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(0.1) Let g be a finite-dimensional Lie algebra over an algebraically closed
field k£ of characteristik 0. Consider a finite-dimensional representation p :
g — gl(V). By V* we denote the dual g-module. Two bilinear mappings
and two (generalized) commuting varieties are naturally assigned to p. The
first variety is the zero-fiber of the moment mapping ¢ : V x V* — g* and
the second one is the zero-fiber of the map ¢ : g x V = V, ¢(g,v) = p(g)v.
(Details see in 1.1).

Examples. 1. Consider the adjoint representation of g. Then 1~1(0) is
the obvious commuting variety, i.e. the set of pairs of commuting elements
in g.

2. For the coadjoint representation (i.e. V = g*) we have ¢ = 1. Therefore
these varieties coincide.

3. Let S, be the set of symmetric n X n-matrices and let sa, be the Lie
algebra of skew-symmetric matrices. Then the moment mapping for the
natural representation of so, in S, is nothing else but the obvious matrix
commutator [, ]: S, X S, — s0,. Thus the variety of pairs of commuting
symmetric matrices is the zero-fiber of a moment mapping.

(0.2) It has been shown in [BPV] that for the adjoint representation of
a Lie algebra g there exists a module (the Jacobian module) over the ring of
the regular functions k[g], such that 1)=*(0),.q4 is isomorphic to the spectrum
of the symmetric algebra of it. The main idea of [BPV] is to apply known
results on symmetric algebras to investigation of geometry of the (obvious)
commuting variety and vice versa.



In this paper we shall show that for any linear representation p : g —
gl(V) one can define two modules E and E’ over R = k[V] in such a way,
that the subschemes ¢~!(0) and ¥~'(0) are isomorphic to the spectra of the
corresponding symmetric algebras. Thus, our E' may be regarded as a gen-
eralization of the Jacobian module from [BPV]. Therefore both E and E’ will
be referred as the Jacobian modules of a representation. The constructions
of F and F' are dual to each other and for the coadjoint representation they
are glued together. We obtain in §1 simple estimations of the rank and the
projective dimension of E and E’, as well as the description of their dual
modules. However, having a representation of a Lie algebra, it is rather nat-
ural to think that this one is a differential of a representation of a connected
group G, such that g = LieG. This assumption provides a more geometric
framework for our considerations. For instance, we get an ability to introduce
the Jacobian sheaf on a smooth G-variety.

In many papers (see e.g. [HSV],[SV]) a series of conditions (F,) on a
presentation of an R-module E has been treated. They are closely related
with properties of the symmetric algebra Sg(F). In §2 we shall give an
interpretation of this conditions for the Jacobian modules of a representation
of an algebraic group G in terms of sheets of the corresponding G-action.

Most of the results of §1,2 grew out of the attempts to understand and
present the construction from [BPV] in a coordinate-free form. Our ap-
proach to the Jacobian modules allow us to prove a number of assertions
from [loc.cit] in a more general form. For instance, our theorem 1.9 gives
sufficient conditions for pdgE’ = 2. Since these conditions hold for the ad-
joint representations of semisimple Lie algebras, we obtaine a unified proof
of theorem 5.1 in [BPV], as well as the description of the "generic Cartan
subalgebra”.

(0.3) In §3,4 we consider commuting varieties for representations of re-
ductive algebraic groups. We find sufficient conditions for (Fp) and (Fy). As
an application we describe a class of representations of reductive groups such
that all fibers of the moment mapping ¢ are irreducible reduced complete
intersections (3.2). This class contains, for instance, stable locally free 6-
groups of E.Vinberg [Vil]. In §4 we prove normality of fibers of the moment
mapping for isotropy representations of symmetric spaces of the maximal
rank. In particular this is the case in the situation of the example 3.

(0.4) Our basic references for invariant theory are [VP] and [K]. We follow
mainly the terminology and notations of [VP].
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§1 The Jacobian modules of a representation

(1.1) Let g be a finite-dimensional Lie algebra over an algebraically
closed field k of characteristik 0. Consider a finite-dimensional represen-
tation p : g — gi(V). We can assign two natural bilinear maps to p. First,
the representation mapping

P gxV =V, ¥g,v)=pg)v
and second, the moment mapping
w: VxV = g"

where < ¢(v,£),9 >:=< p(g)v,€ >, g€ g, v € V,{ € V* and <, > is the
pairing of dual modules. Further we shall write g * v instead of p(g)v. As
usual, gv = {g*v | g € g} and g, = {g € g | g*v = 0}. By AnnM we
denote the annihilator subspace in V* of a subset M C V. By definition put
€ =¢"10)red, € =¥ 1(0)ea- Then

€ ={(v,§) €V xV* | £ € Ann(gv)}
¢ ={(g,v)€EBxV | g€ g}

Following examples 0.1 we shall say that € and &' are the commuting vari-
eties.

(1.2) f Y is any affine variety and L is a linear space, then the set
Mor(Y, L) of all morphisms from Y into L is a free k[Y]-module of rank
dim; L. Actually,

1)

Mor(Y, L) = Hom(L*, k[Y]) = L @ k[Y}. (2)

More explicitely, if [ ® f € L ® k[Y], then the corresponding map v €
Mor(Y, L) is defined by v(y) = f(y)!.

Henceforth we use the following notation: R := k[V] = Sx(V") is the algebra
of the regular functions on V, n = dim;V, m = dimg. Thus, Mor(V, g)
and Mor(V, V) are free R-modules of ranks m and n respectively. Consider
a homomorphism of R-modules

@ Mor(V,8) — Mor(V, V), 7+ 4, (3)
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where (v} = 4(v) * (v), v € V. By definition put E = cokerg. This is
the (first) Jacobian module of a representation. By Sg(E) we denote the
symmetric algebra of R-module E.

(1.3) Theorem. kjp~'(0)] & Sr(E). In particular, going down to the
reduced varieties, we have Spec(Sp(E)),ed = €.

Proof. 1t follows from (2), that we get the exact sequence of R-modules

JORAVORSE 0.

Functorial properties of symmetric algebras yield the surjective homomor-
phism of R-algebras

S(v) : Sr(V ® R) — Sr(E)

Moreover, the kernel of S(v) is the ideal, generated by the image of ¢ [Bo,
Ch.3]. Clearly, Sp(V® R) = k[V* x V] and KerS(v) is generated by ¢(g®1).
A simple consequence of the definition of ¢ is the fact, that ¢(g®1) = ¢*(g) C
V @ V*, where ¢* : k[g*] — k[V* x V] is the co-morphism, associated with
the moment mapping ¢, g = k[g*];, and V @ V* C k[V* x V];. Since the
subspace k[g*]; generates the ideal of the point 0 € g*, we obtain the assertion
of the theorem. O :

Let p* : g — gi(V*) be the dual representation. We can also carry the
construction of the Jacobian module for p*. We shall get a module £ over
R = k[V*] = 5i(V). Obviously, the definition of the moment mapping is
symmetric with respect of (V, p) and (V*, p*). Therefore we get

Corollary. Sg(E) & Sa(E) as k-algebras. O

(1.4) Let us remark that V* x V is the cotangent bundle of V and
Mor(V, V) is nothing else but the set of algebraic vector fields on V. This
observation leads to a global version of theorem 1.3.

Let G be an algebraic group, g = LieG, and let Y be a smooth irreducible
G-variety. It is well-known, that the cotangent bundle T*Y is a symplectic
variety with the Hamiltonian G-action. Therefore, the moment mapping
w: T*Y — g* is well-defined. Let Oy be the structure sheaf of Y and 7y be
the tangent sheaf of Y. The action of G on Y induces the homomorphism 7 :
g — H°(Y,Ty). Define a homomorphism of sheaves ¢ : Of 2 g®0y — Ty
as follows. If U C Y is an open subset, g € g, f € H°(U,Ty), then the
section ¢ = ¢(¢g ® f) is determined by the formula o(v) = f(v)[r(g)(v)}] for
v €U CY. Here g is regarded as a constant sheaf on Y. Put £ = coker¢.
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This sheaf of Oy-algebras is said to be the Jacobian sheaf of the action of G
onY.

Theorem. The subscheme ¢~1(0) C T*Y is isomorphic to the spectrum
of the sheaf of Oy-algebras So,(£).

Proof. Taking a suitable affine open covering Y = U;Y; we may assume Y
is affine and the tangent bundle is trivial. (This covering is not required to be
G-invariant, it is enough to have the homomorphism 7 : g — H(Y;, 7y,).)
Then we can argue as in (1.3). O

(1.5) For any R-module by (—)* = Hompg(—, R) we denote the dual R-
module. Clearly, Mor(V, L)* = Mor(V, L*). Now, dualizing the construction
of ¢ (3) we get the homomorphism

P =¢*: Mor(V,V*) = Mor(V, g*), 6 — &,

where < S(U),g >:=< 6(v),g*%v >, vE€ V, g € g. By definition put E' =
cokert). This is the (second) Jacobian module of the representation p.

Theorem. k[1p~1(0)] = Sgp(E’). In particular, Spec(Sp(E'))rea = €.

Proof. It goes in the same way as in 1.3. O
Let us give the global version of this theorem. Keep the notations of 1.4.
Suppose TY is the tangent bundle of Y and €y is the sheaf of differentials.
Define a homomorphism of sheaves of Oy-modules 1,[3 :Qy 2 g"Q0y
Hom(g, Oy) as follows. If o € H(U,Qy), o(y) := &, then [¢(o)(g)l(y) =
£, (7(g9)(y)). Put & = cokery. Consider a morphism @: g x Y — TY, such
that @(g,¥) = 7(9)(y).

Theorem. The spectrum of the sheaf of Oy-algebras Sp, (€' is isomor-
phic to the the subscheme ¢~'(Y), where Y is being considered as the zero
section of TY .

Proof. By taking a suitable open covering of Y it is reduced to the
previous theorem (cf. 1.4). O

(1.8) Thus we have constructed two exact sequences of R-modules:

0 — Ker¢ — Mor(V, g) 4 Mor(V,V) = E -0 (@)
0 — Kerg) — Mor(V, V*) Y, Mor(V,g*) = E' - 0

Let us begin to get an information about £ and E’. It follows from the
definitions that

Kerg = {y € Mor(V, g) | 7{(v) € 8, for any v € V} (5)
Kery = {6 € Mor(V,V*) | 6(v) € Ann(gv) for any v € V'}
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Since K 18 a domain, one can define the rank of R-modules by rankM =
dimgry(M ®r Q(R)), where Q(R) is the fraction field of R.
(1.7) Proposition.
(1) rk¢ = rky = max,evdimgv ;
(ii) rankE = n — max,eydimgv, rankE' = m — max,eydimgv ;
(ii1) Kerp = (E')*, Kery = E~.

Proof. (i) Consider a homomorphism ¢, : g — V, g = g*v. Thisis a
specialization of . Therefore rk¢ = max,evrkp,. Since ¢ = ¢*, we have
rkp = rky.

(ii) This follows from (3).
(iil) Let us apply functor (—)* to the exact sequences (4). O

(1.8) Now take into consideration a connected algebraic group G, such
that g = LieG, 1.e. henceforth we assume g is an algebraic Lie algebra.
Suppose G — GL(V) and let p be the differential of this representation of
G. First, we present a simple result on connections between geometry of the
natural action of G on V and homological properties of £ and E’. Recall
that an action (or representation) (G : V) is said to be (i) locally free, if
max,evdimGu = dimG and (ii) locally transitive, if max,eydimGv = dimV.

Theorem. (i) If action (G : V) is locally free, then Kerp = 0, pdgE =1,
and E' is a torsion module;

(i) If action (G : V) is locally transitive, then Kert) = 0, pdgFE' = 1,
and E i3 a torsion module.

Proof. This follows from (5) and 1.7. O

The statements of this theorem are dual to each over. But such a sym-
metry fails in the sequel. Apparently, this means that E, €, and Kery are
more important, than E’, €, and Kerp. For example, if G is semisimple,
then almost all representations of G are locally free, but locally transitive
ones appears finitely many times (may be 0). Therefore it is rather seldom
that Ken,b = 0 and it may be useful to find conditions when Kert,b is a free
R-module.

Let J = RC® be the subalgebra of G-invariant functions. Put V//G =
SpecJ and let 7 : V ~» V//G be the morphism, induced by the inclusion
J — R. (Here we assume J is finitely generated. This is always the case, if
G is reductive.) Define

U={veV | n(v)is a smooth point and dr, is surjective}
(1.9) Theorem. Let G C GL(V) be a connected algebraic group, such
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that

(i) J is a polynomial algebra;

(ii) codimy(V\U) 2 2;

(iii) max,eydimGv = dimV — dimV//G.

Then Kery is a free R-module of rank dimV//G, generated by the differentials
of free generators of J. In particular, pdgE’ < 2.

Proof. If p € R, then the differential dp lies in Mor(V,V*). Moreover, if
p € J, then dp € Kery. Indeed, in this case p is constant on G-orbits in V
and gv is the tangent space to Gv at v. Therefore < dp(v), gv >=0.

Let p1,...,pi be free generators of J, where [ = dimV//G. We shall show
that R-module Ker'J) is freely generated by dp;, ¢ = 1,...,1. It follows from
(iii) and (1.7), that rankKery = I. Condition (i) of the theorem means U
coincides with a set of v € V such that dp;(v), : = 1,...,1 are linearly
independent. Since U is on open non-empty subset of V, we have dp;, + =
1,...,1 are linearly independant over R. Therefore they generate a free R-
submodule, say F, of Kery of rank ! and Kery/F is a torsion module. That
is, for every o € Kery) there exist fi,..., fi, f € R without common factors,

!

such that fo = E fidp;. Assume f & k* and by D denote the support of the

=1
!
divisor (f). Then )_ fi(v)dp;(v) = 0 for all v € D. By (ii} we have DN U is

dense in D, whence }',—(v) =0foreveryve D, i=1,...,I. Thus fy,..., fi, f
must have a common factor. A contradiction! Therefore f € k*, o € F, and
Kenl; =F.0O

The following assertion shows that the previous theorem has a sufficiently
large field of applications.

(1.10) Corollary. If G is a connected algebraic group without rational
characters and J is polynomial algebra, then Kery is a free R-module.

Proof. The reason is that for connected groups without rational characters
conditions (ii), (iii) of theorem 1.9 are automatically fulfilled. For (iii) this
follows from Rosenlicht theorem (see e.g. [K, Ch.2]) and the equality Q(J) =
(Q(R))C. For (ii) this is proved in [Kn, Satz 2]. (In fact, the only semisimple
groups are considered in [Kn], but those arguments are also valid in our case.)
O
Another case when Ken,l; is free is described in 3.4.



§2 Determinantal conditions and sheets

(2.1) Let an R-module E has a presentation
R A R S E—0

Then § may be regarded as a n x m-matrix with entries in R. Let I,(§) be
the ideal generated by the t-sized minors of 8. Following [HSV] consider the
condition on the I;(8)’s (d > 0):

(Fa) htI(B)>1kf—t+14+d, 1<t <rkp.

Clearly, (F;) implies (F4—;). A series of sufficient conditions for Sp(E) may
be formulated in terms of (F3). For instance, if Sg(E) is a domain, then E
satisfies (F;), while (Fp) allow us to give a simple expression for dimSg(E),
etc.

Our aim here is to present a geometric interpretation of these conditions
for the Jacobian modules of representations of algebraic groups. We shall
show the conditions (Fy) are rather naturally transferred into the ones on the
sheets of the group action. Afterwards, a standard invariant theory technique
produces a number of representations of reductive groups with (F,), as well
as sufficient conditions of flatness and of irreducibility of fibers of the moment
mapping.

(2.2) Let us come back in our situation: G C GL(V) is a connected
algebraic group, £ and E’ are the Jacobian modules with the presentations
(4). Since ¢ = ¢*, the conditions (Fy) for E and E’ are equivalent. Therefore
without loss of generality we shall consider only E in the sequel. By k(V)¢
we denote the field of G-invariant rational funcions on V.

Recall the terminology on sheets. By definition put V¢ = {v € V |
dimGv = s8}. This is a locally closed G-invariant subvariety of V. The ir-
reducible components of V{* is said to be sheets. The number of sheets is
finite and since V is irreducible, it follows that there is a unique open sheet.
The dimension of the stabilizers of points is upper semi-continious on V,
therefore the closure V() is contained in U;S,V“). The integer mod(G, V) =
max,(dimV (*) — s) is said to be the modality of the action (G : V) (see [Vi2]).
If my = max,eydimGu, then V(™) is the open sheet and by Rosenlicht theo-
rem dimV {0} — my = trdegk(V)®. In particular, mod(G, V) > trdegk(V)€.

(2.3) Theorem. (i) dim€ = dimV + mod(G, V) ;

(i1) dim€’ = dimg + mod(G, V).



Proof. (i) Consider the projection pr, : € — V. It follows from (1),
that pri*(v) = {v} x Ann(gv) for each v € V. That is, the fibres of the
projection are affine spaces. Whence, pri'(Gv) is a variety of dimension
dimV. Therefore if V") is a sheet, such that dimV ") — s = mod(G, V), then

prfl(‘/;-(')) has an irreducible component of dimension dimV + mod(G, V).
Conversely, if €; is an irreducible component of €, then pr,(&;) is irreducible
and there exist a sheet V;”, such that V) n pri(€;) is dense in pr,(€;).
Whence, dim€; < dimV + dimV{) — 1 < dimV + mod(G, V).
(i1) This goes as well as in (i). O

Since the construction of € is symmetric with respect of V and V*, we
get

Corollary. mod(G,V) = mod(G,V*). O

(2.4) Theorem. Let E be the (first) Jacobian module of a representation
G — GL(V) and d € {0,1,2,...}. The following conditions are equivalent:
(1) E satisfies (Fy);
(it) Let Y be a an arbitrary closed G-invariant subset of V, such that Y C
V\ V™), Then mod(G,Y) < mod(G, V) —d.

Proof. 1t follows from (1.7), that the zero set of the ideal I;(¢) looks as
follows.

VI(P) ={veV | k¢, <t} ={veV | dimGuv <t} = U, VD,
Since rk@ = my, the condition (F;) inverts into
dimV — mp > dim(Uj, V) ~ (t = 1) +d, 1 <t < my.

If this unequality really holds for every t € [1,m,], then this is equivalent to
mod(G, V) = trdegk(V)® and trdegk(V)¢ > dimV®D —(t —1)+d, t €
[1,mq). But the latter is equivalent to the statement (ii) of the theorem for
the subvarieties Y = V(*), s < mp. Hence this is the case for an arbitrary
Y C V\ V(™) because Y®) C V) for any s. O

(2.5) Corollary. The following conditions are equivalent:
(i) E satisfies (Fy);
(1) mod(G, V) = trdegk(V)¢. O

(2.6) Corollary. Suppose G C GL(V) is reductive, B is a Borel subgroup
of G and Eg is the Jacobian module of the representation B C GL(V). Then
Ep satisfies (Fy).



Proof. The result of E.Vinberg [Vi2] asserts that inder these conditions
mod(B, V) = trdegk(V)B. O

(2.7) Remarks. 1. As far as I know, the explicit construction of &
first appears in [P]. In this paper Pyasetskii has shown that if G act on V
with finitely many orbits, then € is a variety of pure dimension dimV and
the number of the irreducible components of € is equal to the number of
G-orbits in V. Since the construction of € is symmetric with respect of V
and V*, he has derived that the number of G-orbits in V is equal to the
number of G-orbits in V*.
2. An opposite result has been achieved in [Ri]. Richardson proved that
for the adjoint representation of a semisimple group the commuting variety
€(= €') is irreducible. This result shows the condition that an action is
locally free is not necessary for irreducibility.

§3 Jacobian modules for reductive group actions

Hereafter we assume G is reductive. In this case the quotient map = :
V — V//G (see 1.8) possesses a number of nice properties (see {VP] or [K]).

The action (G : V) is said to be (a) stable whenever almost all fibers of
7 are G-orbits and (b) wvistble, if #~1(r(0)) contains finitely many G-orbits;
then this is the case for all the fibers of 7. A subgroup H C G is said to
be the stabiliser of general position (s.g.p.), if there exists an open subset
2 C V such that G, is conjugated to H for any z € ). The s.g.p. is always
exists for linear actions of reductive groups. Moreover, if the action is stable,
then H is reductive.

(8.1) Theorem. (i) Suppose the action (G : V) is visible. Then the
Jacobian module E satisfies (Fp).

(ii) Suppose the action (G : V) is stable and visible. Then the Jacobian
module E satisfies (Fy).

Proof. (i) Let Y be an irreducible closed G-invariant subvariety of V.
Then #(Y') =2 Y//G is closed in V//G. Since the induced action (G : Y) is vis-
ible, we have dimY//G = trdegk(Y)®. Whence trdegk(Y)® < trdegk(V)°.
Considering that this is the case for any Y we get the condition (ii) of theo-
rem 2.4 for d = 0.

(i1) If in addition to (i) (G : V) is stable and Y is a proper subset of V,
then it follows from the stability that Y//G # V//G. Whence trdegk(Y )¢ <
trdegk(V)% ~ 1, i.e. we get the condition (ii) of theorem 2.4 for d = 1. O
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Remark. There exist the tables of visible irreducible representations
of connected reductive groups ([Kac] ) and stability criteria for actions of
semisimple groups (see e.g. [VP]). This provides numerous examples of rep-
resentations with property (F7) (see also 3.4 ). Clearly, first example of this
kind is the adjoint representation of a semisimple group.

(3.2) Theorem. Suppose G C GL(V) and the action (G : V) is visible,
stable, and locally free. Then
(1) the moment mapping o : V X V* — g* is surjective and equidimensional;
(1) all the fibers of ¢ are irreducible reduced complete intersections in V x V*.
In particular, this is the case for €.

Proof. Take a point v € V, such that dimgv = dimg. Then dime({v} x
V*) = dimV — dimAnn(gv) = dimg, i.e. ¢ is surjective. Therefore all
irreducible components of all fibers of ¢ has the dimension greater or equal
2dimV — dimg = dimV + dimV//G.

By 3.1 the Jacobian module E satisfies (F;). Therefore by 2.3, 2.5 dim€ =
dimV +trdegk(V)S. Since the action (G : V) is stable, we have trdegk(V )¢ =
dimV//G, whence € is a variety of pure dimension dimV' +dimV//G. Suppose
€; is an irreducible component of € and let Vj(’) be the sheet, such that
prl(E.')ﬂVj(’) is dense in pry(€;) (see 2.3). Then dimV +dimV//G = dim€; <
dimV 4 dimV{*) — 5. Since (F;) holds, the latter is possible iff V{*) = Vime)
and pr,(€;) is dense in V. But there exists at most one irreducible component
of € with this property, because all the fibers pr7!(v), v € V are irreducible.
Thus & = €&,

In order to prove that ¢~!(0) is reduced, it suffices to find a point p € €,
such that dy, is surjective, since € is irreducible and has the right dimen-
sion. Obviously, we can take p = (v,0), where v € V{™) (see the first
paragraph of the proof). Thus everything is proved for ¢~'(0). So far as ¢ is
equidimensional and is determined by homogeneous polynomials (of degree
2), the method of associated cones [K, Ch.2, 4.2] allow us to transfer the
desired properties on all fibers of ¢. In particular all the fibers are complete
intersections. O

(3.3) Suppose Y is an affine G-variety and L is a G-module. Then G act
on Mor(Y, L) by the formula:

(9- 7)) =9((g7'y)), Y€ Mor(Y,L), g€ G,y €Y.

By Morg(Y, L) we denote the set of G-equivariant morphisms v : ¥ — L.
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This is the subspace of G-invariant elements in Mor(Y, L), i.e.
MorG(Y: L) = {"}' € MOI‘(Y, L) 1 g-7= 7}

It is well-known that Morg(Y, L) is a finitely generated k[Y]®-module, called
the module of covariants (of type L).

The following assertion may be treated as an application of 1.9. Recall that
J = k[V]C.

(3.4) Theorem. Suppose (G : V) is a stable action and let H be the
s.g.p. IfdimV¥ = dimV//G, then Morg(V, V*) is a free J-module, generated
by the differentials of generators of J.

Proof. (a) First we show that conditions of theorem 1.9 are satisfied

here. Put W = Ng(H)/H. This group effectively acts on V¥ and by [LR]
VH [/W = V//G. Therefore W is finite and by [Pa] J is a polynomial algebra
and quotient morphism 7 is equidimensional.
Assume V' \ U contains a divisor D. Clearly D is G-invariant and therefore
7(D) is closed in V//G. Since (G : V) is stable, we have 7(D) # V and then
it follows from equidimensionality of 7 that (D) is a divisor in V//G. Since
V//G is factorial, there exists f € J with D = V(f). Thus D is determined
by the G-invariant polynomial. Now the arguments of [Kn, Satz 2] give us a
point v € D such that dr, is surjective. This contradicts to the definition of
D. Hence codimy(V \ U) > 2.

(b) The homomorphisms ¢ and 1,2', defined in §1, are evidently G-equivariant.
Since G is reductive, the functor (—)€ is exact. Therefore applying (—)% to
(4) we get the exact sequence of J-modules:

0 — (Kerd))® — Morg(V, V") 5 Mora(V,g%) — (E)® -0 (6)

According to theorem 1.9 R-module Kery is generated by G-invariant ele-
ments. Therefore (Kery)® is a free J-module of rank dimV//G, generated
by the differentials of the free generators of J.

(c) We have already proved that J is a polynomial algebra and = is
equidimensional. This implies that all modules of covariants, in particular
Morg(V,V*) and Morg(V, g*), are free. For stable actions there is a simple
formula for the rank of modules of covariants:

rankMorg(V, L) = dimL¥.
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Hence it follows from our assumptions that rank(Ker)% = rankMorg(V, V*),
because H is reductive and dimV¥ = dim(V*)". Now, since

Morg(V, V*)/(Ker))€ is a torsion module and Morg(V, g*) is free, it follows
from (6) that ¥ |[Morgwy+=0- O

Corollary (of the proof). If (G : V) is stable, J is a polynomial algebra,
and 7 is equidimensional, then Kert,lA) i3 a free R-module. O

(3.5) Examples. 1. Suppose g is a reductive Lie algebra and 8 is
an automorphism of order 2. Let g = go ® g, be the corresponding Z,-
gradation. If Gy is the connected subgroup of G with LieGy = go, then the
restriction on G of the adjoint representation of G induces the representation
Go — GL(g1). This is the isotropy representation of the symmetric space
G/Go. Tt is known that this one is visible and stable [KR]. Therefore the
condition (F;) always holds here. The moment mapping coincides with the
commutator:

e=1[,]:01 % 81— 9o = g5 (7
This representation is locally free iff § has the maximal rank, i.e. there exists
a Cartan subalgebra, lying in g;. A well-known fact is that for every simple
Lie algebra there is a unique (up to conjugation) involution 8 of the maximal
rank. In particular, if g = sl,, then g, = S, and we come to the example 3
in 0.1. Therefore theorem 3.2 may be regarded as a generalization of 3.1 and
3.3 in [BPV].

2. Let us present the example of involution 8, such that the commuting
variety € C g; X g, appears to be reducible. This means the condition
that the action is locally free (or some substitution of it) is essential in 3.2.
Suppose g = sl, (n > 2) and 0 is determined by conjugation on the matrix
diag(—1,...,-1,1). Then go = gl,_, and dimg, = 2n — 2. It is not difficult
to calculate that & has 3 irreducible components and their dimensions are
2n—1,2n—2 2n—2. '

3. The first example admits a generalization, which has been investigated
in [Vil]. Let 8 be an automorphism of order m and let g = go®...H Pm-y be
the corresponding Z,,-gradation (the indices is being considered modulo m).
The image of the natural representation Go — GL(g,) is called the 8-group.
Here the moment mapping also coincides with commutator

¢=[,]191X9—1—’90-

The action (Gy : g,) is visible, but is not always stable, if m > 2. Neverthe-
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less, there exists a large number of examples of #-groups that satisfy all the
condition of theorem 3.2.

The important property of §-groups is that k[g,]°° is always a polynomial
algebra [Vil]. Therefore pdgE’ < 2 for semisimple or stable 6-groups. It is
worth to mention that the adjoint group is also a #-group, appearing when
0 =1d.

(8.6) For stable locally free #-groups we are able to produce (1) the

description of € C g; X g_,, similar to the one of the obvious commuting
variety in g x g [Ri] and (2) the Chevalley-type theorem for the quotient
variety €//G,.
First recall basic results on -groups [Vil]. Bearing in the mind our purposes,
we always assume (G, : g,) is stable. Suppose ¢; C g; is the maximal
subspace that consists of commuting semisimple elements. Then ¢, is called
a Cartan subspace of the 8-group. Put

N(Cl)o = {3 € Gy | s8¢, C C1},

Z(c1)o={s € Gp | sz =z for any z € ¢, }.
Then W; = N(1)o/Z(¢€1)0 is a finite group, called the Weyl group of the

graded Lie algebra g. The main assertions on #-groups are:

(*} Let = € g, be an arbitrary element. Then Gyz is closed iff GozNe; # @
iff z is semisimple.

(**) Linear group W; C GL(«¢,) is generated by (pseudo)reflections.

(***) The inclusion ¢; — g, induces the isomorphism ¢,/W; = g,//Go.
In particular, dime¢; = dimg, //Go.

We shall say z € ¢; is generic, if z does not lie in the union of the reflecting
hyperplanes of W;. Take a generic z € ¢, and put ¢_, := Ann(goz) C g_; =
g;. Then dime,; = dime_,, ¢_; is a Cartan subspace in g_;, and ¢_; does not
depend on the choice of generic z. Therefore ¢, x ¢_; C €. By definition put
R := Go(ey X ¢_y). This is a Go-invariant irreducible subvariety of g, x g_,.

(8.7) Proposition. If 8-group is stable, then & is an irreducible compo-
nent of €.

Proof. Since 0-groups are visible, we have (1) k(g;)% = Q(k{g;]%°) and
(2) dim€ = dimg, + trdegk(g;)°°. Whence dim€ = dimg, + dim¢,. On the
other hand, for a generic z € ¢, and £ = (z,y) € ¢; X ¢_; we have dimGy{ =
dimGoz and Goé N (¢ X ¢_y) is finite. Thus dimf& = 2dime¢, + dimGopz and
the stability assumption imply that dimGez = dimg, — dimg, //G,. O
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Corollary. If Gy, C GL(g,) is a stable locally free 0-group, then € =
Go(€¢; X ¢_y). O
It follows from definitions that W, respects also ¢_;. Consider the diagonal
action (W1 : ¢; X ¢_y).

(8.8) Theorem. The injection ¢; X ¢.; — R induces the surjective
birational morphism

T: G X C_]/Wl — ﬁ//Go

Proof. (a) In order to establish surjectivity, it suffices to prove that all
closed G-orbits in & meets with ¢; x ¢_;. Take an arbitrary ¢ = (z,y) € A.
let 2z = z, + ¢, and y = y, + y» be the Jordan decompositions. Then
T,,Tn € €; and y,,y, € ¢_;. Since [z,y] = 0, we have also {z,,y,] = 0, etc.
Therefore the standard arguments of theory of 8-groups imply that (z,,y,)
lies in the closure of Gyp€. Therefore, if G is closed, then both z and y are
semisimple. By 3.6(*) we may assume = € ¢;. Then applying again 3.6(*) to
the Z,,-graded reductive subalgebra g, we get (G;)oy N ¢y # 0.

(b) Birationality is an easy consequence of 3.6(***), because for generic
z € ¢, we have Gpé N(e; x c_y) = Wi D
Since (¢, x ¢_y)/W); is normal, Richardson lemma [LR] give us:

Corollary. 7 is an isomorphism iff R//Gy is normal. O
Clearly it suffices to have normality of f.

(3.9) Methods of invariant theory allow us to produce also negative re-
sults. Concerning the notion of Luna stratification of the quotient variety
V//G see e.g. [VP].

Proposition. Suppose the action (G : V) is visible and V//G has a Luna
stratum of codimension d > 0. Then E does not satisfy (Fay1).

Proof. By 2.4 and 3.1(i) it is sufficient to find a closed G-invariant sub-
variety Y C V \ V(™) such that dimY//G = dimV//G — d. Suppose Z is a
stratum of codimension d in V//G. Then take Y = n=1(Z)\ V{™)_ It follows
from the properties of 7 that Y//G = Z. O

If Go — GL(g,) is a f-group, then the theory developed in [Vil] yields
that g,//Go always has strata of codimension 1 (they correspond to the re-
flecting hyperplanes of the Weyl group of a graded Lie algebra). Therefore
we get
Corollary. If E is the Jacobian module of a 8-group, then (F;) is never
satisfied. O
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§4 On normality of commuting varieties for 0-groups

(4.1) Provided that € is irreducible, it is rather natural to investigate
singularities of it. In this section we shall show that &€ (and also other fibers
of ) is normal for the isotropy representation of a symmetric space of the
maximal rank (see 3.5 example 1).

Throughout this section g = go @ g, is the Z;-gradation of maximal rank
of a reductive Lie algebra, 8 is the corresponding involutive automorphism
of g, ¢ is the map (7), and € = {(z,y) € g1 x g1 | [z,y] = 0} is the
commuting variety. By 34(z) we denote the centralizerof z € g. If z € g, is
semisimple, then 34(z) is a reductive #-invariant subalgebra of g and 34(z) =
3g(z)o @ 34(z); is Zz-gradation of the maximal rank. In our old notations
(see 1.1) we have 34(z) = 9. and 34(z)o = (8o)z- The following formula is
a direct consequence of existence of the Kirillov form on (co)adjoint orbits.
For any z € g, we have

dim{go, z] + dimj34(z); = dimg, (8)

The assumption of the maximality of rank means that dimg, — dimg, = rkg.
Therefore 3.2(i) implies

dim€ = dimg; + rkg (9)

(4.2) By €,;,, we denote the singular locus of €. After 3.2 we know € is
an irreducible complete intersection. Therefore normality of € is equivalent
to smoothness in codimension 1. First we give a simple description of €,;,,.

Proposition. Suppose { = (z,y) € €. Then

(2,¥) € Cuing & 39(2)o N 3g(y)o # {0}.
Proof. We know ¢ is equidimensional and surjective, hence
(z,y) € €ying & dipg is Dot surjective

Since ¢ is bilinear, Imdp, = [g1,z] + [81,y] C go- By (=)' denote the
orthogonal complement relative to a scalar product on gg, which is a 0-part
of an invariant scalar product on g. Then [g;,z]* = 34(z)o and we get
(Imdpe)* = 35(z)o N 3g(y)o- O

As a matter of fact, this is a particular case of a more general assertion for
arbitrary moment mappings.
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(4.3) Recall that 7 : g, — 8,//Go 13 the quotient morphism and the
action (Go : g;) is visible, i.e. M := 7~ (x(0)) contains finitely many G-
orbits.

Theorem. € is smooth in codimension 1.

Proof. We imitate partially the arguments of [Ri], that have been used
to establish irreducibility of the commuting variety in g x g. The proof is
by induction on semisimple rank of g, srkg := rk(g, g]. Clearly, adding of
the central torus does not change codimension of the set of singularities.
Therefore we may assume at the beginning that g is semisimple.

(a) Suppose rkg = 1. Then, clearly, g = sl; and codime &,;,, = 3.

(b) Suppose tkg > 1 and £ = (z,y) € €. Let z = z, + z, be the Jordan
decomposition of z. It is known, that also z,,z, € g; [KR].

1. Assume z, # 0. Put £ = 34(z,). This is a Z,-graded Lie algebra and
stk€ < rkg. Let €(L£) C £; x £, be the commuting variety for £. Properties
of the Jordan decomposition imply (z,y) € €(L£) and 34(z)o N 35(y)o =
32(z)o N 32(y)o. Whence,

(Ii y) € e-ing ~ ('Tv y) € e(‘c)ling

Considering that g contains finitely many conjugacy classes of Levi subalge-
bras, we see that singular points with z, # 0 are contained in a finite union of
subsets of the form Gy - €(£),in,. By the induction hypothesis dim&(£),;n, <
€(L) — 2. Therefore dimGo&(L),in, < dimGo + dim€&(L),;n, — dimLy <
dimGp + dim€&(£) — dim£y — 2 = dim€ — 2. The latter equality follows from
(9), because rkg = rk£ and the induced gradation on £ also has maximal
rank.

2. Assume z, = 0. Then z = z, € M [KR). Clearly, points (z,y) € € with
¢ = z, are contained in €N (M x g;). If M = U;0; is a finite union of
Go-orbits and z; € O;, then €N (M x g,) = U;Go({z:} X 35(zi)1). Hence it
follows from (8) that

dim(€nN (M x g)) = dimg,

Therefore (9) and the assumption rkg > 1 imply this intersection is of codi-
mension > 2in €. O

(4.4) Corollary. All fibers of the moment mapping @ : g, X 91 — @o are
normal.
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Proof. 1t follows from 3.2(ii) and 4.3 that € is normal. Again, the method
of associated cones and the conditions on ¢ allow us to transfer this property
on the other fibers of . (Cf. 3.2) O

A Cartan subspace and the Weyl group of Z;-graded Lie algebra of the
maximal rank are nothing else but a Cartan subalgebra and obvious Weyl
group of g respectively. Therefore comparing 3.2(i),3.7,3.8, and 4.4 we get a
Chevalley-type statement.

(4.5) Theorem. Let t be a Cartan subalgebra of reductive Lie algebra
g and W be the Weyl group relative to t. Suppose g = go @ 91 is the Z,-
gradation of the maximal rank and € C g; X g; is the commuting variety.
Then

tx t/W = €//Gy

a

Corollary. If Gy is semisimple, then € is not factorial.

Proof. If € is factorial, then €//Gy also have to be factorial. On the other
hand, since W as a subgroup of GL(t x t) does not contain reflections, we
get the divisor class group CI(t x t/W) is isomorphic to the character group
of W, i.e. this is not zero. O

(4.8) In conclusion we state some problems on commuting varieties of
0-groups and their singularities.

1. Find necessary and sufficient conditions of irreducibility of the commuting
variety of a 8-group.

2. Prove normality of the {obvious) commuting variety in g x g.

3. Find the equivariant resolution and prove rationality of singularities of a
normal irreducible commuting variety.

Let us remark that there is now problem for sl;, because in this case
€ C sl; x sl; appears to be a determinantal variety.
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