Vanishing of Ext groups in functor categories.

T. Pirashvili

Mathematical Institute
Academy of Sciences
Rukhadze st. 1... Tbilisi, Georgia, 380093

Max-Planck-Institut für Mathematik
Gotffried-Claren-Straße 26
D-5300 Bonn 3.

Germany

§ 1. Introduction

The aim of this paper is the following result.
1.1 Theorem. Let $\underset{\sim}{A}$ be a small additive category and $\underline{\underline{F}}$ be the category of all-functors from $\underline{\underline{A}}$ to the category of modules over the ring R. Let

$$
N: \underline{\underline{A}}^{n} \longrightarrow R-\bmod , n \geq 2
$$

be a functor with the property that

$$
\begin{equation*}
N\left(X_{1}, \cdots, X_{n}\right)=0 \text { if there is } i \in\{1, \cdots, n\} \text { with } X_{i}=0 . \tag{1.2}
\end{equation*}
$$

Let

$$
N^{d}: \underline{\underline{A}} \longrightarrow R-\bmod
$$

$$
E x t_{\underline{\underline{F}}}^{q}\left(M, N^{d}\right)=0=E x t_{\underline{\underline{F}}}^{q}\left(N^{d}, M\right), q \geq 0
$$

whenever F has degree (in sense of Eilenberg and MacLane [EM] at most $n-1$.
This theorem was proved in [P] in case $n=2$. Using 3.9.[JP] we deduce from theorem 1.1 the

1:3 Corollary. Suppose that the values of M are projective R-modules. Then

$$
H^{*}\left(\underline{\underline{A}}, \operatorname{Hom}_{R}\left(M, N^{d}\right)\right)=0
$$

where $\operatorname{Hom}_{R}\left(M, N^{d}\right)$ is the bifunctor on $\underline{\underline{A}}$ given by

$$
(X, Y) \mapsto \operatorname{Hom}_{R}(M(X), N(Y, \cdots, Y))
$$

§ 2. Proof of the theorem

We recall that for any functor $T: \underline{\underline{A}} \longrightarrow R-\bmod$ and any $\kappa \geq 0$ the $\kappa-t h$ cross-effect of T is a functor

$$
T_{\kappa}: \underline{\underline{A}}^{\kappa} \longrightarrow R-\bmod ,
$$

such that for $X_{1}, \cdots, X_{m} \in \mathrm{Ob} \underline{\underline{A}}$ there exists a natural decomposition (see [EM]

$$
\begin{equation*}
T\left(X_{1} \oplus \cdots \oplus X_{m}\right)=\oplus T_{\kappa}\left(X_{i_{1}}, \cdots, X_{i_{n}}\right) \tag{2.1}
\end{equation*}
$$

where the sum is taken over all $1 \leq i_{1}<\cdots<i_{k} \leq m$. The functor T has degree at most m if $T_{m+1}=0$. We denote by $\eta_{T, \kappa}(X)$ the projection on the summand $T_{\kappa}(X, \cdots, X)$ of the map $T(X) \longrightarrow T\left(\bigoplus_{i=1}^{\kappa} X\right)$ which is induced by diagonal map $X \longrightarrow \bigoplus_{i=1}^{\kappa} X$. Then we obtain the natural transformation

$$
\eta_{T, \kappa}: T \longrightarrow T_{\kappa}^{d}
$$

Here T_{κ}^{d} denotes the composition of $T_{\kappa}: \underline{A}^{\kappa} \longrightarrow R-\bmod$ with the diagonal embed= ding $\underline{\underline{A}} \longrightarrow \underline{\underline{A}}^{\kappa}$. Let $\xi_{T, \kappa}(X)$ be the restriction on the summand $T_{\kappa}^{d}(X)$ of the map $T\left(\bigoplus_{i=1}^{\kappa} X\right) \rightarrow T(X)$ which is induced by the codiagonal map $\bigoplus_{i=1}^{\kappa} X \longrightarrow X \cdots$ Then we have the natural transformation

$$
\xi_{T, \kappa}: T_{\kappa}^{d} \longrightarrow T
$$

2.2 Lemma. Let $N: \underline{\underline{A}}^{n} \longrightarrow R-\bmod$ be the functor satisfying condition 1.2 and $T=N^{d}$. Then $\eta_{T, n}$ is a split monomorphism and $\xi_{T, n}$ is a split epimorphism.
Proof. Let $X_{1}, \cdots, X_{n} \in O b \underline{\underline{A}}$ and let

$$
\alpha\left(X_{1}, \cdots, X_{n}\right): \bigoplus_{i=1}^{n} T\left(X_{1} \oplus \cdots \oplus \hat{X}_{i} \oplus \cdots \oplus X_{n}\right) \longrightarrow T\left(\bigoplus_{i=1}^{n} X_{i}\right)
$$

be induced by the inclusion

$$
X_{1} \oplus \cdots \oplus \hat{X}_{i} \oplus \cdots \oplus X_{n} \longrightarrow \bigoplus_{i=1}^{n} X_{i}
$$

Then 2.1 implies that the column in the following diagramm is exact.

Here $p r$ is the projection in the decomposition 2.1 and

$$
p_{i}: \bigoplus_{i=1}^{n} X \longrightarrow X
$$

is the projection on the i-th summand. Hence we get

$$
\begin{aligned}
\eta_{T, n} & =p r \circ T(\operatorname{diag}) \\
\left.N p_{1}, \cdots, p_{n}\right) \circ T(\operatorname{diag}) & =1_{T(X)} \\
N\left(p_{1}, \cdots, p_{n}\right) \circ \alpha & =0
\end{aligned}
$$

This shows that there is a retraction of $\eta_{T, n}$. A similar argument shows that $\xi_{T, n}$ has a section.
Lemma 2.3 Let $\underline{\underline{F}}(\underline{\underline{n}})$ be the category of all functors from $\underline{\underline{A}}^{n}$ to R-mod. Then there is a functor

$$
\psi: \underline{\underline{F}}(\underline{\underline{n}}) \longrightarrow \underline{\underline{F}}(\underline{\underline{n}})
$$

with the following properties
i) ψ is an exact functor
ii) $\psi(W)$ satisfies property 1.2
iii) if W satisfies property 1.2 then $\psi(W)=W$
iv) if N satisfies property 1.2 and W is an arbitrary object in $\underline{\underline{F}}(\underline{\underline{n}})$ then

$$
\operatorname{Hom}_{\underline{\underline{F}}(\underline{\underline{n}})}(W, N)=\operatorname{Hom}_{\underline{\underline{F}}(\underline{\underline{n}}}(\psi(W), N)
$$

and

$$
\operatorname{Hom}_{\underline{\underline{F}}(\underline{\underline{n}})}(N, W)=\operatorname{Hom}_{\underline{\underline{\underline{F}}}(\underline{\underline{n}})}(N, \psi(W))
$$

v) ψ sends injective and projective objects to injective and projective objects resepectively.
Proof. We define ψ by

$$
(\psi W)\left(X_{1}, \cdots, X_{n}\right)=K e r\left(W\left(X_{1}, \cdots, X_{n}\right) \xrightarrow{\gamma} \bigoplus_{i=1}^{n} W\left(X_{1}, \cdots, 0, \cdots, X_{n}\right)\right)
$$

Here γ is induced by $X_{i} \rightarrow 0$. Then ii) and iii) follows from the definition. Since γ has a section ψW is a direct summand of W and we have

$$
(\psi W)\left(X_{1}, \ldots, X_{n}\right)=\operatorname{Coker}\left(\bigoplus_{i=1}^{n} W\left(X_{1}, \cdots, 0, \cdots, X_{n}\right) \rightarrow W\left(X_{1}, \cdots, X_{n}\right)\right)
$$

From this follows i). We remark that v) formally follows from i) and iii). Let $f: W \rightarrow N$ be a natural transformation. Then the commutative diagramm

$$
\begin{array}{ccc}
W\left(X_{1}, \cdots, X_{n}\right) & f\left(X_{1}, \cdots, X_{n}\right) & N\left(X_{1}, \cdots, X_{n}\right) \\
\uparrow & \uparrow \\
\bigoplus_{i=1}^{n} W\left(X_{1}, \cdots, 0, \cdots, X_{n}\right) & \oplus f\left(X_{1}, \cdots, \cdots, \cdots, X_{n}\right) & \underset{i=1}{n} N\left(X_{1}, \cdots, 0, \cdots, X_{n}\right)=0
\end{array}
$$

shows that $f\left(X_{1}, \cdots, X_{n}\right)$ uniquely factors through $\psi(W)$ and we obtain the first isomorphism in iii). The second is proved by the dual argument.
2.4 Lemma. Let W be an injective (resp. projective) object in $\underline{\underline{F}}(\underline{\underline{n}})$. Then W^{d} is an injective (resp. a projective) object in $\underline{\underline{F}}$.
Proof. We recall that for an arbitrary small category $\underline{\underline{C}}$ the following family of functors is a family of injective (resp. projective) generators in $(R-\bmod) \underline{C}$:

$$
X \mapsto M a p s(\underline{\underline{C}}(\underline{\underline{X}}, \underline{\underline{c}}), I) \quad(\text { resp } . X \mapsto R[\underline{\underline{C}}(c, X)]) .
$$

Here $c \in O b \underline{\underline{C}}, I$ is an injective generator in the category of R-modules and $\mathrm{R}[\mathrm{S}]$ is the free R -module with base S . Therefore it is sufficient to consider the case

$$
W\left(X_{1}, \cdots, X_{n}\right)=\operatorname{Maps}\left(\underline{\underline{A}}\left(X_{1}, c_{1}\right) \times \cdots \times \underline{\underline{A}}\left(X_{n}, c_{n}\right), I\right)
$$

resp. the case

$$
W\left(X_{1}, \cdots, X_{n}\right)=R\left[\underline{A}\left(c_{1}, X_{1}\right) \times \cdots \times \underline{\underline{A}}\left(c_{n}, X_{n}\right)\right]
$$

where $c_{1}, \cdots, c_{n} \in O b \underline{\underline{A}}$. Hence

$$
W^{d}(X)=M a p s\left(\underline{\underline{A}}\left(X, c_{1} \times \cdots \times c_{n}\right), I\right)
$$

resp.

$$
W^{d}(X)=R\left[\underline{\underline{A}}\left(c_{1} \oplus \cdots \oplus c_{n}, X\right)\right]
$$

Therefore W^{d} is injective (resp. projective) in $\underline{\underline{F}}$.
2.5 Proof of the theorem. First consider the case when $q=0$. Let

$$
\tau: M \rightarrow T=N^{d}
$$

(resp.

$$
\left.\sigma: N^{d}=T \rightarrow F\right)
$$

be a natural transformation with $\operatorname{deg} M<n$ and assume N satisfies condition.1.2. Since $\eta_{T, n}$ and $\xi_{T, n}$ are natural with respect T, we obtain the following commutative diagrams

By $2.2 \eta_{T, n}$ is a monomorphism and $\xi_{T, n}$ is an epimorphism, therefore $\tau=\sigma=0$. Let $0 \rightarrow N \rightarrow I^{*}$ be an injective resolution in $\underline{\underline{F}}(\underline{\underline{n}})$. Then $0 \rightarrow N \rightarrow \psi\left(I^{*}\right)$ is also an injective resolution by 2.3. Therefore $0 \rightarrow N^{d} \rightarrow\left(\psi\left(I^{*}\right)\right)^{d}$ is an injective resolution too (by 2.4). But $\psi\left(I^{*}\right)$ satisfies the property 2.1 by 2.3 . Therefore

$$
E x t_{\underline{\underline{F}}}^{*}\left(M, N^{d}\right)=H^{*}\left(H o m_{\underline{\underline{F}}}\left(M,\left(\psi\left(\Gamma^{*}\right)\right)^{d}\right)\right)=H^{*}(0)=0 .
$$

By the dual argument we obtain the second equality

$$
E x t_{\underline{\underline{F}}}^{*}\left(N^{d}, M\right)=0 .
$$

References

[EM] S. Eilenberg \& S. MacLane. On the groups $H(\pi, n)$, II. Ann. Math. 60 (1954), 49-139:
[JP] M. Jibladze \& T. Pirashvili. Cohomology of algebraic theories. To appear in J. Algebra.
[P] T. Pirashvili. Higher additivizations. Proc. Math. Inst. Tbilisi. v. 91 (1988), 44-54.

