
THE MAXIMUM PRINCIPLE AND THE GROWTH

OF VOLUME MINIMIZING HYFERSURFACES

by

Dao Trong Thi

Max-Planck-Institut
für Mathematik
Gottfried--elaren-Str. 26
5300 Bonn 3
Federal Republic of Germany

MPI/89-93

Faculty of Mathematics
Mechanics, Informatics
University of Hanoi
Dang Da, Hanoi
Vietnam





-78-

hence the lower row of (5.16.1) ia exaci.

Ti ia clear from the diagram thai the compoaition

1 1ia zero. Now let {A = { )C {f EeH (K ,G), where e E11 H (K ,G),
aJ v CD V

aJ

er E &Ir. H1
(Kv,G) . Suppose that ~(eA) = 0 . Let hA be the image of eA in

f

e H~b(Kv,G) . Then ihe image of hAin (Mr)tors is zero, hence hA ia the image of

same element h E H~b(K,G) . Cansider the element

h )C {aJ E Hib(K,G) )( 11 H1(Kv,G) . It ia dear that h)C {aJ is contained in the fiber
aJ

product over 11 H~b(Kv,G) . By Theorem 5.12 h)C eaJ comes from H1(K,G) . The
aJ

t4eorem is proved.



The maximum principle and the growth

of volume minimizing hYPersurfaces

Dao Trong Thi

Introduction

This paper ia devoted to estimating the rate of growth of the volume minimizing hypersur

faces in IRn.

The problem of finding a lower bound on tbe volume of k-dimensional volume minimizing

surfaces X, contained in a domain and passing through an interior point of this domain,

often arises in various questions of the calculus of variations, algebraic geometry and com- ~l;

plex analysis (see, for example, [7], [8], [9], [14]). Fomenko [8] has stated the following con-

jecture. Let B be an arbitrary convex domain witb piecewise sIDooth boundary and 0 an

interior point for B. Let X be a k-dimensional volume minimizing surface, passing

through o. Then

volk(X nB) ~ min volk(r
k nB),

where the minimum is taken over a1l k-dimensional plane sections of B by planes

passing through o.

k
'Ir,

Such an estimate had ea.rlier been found for several special cases. Katsnel'son and Ronkin

[11] obtained an analogous inequality for case, when the domain B is a cube in (2 with

centre at 0 and X ia a complex analytic set of codimension 1. When B is a ball with

centre at 0, the estimate was established by Lelong [13] and Griffiths and King [9] for

The research was done when the author was staying at the Max-Planck-Institut in Bonn



-2-

k = n-2, n-1 and by Fomenko [8] for any k. Further, Le Hong Van [12] proved the

conjeeture for two-dimensional volume minimizing surfaces X and for a rectangular

parallelepiped B in IRn.

In this paper we eonsider the problem for volume minimizing hypersurfaces X and an

arbitrary convex domain B, symmetrie with respect to O. By using the maximum princip

le we obtain universallower bounds on the volumes volk_ 1(XnOB) and volk(XnB) and

present several situations, when the bounds obtained are exact. In particular, Fomenko's

conjecture, mentioned above, is proved for some new classes of domains B.

The author thanks H. Kareher for useful discUBsions on the maximum principle.

§1 The maximum principle for volume-minimizing hypersurfaces

Let M be a n-dimensional Riemannian manifold. We recall that a twice differentiable sur

face in M is aaid to be minimal if its mean curvature is trivial at each point. By applying

the maximum principle [1] one can prove, in particular, that two different connected mini

mal hypersurfaces in M can not touch each other from one aide. By the way, a boundary

versal of this resu1t is also true (cf. [3]). As weil known (see, for example, [2]), the classical

minimal sUlfaces also can be defined as loeal minima of the volume functional, Le. its va

lurne does not decrease under infinitely small perturbations with infinitely small support.

However, the basic objects of this investigation are globally minimal hypersurfaces, i.e. the

hypersurfaces that are minima of the volume with respect to large variations.
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A compact k-dimensional surface (possibly with singularities) S (M is called volume

minimizing if volKS ~ volkS' for any compact k-dimensionalsurface S' CM such that

OS I = lJS, where volkS denotes the k-dimensional volume of S. A complete noncompact

k-dimensional surface (possibly with singularities) S (M is called volume minimizing if

every its perturbation with compact support does not decrease the k-dimensional volume

in an obvious sense.

Theorem 1.1. Let SI and S2 be connected volume minimizing hypersurlaces in M.

Assume that either 81 nS2 contains A regular point Qf bml! SI Allil S2Ji\llil S1,S2

touch each other {rom one side, or SI nS2 bounds a domain of SI and a domain of 82,

Then SI and S2 are contained in the same volume minimizing hypersurface in M.

Proof. First we consider the case, when SI and S2 lie in one side with respect to each

other. Denote by S~ the set of singularities of Si (i = 1,2). Hy virtue of a well-known

Federer'B result [4,5] codim S~ S 7. In particular, thiB fact implies that Si = Si\8~ are

connected (smooth) minimal hyperBurlaces in M. Moreover, Si n82 :J: , by force of the

assumption of the theorem. Now, applying the maximum principle to Si and S2 we can

conelude that they are extended to the same volume minimizing hypersurface in M. Conse

quently, so are 51 and 82 themselves.

Now we consider the Ca.Be, when 81 lies on both sides of S2' According to the a8sumption

of the theorem there are domains PIe 81 and P2 (S2 such that

8P1 = 8P2 = SI nS2; moreover, PI and SI\p1 lie on different sides of 82 and P2

and S2\p2 He on different sides of 81, From the global minimality of SI and 82 it

follows that voln_ l P1 = voln_ l P2' Set Si = (SI \p1) U P 2' Si is a volume minimizing

because so ia 8l' 0 bviously, Si n82 = P2 and Si and 82 touch each other from one

side.
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Clearly, P 2 has regular points. Thus SI and S2 tum out to be in the situation

considered above. The proof is completed.

Remark. The maximum principle was formulated in [1] for twice differentiable minimal

surfaces. In fact, it, and therefore Theorem 1.1, can be generalized to non-smooth

hypersurfaces of a certain type (for details see [3]). Further, the existence of a common

regular point of SI and S2 can be replaced by a more weak requirement. Assume that

connected volume-minimizing hypersurfaces SI and S2 touch each other from one side

nearly an isolated common singular point p, satisfying the following condition

(1.1) SI and S2 have regular tangent cones at p.

Then according to the theorem on perturbation of iaolated singularities [10], there exist

volume-minimizing hypersurfaces Si and S2' which are regular nearly p and arbitrarily

dose to SI and S2 reapectively. Besides that Si nS2 bounds domain of Si and S2'

By force of Theorem 1.1 we have Si == S2' In this way one can conclude that SI :: S2'

The following simple corollaries of the maximum principle prove useful for our investiga-

tion.

Proposition 1.2. Suppose M ia a Riemannian manifold, u: M ---i M ia an isometry with a

fixed point p.1&1 X be a connected minimal hypersurface in M, passing through p §Q

that du(TpX) = TpX. Then X ia invariant under u, i&. u(X) = X.

Proof. Set X I = u(X). Since u is an isometry and X is a minimal hyperaurface, X' is

also minimal. Now, from TpX ' = du(TpX) = TpX it follows that X' == X by virtue of

the boundary maximum principle (see, [3]). Thus, the proof ia completed.



-5-

Corollary 1.3.!&1 M ~ 2 Riemannian manifold, u: M --+ M A!! isometry E1h ä~

nm..m. p. Sunpose ihM N ~ 9!l unique u-invariant hypersurface. passing through p in 2

~ direction. Then N is an unigue minimal hypersurface, paBsing through p in this

direction.

Proof. Suppose X is a minimal hypersurface such thai p E X and TpX = TpN. Set

X' = u(X). We have TpX ' = u(TpX) = u(TpN) = TpN = TpX because N is invariant

with respect to u. Hence, X' = X by force of Proposition 1.2 and therefore, X =N in

accordance with the assumption of the corollary. The proof is completed.

From Corollary 1.3 it immediately follows the following fact

Corollary 1.4. Sunpose M ii 2 hypersurface Qf revolution in !Rn. Then iMl meridians are

minimal hypersurfaces. Moreover. every hypersurface. haying ID. ~ point p the same tan

gent plane M!b& meridian. coincides with trus meridian·

§2 Universal estimation!Qr boundary of volume minimizing hypersurfaces

Let B be a domain in the Euclidean space !Rn with piecewise smooth boundary 8Bn,

homeomorphie to Sn-I, and 0 an interior point for Bn, We suppose that the domain B

is symmetrie with respect to the point O. Let X be a volume minimizing hypersurface,

passing through O. In tms section we study the problem of flnding a lower bound on

voln_2(XnOB), which depends only on B.
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Theorem 2.1. Let X be! (n-2)-eonnected yolume minimizing hypersurface in B with

boundary 8X = xn OB. Suppose that X contains 0 H an isolated singularity, satisfying

the condition (1.1). Then XnOB contains I (n-3)--dimensional symmetrie homeomorohie

sphere (i.e. ! surfaee, symmetrie with resoect 12 0 and homeomorohic i2. Sn-3).

Proof. Denote by (1: B ---t B the symmetry through the point 0, i.e. the map, sending

eaeh point of B into its opposite point. Obviously, the hypersurface X' = q(X) is also

minimizing, has boundary 8X I = X I nOB and contains 0 as an isolated singularity of

type (1.1). First we prove that 8XnOX / fO. Really, suppose not. Then xnx ' is eon

tained in the interior of X and X I • Henee, either X I lies on one side of X or xnx I ia

a closed (n-2)-dimensional surface, serving as the eommon boundary of two domains in X

and X I and containing 0 as an isolated singularity of type (1.1) of hath X and X I.

Consequently, X=X ' by force Theorem 1.1 and therefore 8X= {}X I • The contrametion

means that 8Xn {}X' =F ;. Now we show that if X =F X' , then they intersect eaeh other

transversally. Really, if X and X' have the common tangent plane at some common

point, then X=X I by force of the boundary versal of the maximum principle (cf. [3]).

From the facts proved above it follows that either X:X I or xnx' consists of symmetrie

(with respect to 0) surfaces, passing through 0 and homeomorphie to the disk nn-2

with boundary on OB. It is easy to see that in hath cases there exists a (n-3)-dimensional

symmetrie sphere on 8XnlJX'. The proof is eompleted.

Let H be a s~etrie (with respect to 0) integrand over hypersurlaces in OB, Le.

H(Y) = H( u(Y)) for any hypersurface Y in OB.

Theorem 2.2. 1m. X be 2 (n-2)~onnected yolume minimizing hypersurface in B Mih

boundary 8X = Xn8B. Suppose 1häi X eontains 0 M ~ isolated singularity, satisfying

1M eondition (1.1). Then
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(2.1) H(XnOB) ~ inf H(Y),
Y

~~ infimum ia taken over all (n-2)-dimensionalsymmetric Lmih resoect 12 0)

homeomorphie spheres Y on OB.

Proof. Since X ia (n-2)-eonnected and OB is homeomorphie to sn-I, XnOB is homeo

morphie to Sn-2. Aeeording to Theorem 2.1 there is a (n-3)-dimensional symmetrie

sphere s~-3 on XnOB. S~-3 divides XnOB into two homeomorphie (n-2)-dimen

siona! disks Y1 and Y2 such that DY1 = 8Y2 = Sg-3. Sinee sg-3 is symmetrie, Le.

u(S~-3) = sg-3, the sets

Z1 = Y1 USn-3u(Y1) and Z2 = Y2 USn-3 u(Y2)
o 0

are (n-2)-dimensional symmetrie homeomorphie spheres on OB. Moreover, we have

Henee,

where the infimum is taken over all (n-2)-dimensional symmetrie homeomorphic spheres

on OB. The proof is eompleted.

Consider now the projective space P( OB), obtained !rom the aphere OB by identifying

opposite points. In this doing each (n-2)-dimensional symmetrie homeomorphie aphere Y

on OB eorresponds to a (n-2)-dimensional projective homeomorphie subspace ~ in
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P( aB). By virtue of the symmetry of OB the symmetrie integrand Hinduces an inte

grand il over hypersurfaces in P( aB) sueh that

(2.2) H(Y) = 2il(V).

In tbis way the minimization problem for the integrand H in the class of all (n-2)-dimen

sionalsymmetrie homeomorphie spheres in aB is redueed to the problem of minimizing

il in the dass of all dosed hypersurfaces in P( OB), realizing the non-trivial element

1 E Hn- 2(P( aB)j1l2). For an elliptie integrand H the existenee of H-minimizing solutions

V to the later problem was proved in [4], where V are regarded as integral currents of

least mass. Consider the special ease H = voln_ 2. In this ease V can be also regarde~ as

globally minimal eompacta in the sense of [6]. As we proved above, there exists a

(n-2)-dimensional symmetrie homeomorphie sphere (possibly with singularities) Y on

OB with (n-2~mensionalvolume 2e, where e is the least volume of an arbitrary

(n-2)-dimensional disk, spanning an arbitrary (n-3)-dimensional symmetrie homeomor

phie sphere OB. In partieular, Y minimizes the volume of (n-2)-dimensional dis~s, span

ning an arbitrary (n-.3)-dimensional symmetrie homeomorphie sphere on Y. Henee,

Y\Ya ie a minimal surface and codim Ya~ 7, where Ya denotes the set of singularitiee

of Y. Suppose now that X is a (n-2)~nnected volume minimizing hypereurface in B,

having boundary 8X = XnDB and passing through a as an isolated singularity of type

(1.1). Then from (2.1) we obtain

(2.3)
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§3 Universallower bound on the volume of yolume minimizing hypersurfaces

Given n-dimensional eompaet domains B , depending on a real parameter r and expand-r

ing with growth of r : Br ) Br , for r > r', Bi =B, 0 E BO and dim BO< n. Set

Cr = OBr. Suppose p E Cr and let TpCr be the tangent plane to Cr at p. Denote by

rt(p) the unit inward normal to Cr at p, directed into the domain Br. Consider a fixed

(n-2}-connected volume minimizing hypersurface X in B, passing through 0 as an isola

ted singularity of type (1.1). Since X is volume minimizing with boundary 8X on OB, it

is not difficult to see that X interseets Cr transversally for almost all r E [0,1]. Fix sueh

a number r. Clearly, voln_ 2(XnCr) < m. Let p Exncr. Excluding a set of (n-2)-dimen

sional volume 0, we may suppose that X and Cr are loeally regular about p and inter

seet transversally. Let a(p) be the angle between hyperplanes TpX and TeCr. We de

note by h(p;s) the length of the straightline segment, paasing through p along the direc

tion it(p) and bounded by Cr and C
s

(8 < r). Assume that the limit

. h(n'S'
h(p) = lim~

5-t r

OOst8. Clearly, the (n-l)-dimensional volume of X is given by the following formula

(3.1)

where dSr denotes the volume element on xncr. Set

h(p )dSr
slna(p) ,
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Theorem 3.1. Suppose the domains Br ~ symmetrie (O~r~l) and l.§ X J2g 2

(n-2)-eonneeted volume minimizing hypersurface in B Jlill! boundary on Cl = OB ~

contain 0 H iM! isolated singularity, satisfying the condition (LI). Then

(3.2)

1

vol l(X) >Jin! H {Y )dr ,n- - Y rr
o r

~ Yr Dm§.~ {n-2)-dimensional symmetrie homeomorphie spheres Q!1 Cr. Moreoyer,

if besides 1hM. X i§. orthogonal to Cr at almost all points Qf X illil f2! a!rnost~

r E [0,1] xncr minimizes Hr in the class Qf g!! (n-2)-dimensional symmetrie homeomor-

R.!!k spheres Q!! Cr, then the eguality in (3.2) holds.

Proo!. From (3.1) and sin a{p) ~ 1 it follow8 that

(3.3)
1 1

vOln_l(X) ~ JGr(XnCr)dr ~ JHr(XnCr)dr.
o 0

On the other hand, sinee B are symmetrie, C and h(p) are symmetrie tao. Thereforer r

H are symmetrie integrands and we may apply Theorem 2.2 to H and B . In this wayr r r

we obtain

(3.4) H (XnC ) >inf H (Y ) ,
r I - Y r r

r
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where the infimum in the right part is taken over all (n-2)-dimensional symmetrie homeo

morphie spheres Yr on Cr' Clearly, (3.2) follows trom (3.3) and (3.4). Further, since X

is orthogonal to Cr at almost all points of X we have sin a(p) = 1 almost everywhere

on X, whieh implies

(3.5)

(3.6)

Gr(xncr) = Hr(XnCr) ,

voln_ 1(XnCr) = 0

for almost all r, 0 ~ r ~ 1. Combining (3.1), (3.5) and (3.6) we obtain

(3.7)

1

vO!n_l(X) = JHr(XnCr)dr.
o

Now, using (3.7) and the last assumption o! the theorem Hr(XnCr) = in! Hr(Yr)

completes the proo!.

Consider some special situations. Given a piecewise smooth funetion f on !Rn such that

the set Br = {x E !Rn : f(x) ~ r} is homeomorphie to n-dimensional ball for any r E (0,1].

Obviously, Cr= BBr = {x E [Rn : f(x) = r} ia a piecewiae smooth homeomorphic aphere.

Taking into account that grad f(x) ia orthogonal to Cr at x, one ean ealeulate easily

that h(x) = 1grad f(x) 1-1 for any x EB1. There!ore

(3.8)
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Theorem 3.2. Assume 11ln:t..b& funetion f i.s. symmetrie and oositively homogeneous of de

~ k (k < n).!&i X he M in Theorem 3.1. Then
\

(3.9)

~ y 1 ~~ (n-2)-dimensional symmetrie homeomorohie spheres Q!! Cl'~

QEL.~ egnality holdsll grad f !i tangent 12 X aJmost eyerywhere Q!1 X and for al

most~ r E [0,1] ~ sphere X; = (XnCr)/r = {x/r : xE XnCr} minimizes H1 in

~ ill:ü 2f All (n-2)-dimensional symmetrie homeomorphic spheres Q!! Cl'

Proof. Note that the domains Br = {x : f(x) ~ r} are symmetrie because f is a symme

ktrie funetion. Since f is positive1y homogeneous, Le. f(AX) = A f(x) (A>O), we have

(3.10)

and

(3.11)

grad f(AX) = rk- 1 grad f(x)

dS = rn- 2dS I ,
r r

1-

where dSr and dS; denote the volume elements on xncr and X; respeetively.

Therefore,



-13-

Hence, we obtain

dS' 1
voln_2(X) ~ inf ( r 1gräd hx) r) f r

n
-

k
-

1
dr

~I 0
r

where Yr runs all (n-2)--dimensional symmetrie homeomorphic spheres. The second state:--·

ment follows immediately from Theorem 3.1 and the fact that grad f ia orthogonal to level~

surfaces Cr' Thus, the proof is complete.

Suppose now that h(x) = hr ia constant on each level surface Cr' Then

Hr(XnCr) = hr voln_2(XnCr). Therefore, the following result is an immediate eorollary af

Theorem 3.1.

Carollary 3.3. Assume that Br and X ~M in Theorem 3.1. Then

(3.12)

1

val 1(X) >Jh i nf vol 2(Y )dr,n- - r y n- r
o r

where!M infimum!t~ over all (n-2)-dimensionalsymmetric hameomorphic spheres
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Q!! cr' H besides ihM. X i§. orthogonal tQ Cr Ai almost ill points Qf X illil for almost

~ r E [0,1] ~ sunace X n Cr is volume minimizing among eIl the {n-2)-dimensio

!!M symmetrie spheres on Cr' then~ eguality in (3.12) hol<is.

§4 Concrete examples

In this section we show several examples, where Theorem 3.2 and Corollary 3.3 enable us

to prove Fomenko's conjecture mentioned in the introduction. We shall start by remarking

some intuitively obvious facts.

Suppose N (IR
n is half of hyperplane with boundary, a {n-2)-dimensional plane }:.

Through each point p E~n we draw the two-<limensional plane 7rp that is the ortho

gonal complement to }:. "p intersects N at an unique point 8(p). Denote by

B : IRn -+ N ihe map, sending each point p into B{p).

Proposition 4.1. a) The mapning EJ: IRn -+ N is g contracting män, i:..e.

dist(8(p),8(q)) ~ dist{p,q) fQr~ p,q E IRn.

b)!&1 C ~ 9 hypersurface of revolution Ei!! ä:!ii l in IRn. Then the restriction 2f 8 12

C ift i contracting mß:R 2f C iill2 CnN.

c) The yolume 2f~~ in C does not increase~ 8.

Proof. Choose orthonormal coordinates xl'~, ... ,xn_2,xn_l,xn in IRn with origin .0 E'l
such ihat xl'~,... ,xn_2 are orthonormal coordinates of 'l. Consider arbitrary points

p = (Pl'P2, ... ,Pn) and q = (ql'q2, ... ,Qn) in IR
n

. Clearly,
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Wehave

Therefore,

2 2 2 2
= 2[...J(Pn-l+Pn)(qn-l+qn)-(Pn-lqn-l+pnqn)]·

On the other hand,
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2.222 222 2 22 2 _
Pn-lqn+Pnqn-l+Pnqn-Pn-lqn-l-Pn<ln- Pn-lqn-1Pnqn

Consequently, dist(p,q) ~ dist(8(p),8(q)), proving the statement a) of the proposition.

Consider now an arbitrary CUIve 7 in C. Since C ia a hypersurface of revolution, it ia

dear that the image 8(7) of 7 under 8 ia contained in CnN. Combining the statement

a) with the fact that 7 and 8(7) can be approximated by broken lines with length, arbi

trarily dose to the length of 7 and EI( 7) respectively, we can prove the statement b).

Finally, the statement c) follows from b). Thus J the proof is completed.

From Proposition 4.1 it immediately follows

Corollary 4.2.~ meridian on 9 hypersurface oe revolution is volume minimizing.

Let B ia a convex domain in !Rn. Consider the "concave mapll (7' : lRn\B --+ OB, carrying

each point p E lRn\B into the base of the perpendicular, drawn from the point p onto

OB. It is easy to see that the map f7 ia defined uniquely, even for case when I OB ia just

piecewise amooth.

Proposition 4.3 a) For An! points p,q EIRn\B 1.hg following ineguality holds

dist (p,q) ~ dist ( o'(p),0'(q))
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Proof. First of all we note a simple property of the "concave map" tT; namely,

(4.1) dist n(p,q) ~ dist n(o{p),o{q»
IR IR

for any points p,q EIRn\B. Consider now the image o{[p,q]) of the line segment [p,q],

joining p and q, and an arbitrary braken line i, appraximating t1{[p,q]) .. The curve i

consists ofline segments [u(Pi),t1{Pi+l»), 0 ~ i ~ rn-I, where PO,Pl, ... ,Pm E [p,q], PO=O,

pm=q. According to (4.1) we have

m-1 m-1

length( i) = l dist (0{Pi)' o{Pj+ 1» ~ l dist(Pi'Pi+ 1) = dist (p,q).
i =0 i =0

Hence, we obtain: length (u([p,q]» ~ dist(p,q). Consequently,

dist 8B( u(p),u(q») ~ length( u([p,q]» ~ dist(p,q).

In this way the statement a) has been proved. The statement b) immediately follows from

a). The proof is completed.

Corollary 4.4. Suppose B m~ convex domain in IRn, w- hMf ~ hyperolane with boundary

l' Let the mM! 8 be defined M in Proposition 4.1 and assume that 8( OB) C w-\B. Then

7rllOB is volume minimizing in OB.
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Proof. Assume that X is an arbitrary hypersurface in OB with boundary 8X C rl18B.

Denote by ;. the hyperplane, eontaining ~. Sinee B is eonvex, the intersection ';nB is

also eonvex. Let X' denote the image (with multiplicity) of X under 8. Clearly,

8X I = 8( 8X) = 8X. Hence, voln_ 2(X ') ~ voln_ 2(X) by force of Proposition 4.1. Con

sider "coneave map" u:;'\B ---t ';(lOB and denote by ~' the part of rl:8B, bounded by

8X, and by X" the image (with multiplicity) of X' under u. Clearly, X" covers the

whole r l' Now, applying Proposition 4.3 we have

Therefore, voln_ 2(r 1) ~ voln_ 2(X), completing the proof.

Example 1. Consider a n-dimensional rectangular parallelepiped B with centre 0 and

edges &1 ~ ~ ~ ...~ an' Denote by F and F' the faces of B that are perpendieular to

the longest edge an' Let M be the eentra! hyperplane, parallel to the faces F and F I •

Set ß = Mn8B. Obviously, ß is the boundary of a (n-l)-dimensional rectangular parall

elepiped with centre 0 and edges a1 S~ ~ ...~ an-I' Suppose 1 is a (n-2)-dimensional

symmetrie homeomorphic sphere in OB. Since 1 and ß are both symmetrie apheres,

their interseetion '(flß contains a (n-3~mensional symmetrie sphere A, dividing each

of 1 and ß into two symmetrie parts: 1 = '1 U'2' ß = ß1 Uß2,

071 = 072 = 8ß1 = 0/32 = A, voln_ 2( '1) = voln_2( '2)' voln_ 2({31) = voln_ 2(ß2)·

Clearly, ßI and /32 are volume minimizing with respect to the boundary A. Hence,

voln_ 2(71) ~ voln_ 2({31)' voln_ 2( '2) ~ voln_ 2({32)' Consequently, voln_ 2(7) ~ voln_ 2(ß).

Thus, we have
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(4.2)

where the infimum is taken over all (n-2)--dimensionalsymmetric homeomorphic spheres

on Cl = OB.

At avertex P of the parallelepiped we eonsider the n-dimensional eube with edge 1/2a1,

having a vertex at P and faces, parallel to the faces cf B. Denote by PQ its main diago-

a1 salnal, passing through P. We have IPQ I = r ~. Let S E PQ, IQS I = 2 vn
(0 ~ 8 ~ 1). Denote by Bs the reetangular parallelepiped with eentre 0, that has avertex

at S and faces, parallel to the faces of B.

Clearly, the domains Bs (0 ~ s S1) satisfy the eondition of Corollary 3.3. Moreover,

BI = B, BO is a (n-1)-dimensional rectangular parallelepiped, that has eentre 0 and

edges ~-a1 ,,,.,an-al and lies on the eentral hyperplane, perpendicular to the shortest

edge a1. Set Ps = Mn8Bs (0 Ss SI). Similarly to (4.2) one can get the equality

(4.3)

where 7 runs all (n-2)--dimensional symmetrie homeomorphie spheres on Cs = 8Bs' On

the other hand, by a simple calculation we have h(x) = a1/ 2 for any x EB. Now from

(3.12) and (4.3) it follows that

(4.4)
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where X ia an arbitrary (n-2)--eonnected volume minimizing hypersurface in B with

boundary on OB, which contains 0 as an isolated singularity, satisfying the condition

(1.1). Thus, in this case Fomenko's conjecture ia true.

Example 2. Consider two-dimensional ellipsoids Br in 1R3, given by the equations

2 2 2 2
f = f(x,y,z) =;. +~ +~ - r = 0 (a~b~c, O~r~l) .

abc

Assume, at first, that b = c, i.e. Br are ellipsoids of revolution. Denote by M and M'

the central hyperplanes, given by the equations z = 0 and x = 0 respectively. Clearly,

M' nOBI is a drele with radius b. Suppose i is asymmetrie eurve in OBI' The inter

section (M' nOB1)n i contains antirx>dal points {P,Q}. Denote by 71" half a hyperplane,.

passing through P and Q and perpendicular to M'. Let 8 be the map, defined as in

Proposition 4.1. It is easy to see that 8( OBI) ( 7I"\B1. Therefore, ".(laBI is length mini

mizing in OBI by force of Corollary 4.4. Hence,

length (i) ~ 2Iength(".(lOB1) = length(Mn8B1). Consequently, we have

(4.5) length(Mn8B1) =inf length( i),
i

where 1 is an arbitrary symmetric curve in OBI' Without lost generality we can assume

that r is contained in the coordinate plane M. Set Q1 = Mn8B1n{x>o,y<O},

Q2 = Mn8B1n{x>o,y>0} and denote by '1 (respectively, '2) the connected component

of ,n{x>O,y<O} (respectively, ,n{x>O,y>O}), containing the point (0,-1,0) (respee

tively, (0,1,0)). Fist of all we note that length( '1) ~ length( a1). Really, suppose not. One

can consider the curve 1', consisting of 71 and its image under the symmetry with res

pect to the coordinate plane y=O. Obviously,
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length (7') ~ 2 length( ( 1) = length (mOB I) and this is contradict to the fact that

rl10B I is volume minimizing. We define the mapping T: Q1 -+ 71 by the following

requirement: for any P E Q1 the length of the part of Ql between (0,-1,0) and P and

the length of the part of 11 between (0,-1,0) and r(P) are equal.

(4.6)

Proof. We have

Therefore,

(4.7)

1gradI(P) 1 ~ I gradf( r(P)) 1

f (2x ~ 2z)grad = ~, ~J:-2' .
a b b

222
1grad f 1

2
= 4(; +~ +;.)

a b b

On the other hand, from the statement c) of Proposition 4.1 it follows that the x--eoordin

ate of r(p) does not exceed the x-eoordinate of P. Combining this fact with (4.7) proves

(4.6). Now taking (4.6) into account, we obtain



-22-

(4.8)

for any symmetrie eurve 7 in OBI' By using Theorem 3.2, we ean conclude that

(4.9)

where X is an arbitrary simply conneeted volume minimizing hypersurface in B with

boundary on OB, which contains 0 a.s an isolated singularity, satisfying the condition

(1.1).

Finally, since every ellipsoid with axes a,b,c (a~b~c) contains an ellipsoid of revolution

with axes a,b,b, the inequality (4.9) is also true in general case of an arbitrary two-dimen

sional ellipsoid. Thus, in trus case Fomenko's conjeeture is true.
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