one needs to equip the corresponding operator with the appropriate boundary
and coboundary operators, that is, to include this operator into the matrix operator

of the form
( Dy Dy )
Dy Doy /-
e D), is an operator on the manifold M. of the form

3 /2 1
Dy, =H (Bz,Az)

with symbol H (z,€) being a function on T°R” with values in the local cusp
algebra. These operators will be called ezterior.

Here:
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o Dy, is a “boundary” operator. Such operators must map the space of functions
on My, in the space of sections of some finite-dimensional bundle. If we
shall treat a function space on M, as an infinite-dimensional bundle with
function spaces on the model cusp as fibers, then the simplest operator of this
kind is a bundle homomorphism, taking a function on the model cusp F (C)
whose fibers are function spaces on the model cusp C to a finite-dimensional
vector space. It is clear that each component of the resulting vector viewed
as a function on F (C), determines a functional over this space. Hence, each
operator of this type can be represented in the form

Dy [v(ryw,z)] = ]v(r,w,a:) w; (ryw, )" drdw, 7 =1.... N,
C

= ((w(2), ¥ (h2), 5 =1....Ny)
and is determined by a tuple of functions
{¢; (r,w,z), j=1....N;}

belonging to the dual space to F (C). Such operators are denoted by P, and
called projectors. They map sections of the infinite-dimensional bundle F (C)
to sections of finite-dimensional bundle B. The general boundary operators
are, by definition, operators of the form

3 /2 1
PII,OG(BQ,AQ)

3 /72 1
for a projector Py and an exterior operator G (Bg, Ag). The function

- Py 0 G(z,8)
3 /2 1
will be called a symbol of the boundary operator Pyo G (Bg, Ag).

o D3 is a “coboundary” operator. The simplest example of such an operator
is a bundle homomorphism from a finite-dimensional bundle B to an infinite-
dimensional bundle F (C). For such operators we have’

e; = (0,...,1,...,0) = ; (ryw,z), 7=0,1,2,...,Na,

7For simplicity, we consider here trivial bundles; the general case makes no diflerence.

29



where Ny = dim B, and the operator is
€y .
Diq : = (ryw,z)+ ...+ en¥n, (1w, T) .
en,
Such operators are called coprojectors and we denote them by

Dl2 = PJ: 1)[): (d"l (r,w,a:),...,t,lw(r,w,:c)).

General coboundary operators are operators of the form
S /2
F | By, Ay ) o Py

3 /72 1
for some operator F (Bz, Ag) of exterior type and some coprojector P;. The

function

F(,6) 0 Py
3 /2 1
will be called a symbol of the coboundary operator F (Bz, Az) o Py.

e Dy is a DO on X in sections of a finite-dimensional bundle over X.

So, we consider matrix operators of the form

(Depz) (T~ (T

where by I' we denote spaces of sections of dorresponding bundles, and
3 72 1
D“ El H (BQ, Az) ,

3 /2 1
F(B2,A2)0PJ’(1),

D12

3 /2 1
DZl = P‘L,(Q)OG(Bz,A‘z),

1
2 0
D = B —
22 T, ‘ax

¥

and 3!, ¥? are some tuples of function described above. Here we do not specify the
smoothness properties of the considered function spaces; this will be done below.
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4.2 Continuability theorems

Now we shall investigate the action of all the above operators in the function spaces
E; . To do this, we need the following affirmations:

Lemma 1 Let (1/1}-”, j=1,... ,Nl) be elements from E3° . Then the operator

Py « [H (X)) ™ = E;,

is continuous for any value of s.
Lemma 2 Let (1[)5—2), j=1,..., Nz) be elements from E%, . Then the operator

Pyw : Ei, — [H*(X)™

L)
oy
is continuous for any value of s.

The proof of both these affirmations is quite evident.
Combining these affirmations with the result on boundedness of the operators of
the exterior type, we arrive at the following statement:

Theorem 9 Let (1) € £ and »?) e E>, _,. Then the operator

. E;, Esy"
LG ) = i o)
3 /2 1 3 /2 1
H (BQ,AQ) F (Bz,Az> o Pl
M= 3 2 1 2 1 ’ (36)
Pyao G (32, Az) B (I7_i86_x)

is continuous if
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4.3 Composition theorems

To construct the algebra containing operators of the form (36), we need the pseu-
dodifferentiality theorem. Namely, the following affirmation is valid:

3 /2 1
Theorem 10 (cf. [9], [10], [11], [12].) For any ezterior operator F (Bg,Ag) the

operator
3

S /3 1
P¢(2)0 F (B2,A2) o} PJ,(:)
is a pseudodifferential operator on X.

Proof. We have
Py [e(2)] = v (r,w,2) c ().

Later on,

3

A

2 ! L\" [ inz (r)8/8=
F | By, A2 )v(ryw,z) = o F(mn,rp)e™%e™? v(r,w,z) dndr

2n
- (QL) / {f P (o, €) e mmien dz'd&} &%y (r,w, 2 + 7o (1)) drydry.
s

With the change of variables

y=z+np(r),n=9""(r)(y—2)

we rewrite this expression in the form

n
(%) /ﬁ. (J:’,f) e—inr’—-’w"'(r)f(v-f)+l'ﬂrv ('r,w,:c) 99_1 (r) da:'dc'd'rldy
ki
= (2%) [ Fa 0y 0,567 1) dey

Applying this result to the function v (r,w,z) = () (r,w, z) c(z), we have

3 n
F (BA) P le(2)] = (H / F(z,6) 7 =030 (100, y)
xe(y) o™ (r) dédy.
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Now, applying the operator Pyz) to both parts of the latter relation, we arrive at
the expression

3 /2 1
Pyay F (Bz, A2) Py [c(z)]

— (2%)“/<¢(2)(,,$), F(I,E) eiw-‘(r)(r—-u)d,(l)(.,y)(p-l (r)>c(y)d§dy

= (%)n/e"’("”) (tﬁ")(-,x),ﬁ(x,v(r)z)) ¢“’(-,y)> c(y) dpdy.

This is a pseudodifferential operator with the symbol

(99 (,2), P (2,60 (1) p) ¥ (- 9))
This completes the proof.

The rest of the construction of a matrix operator algebra containing matrices
of the form (36) goes in a standard way. We remark only that for such matrices
to form an algebra, one must allow in the upper left and lower right cells of these
matrices a finite sum of corresponding terms instead of a single term, as in (36), and
add to the operator in the upper left cell of this matrices a finite sum of operators
of the form

P,;. ;17 (52,4}12) Py
(cf. [13], [3], [10], [11]).

Definition 4 The constructed algebra will be called an eztended local cusp algebra.
We denote it by Opey (M).

4.4 Ellipticity and finiteness theorems

. 3 /2
Let H (z,§) be the symbol of the operator / (Bz, A2) , that is, an operator-valued

function of (z,£) with values of the LC-algebra. We suppose that the family H (z,€)
is a family of Fredholm operators on the whole T* (R"™). Now we shall investigate
the invertibility of a symbolic matrix

I (z,8) F(Iaf) P,ZU)
( P,;,(z)é (:17,{) B(-’B,P) ) (37)
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of the matrix operator (36) near points where f[ (z,€) is not invertible.

To do this, we first represent the symbol H(z,§) of the considered operator in
the splittings of the corresponding function spaces into the direct sums connected
with kernel and cokernel of this symbol at some fixed point.

Second, we write down the similar decomposition for the matrix symbol (37).

Finally, we derive the conditions of invertibility of the matrix (37) and construct
the inverse matrix in the explicit form.

1. We represent the operator f[(m,{) in a special form near any point ap =
(zo, o) such that the operator

IS

H{xo) : By — E,

has nontrivial kernel and cokernel.
Consider the splittings of the spaces E; and E; into the direct sums:

El = Ll 45) Ker f‘[ (Go), EQ =Im ﬁ (O.’o) 4> Lg. (38)

Clearly, the spaces Kerf{(a'o) and L, can be identified with the complex spaces
CM and CN’,A where N, and N, are dimensions of the kernel and the cokernel of
the operator H (), respectively. Then there exist natural mappings

m o B - CM,
L o CM o R

such that R
Kerm = Ly, Imi; = Ker H (o), m oty = 1cw,

117y is a projector to the space Ker H (ao) along Ly, and 1 — z;m is a projector to
the space L, along Ker H (ag). The decomposition of an element u € E, into the
direct sum CM @ L, is

u=m (U)@(l —ilﬂl)u € CNI @Ll.

The identification of the space Ker H (ao) with C™ defines a generators

Y= (XEI)’ ) "’Xg‘dl&)) € Ker H (o),
where ¢ denotes the transposition. Then we have
X"

i) =(cr,-nem) [ ¢ [ =eaxi+.. +emxV

1
&
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The mapping m; : E; — C™ defines an element,

W (rw) = (} ,0) xR, ()

™ <X£l}? >(<X-l > <X£1‘)Jl’v>)

The operators i; and 73, and functions x(? (r,w) and X2 )(r,w) are defined in
the similar way by the splitting

of E}, so that

Ey =1m H (a0) ® Ly ~ Im H () ® C™°.
Now the matrix of the operator H (z,€) with respect to decompositions (38) takes
the form _ . ) .
(1 — 22{1'2) H ((1) (1 — 32“?2) H (O’) il (39)
7T2H (O‘) 'JTQH(O.’)?:l ’

which equals to

( (1 iam)  (e0) : )

at ap since H (a0)7; =0 and 11'2]:1(0’) =0.

As
il = P;(l), = Px(l), (40)
1 = P;(z), Ty = Px(i): (41)

the operator matrix (39) belongs to the extended local cusp algebra (note that
7o H (@) 1; is a symbol of some pseudodifferential operator due to Theorem 10) .

2. Now let us consider the matrix of operator (37) in terms of decomposition

(38). We have
F(maf) PJ,(I)C = (1 - i'ﬂr?) F("‘C:f) PJKI)C@ WQF(:Ca{) P,I;(l)ca
and

P,p(?)é’(l‘,f) (1 — ilﬂl) u

Py G (2, €)1 (¢),

PynG (z,6) u
P,I,(z)é(:c,f)u

uely

u==1iy(c)
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which gives us the decompositions of operators F (z, ) Pl and P,J,(a)é(z,f) with
respect to splittings (38), respectively. So, the matrix (37) becomes

(L—iama) H(a)  (1—igm) H(a)ir (L—iama) F(e) Py
wzH‘(a) (1—2m) ﬂ'gH‘(O‘) i maF (a) Py , (42)
PynG (a) (1 —2ym) Py G (o) 1 B(z,p)

or, in view of relations (40) and (41),

(1 ‘— i'z'ﬂ"z) F{ (C!) (1 - 1.271'-_3) ﬁ (a) ;(l) (1 - igﬂ’?) F'(CI) PJ.(I)
Px(.’)H (@) (1 —2ymy) Px(.2)H (a) P;(,) Px(.a)F () P!Z(,)
Py»G (o) (1 —1ym) Py» G (a) P;(l) B(z,p)

As it follows from Theorem 10, all the operators in the right lower 2 x 2-block are
pseudodifferential operators in sections of finite-dimensional bundles over X. For o
close to ag, the operator in the upper left cell of the latter matrix is invertible as an
operator from L; to L,. We denote this operator by Hyp (a).

3. Let us derive the invertibility conditions for matrix (42). Denote by (ug, u1)
(resp., (fo, f1)) the components of the function u in the direct sum

E =L, & KerH (o)
(resp., of the function f in the direct sum
E2 =Im I:I(Ofo) @ L‘])

Then to construct the inverse element to (42) one has to solve the following system
of equations:

Ugp fu
A u) = fl 1
c d
where A 1s a matrix of the form
Hy () (1 —iam) H (@) Plyy (1 = igm) F(a) Py,
Px(‘z)fz'r (@) (1 —7ym) Px(.'z)f‘f (a) P;(,) Px(‘z)F (a) P,;(l)
Pd,(a)G (O) (1 - il‘ﬂ'l) P¢,(2)G (Q) P;(,) B (:l:,p)

Let us derive the solution to this equation.
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The first equation of the latter system is

A

I;{() (O.’) Up + (1 ol ing'z) 1:1 (Q) P;(,)ul + (1 - ?:271'2) F (O.’) PJ(])C = fo,
and we obtain
uo = Hy' () fo— 3" (a) (1 = iamy) H (a) Pyur — Hy' (@) (1 = iam2) F (@) Pyye.

Substituting the latter relation into the second and third equations of the system in
question, we arrive to the equations

[P 1 (2) Py = P (@) (1 = iym) Hlg™ () (1 = i) £ () Py | ws
+ [P F (0) Pyy = Py 1 (@) (1 = iam) 5™ (@) (1 = izm) F (@) Py €
= fi— P@wH (a)(1 —i1m) H5' (a) fo,

and
[Pun (@) Py = Pyn G (@) (1 = iym) g (@) (1 = iama) 1T (@) Py | wa
+ [B(@,p) = PunC (@) (1 = ivm) 5" () (1 = iam3) F () Py ¢
=d - Py G (a) (1 —iim) 5" (@) fo,

with respect to the unknowns u; and c¢. These equations can be written in the form
A Agg U) _ Fl '
( Agy Ax c - D ’ (43)

Au = PwH ()Pl — P (o) (1—im) H' (@) (1 — igma) H (@) Py,
Ap = PmF(a) Py — PwH (o) (1= iim) Hg' (a) (1 — igma) F (a) Py,

An = PywG(a) Pl — Py G(a) (1 —iym) Hy' (@) (1 — igma) H (a) Py,
Ay = B(z,p) = PG (o) (1 = iym) Hy' (0) (1 = iam2) F (@) Py

of one matrix equation

where

are pseudodifferential operators on X and

F = fi=PwH()1—-im)H;' (o) fo,
D = d— PynG(a)(1 ~im) Hy' () fo
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The additional condition for ellipticity for the initial operator is a condition of
ellipticity of the ¥ DO
A = ||yl

( Al Ai )
AVIRAY®
a regularizer for the operator A, we obtain
w = Al (f1 ~ Py (0) (1 = iym) At (o) fo)
+43%5 (d = Pyoy G () (1 = ivm) 5™ (@) fo)

on the left in (43).
Denoting by

and
c = Oy (fi— Pl (@) (1= ivm) 7' (o) fo)
+8%, (4= PynG (@) (1 = iam) A5 (@) o)
Hence, we have
uo = Ay (a) {1+ (1 izma) [A (o) Py (841 Pl (0) + ALy PG (1))
+F(@) Py (A Py f (0) + APy G () ] (1 = iamy) 57 (@)} o
= [ @) (1 = iams) (1 (@) P2y + F (@) P31 )] £
=[5 (20 (1~ izma) (1 () Py + F (@) Pin A )
Finally, we obtain the expression for the almost inverse for matrix (42) in the
form ) . ) N . N
Ry Ry Ry Ry R Ris
Ra1 Ry Ra = }?21 AL A, ’

i?.gl Rsz R:}g RSI AIQ[ A'22

a

Ry = 05" (0) {1+ (1 = iams) [ (@) Py (A1, P (0) + AL, Py G (@)
+F(a) Py (84 P T (@) + APy G ()| (1 — iam) A5 (00}
b = = [l (@) (1 = izm) (A (@) Py Aty + F (2) Py Ay )]
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Ris = [H (@) (1 = igm3) (f[(a)P;{,)A + F(a PW)A )]
Rzl = [( “P (z)H + A'mpyg,(:)é(a)) (1 - 2111'1 a ] R
Ry = —[(ANPX(.;;H(Q)+A’22P¢,(9)6A‘(a)) (1-iym) A a]

From the latter relations, one can see that the almost inverse for matrix (42) is the
element of the algebra Opey (M).

The rest part of the construction of a regularizer for operator (36) defined by
some element of Opey, (M) including the construction of the left regularizer, does
not differ from the corresponding construction in the previous subsection, and we
leave it to the reader.

The globalization of the above constructions goes quite similar to that in the
previous section. We remark only that the matrix operator

m=(5 %) (e ) - ( ﬁ;i"‘;;}’ﬁ ) “

where H is a differential operator on M of cusp-wedge degeneracy, P* is a cobound-
ary operator, P is a boundary operator, and D is a ¥ DOon X, is called to be elliptic
if:

o I is ellipticon M\ X;
e The symbol family H (z,€) is Fredholm for all (z,£) € T* (R™).

e The above described operator A (see formula (43)) is elliptic.
Then the following theorem is valid:

Theorem 11 Suppose that the matriz M is elliptic. Then operator (44) possesses
the Fredholm property.

4.5 Example

To conclude this section, we present an example of matrix operator for which the
conditions of the latter theorem are fulfilled. Clearly, it is sufficient to consider the
operator only in a neighborhood of the edge X.

First of all, we note that there exist operators from L(Calgebra on the cusp C
with the nonvanishing index (the corresponding example can be found in [14]; being
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written for the conical case, it can be easily rewritten for the cuspidal case as well.)
Let us fix such an operator D. )
Denote by Ny = dim Ker D and N, = dim Coker D. Consider a base

(x(ln, ,x“’)

in Ker D. Then

C1 5]
o : =axi” +... +ew :XN = Pl
C‘N1 CN]
Suppose that the base (x(ll) ,xﬁvl)) is orthonormalized with respect to the scalar

product
(x,x") = fx (r,w) ),;’(1",.'.4.:)7'“'l drdw

on C, where the bar denotes complex conjugation. Then, choosing the orthogonal
complement to Ker D as the space L,, we have

fo(rw)x! (r w)r*=! drduw
m(v) = . - pm(v)
Jv(rw) x&,’ (T,w)r“‘l drdw

Similar, if (X§ ), .. ,ng)) is an orthonormalized base in the orthogonal comple-
ment Ly of Im D, then

C) (4]
] [ =FPu| ¢ |, m(v)=Pgv).

CN, CN,y

The form of the operator D with respect to the above defined splittings

Ev=L,®KerD, E;=ImD@o L,

“___ Doo
p=(50),

where Do is an invertible operator from L, to Im D.

1S
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Let D be an operator with the symbol
smbl (D) = Do (z,¢),

where o (z,¢) is a positive smooth function on T (X) equal to |£| outside the zero
section in T (X) (we suppose that some Riemannian metrics is fixed on X.)
Consider the matrix operator

D P
x -
Fa 0

P 0

Let us compute the symbol of the operator A corresponding to this symbol. We
have

The symbol of this operator is

Ay = PX(—Q)DU(-"”O {1 -(1-um) (DOU (‘va))_] (1 —2zm2) Do (=, {)} Pin =0
since PgyD = my D = 0, by the definition of the projector m;

Avz = PPl = PDo (,6) (1 — ivm) (Doo (2,6)) (1 — igm) Py = 1
since P;(;)-D = 0 and the base y(® is orthonormalized;

Aa = PPl = By (1= ivm) (Doo (2,6)) (1 = igma) Do (2,€) Py = 1
since the base x{!) is orthonormalized and DP;“) = 0;

. -1
A?? = —PW(]_ - i]'ﬂ'l) (DOU (1:1‘5)) (1 - 2:271'2) P):(Q)

(the concrete form of this operator is not of importance in what follows).
So, the symbol of the operator A equals

_{An A _(0 1
smblA = ( Ay A ) = ( 1 Ay ) .
Hence, this operator is clearly elliptic and all the reqiurements of Theorem 11 are

fulfilled.
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